WorldWideScience

Sample records for mass spectrometry toc-ms

  1. An appraisal on the degradation of paracetamol by TiO2/UV system in aqueous medium: product identification by gas chromatography-mass spectrometry (GC-MS)

    OpenAIRE

    Dalmázio,Ilza; Alves,Tânia M. A.; Augusti,Rodinei

    2008-01-01

    The advanced oxidation of paracetamol (1) promoted by TiO2/UV system in aqueous medium was investigated. Continuous monitoring by several techniques, such as UV-Vis spectroscopy, HPLC (high performance liquid chromatography), TOC (total organic carbon), and ESI-MS (electrospray ionization mass spectrometry), revealed that whereas the removal of paracetamol was highly efficient under these conditions, its mineralization was not likewise accomplished. GC-MS (gas chromatography-mass spectrometry...

  2. Simultaneous determination of creatinine and creatine in human serum by double-spike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio

    2015-04-07

    This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors

  3. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  4. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli; Ostman, Pekka; Ojanperae, Ilkka; Kotiaho, Tapio; Kauppila, Tiina J.; Kostiainen, Risto

    2011-01-01

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL -1 ) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  5. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  6. Determination of 4-Methylimidazole in Ammonia Caramel Using Gas Chromatography–Tandem Mass Spectrometry (GC-MS/MS

    Directory of Open Access Journals (Sweden)

    Martyna N. Wieczorek

    2018-01-01

    Full Text Available One of Maillard reaction products formed in the production of ammonia caramel is 4(5-methylimidazole (4-MeI classified as carcinogen. A method of 4-MeI determination based on ion-pair extraction and derivatisation with isobutyl chloroformate with subsequent gas chromatography-tandem mass spectrometry analysis was proposed. Tandem mass spectrometry was applied to reduce the influence of matrix and increase the selectivity and sensitivity of the method. Triple quadrupole GC-MS system was used for this study. The collision energies were optimized for MRM mode. The detection (LOD and quantification limits (LOQ of the elaborated method were 17 and 37.8 μg kg−1, respectively, repeatability was <15% RSD for analyzed caramel samples, and the recovery for 4-MeI was 101%. Comparison of MS/MS with SIM detection on the same instrument proved almost 30 times lower LODs achieved by tandem mass spectrometry compared to SIM. Described method can be routinely used for monitoring 4-MeI as a quality and safety marker in the production of ammonia caramel.

  7. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Shimamura, Tadashi

    1997-01-01

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  8. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis.

    Science.gov (United States)

    Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E

    2018-05-15

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. EPA CRL MS014: Analysis of Aldicarb, Bromadiolone, Carbofuran, Oxamyl and Methomyl in Water by Multiple Reaction Monitoring Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)

    Science.gov (United States)

    Method MS014 describes procedures for solvent extraction of aldicarb, bromadiolone, carbofuran, oxamyl and methomyl from water samples, followed by analysis using liquid chromatography tandem mass spectrometry (LC-MS-MS).

  10. Open Access UHPSFC/MS - an additional analytical resource for an academic mass spectrometry facility.

    Science.gov (United States)

    Herniman, Julie M; Langley, G John

    2016-08-15

    Many compounds submitted for analysis in Chemistry at the University of Southampton do not retain, elute or ionize using open access reversed-phase ultra-high-performance liquid chromatography/mass spectrometry (RP-UHPLC/MS) and require analysis via infusion. An ultra-high-performance supercritical fluid chromatography mass spectrometry approach was implemented to afford high-throughput analysis of these compounds with chromatographic separation. A UPC(2) -TQD MS system has been incorporated into the open access MS provision within Chemistry at the University of Southampton, using an ESCi source (electrospray and atmospheric pressure chemical ionization) and an atmospheric pressure photoionization (APPI) source. Access to instrumentation is enabled via a web-based interface (RemoteAnalyzer™). Compounds such as fluorosugars, fullerenes, phosphoramidites, porphyrins, and rotaxanes exhibiting properties incompatible with RP-UHPLC/MS have been analyzed using automated chromatography and mass spectrometry methods. The speedy return of data enables research in these areas to progress unhindered by sample type. The provision of an electronic web format enables easy incorporation of chromatograms and mass spectra into electronic files and reports. The implementation of UHPSFC/MS increases access to a wide range of chemistries incompatible with reversed-phase chromatography and polar solvents, enabling more than 90% of submitted samples to be analyzed using an open access approach. Further, chromatographic separation is provided where previously flow injection or infusion analyses were the only options. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Exploring surface photoreaction dynamics using pixel imaging mass spectrometry (PImMS)

    Science.gov (United States)

    Kershis, Matthew D.; Wilson, Daniel P.; White, Michael G.; John, Jaya John; Nomerotski, Andrei; Brouard, Mark; Lee, Jason W. L.; Vallance, Claire; Turchetta, Renato

    2013-08-01

    A new technique for studying surface photochemistry has been developed using an ion imaging time-of-flight mass spectrometer in conjunction with a fast camera capable of multimass imaging. This technique, called pixel imaging mass spectrometry (PImMS), has been applied to the study of butanone photooxidation on TiO2(110). In agreement with previous studies of this system, it was observed that the main photooxidation pathway for butanone involves ejection of an ethyl radical into vacuum which, as confirmed by our imaging experiment, undergoes fragmentation after ionization in the mass spectrometer. This proof-of-principle experiment illustrates the usefulness and applicability of PImMS technology to problems of interest within the surface science community.

  12. phpMs: A PHP-Based Mass Spectrometry Utilities Library.

    Science.gov (United States)

    Collins, Andrew; Jones, Andrew R

    2018-03-02

    The recent establishment of cloud computing, high-throughput networking, and more versatile web standards and browsers has led to a renewed interest in web-based applications. While traditionally big data has been the domain of optimized desktop and server applications, it is now possible to store vast amounts of data and perform the necessary calculations offsite in cloud storage and computing providers, with the results visualized in a high-quality cross-platform interface via a web browser. There are number of emerging platforms for cloud-based mass spectrometry data analysis; however, there is limited pre-existing code accessible to web developers, especially for those that are constrained to a shared hosting environment where Java and C applications are often forbidden from use by the hosting provider. To remedy this, we provide an open-source mass spectrometry library for one of the most commonly used web development languages, PHP. Our new library, phpMs, provides objects for storing and manipulating spectra and identification data as well as utilities for file reading, file writing, calculations, peptide fragmentation, and protein digestion as well as a software interface for controlling search engines. We provide a working demonstration of some of the capabilities at http://pgb.liv.ac.uk/phpMs .

  13. High-throughput screening and confirmation of 22 banned veterinary drugs in feedstuffs using LC-MS/MS and high-resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Wang, Xufeng; Liu, Yanghong; Su, Yijuan; Yang, Jianwen; Bian, Kui; Wang, Zongnan; He, Li-Min

    2014-01-15

    A new analytical strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with accurate mass high-resolution Orbitrap mass spectrometry (HR-Orbitrap MS) was performed for high-throughput screening, confirmation, and quantification of 22 banned or unauthorized veterinary drugs in feedstuffs according to Bulletin 235 of the Ministry of Agriculture, China. Feed samples were extracted with acidified acetonitrile, followed by cleanup using solid-phase extraction cartridge. The extracts were first screened by LC-MS/MS in a single selected reaction monitoring mode. The suspected positive samples were subjected to a specific pretreatment for confirmation and quantification of analyte of interest with LC-MS/MS and HR-Orbitrap MS. Mean recoveries for all target analytes (except for carbofuran and chlordimeform, which were about 35 and 45%, respectively) ranged from 52.2 to 90.4%, and the relative standard deviations were screening of real samples obtained from local feed markets and confirmation of the suspected target analytes. It provides a high-throughput, sensitive, and reliable screening, identification, and quantification of banned veterinary drugs in routine monitoring programs of feedstuffs.

  14. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    Science.gov (United States)

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  15. Mass spectrometry at the Pittsburgh conference

    International Nuclear Information System (INIS)

    Borman, S.

    1987-01-01

    Each year analytical chemists flock to the Pittsburgh Conference to learn about the latest trends in analytical instrumentation. In this Focus, a number of prominent mass spectroscopists who attended this year's meeting in Atlantic City, NJ, discuss their perceptions of current developments in the field of mass spectrometry (MS). In the June 1 issue of Analytical Chemistry, the authors coverage of the Pittsburgh Conferences continues with a follow-up article on specific developments in hyphenated mass spectrometry - primarily liquid chromatography - MS (LC/MS) and gas chromatography - infrared spectrometry MS (GC/IR/MS)

  16. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  17. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS).

    Science.gov (United States)

    Vu, Dai Long; Ranglová, Karolína; Hájek, Jan; Hrouzek, Pavel

    2018-05-01

    Quantification of selenated amino-acids currently relies on methods employing inductively coupled plasma mass spectrometry (ICP-MS). Although very accurate, these methods do not allow the simultaneous determination of standard amino-acids, hampering the comparison of the content of selenated versus non-selenated species such as methionine (Met) and selenomethionine (SeMet). This paper reports two approaches for the simultaneous quantification of Met and SeMet. In the first approach, standard enzymatic hydrolysis employing Protease XIV was applied for the preparation of samples. The second approach utilized methanesulfonic acid (MA) for the hydrolysis of samples, either in a reflux system or in a microwave oven, followed by derivatization with diethyl ethoxymethylenemalonate. The prepared samples were then analyzed by multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS). Both approaches provided platforms for the accurate determination of selenium/sulfur substitution rate in Met. Moreover the second approach also provided accurate simultaneous quantification of Met and SeMet with a low limit of detection, low limit of quantification and wide linearity range, comparable to the commonly used gas chromatography mass spectrometry (GC-MS) method or ICP-MS. The novel method was validated using certified reference material in conjunction with the GC-MS reference method. Copyright © 2018. Published by Elsevier B.V.

  18. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.

    Science.gov (United States)

    Crowell, Kevin L; Slysz, Gordon W; Baker, Erin S; LaMarche, Brian L; Monroe, Matthew E; Ibrahim, Yehia M; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D

    2013-11-01

    The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). rds@pnnl.gov. Supplementary data are available at Bioinformatics online.

  19. METHOD 544. DETERMINATION OF MICROCYSTINS AND NODULARIN IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    Science.gov (United States)

    Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensi...

  20. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Science.gov (United States)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  1. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*

    Science.gov (United States)

    Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.

    2016-01-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445

  2. Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS).

    Science.gov (United States)

    Coy, Stephen L; Krylov, Evgeny V; Schneider, Bradley B; Covey, Thomas R; Brenner, David J; Tyburski, John B; Patterson, Andrew D; Krausz, Kris W; Fornace, Albert J; Nazarov, Erkinjon G

    2010-04-15

    Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry - mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also suppress chemical noise created in typical atmospheric-pressure ionization sources (ESI, MALDI, and others). Differential-mobility-based ion selection is based on the field dependence of ion mobility, which, in turn, depends on ion characteristics that include conformation, charge distribution, molecular polarizability, and other properties, and on the transport gas composition which can be modified to enhance resolution. DMS-MS is able to resolve small-molecule biomarkers from nearly-isobaric interferences, and suppresses chemical noise generated in the ion source and in the mass spectrometer, improving selectivity and quantitative accuracy. Our planar DMS design is rapid, operating in a few milliseconds, and analyzes ions before fragmentation. Depending on MS inlet conditions, DMS-selected ions can be dissociated in the MS inlet expansion, before mass analysis, providing a capability similar to MS/MS with simpler instrumentation. This report presents selected DMS-MS experimental results, including resolution of complex test mixtures of isobaric compounds, separation of charge states, separation of isobaric biomarkers (citrate and isocitrate), and separation of nearly-isobaric biomarker anions in direct analysis of a bio-fluid sample from the radiation-treated group of a mouse-model study. These uses of DMS combined with moderate resolution MS instrumentation indicate the feasibility of field-deployable instrumentation for biomarker evaluation.

  3. Quantitation of iothalamate in urine and plasma using liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS).

    Science.gov (United States)

    Molinaro, Ross J; Ritchie, James C

    2010-01-01

    The following chapter describes a method to measure iothalamate in plasma and urine samples using high performance liquid chromatography combined with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Methanol and water are spiked with the internal standard (IS) iohexol. Iothalamate is isolated from plasma after IS spiked methanol extraction and from urine by IS spiked water addition and quick-spin filtration. The plasma extractions are dried under a stream of nitrogen. The residue is reconstituted in ammonium acetate-formic acid-water. The reconstituted plasma and filtered urine are injected into the HPLC-ESI-MS/MS. Iothalamate and iohexol show similar retention times in plasma and urine. Quantification of iothalamate in the samples is made by multiple reaction monitoring using the hydrogen adduct mass transitions, from a five-point calibration curve.

  4. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  5. JS-MS: a cross-platform, modular javascript viewer for mass spectrometry signals.

    Science.gov (United States)

    Rosen, Jebediah; Handy, Kyle; Gillan, André; Smith, Rob

    2017-11-06

    Despite the ubiquity of mass spectrometry (MS), data processing tools can be surprisingly limited. To date, there is no stand-alone, cross-platform 3-D visualizer for MS data. Available visualization toolkits require large libraries with multiple dependencies and are not well suited for custom MS data processing modules, such as MS storage systems or data processing algorithms. We present JS-MS, a 3-D, modular JavaScript client application for viewing MS data. JS-MS provides several advantages over existing MS viewers, such as a dependency-free, browser-based, one click, cross-platform install and better navigation interfaces. The client includes a modular Java backend with a novel streaming.mzML parser to demonstrate the API-based serving of MS data to the viewer. JS-MS enables custom MS data processing and evaluation by providing fast, 3-D visualization using improved navigation without dependencies. JS-MS is publicly available with a GPLv2 license at github.com/optimusmoose/jsms.

  6. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS).

    Science.gov (United States)

    Beach, Daniel G; Kerrin, Elliott S; Quilliam, Michael A

    2015-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) has been reported in cyanobacteria and shellfish, raising concerns about widespread human exposure. However, inconsistent results for BMAA analysis have led to controversy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most appropriate method for analysis of BMAA, but the risk of interference from isomers, other sample components, and the electrospray background is still present. We have investigated differential mobility spectrometry (DMS) as an ion filter to improve selectivity in the hydrophilic interaction liquid chromatographic (HILIC)-MS/MS determination of BMAA. We obtained standards for two BMAA isomers not previously analyzed by HILIC-MS, β-amino-N-methylalanine and 3,4-diaminobutanoic acid, and the typically used 2,4-diaminobutanoic acid and N-(2-aminoethyl)glycine. DMS separation of BMAA from these isomers was achieved and optimized conditions were used to develop a sensitive and highly selective multidimensional HILIC-DMS-MS/MS method. This work revealed current technical limitations of DMS for trace quantitation, and practical solutions were implemented. Accurate control of low levels of DMS carrier gas modifier was essential, but required external metering. The linearity of our optimized method was excellent from 0.01 to 6 μmol L(-1). The instrumental LOD was 0.4 pg BMAA injected on-column and the estimated method LOD was 20 ng g(-1) dry weight for BMAA in sample matrix. The method was used to analyze cycad plant tissue, a cyanobacterial reference material, and mussel tissues, by use of isotope-dilution quantitation with deuterated BMAA. This confirmed the presence of BMAA and several of its isomers in cycad and mussel tissues, including commercially available mussel tissue reference materials certified for other biotoxins. Graphical Abstract Differential Mobility Spectrometry is used to increases the selectivity of BMAA analysis by HILIC-MS/MS.

  7. Plutonium bioassay by inductively coupled plasma mass spectrometry ICP/MS

    International Nuclear Information System (INIS)

    Wyse, E.J.; Fisher, D.R.

    1993-04-01

    The determination of plutonium in urine poses several analytical challenges, e.g., detectability, matrix, etc. We have investigated the feasibility of analyzing plutonium in processed urine by inductively coupled plasma mass spectrometry (ICP/MS). The urine samples are first spiked with 244 Pu as a tracer and internal standard, then processed by co-precipitation and column chromatography using TRU-Spec trademark, an extraction resin. By enhancing ICP/MS detection capabilities via improved sample introduction and data acquisition efficiencies, an instrumental detection limit of 5 to 50 fg (0.3 to 3 fCi for 239 pu) is typically obtained, depending on the desired degree of quantitation. A brief summary of the analytical method as well as the basis for measuring radionuclides by ICP/MS are submitted; the separation procedure, methods of sample introduction, and data acquisition techniques are then highlighted

  8. Simultaneous Detection of Androgen and Estrogen Abuse in Breeding Animals by Gas Chromatography-Mass Spectrometry/Combustion/Isotope Ratio Mass Spectrometry (GC-MS/C/IRMS) Evaluated against Alternative Methods.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2015-09-02

    The administration of synthetic homologues of naturally occurring steroids can be demonstrated by measuring (13)C/(12)C isotopic ratios of their urinary metabolites. Gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) was used in this study to appraise in a global approach isotopic deviations of two 17β-testosterone metabolites (17α-testosterone and etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). Intermediate precisions of 0.35‰, 1.05‰, 0.35‰, and 0.21‰, respectively, were observed (n = 8). To assess the performance of the analytical method, a bull and a heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. The sensitivity of the method permitted the demonstration of 17β-estradiol treatment up to 24 days. For 17β-testosterone treatment, the detection windows were 3 days and 24 days for the bull and the heifer, respectively. The capability of GC-MS/C/IRMS to demonstrate natural steroid abuse for urinary steroids was eventually compared to those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in blood and hair.

  9. Inductively coupled plasma – Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements – A tutorial review

    Energy Technology Data Exchange (ETDEWEB)

    Balcaen, Lieve; Bolea-Fernandez, Eduardo [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, B-9000 Ghent (Belgium); Resano, Martín [University of Zaragoza, Department of Analytical Chemistry, Pedro Cerbuna 12, E-50009 Zaragoza (Spain); Vanhaecke, Frank, E-mail: Frank.Vanhaecke@UGent.be [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, B-9000 Ghent (Belgium)

    2015-09-24

    This paper is intended as a tutorial review on the use of inductively coupled plasma – tandem mass spectrometry (ICP-MS/MS) for the interference-free quantitative determination and isotope ratio analysis of metals and metalloids in different sample types. Attention is devoted both to the instrumentation and to some specific tools and procedures available for advanced method development. Next to the more typical reaction gases, e.g., H{sub 2}, O{sub 2} and NH{sub 3}, also the use of promising alternative gases, such as CH{sub 3}F, is covered, and the possible reaction pathways with those reactive gases are discussed. A variety of published applications relying on the use of ICP-MS/MS are described, to illustrate the added value of tandem mass spectrometry in (ultra)trace analysis. - Highlights: • First review on tandem ICP-mass spectrometry (ICP-MS/MS). • Clear description of operating principles of ICP-MS/MS. • Description on how to make use of product ion scans, precursor ion scans and neutral gain scans in method development. • Overview of applications published so far.

  10. Inductively coupled plasma – Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements – A tutorial review

    International Nuclear Information System (INIS)

    Balcaen, Lieve; Bolea-Fernandez, Eduardo; Resano, Martín; Vanhaecke, Frank

    2015-01-01

    This paper is intended as a tutorial review on the use of inductively coupled plasma – tandem mass spectrometry (ICP-MS/MS) for the interference-free quantitative determination and isotope ratio analysis of metals and metalloids in different sample types. Attention is devoted both to the instrumentation and to some specific tools and procedures available for advanced method development. Next to the more typical reaction gases, e.g., H_2, O_2 and NH_3, also the use of promising alternative gases, such as CH_3F, is covered, and the possible reaction pathways with those reactive gases are discussed. A variety of published applications relying on the use of ICP-MS/MS are described, to illustrate the added value of tandem mass spectrometry in (ultra)trace analysis. - Highlights: • First review on tandem ICP-mass spectrometry (ICP-MS/MS). • Clear description of operating principles of ICP-MS/MS. • Description on how to make use of product ion scans, precursor ion scans and neutral gain scans in method development. • Overview of applications published so far.

  11. [Latest development in mass spectrometry for clinical application].

    Science.gov (United States)

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  12. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  13. Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry.

    Science.gov (United States)

    Wandy, Joe; Zhu, Yunfeng; van der Hooft, Justin J J; Daly, Rónán; Barrett, Michael P; Rogers, Simon

    2017-09-14

    We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualisations. Ms2lda.org takes tandem mass spectrometry data in many standard formats and allows the user to infer the sets of fragment and neutral loss features that co-occur together (Mass2Motifs). As an alternative workflow, the user can also decompose a dataset onto predefined Mass2Motifs. This is accomplished through the web interface or programmatically from our web service. The website can be found at http://ms2lda.org , while the source code is available at https://github.com/sdrogers/ms2ldaviz under the MIT license. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  14. Chemical characterization of neonicotinoids in surface waters by high performance liquid chromatography with Tandem Mass Spectrometry (HPLC MS/MS)

    International Nuclear Information System (INIS)

    Amaral, Priscila Oliveira

    2017-01-01

    The present study aimed to develop a method for the determination and validation of a method for the identification and quantification of Neonicotinoids in surface waters collected in the Bauru region, in the state of São Paulo. The analytical techniques studied for the development of this method were the high performance liquid chromatography with tandem mass spectrometry (HPLC - MS / MS), gas chromatography with mass spectrometry (GC / MS) and gas chromatography with electron capture detector (GC / ECD). The class of pesticides Neonicotinoids was chosen for this work because it is related to a sudden disappearance of bees in colonies around the world. This phenomenon is known as Colony Collapse Disorder (CCD) and it is characterized by a rapid loss in the population of adult bees. The Neonicotinoids used in this study were the compounds Clothianidin, Imidacloprid and Thiamethoxam which were banned in their use as pesticides in Europe by Implementing Regulation No. 540/2011. The samples were concentrated using solid phase extraction (SPE) and liquid liquid extraction (LLE) techniques and injected into HPLC-MS / MS, GC / MS and GC / ECD. The GC / ECD and GC / MS techniques were not satisfactory for determination in the water matrix because the detection limit (10 mg L -1 ) is above the maximum allowed by the US Environmental Protection Agency (0.6 μg L -1 ). The HPLC - MS / MS technique using the multiple reaction monitoring (MRM) proved to be adequate for this study because it obtained quantification limits between 5.89 and 8.06 μg L -1 and a linearity between 0.9963 and 0.9999 for the three compounds. (author)

  15. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  16. Gas chromatography-mass spectrometry (GC-MS) analysis of extractives of naturally durable wood

    Science.gov (United States)

    G.T. Kirker; A.B. Blodgett; S.T. Lebow; C.A. Clausen

    2011-01-01

    A preliminary study to evaluate naturally durable wood species in an above ground field trial using Gas Chromatography-Mass Spectrometry (GC-MS) detected differences in fatty acid extractives between species and within the same species over time. Fatty acids were extracted with chloroform: methanol mixture then methylated with sodium methoxide and fractionated using...

  17. End-group characterisation of poly(propylene glycol)s by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS).

    Science.gov (United States)

    Jackson, Anthony T; Slade, Susan E; Thalassinos, Konstantinos; Scrivens, James H

    2008-10-01

    The end-group functionalisation of a series of poly(propylene glycol)s has been characterised by means of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). A series of peaks with mass-to-charge ratios that are close to that of the precursor ion were used to generate information on the end-group functionalities of the poly(propylene glycol)s. Fragment ions resulting from losses of both of the end groups were noted from some of the samples. An example is presented of how software can be used to significantly reduce the length of time involved in data interpretation (which is typically the most time-consuming part of the analysis).

  18. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  19. Mass Spectrometry Applications for Toxicology.

    Science.gov (United States)

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS n ) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  20. Mass Spectrometry Applications for Toxicology

    Science.gov (United States)

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  1. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  2. Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; Prévost, Stéphanie; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-07-31

    Although the ability to differentiate between endogenous steroids and synthetic homologues on the basis of their (13)C/(12)C isotopic ratio has been known for over a decade, this technique has been scarcely implemented for food safety purposes. In this study, a method was developed using gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to demonstrate the abuse of 17β-estradiol in cattle, by comparison of the (13)C/(12)C ratios of the main metabolite 17α-estradiol and an endogenous reference compound (ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precisions were determined as 0.46 and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, respectively. This is, to the authors' knowledge, the first reported use of GC-MS/C/IRMS for the analysis of steroid compounds for food safety issues.

  3. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  4. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    Science.gov (United States)

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  5. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  6. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  7. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful...

  8. Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria

    OpenAIRE

    Esterhuizen-Londt, M; Downing, S; Downing, TG

    2011-01-01

    β-N-methylamino-L-alanine (BMAA) is a difficult molecule to detect, primarily due to its presence in low concentrations in complex matrices. This has resulted in contradictory reports on the presence of BMAA in cyanobacteria. We report improved sensitivity of detection using propyl chloroformate derivatisation, liquid chromatographic (LC) separation, and single quadrupole mass spectrometry (MS) detection. Triple quadrupole mass spectrometry (MS/MS) was used to confirm the identity of BMAA in ...

  9. Methods in endogenous steroid profiling - A comparison of gas chromatography mass spectrometry (GC-MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS).

    Science.gov (United States)

    Teubel, Juliane; Wüst, Bernhard; Schipke, Carola G; Peters, Oliver; Parr, Maria Kristina

    2018-06-15

    In various fields of endocrinology, the determination of steroid hormones synthesised by the human body plays an important role. Research on central neurosteroids has been intensified within the last years, as they are discussed as biomarkers for various cognitive disorders. Their concentrations in cerebrospinal fluid (CSF) are considered to be regulated independently from peripheral fluids. For that reason, the challenging matrix CSF becomes a very interesting specimen for analysis. Concentrations are expected to be very low and available amount of CSF is limited. Thus, a comprehensive method for very sensitive quantification of a set of analytes as large as possible in one analytical aliquot is desired. However, high structural similarities of the selected panel of 51 steroids and steroid sulfates, including numerous isomers, challenges achievement of chromatographic selectivity. Since decades the analysis of endogenous steroids in various body fluids is mainly performed by gas chromatography (GC) coupled to (tandem) mass spectrometry (MS(/MS)). Due to the structure of the steroids of interest, derivatisation is performed to meet the analytical requirements for GC-MS(/MS). Most of the laboratories use a two-step derivatisation in multi-analyte assays that was already published in the 1980s. However, for some steroids this elaborate procedure yields multiple isomeric derivatives. Thus, some laboratories utilize (ultra) high performance liquid chromatography ((U)HPLC)-MS/MS as alternative but, even UHPLC is not able to separate some of the isomeric pairs. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to GC and (U)HPLC may help to overcome these issues. Within this project the two most promising methods for endogenous steroid profiling were investigated and compared: the "gold standard" GC-MS and the orthogonal separation technique SFC-MS/MS. Different derivatisation procedures for gas chromatographic detection were explored and the

  10. Evaluation of laser diode thermal desorption-tandem mass spectrometry (LDTD-MS-MS) in forensic toxicology.

    Science.gov (United States)

    Bynum, Nichole D; Moore, Katherine N; Grabenauer, Megan

    2014-10-01

    Many forensic laboratories experience backlogs due to increased drug-related cases. Laser diode thermal desorption (LDTD) has demonstrated its applicability in other scientific areas by providing data comparable with instrumentation, such as liquid chromatography-tandem mass spectrometry, in less time. LDTD-MS-MS was used to validate 48 compounds in drug-free human urine and blood for screening or quantitative analysis. Carryover, interference, limit of detection, limit of quantitation, matrix effect, linearity, precision and accuracy and stability were evaluated. Quantitative analysis indicated that LDTD-MS-MS produced precise and accurate results with the average overall within-run precision in urine and blood represented by a %CV forensic toxicology but before it can be successfully implemented that there are some challenges that must be addressed. Although the advantages of the LDTD system include minimal maintenance and rapid analysis (∼10 s per sample) which makes it ideal for high-throughput forensic laboratories, a major disadvantage is its inability or difficulty analyzing isomers and isobars due to the lack of chromatography without the use of high-resolution MS; therefore, it would be best implemented as a screening technique. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Monoacylglycerol Analysis Using MS/MSALL Quadruple Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2016-08-01

    Full Text Available Monoacylglycerols (MAGs are structural and bioactive metabolites critical for biological function. Development of facile tools for measuring MAG are essential to understand its role in different diseases and various pathways. A data-independent acquisition method, MS/MSALL, using electrospray ionization (ESI coupled quadrupole time of flight mass spectrometry (MS, was utilized for the structural identification and quantitative analysis of individual MAG molecular species. Compared with other acylglycerols, diacylglycerols (DAG and triacylglycerols (TAG, MAG characteristically presented as a dominant protonated ion, [M + H]+, and under low collision energy as fatty acid-like fragments due to the neutral loss of the glycerol head group. At low concentrations (<10 pmol/µL, where lipid-lipid interactions are rare, there was a strong linear correlation between ion abundance and MAG concentration. Moreover, using the MS/MSALL method the major MAG species from human plasma and mouse brown and white adipose tissues were quantified in less than 6 min. Collectively, these results demonstrate that MS/MSALL analysis of MAG is an enabling strategy for the direct identification and quantitative analysis of low level MAG species from biological samples with high throughput and sensitivity.

  12. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  13. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  14. Liquid chromatography-mass spectrometry in forensic toxicology.

    Science.gov (United States)

    Van Bocxlaer, J F; Clauwaert, K M; Lambert, W E; Deforce, D L; Van den Eeckhout, E G; De Leenheer, A P

    2000-01-01

    Liquid chromatography-mass spectrometry has evolved from a topic of mainly research interest into a routinely usable tool in various application fields. With the advent of new ionization approaches, especially atmospheric pressure, the technique has established itself firmly in many areas of research. Although many applications prove that LC-MS is a valuable complementary analytical tool to GC-MS and has the potential to largely extend the application field of mass spectrometry to hitherto "MS-phobic" molecules, we must recognize that the use of LC-MS in forensic toxicology remains relatively rare. This rarity is all the more surprising because forensic toxicologists find themselves often confronted with the daunting task of actually searching for evidence materials on a scientific basis without any indication of the direction in which to search. Through the years, mass spectrometry, mainly in the GC-MS form, has gained a leading role in the way such quandaries are tackled. The advent of robust, bioanalytically compatible combinations of liquid chromatographic separation with mass spectrometric detection really opens new perspectives in terms of mass spectrometric identification of difficult molecules (e.g., polar metabolites) or biopolymers with toxicological relevance, high throughput, and versatility. Of course, analytical toxicologists are generally mass spectrometry users rather than mass spectrometrists, and this difference certainly explains the slow start of LC-MS in this field. Nevertheless, some valuable applications have been published, and it seems that the introduction of the more universal atmospheric pressure ionization interfaces really has boosted interests. This review presents an overview of what has been realized in forensic toxicological LC-MS. After a short introduction into LC-MS interfacing operational characteristics (or limitations), it covers applications that range from illicit drugs to often abused prescription medicines and some

  15. Impact of automation on mass spectrometry.

    Science.gov (United States)

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    Science.gov (United States)

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  17. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  19. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb

    NARCIS (Netherlands)

    Erasmus, Sara W.; Muller, Magdalena; Alewijn, Martin; Koot, Alex H.; Ruth, van Saskia M.; Hoffman, Louwrens C.

    2017-01-01

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile

  20. BioSunMS: a plug-in-based software for the management of patients information and the analysis of peptide profiles from mass spectrometry

    Directory of Open Access Journals (Sweden)

    Zhang Xuemin

    2009-02-01

    Full Text Available Abstract Background With wide applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, statistical comparison of serum peptide profiles and management of patients information play an important role in clinical studies, such as early diagnosis, personalized medicine and biomarker discovery. However, current available software tools mainly focused on data analysis rather than providing a flexible platform for both the management of patients information and mass spectrometry (MS data analysis. Results Here we presented a plug-in-based software, BioSunMS, for both the management of patients information and serum peptide profiles-based statistical analysis. By integrating all functions into a user-friendly desktop application, BioSunMS provided a comprehensive solution for clinical researchers without any knowledge in programming, as well as a plug-in architecture platform with the possibility for developers to add or modify functions without need to recompile the entire application. Conclusion BioSunMS provides a plug-in-based solution for managing, analyzing, and sharing high volumes of MALDI-TOF or SELDI-TOF MS data. The software is freely distributed under GNU General Public License (GPL and can be downloaded from http://sourceforge.net/projects/biosunms/.

  1. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  2. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  3. Practical aspects and trends in analytical organic mass spectrometry

    International Nuclear Information System (INIS)

    Schlunegger, U.P.

    1981-01-01

    Proceeding from the fundamentals of mass spectrometry (MS), some more recent developments of analytical organic MS are shown in comparison with conventional MS. Sections are headed: the vacuum, production of ions in the mass spectrometer, ions in the analyzer of a mass spectrometer, general considerations, practice of modern MS: selected examples

  4. Integration of Electrochemistry with Ultra Performance Liquid Chromatography/Mass Spectrometry (UPLC/MS)

    Science.gov (United States)

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715

  5. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  6. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    Science.gov (United States)

    Pedro, Liliana; Quinn, Ronald J

    2016-07-28

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  7. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection.

    Science.gov (United States)

    Flamini, Riccardo; Panighel, Annarita

    2006-01-01

    Controls in food industry are fundamental to protect the consumer health. For products of high quality, warranty of origin and identity is required and analytical control is very important to prevent frauds. In this article, the "state of art" of mass spectrometry in enological chemistry as a consumer safety contribute is reported. Gas chromatography-mass spectrometry (GC/MS) and liquid-chromatography-mass spectrometry (LC/MS) methods have been developed to determine pesticides, ethyl carbamate, and compounds from the yeast and bacterial metabolism in wine. The presence of pesticides in wine is mainly linked to the use of dicarboxyimide fungicides on vineyard shortly before the harvest to prevent the Botrytis cinerea attack of grape. Pesticide residues are regulated at maximum residue limits in grape of low ppm levels, but significantly lower levels in wine have to be detected, and mass spectrometry offers effective and sensitive methods. Moreover, mass spectrometry represent an advantageous alternative to the radioactive-source-containing electron capture detector commonly used in GC analysis of pesticides. Analysis of ochratoxin A (OTA) in wine by LC/MS and multiple mass spectrometry (MS/MS) permits to confirm the toxin presence without the use of expensive immunoaffinity columns, or time and solvent consuming sample derivatization procedures. Inductively coupled plasma-mass spectrometry (ICP/MS) is used to control heavy metals contamination in wine, and to verify the wine origin and authenticity. Isotopic ratio-mass spectrometry (IRMS) is applied to reveal wine watering and sugar additions, and to determine the product origin and traceability.

  8. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  9. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  10. Quantification of Hydroxychloroquine in Blood Using Turbulent Flow Liquid Chromatography-Tandem Mass Spectrometry (TFLC-MS/MS).

    Science.gov (United States)

    Chambliss, Allison B; Füzéry, Anna K; Clarke, William A

    2016-01-01

    Hydroxychloroquine (HQ) is used routinely in the treatment of autoimmune disorders such as rheumatoid arthritis and lupus erythematosus. Issues such as marked pharmacokinetic variability and patient non-compliance make therapeutic drug monitoring of HQ a useful tool for management of patients taking this drug. Quantitative measurements of HQ may aid in identifying poor efficacy as well as provide reliable information to distinguish patient non-compliance from refractory disease. We describe a rapid 7-min assay for the accurate and precise measurement of HQ concentrations in 100 μL samples of human blood using turbulent flow liquid chromatography coupled to tandem mass spectrometry. HQ is isolated from EDTA whole blood after a simple extraction with its deuterated analog, hydroxychloroquine-d4, in 0.33 M perchloric acid. Samples are then centrifuged and injected onto the TFLC-MS/MS system. Quantification is performed using a nine-point calibration curve that is linear over a wide range (15.7-4000 ng/mL) with precisions of <5 %.

  11. Mass spectrometry: a revolution in clinical microbiology?

    Science.gov (United States)

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  12. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  13. Separation of different ion structures in atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS).

    Science.gov (United States)

    Laakia, Jaakko; Adamov, Alexey; Jussila, Matti; Pedersen, Christian S; Sysoev, Alexey A; Kotiaho, Tapio

    2010-09-01

    This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M](+*) and protonated [M + H](+) molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O(2)](+*), which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M](+*). Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forming a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M](+*) typically had a higher intensity than the protonated molecule [M + H](+). Interestingly, the latter drifts slower than the radical cation [M](+*), which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  14. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  15. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    as RNA modifications added in cell-free in vitro systems. MALDI-MS is particularly useful in cases in which other techniques such as those involving primer extension or chromatographic analyses are not practicable. To date, MALDI-MS has been used to localize rRNA modifications that are involved......Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass...... spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal...

  16. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  17. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

    Science.gov (United States)

    Richter, S S; Sercia, L; Branda, J A; Burnham, C-A D; Bythrow, M; Ferraro, M J; Garner, O B; Ginocchio, C C; Jennemann, R; Lewinski, M A; Manji, R; Mochon, A B; Rychert, J A; Westblade, L F; Procop, G W

    2013-12-01

    This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l'Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer's instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7% of the 965 isolates tested, with 83.8% correct to the species level and 12.8% limited to a genus-level identification. There was no identification for 1.7% of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.

  18. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

    NARCIS (Netherlands)

    Horvatovich, Peter; Hoekman, Berend; Govorukhina, Natalia; Bischoff, Rainer

    Multidimensional chromatography coupled to mass spectrometry (LC(n)-MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an

  19. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2002-01-01

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  20. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  1. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    Science.gov (United States)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  2. Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS: correction for humidity effects

    Directory of Open Access Journals (Sweden)

    A. Vlasenko

    2010-08-01

    Full Text Available Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments.

  3. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS)

    DEFF Research Database (Denmark)

    Esmail Nazari, Zeinab; van de Weert, Marco; Bou-Assaf, George

    2016-01-01

    Hydrogen Deuterium Exchange coupled to Mass Spectrometry (HDX-MS) has become an established method for analysis of protein higher-order structure. Here, we use HDX-MS methodology based on manual Solid-Phase Extraction (SPE) to allow fast and simplified conformational analysis of proteins under...... pharmaceutically relevant formulation conditions. Of significant practical utility, the methodology allows global HDX-MS analyses to be performed without refrigeration or external cooling of the setup. In Mode 1, we used DMSO-containing solvents for SPE, allowing the HDX-MS analysis to be performed at acceptable...... in formulation, using an internal HDX reference peptide (P7I) to control for any sample-to-sample variations in back exchange. Advantages of the methodology include low sample use, optimized excipient removal using multiple solvents, and fast data acquisition. Our results indicate that the SPE-HDX-MS system can...

  4. DATA TRANSFER FROM A DEC PDP-11 BASED MASS-SPECTROMETRY DATA STATION TO AN MS-DOS PERSONAL-COMPUTER

    NARCIS (Netherlands)

    RAFFAELLI, A; BRUINS, AP

    This paper describes a simple procedure for obtaining better quality graphic output for mass spectrometry data from data systems equipped with poor quality printing devices. The procedure uses KERMIT, a low cost public domain software, to transfer ASCII tables to a MS-DOS personal computer where

  5. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    Science.gov (United States)

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  6. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    Science.gov (United States)

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  7. Determination of boron and lithium in diverse biological matrices using neutron activation-mass spectrometry (NA-MS)

    International Nuclear Information System (INIS)

    Iyengar, G.V.; Downing, R.G.; Clarke, W.B.

    1990-01-01

    Essential features of the neutron activation-mass Spectrometry (NA-MS) technique are described. Applicability of this technique for the simultaneous determination of boron and lithium is demonstrated for a diverse group of biomaterials. NA-MS is a nondestructive analytical technique, and dynamic in nature since its coverage extends to a broad range of concentration levels. Contamination after the irradiation step, extraneous by natural lithium or boron is inconsequential, since only the activation products are the analyted assayed. Coupling the nuclear activation phenomenon which generates 4 He and 3 He (from 10 B and 6 Li, respectively), with the high precision potential of mass spectrometry forms the bases of this technique. Under ideal conditions the detection limit is extendable to pg g -1 concentration ranges and therefore, it is extremely well suited to investigate the natural concentration levels of boron and lithium in biomaterials. The potential of this method for the determination of lithium in biomedical trace element research is of special significance since determination of sub-ppb levels of lithium by other analytical techniques faces serious analytical difficulties mainly due to contamination control and in some cases to insufficiently low detection limits. (orig.)

  8. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    International Nuclear Information System (INIS)

    Yu, Xiangying; Yao, Zhong-Ping

    2017-01-01

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  9. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangying [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, Jilin (China); State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region (China)

    2017-05-22

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  10. Mass Spectrometry (LC-MS-MS) as a Tool in the Maillard Reaction Optimisation and Characterisation of New 6-methoxy-tetrahydro-β-carboline Derivatives

    International Nuclear Information System (INIS)

    Goh, T.B.; Mordi, M.N.; Mansor, S.M.

    2015-01-01

    Four new 6-methoxy-tetrahydro-β-carboline derivatives (1-6- methoxy-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole,2-6-methoxy-1- (4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 3-6-methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole and 4-2-methoxy-4-(6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl) phenol) were prepared via the Maillard reaction using 5-methoxytryptamine and various aldehydes in water. The synthesis reaction conditions were optimised in catalyst loading, temperature and time using LC-MS for optimum yields. Surface response methodology and contour plot was selected as an approach for optimisation. The optimum yield could be achieved below 50 degree Celsius within 5 h at 7 mole % catalyst loading at yields > 70 %. The β-carboline compounds produced were characterised using electrospray ionization mass spectrometry (ESI-MS) and electrospray tandem mass (ESI-MS/MS). The mass fragmentation patterns of this group of heterocyclic tetrahydro-β-carboline compounds are described herein. (author)

  11. Boundaries of mass resolution in native mass spectrometry.

    Science.gov (United States)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  12. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    Science.gov (United States)

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. APPLICATION OF LIQUID-CHROMATOGRAPHY COMBINED WITH MASS-SPECTROMETRY (LC-MS) TO ESTABLISH IDENTITY AND PURITY OF PET-RADIOPHARMACEUTICALS

    NARCIS (Netherlands)

    FRANSSEN, EJF; LUURTSEMA, G; MEDEMA, J; VISSER, GM; JERONISMUSSHALINGH, CM; BRUINS, AP; VAALBURG, W

    This article describes the application of liquid chromatography combined with mass-spectrometry (LC-MS) as a new quality control tool for PET-radiopharmaceuticals. The final step in the production of 2-[F-18]fluoro-2-deoxy-D-glucose (F-18-FDG) is a purification by HPLC. This procedure was validated

  14. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wong, April S Y; Leung, Gary N W; Leung, David K K; Wan, Terence S M

    2017-09-01

    Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray. The recent development in fast-scanning gas-chromatography-triple-quadrupole mass spectrometry (GC-MS/MS) has provided a better alternative with a significant reduction in chemical noise by means of selective reaction monitoring. Herein, we present a sensitive and selective method for the screening of over 50 anabolic steroids in equine urine using gas chromatography-tandem mass spectrometry (GC-MS/MS). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  16. Evaluation of high-resolution mass spectrometry for urine toxicology screening in a pain management setting.

    Science.gov (United States)

    Crews, Bridgit O; Pesce, Amadeo J; West, Robert; Nguyen, Hugh; Fitzgerald, Robert L

    2012-01-01

    To evaluate liquid chromatography-high-resolution mass spectrometry (LC-HR-MS) for urine toxicology screening, 29 analytes were quantitated in 152 urine specimens from patients with chronic pain using two unique mass spectrometry platforms. De-identified specimens were quantitated in April of 2011 by liquid chromatography-triple quadrupole mass spectrometry (LC-MS-MS) and by full-scan LC-HR-MS at Millennium Laboratories. Considering LC-MS-MS as the reference method, false positive results were identified in 19 specimens measured by LC-HR-MS. Application of relative retention times using deuterium labeled internal standards improved the rate of false positive detection to only five specimens, with four occurring for the same analyte. Ultra-high-resolution mass spectrometry (R = 100,000 at m/z 200) showed no improvement over high-resolution mass spectrometry (R = 10,000 at m/z 200) in the number of false positives detected. Quantitative results measured by LC-MS-MS and LC-HR-MS showed good agreement over four orders of dynamic range. This study demonstrates that LC-HR-MS is a suitable platform for toxicology screening for a pain management population and that quantitative accuracy and sensitivity are comparable to that achieved with LC-MS-MS. The specificity of LC-HR-MS is improved by the addition of deuterium labeled internal standards and the implementation of relative retention time matching.

  17. Liquid-chromatography mass spectrometry (LC-MS) of steroid hormone metabolites and its applications

    Science.gov (United States)

    Penning, Trevor M.; Lee, Seon-Hwa; Jin, Yi; Gutierrez, Alejandro; Blair, Ian A.

    2010-01-01

    Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-Electrospray Ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5α–dihydrotestosterone(DHT)-17β-glucuronide, DHT-17β-sulfate, and tibolone-17β-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable-isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740 attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16α-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16α-hydroxy-E1 from 5 pg/mL to 2,000 pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment. PMID:20083198

  18. Radionuclide content of simulated and fully radioactive SRLLL waste glasses: comparison of results from ICP-MS, gamma spectrometry and alpha spectrometry

    International Nuclear Information System (INIS)

    Wolf, S.F.; Bates, J.K.

    1995-01-01

    We have measured the transuranic content of two transuranic=doped, simulated waste glasses, using inductively coupled plasma-mass spectrometry (ICP-MS), γ-spectrometry, and α-spectrometry. Average concentrations measured by each technique were within ± 10% of the as-doped concentrations. We also report the transuranic content of three fully radioactive SRL waste glasses that were determined using γ- and α-spectrometry measurements to deconvolute isobaric interferences present in the ICP-MS analyses

  19. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip|info:eu-repo/dai/nl/371559693; Snijder, Joost|info:eu-repo/dai/nl/338018328; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even

  20. Analytical and clinical performance of the new Fujirebio 25-OH vitamin D assay, a comparison with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and three other automated assays

    OpenAIRE

    Saleh, Lanja; Mueller, Daniel; von Eckardstein, Arnold

    2015-01-01

    BACKGROUND: We evaluated the analytical and clinical performance of the new Lumipulse® G 25-OH vitamin D assay from Fujirebio, and compared it to a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and three other commercial automated assays. METHODS: Total 25 hydroxy vitamin D (25(OH)D) levels were measured in 100 selected serum samples from our routine analysis with Fujirebio 25(OH)D assay. The results were compared with those obtained with LC-MS/MS and three other automat...

  1. Plutonium determination in urine by techniques of mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez M, H.; Yllera de Ll, A.

    2013-10-01

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of 239 Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of 239 Pu). (author)

  2. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory.

    Science.gov (United States)

    Zhang, Yan Victoria; Wei, Bin; Zhu, Yu; Zhang, Yanhua; Bluth, Martin H

    2016-12-01

    In the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in routine toxicology laboratories. LC-MS/MS offers significant advantages over other traditional testing, such as immunoassay and gas chromatography-mass spectrometry methodologies. Major strengths of LC-MS/MS include improvement in specificity, flexibility, and sample throughput when compared with other technologies. Here, the basic principles of LC-MS/MS technology are reviewed, followed by advantages and disadvantages of this technology compared with other traditional techniques. In addition, toxicology applications of LC-MS/MS for simultaneous detection of large panels of analytes are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  4. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    Science.gov (United States)

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  5. Mass-spectrometry analysis of histone post-translational modifications in pathology tissue using the PAT-H-MS approach

    Directory of Open Access Journals (Sweden)

    Roberta Noberini

    2016-06-01

    Full Text Available Aberrant histone post-translational modifications (hPTMs have been implicated with various pathologies, including cancer, and may represent useful epigenetic biomarkers. The data described here provide a mass spectrometry-based quantitative analysis of hPTMs from formalin-fixed paraffin-embedded (FFPE tissues, from which histones were extracted through the recently developed PAT-H-MS method. First, we analyzed FFPE samples from mouse spleen and liver or human breast cancer up to six years old, together with their corresponding fresh frozen tissue. We then combined the PAT-H-MS approach with a histone-focused version of the super-SILAC strategy-using a mix of histones from four breast cancer cell lines as a spike-in standard- to accurately quantify hPTMs from breast cancer specimens belonging to different subtypes. The data, which are associated with a recent publication (Pathology tissue-quantitative mass spectrometry analysis to profile histone post-translational modification patterns in patient samples (Noberini, 2015 [1], are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002669.

  6. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J; Hok, S; Alcaraz, A; Koester, C

    2008-11-13

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  7. Quantitative Analysis of Tetramethylenedisulfotetramine ('Tetramine') Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    International Nuclear Information System (INIS)

    Owens, J.; Hok, S.; Alcaraz, A.; Koester, C.

    2008-01-01

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD 50 = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 (micro)g/mL by LC/MS/MS versus 0.15 (micro)g/mL for GC/MS. Fortifications of the beverages at 2.5 (micro)g/mL and 0.25 (micro)g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  8. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    NARCIS (Netherlands)

    Ridder, L.O.; Hooft, van der J.J.J.; Verhoeven, S.

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS

  9. Phytochemical analyses of Ziziphus jujuba Mill. var. spinosa seed by ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Bao; Yang, Hongshun; Chen, Feng; Hua, Yanglin; Jiang, Yueming

    2013-11-21

    Ziziphus jujuba Mill. var. spinosa (Z. jujuba) seeds have attracted much attention within the field of medicine due to their significant effects against disturbances of the central nervous system. Secondary metabolites composition is key to the influence of the pharmaceutical and commercial qualities of this plant. In this work, the phytochemical profile of Z. jujuba seeds was analysed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS). The UPLC-MS/MS information identified the main secondary metabolites in Z. jujuba seeds, including flavonoid C-glycosides, triterpene acids and unsaturated fatty acids. The leading chemical identified by UPLC-MS/MS was betulinic acid, and oleic acid was the leading volatile from the GC-MS results. All the samples tested showed similar phytochemical profiles, but levels of the chemical compounds varied. Principal component analysis revealed the principal secondary metabolites that could define the differences in quality. It was confirmed that the combination of UPLC-MS/MS and GC-MS was an effective technique to demonstrate the pharmaceutical quality of Z. jujuba seeds.

  10. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    Science.gov (United States)

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  11. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, R.; Jilbert, T.; de Lange, G.J.; Reichart, G.J.

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (µm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  12. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  13. Current medical research with the application of coupled techniques with mass spectrometry

    OpenAIRE

    Ka?u?na-Czapli?ska, Joanna

    2011-01-01

    Summary The most effective methods of analysis of organic compounds in biological fluids are coupled chromatographic techniques. Capillary gas chromatography/mass spectrometry (GC-MS) allows the most efficient separation, identification and quantification of volatile metabolites in biological fluids. Liquid chromatography-mass spectrometry (LC-MS) is especially suitable for the analysis of non-volatile and/or thermally unstable compounds. A major drawback of liquid chromatography-mass spectro...

  14. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  15. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  16. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS

    NARCIS (Netherlands)

    Steinborn, Angelika; Alder, Lutz; Michalski, Britta; Zomer, Paul; Bendig, Paul; Martinez, Sandra Aleson; Mol, Hans G.J.; Class, Thomas J.; Costa Pinheiro, Nathalie

    2016-01-01

    This study describes the validation and application of two independent analytical methods for the determination of glyphosate in breast milk. They are based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. For

  17. High-resolution line-scan analysis of resin-embedded sediments using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

    NARCIS (Netherlands)

    Hennekam, Rick; Jilbert, Tom; Mason, Paul R D; de Lange, Gert J.; Reichart, Gert Jan

    2015-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) line-scanning is a promising technique for producing high-resolution (μm-scale) geochemical records on resin-embedded sediments. However, this approach has not yet been thoroughly tested on sediment samples of known elemental

  18. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria.

    Science.gov (United States)

    Branda, John A; Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda F; Westblade, Lars F; Ferraro, Mary Jane

    2014-02-01

    The VITEK MS v2.0 MALDI-TOF mass spectrometry system's performance in identifying fastidious gram-negative bacteria was evaluated in a multicenter study. Compared with the reference method (DNA sequencing), the VITEK MS system provided an accurate, species-level identification for 96% of 226 isolates; an additional 1% were accurately identified to the genus level. © 2013.

  19. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).

    Science.gov (United States)

    Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella

    2008-11-15

    The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.

  20. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  1. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  2. Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry

    Science.gov (United States)

    Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man

    2014-09-01

    A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.

  3. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  4. Tandem mass spectrometry data quality assessment by self-convolution.

    Science.gov (United States)

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  5. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    International Nuclear Information System (INIS)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah; Lee, Jung-min; Oh, Han Bin

    2016-01-01

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  6. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  7. Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow-Flow Electro Membrane Extraction-Mass Spectrometry System with LC-MS

    DEFF Research Database (Denmark)

    Fuchs, David; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2015-01-01

    A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable...... alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible. Metabolism kinetics...... offering a significant time saving as compared to conventional LC-MS where laborious protein precipitation or other sample pretreatments are required before analysis. This makes the developed EME-MS setup a highly promising sample preparation method for various kinds of applications where fast and real-time...

  8. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  9. New developments in glow discharge optical emission and mass spectrometry

    International Nuclear Information System (INIS)

    Hoffmann, Volker; Dorka, Roland; Wilken, Ludger; Wetzig, Klaus

    2000-01-01

    This paper describes new developments in flow discharge optical emission (GD-OES) and mass spectrometry (GD-MS) at IFW and presents corresponding new applications (analysis of microelectronic multi-layer system by radio frequency glow discharge optical emission spectrometry (RF-GD-OES) and analysis of pure iron by a new Grimm-type GD-MS source)

  10. The Simultaneous measurement of serum testosterone and 5α-dihydrotestosterone by gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    Kannenberg, Frank; Fobker, Manfred; Schulte, Erhard; Pierściński, Grzegorz; Kelsch, Reinhard; Zitzmann, Michael; Nofer, Jerzy-Roch; Schüring, Andreas N

    2018-01-01

    Simultaneous measurement of testosterone (T) and 5α-dihydrotestosterone (DHT) is important for diagnosing androgen deficiency states and hyperandrogenism in males and females, respectively. However, immunoassays used for T and DHT determination suffer from inadequate specificity and sensitivity, while tandem mass spectrometry is expensive and demanding in use. We developed a selective gas chromatography-mass spectrometry (GC-MS) method for parallel T and DHT measurement. The assay showed a linear response up to 46.5nmol/L, intra- and interassay imprecision and inaccuracy 90% for both analytes. The limit of quantitation was 0.117nmol/L for T and 0.168nmol/L for DHT. Comparison with immunoassays revealed good agreement for T in males, but a bias in favour of immunoassays at low concentrations for T in females and DHT in both sexes. We established reference ranges for T and DHT and suggest interval partitioning for T according to age in men and menstrual cycle in women. Assay validation in a clinical setting suggests that measuring DHT or T/DHT ratio may help identify patients with polycystic ovary syndrome. We developed a selective, simple and inexpensive GC-MS method for parallel measurement of T and DHT with potential use in the clinical laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A gas chromatography-mass spectrometry (GC-MS) method for the detection and quantitation of monofluoroacetate in plants toxic to livestock

    Science.gov (United States)

    Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography–mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatiza...

  12. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  13. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  14. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  15. The Effect of Collimating Lens Focusing on Laser Beam Shape in Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Djordjevic, Steven P; Padula, Matthew P

    2018-03-01

    Tissue imaging using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established technique that, in recent years, has seen wider adoption and novel application. Applications such imaging mass spectrometry (IMS) and biotyping are beginning to gain greater exposure and use; however, with limitations in optimization methods, producing the best result often relies on the ability to customize the physical characteristics of the instrumentation, a task that is challenging for most mass spectrometry laboratories. With this in mind, we have described the effect of making simple adjustments to the laser optics at the final collimating lens area, to adjust the laser beam size and shape in order to allow greater customization of the instrument for improving techniques such as IMS. We have therefore been able to demonstrate that improvements can be made without requiring the help of an electrical engineer or external funding in a way that only costs a small amount of time. Graphical Abstract ᅟ.

  16. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  18. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    Science.gov (United States)

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation

  19. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Turner, C.; Španěl, Patrik; Smith, D.

    2006-01-01

    Roč. 27, č. 7 (2006), s. 637-648 ISSN 0967-3334 Institutional research plan: CEZ:AV0Z40400503 Keywords : SIFT-MS * mass spectrometry * methanol Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.438, year: 2006

  20. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria.

    Science.gov (United States)

    Lee, Wonmok; Kim, Myungsook; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    By conventional methods, the identification of anaerobic bacteria is more time consuming and requires more expertise than the identification of aerobic bacteria. Although the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are relatively less studied, they have been reported to be a promising method for the identification of anaerobes. We evaluated the performance of the VITEK MS in vitro diagnostic (IVD; 1.1 database; bioMérieux, France) in the identification of anaerobes. We used 274 anaerobic bacteria isolated from various clinical specimens. The results for the identification of the bacteria by VITEK MS were compared to those obtained by phenotypic methods and 16S rRNA gene sequencing. Among the 249 isolates included in the IVD database, the VITEK MS correctly identified 209 (83.9%) isolates to the species level and an additional 18 (7.2%) at the genus level. In particular, the VITEK MS correctly identified clinically relevant and frequently isolated anaerobic bacteria to the species level. The remaining 22 isolates (8.8%) were either not identified or misidentified. The VITEK MS could not identify the 25 isolates absent from the IVD database to the species level. The VITEK MS showed reliable identifications for clinically relevant anaerobic bacteria.

  1. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  2. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    Science.gov (United States)

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: A review

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.Sabine, E-mail: s.becker@fz-juelich.de [Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, Jülich D-52425 (Germany); Matusch, Andreas, E-mail: a.matusch@fz-juelich.de [Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich D-52425 (Germany); Wu, Bei, E-mail: b.wu@fz-juelich.de [Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, Jülich D-52425 (Germany)

    2014-07-04

    Highlights: • Bioimaging LA-ICP-MS is established for trace metals within biomedical specimens. • Trace metal imaging allows to study brain function and neurodegenerative diseases. • Laser microdissection ICP-MS was applied to mouse brain hippocampus and wheat root. - Abstract: Bioimaging using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers the capability to quantify trace elements and isotopes within tissue sections with a spatial resolution ranging about 10–100 μm. Distribution analysis adds to clarifying basic questions of biomedical research and enables bioaccumulation and bioavailability studies for ecological and toxicological risk assessment in humans, animals and plants. Major application fields of mass spectrometry imaging (MSI) and metallomics have been in brain and cancer research, animal model validation, drug development and plant science. Here we give an overview of latest achievements in methods and applications. Recent improvements in ablation systems, operation and cell design enabled progressively better spatial resolutions down to 1 μm. Meanwhile, a body of research has accumulated covering basic principles of the element architecture in animals and plants that could consistently be reproduced by several laboratories such as the distribution of Fe, Cu, Zn in rodent brain. Several studies investigated the distribution and delivery of metallo-drugs in animals. Hyper-accumulating plants and pollution indicator organisms have been the key topics in environmental science. Increasingly, larger series of samples are analyzed, may it be in the frame of comparisons between intervention and control groups, of time kinetics or of three-dimensional atlas approaches.

  4. Detection of Stimulants and Narcotics by Liquid Chromatography-Tandem Mass Spectrometry and Gas Chromatography-Mass Spectrometry for Sports Doping Control.

    Science.gov (United States)

    Ahrens, Brian D; Kucherova, Yulia; Butch, Anthony W

    2016-01-01

    Sports drug testing laboratories are required to detect several classes of compounds that are prohibited at all times, which include anabolic agents, peptide hormones, growth factors, beta-2 agonists, hormones and metabolic modulators, and diuretics/masking agents. Other classes of compounds such as stimulants, narcotics, cannabinoids, and glucocorticoids are also prohibited, but only when an athlete is in competition. A single class of compounds can contain a large number of prohibited substances and all of the compounds should be detected by the testing procedure. Since there are almost 70 stimulants on the prohibited list it can be a challenge to develop a single screening method that will optimally detect all the compounds. We describe a combined liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) testing method for detection of all the stimulants and narcotics on the World Anti-Doping Agency prohibited list. Urine for LC-MS/MS testing does not require sample pretreatment and is a direct dilute and shoot method. Urine samples for the GC-MS method require a liquid-liquid extraction followed by derivatization with trifluoroacetic anhydride.

  5. Simultaneous determination of vitamins A and D3 in dairy products by liquid chromatography-tandem mass spectrometry (LC-MS/MS)

    Science.gov (United States)

    Barakat, I. S. A.; Hammouri, M. K.; Habib, I.

    2015-10-01

    A potential method for simultaneous determination of vitamin A and vitamin D3 (25- hydroxyvitamin D3) in fresh milk samples is addressed. The method is based on combination of high performance liquid chromatography and mass spectrometry during the course of analysis. The method applied for determination of vitamins A and D3 on eighteen (18) different fresh milk samples using liquid chromatography along with tandem -mass spectrometry. The work describes the suitability of the proposed method for the simultaneous determination of both vitamins using LC-MS/MS as a specific and quantitative technique. The vitamins of milk were separated by C18 Thermo gold column(100mm × 4.6mm × 5 μm) with a flow rate of 1ml/min (using an isocratic mobile phase). The method was validated using duplicate analyses, relative recovery experiment, and comparative analysis with control samples. Liquid- liquid extraction was employed as a pre-concentration step with n-hexane - dichloromethane mixture (90%:10%) as an extraction solvent. The molecular ions (m/z) appeared near 286 and 385nm and for the base peaks were appeared near 255 and 355nm for vitamins A and D3. Good correlation coefficients were obtained, 0.9999 for vitamin D3 and 0.9994 for vitamin A. The limit of detection and the limit of quantification were found to be 0.09ng/ml and 0.54ng/ml for vitamin D3 and 0.32ng/ml and 1.8ng/ml and for vitamin A. The proposed method showed excellent recoveries, about 98% for both vitamins A and D3.

  6. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Lindinger, W.; Hansel, A.

    1996-01-01

    A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)

  7. Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh.

    Science.gov (United States)

    Lewis, Richard J; Yang, Aijun; Jones, Alun

    2009-07-01

    Ciguatera is a significant food borne disease caused by potent polyether toxins known as ciguatoxins, which accumulate in the flesh of ciguateric fish at risk levels above 0.1 ppb. The management of ciguatera has been hindered by the lack of analytical methods to detect and quantify clinically relevant levels of ciguatoxin in easily prepared crude extracts of fish. Here we report a ciguatoxin rapid extraction method (CREM) that allows the rapid preparation of fish flesh extracts for the detection and quantification of ciguatoxin by gradient reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS). CREM-LC/MS/MS delivers a linear response to P-CTX-1 spiked into fish prior to extraction. A similar response was obtained for P-CTX-1 spiked after extraction, indicating >95% extraction efficiency was achieved overall and 85% at the limit of quantification (0.1 ppb). Using this approach, levels >or=0.1 ppb P-CTX-1 could be detected and quantified from an extract of 2g fish flesh, making it suitable as a confirmatory assay for suspect ciguateric carnivorous fish in the Pacific Ocean. The approach is designed to simplify the extraction and analysis of multiple samples per day.

  8. Determination of rivaroxaban in patient's plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS).

    Science.gov (United States)

    Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo Dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos

    2017-01-01

    Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels.

  9. Computer-aided method for identification of major flavone/flavonol glycosides by high-performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS).

    Science.gov (United States)

    Wang, Zhengfang; Lin, Longze; Harnly, James M; Harrington, Peter de B; Chen, Pei

    2014-11-01

    A new computational tool is proposed here for tentatively identifying major (UV quantifiable) flavone/flavonol glycoside peaks of high performance liquid chromatogram (HPLC)-diode array detection (DAD)-tandem mass spectrometry (MS/MS) profiles based on a MATLAB-based script implementing an in-house algorithm. The HPLC-DAD-MS/MS profiles of red onion, Chinese lettuce, carrot leaf, and celery seed extracts were analyzed by the proposed computer-aided screening method for identifying possible flavone/flavonol glycoside peaks from the HPLC-UV and MS total ion current (TIC) chromatograms. The number of identified flavone/flavonol glycoside peaks of the HPLC-UV chromatograms is four, four, six, and nine for red onion, Chinese lettuce, carrot leaf, and celery seed, respectively. These results have been validated by human(s) experts. For the batch processing of nine HPLC-DAD-MS/MS profiles of celery seed extract, the entire script execution time was within 15 s while manual calculation of only one HPLC-DAD-MS/MS profile by a flavonoid expert could take hours. Therefore, this MATLAB-based screening method is able to facilitate the HPLC-DAD-MS/MS analysis of flavone/flavonol glycosides in plants to a large extent.

  10. Chemical speciation analysis for bromine in tap water by ion chromatography/inductively coupled plasma-mass spectrometry and electrospray ionization-mass spectrometry

    International Nuclear Information System (INIS)

    Kurata, Keigo; Suzuki, Yoshinari; Furuta, Naoki

    2010-01-01

    Bromide compounds in tap water were measured by using a hyphenated technique of ion chromatography coupled with inductively coupled plasma - mass spectrometry (IC/ICP-MS) and electrospray ionization mass spectrometry (ESI-MS). We identified bromide ion (Br - ), bromate ion (BrO 3 - ), bromochloroacetic acid (BCAA), dibromoacetic acid (DBAA) and bromodichloroacetic acid (BDCAA) by standard addition methods with IC/ICP-MS. Moreover, we identified BCAA and BDCAA by ESI-MS after separation with IC. Br - , BrO 3 - , BCAA, DBAA and BDCAA in tap water collected from around Tokyo area were quantified by IC/ICP-MS. The maximum concentration of BrO 3 - (1.8 ng mL -1 ) was observed in tap water collected from Bunkyo-ku, although this concentration was lower than 10 ng mL -1 , which is the regulated concentration in Japan. DBAA, which is regulated by United States Environmental Protection Agency, was detected in tap water collected from all sites, except for Ome. However, since BrO 3 - and DBAA are toxic, it is necessary to continue monitoring bromide compounds in tap water. (author)

  11. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  12. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  13. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    Directory of Open Access Journals (Sweden)

    Laëtitia Théron

    2016-10-01

    Full Text Available Mass spectrometry imaging (MSI is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  14. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  15. Direct olive oil analysis by mass spectrometry: A comparison of different ambient ionization methods.

    Science.gov (United States)

    Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio

    2018-04-01

    Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of nitrated sugar alcohols by atmospheric-pressure chemical-ionization mass spectrometry.

    Science.gov (United States)

    Ostrinskaya, Alla; Kelley, Jude A; Kunz, Roderick R

    2017-02-28

    The nitrated sugar alcohols mannitol hexanitrate (MHN), sorbitol hexanitrate (SHN) and xylitol pentanitrate (XPN) are in the same class of compounds as the powerful military-grade explosive pentaerythritol tetranitrate (PETN) and the homemade explosive erythritol tetranitrate (ETN) but, unlike for PETN and ETN, ways to detect MHN, SHN and XPN by mass spectrometry (MS) have not been fully investigated. Atmospheric-pressure chemical-ionization mass spectrometry (APCI-MS) was used to detect ions characteristic of nitrated sugar alcohols. APCI time-of-flight mass spectrometry (APCI-TOF MS) and collision-induced dissociation tandem mass spectrometry (CID MS/MS) were used for confirmation of each ion assignment. In addition, the use of the chemical ionization reagent dichloromethane was investigated to improve sensitivity and selectivity for detection of MHN, SHN and XPN. All the nitrated sugar alcohols studied followed similar fragmentation pathways in the APCI source. MHN, SHN and XPN were detectable as fragment ions formed by the loss of NO 2 , HNO 2 , NO 3 , and CH 2 NO 2 groups, and in the presence of dichloromethane chlorinated adduct ions were observed. It was determined that in MS/MS mode, chlorinated adducts of MHN and SHN had the lowest limits of detection (LODs), while for XPN the lowest LOD was for the [XPN-NO 2 ] - fragment ion. Partially nitrated analogs of each of the three compounds were also present in the starting materials, and ions attributable to these compounds versus those formed from in-source fragmentation of MHN, SHN, and XPN were distinguished and assigned using liquid chromatography APCI-MS and ESI-MS. The APCI-MS technique provides a selective and sensitive method for the detection of nitrated sugar alcohols. The methods disclosed here will benefit the area of explosives trace detection for counterterrorism and forensics. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    Science.gov (United States)

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  18. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  19. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  20. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  1. Tandem mass spectrometry approach for the investigation of the steroidal metabolism: structure-fragmentation relationship (SFR) in anabolic steroids and their metabolites by ESI-MS/MS analysis.

    Science.gov (United States)

    Musharraf, Syed Ghulam; Ali, Arslan; Khan, Naik Tameem; Yousuf, Maria; Choudhary, Muhammad Iqbal; Atta-ur-Rahman

    2013-02-01

    Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the effect of different substitutions introduced during metabolism on fragmentation patterns of four anabolic steroids including methyltestosterone, methandrostenolone, cis-androsterone and adrenosterone, along with their metabolites. Collision-induced dissociation (CID) analysis was performed to correlate the major product ions of 19 steroids with structural features. The analysis is done to portray metabolic alteration, such as incorporation or reduction of double bonds, hydroxylations, and/or oxidation of hydroxyl moieties to keto functional group on steroidal skeleton which leads to drastically changed product ion spectra from the respective classes of steroids, therefore, making them difficult to identify. The comparative ESI-MS/MS study also revealed some characteristic peaks to differentiate different steroidal metabolites and can be useful for the unambiguous identification of anabolic steroids in biological fluid. Moreover, LC-ESI-MS/MS analysis of fermented extract of methyltestosterone, obtained by Macrophomina phaseolina was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Validation of a confirmatory method for the determination of melamine in egg by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xia Xi; Ding Shuangyang; Li Xiaowei; Gong Xiao; Zhang Suxia; Jiang Haiyang; Li Jiancheng; Shen Jianzhong

    2009-01-01

    A sensitive and reliable method was developed and validated for detection and confirmation of melamine in egg based on gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Trichloroacetic acid solution was used for sample extraction and precipitation of proteins. The aqueous extracts were subjected to solid-phase extraction by mixed-mode reversed-phase/strong cation-exchange cartridges. Using ultra-performance liquid chromatography and electrospray ionization in the positive ion mode, melamine was determined by LC-MS/MS, which was completed in 5 min for each injection. For the GC-MS analysis, extracted melamine was derivatized with N,O-bis(trimethylsilyl)trifluoracetamide prior to selected ion monitoring detection in electron impact mode. The average recovery of melamine from fortified samples ranged from 85.2% to 103.2%, with coefficients of variation lower than 12%. The limit of detection obtained by GC-MS and UPLC-MS/MS was 10 and 5 μg kg -1 , respectively. This validated method was successfully applied to the determination of melamine in real samples from market.

  3. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    Science.gov (United States)

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  4. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  5. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    Science.gov (United States)

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  6. Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry.

    Science.gov (United States)

    Matysik, Silke; Liebisch, Gerhard

    2017-12-01

    A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A proteomics method using immunoaffinity fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) to identify a set of interacting proteins.

    Science.gov (United States)

    Nakata, Katsunori; Saitoh, Ryoichi; Ishigai, Masaki; Imai, Kazuhiro

    2018-02-01

    Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD-LC-MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC-tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90-beta. The results demonstrated that the proposed immunoaffinity-FD-LC-MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  9. Quantitation of mycotoxins using direct analysis in real time (DART)-mass spectrometry (MS)

    Science.gov (United States)

    Ambient ionization represents a new generation of mass spectrometry ion sources which is used for rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and mass spectrometry allows analyzing multiple food samples with simple or no sample treatment, or in...

  10. Selective-Reagent-Ionization Mass Spectrometry: New Prospects for Atmospheric Research

    Science.gov (United States)

    Sulzer, Philipp; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Jürschik, Simone; Herbig, Jens; Märk, Lukas; Märk, Tilmann D.

    2014-05-01

    Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), which was introduced to the scientific community in the 1990's, has quickly evolved into a well-established technology for atmospheric research and environmental chemistry [1]. Advantages of PTR-MS are i) high sensitivities of several hundred cps/ppbv, ii) detection limits at or below the pptv level, iii) direct injection sampling (i.e. no sample preparation), iv) response times in the 100 ms regime and v) online quantification. However, one drawback is a somehow limited selectivity, as in case of quadrupole mass filter based instruments only information about nominal m/z are available. In Time-Of-Flight (TOF) mass analyzer based instruments selectivity is drastically increased by a high mass resolution of up to 8000 m/Δm, but e.g. isomers still cannot be separated. In 2009 we introduced an advanced version of PTR-MS, which permits switching the reagent ions from H3O+ to NO+ and O2+, respectively [2]. This novel type of instrumentation was called Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) and has been successfully used to separate isomers, e.g. the biogenic compounds isoprene and 2-methyl-3-buten-2-ol as shown by Karl et al. [3]. Switching the reagent ions dramatically increases selectivity and thus applicability of SRI-MS in atmospheric research. Here we report on the latest results utilizing an even more advanced embodiment of SRI-MS enabling the use of the additional reagent ions Kr+ and Xe+ [4]. With this technology important atmospheric compounds, such as CO2, CO, CH4, O2, etc. can be quantified and selectivity is increased even further. We present comparison data between diesel and gasoline car exhaust gases and quantitative data on indoor air for these compounds, which are not detectable with classical PTR-MS. Additionally, we show very recent examples of isomers which cannot be separated with PTR-MS but can clearly be distinguished with SRI-MS. Finally, we give an overview of ongoing SRI-MS

  11. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives

    DEFF Research Database (Denmark)

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente

    2006-01-01

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, t...... analysis of bromine-containing preservatives in commercially available cosmetic products.......Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material...... at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection...

  12. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    Science.gov (United States)

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  13. On the use of time-resolved laser-induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) for speciation studies

    International Nuclear Information System (INIS)

    Moulin, C.

    2003-01-01

    Time-resolved laser induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) are used for speciation studies. While the former has been used for long time, the latter is rather new in the field of speciation. These two techniques have different advantages such as sensitivity (especially for TRLIF), selectivity and multielement capabilities (in case of ES-MS). Examples obtained from studies carried out within the CEA are presented. Concerning TRLIF, emphasis is put on uranyl ion speciation in nitric acid to phosphoric acid going through hydroxo complexes. Concerning ES-MS, humic substances identification as well as speciation of cesium, zirconium, thorium and uranyl ions in various complexing media are presented. Comparisons of TRLIF and ES-MS results are made in the case of uranyl hydroxo complexes and favourably compared with OECD data. Trends for these two techniques are also discussed. (orig.)

  14. Detailed molecular characterization of castor oil ethoxylates by liquid chromatography multistage mass spectrometry.

    Science.gov (United States)

    Nasioudis, Andreas; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2011-10-07

    The molecular characterization of castor oil ethoxylates (CASEOs) was studied by reverse-phase liquid chromatography (RPLC) mass spectrometry (MS) and multistage mass spectrometry (MS(n)). The developed RPLC method allowed the separation of the various CASEO components, and especially, the baseline separation of multiple nominal isobars (same nominal mass) and isomers (same exact mass). MS and MS(n) were used for the determination and structure elucidation of various structures and for the discrimination of the isobars and isomers. Different ionization techniques and adduct ions were also tested for optimization of the MS detection and the MS(n) fragmentation. A unique fragmentation pathway of ricinoleic acid is proposed, which can be used as a marker of the polymerization process and the topology of ethoxylation in the CASEO. In addition, characteristic neutral losses of ricinoleic acid reveal its (terminal or internal) position in the molecule. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    Science.gov (United States)

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  16. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    Science.gov (United States)

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  17. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Welker (Martin); M. Erhard (Marcel); S. Chatellier (Sonia)

    2012-01-01

    textabstractClinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been

  18. Multi-Reflection Time-of-Flight Mass Separation and Spectrometry

    CERN Document Server

    Kreim, Susanne; Wolf, R N

    2014-01-01

    The mass of a nucleus is one of its most fundamental ground-state properties and reveals the strength of nuclear binding. Investigating the binding energy of nuclei with respect to the number of protons and neutrons in a nucleus is important for advancing nuclear theory and increases our understanding of nucleosynthesis in supernovae and neutron stars. Precision mass measurements on radioactive nuclides belong to the state-of-the-art techniques [1, 2]. Presently, four complementary techniques are applied: isochronous and Schottky mass spectrometry in storage rings (IMS and SMS, respectively), magnetic-rigidity time-of-flight (TOF-ρ) measurements, and Penning-trap mass spectrometry (PTMS). With measurement cycles in the sub-ms range, IMS and TOF-Bρ MS are well suited for very short-lived species while offering moderate relative precision on the level of 10−6. A higher precision is achieved by SMS but with the need for measurement times on the order of several seconds. As soon as masses with a relative prec...

  19. Self-assembly of triangular metallomacrocycles using unsymmetrical bisterpyridine ligands: isomer differentiation via TWIM mass spectrometry.

    Science.gov (United States)

    Liang, Yen-Peng; He, Yun-Jui; Lee, Yin-Hsuan; Chan, Yi-Tsu

    2015-03-21

    Three unsymmetrical, 60°-bended bisterpyridine ligands with varying phenylene spacer lengths have been synthesized via the Suzuki-Miyaura coupling reactions. Their self-assembly processes were found to be strongly dependent on the ligand geometry. Upon complexation with Zn(II) ions, only 2,4''-di(4'-terpyridinyl)-1,1':4',1''-terphenyl underwent self-selection to give a trinuclear metallomacrocycle with perfect heteroleptic connectivity and the other two afforded a mixture of constitutional isomers. The metallosupramolecular assemblies were characterized by NMR spectroscopy, electrospray mass spectrometry (ESI MS), and single-crystal X-ray diffraction. In particular, the identification of isomeric architecture was accomplished using tandem mass spectrometry (MS(2)) coupled with traveling wave ion mobility mass spectrometry (TWIM MS).

  20. Computational mass spectrometry for small molecules

    Science.gov (United States)

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  1. Enantioselectivity of mass spectrometry: challenges and promises.

    Science.gov (United States)

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach. © 2013 Wiley Periodicals, Inc.

  2. 99mTc-HYNIC-TOC imaging in the evaluation of pancreatic masses which are potential neuroendocrine tumors.

    Science.gov (United States)

    Qiao, Zhen; Zhang, Jingjing; Jin, Xiaona; Huo, Li; Zhu, Zhaohui; Xing, Haiqun; Li, Fang

    2015-05-01

    The aim of this investigation was to determine the accuracy of the findings and the diagnoses of Tc-hydrazinonicotinyl-Tyr3-octreotide scan (Tc-HYNIC-TOC imaging) in patients with pancreatic masses which were potential neuroendocrine tumors. Records of total 20 patients with pancreatic masses were retrospectively reviewed. All of the patients had been revealed by abdominal contrast CT and possibility of neuroendocrine tumors could not be excluded by CT imaging before Tc-HYNIC-TOC imaging. Tc-HYNIC-TOC imaging was performed at 1 and 4 hours post-tracer injection, and SPECT/CT images of the abdomen were also acquired. The image findings were compared to final diagnoses which were made from pathological examination. Among all 20 pancreatic masses evaluated, there were 16 malignant lesions which included 1 ductal adenocarcinoma and 15 neuroendocrine tumors. Tc-HYNIC-TOC imaging identified 14 of 15 pancreatic neuroendocrine tumors and excluded 4 of 5 lesions which were not neuroendocrine tumors. The overall sensitivity, specificity, and accuracy was therefore 93.3% (14 of 15), 80% (4 of 5), and 90.0% (18 of 20), respectively, in our patient population. Tc-HYNIC-TOC imaging provides reasonable accuracy in the evaluation pancreatic mass suspected to be neuroendocrine tumors.

  3. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  4. Gas Chromatography Mass Spectrometry of Quassia undulata Seed ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The use of gas chromatography mass spectrometry (GC MS) as a sensitive and specific technique ... cold flow properties and stability of the fuel to oxidation, peroxidation and polymerization .... determinants of both the physical and chemical ...

  5. Application of ion mobility-mass spectrometry to microRNA analysis.

    Science.gov (United States)

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  6. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  7. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples.

    Science.gov (United States)

    Chan, Sue Hay; Lee, Warren; Asmawi, Mohd Zaini; Tan, Soo Choon

    2016-07-01

    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  9. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    Science.gov (United States)

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  10. Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products.

    Science.gov (United States)

    Wenzl, Thomas; Karasek, Lubomir; Rosen, Johan; Hellenaes, Karl-Erik; Crews, Colin; Castle, Laurence; Anklam, Elke

    2006-11-03

    A European inter-laboratory study was conducted to validate two analytical procedures for the determination of acrylamide in bakery ware (crispbreads, biscuits) and potato products (chips), within a concentration range from about 20 microg/kg to about 9000 microgg/kg. The methods are based on gas chromatography-mass spectrometry (GC-MS) of the derivatised analyte and on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) of native acrylamide. Isotope dilution with isotopically labelled acrylamide was an integral part of both methods. The study was evaluated according to internationally accepted guidelines. The performance of the HPLC-MS/MS method was found to be superior to that of the GC-MS method and to be fit-for-the-purpose.

  11. Determination of Grayanotoxins from Rhododendron brachycarpum in Dietary Supplements and Homemade Wine by Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Hwang, Taeik; Noh, Eunyoung; Jeong, Ji Hye; Park, Sung-Kwan; Shin, Dongwoo; Kang, Hoil

    2018-02-28

    A sensitive and specific high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of grayanotoxins I and III in dietary supplements and homemade wine. Grayanotoxins I and III were successfully extracted using solid-phase extraction cartridges, characterized by LC-QTOF-MS, and quantitated by LC-MS/MS. The LC-MS/MS calibration curves were linear over concentrations of 10-100 ng/mL (grayanotoxin I) and 20-400 ng/mL (grayanotoxin III). Grayanotoxins I and III were found in 51 foodstuffs, with quantitative determinations revealing total toxin concentrations of 18.4-101 000 ng/mL (grayanotoxin I) and 15.3-56 000 ng/mL (grayanotoxin III). The potential of the validated method was demonstrated by successful quantitative analysis of grayanotoxins I and III in dietary supplements and homemade wine; the method appears suitable for the routine detection of grayanotoxins I and III from Rhododendron brachycarpum.

  12. Quantitative Determination of Perfluorochemicals and Fluorotelomer Alcohols in Plants from Biosolid-Amended Fields using LC/MS/MS and GC/MS

    Science.gov (United States)

    Analytical methods for determining perfluorochemicals (PFCs) and fluorotelomer alcohols (FTOHs) in plants using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) were developed, and applied to quantify a suite of analytes i...

  13. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  14. A Century of Progress in Molecular Mass Spectrometry

    Science.gov (United States)

    McLafferty, Fred W.

    2011-07-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  15. Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration.

    Science.gov (United States)

    Decroo, Corentin; Colson, Emmanuel; Demeyer, Marie; Lemaur, Vincent; Caulier, Guillaume; Eeckhaut, Igor; Cornil, Jérôme; Flammang, Patrick; Gerbaux, Pascal

    2017-05-01

    Saponin analysis by mass spectrometry methods is nowadays progressively supplementing other analytical methods such as nuclear magnetic resonance (NMR). Indeed, saponin extracts from plant or marine animals are often constituted by a complex mixture of (slightly) different saponin molecules that requires extensive purification and separation steps to meet the requirement for NMR spectroscopy measurements. Based on its intrinsic features, mass spectrometry represents an inescapable tool to access the structures of saponins within extracts by using LC-MS, MALDI-MS, and tandem mass spectrometry experiments. The combination of different MS methods nowadays allows for a nice description of saponin structures, without extensive purification. However, the structural characterization process is based on low kinetic energy CID which cannot afford a total structure elucidation as far as stereochemistry is concerned. Moreover, the structural difference between saponins in a same extract is often so small that coelution upon LC-MS analysis is unavoidable, rendering the isomeric distinction and characterization by CID challenging or impossible. In the present paper, we introduce ion mobility in combination with liquid chromatography to better tackle the structural complexity of saponin congeners. When analyzing saponin extracts with MS-based methods, handling the data remains problematic for the comprehensive report of the results, but also for their efficient comparison. We here introduce an original schematic representation using sector diagrams that are constructed from mass spectrometry data. We strongly believe that the proposed data integration could be useful for data interpretation since it allows for a direct and fast comparison, both in terms of composition and relative proportion of the saponin contents in different extracts. Graphical Abstract A combination of state-of-the-art mass spectrometry methods, including ion mobility spectroscopy, is developed to afford a

  16. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    DEFF Research Database (Denmark)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias

    2016-01-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid o......-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ....

  17. Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS).

    Science.gov (United States)

    Collins, Thomas S; Zweigenbaum, Jerry; Ebeler, Susan E

    2014-11-15

    Commercial samples of 63 American whiskeys, including bourbon whiskeys, Tennessee whiskeys, rye whiskeys and other blended whiskeys were analysed using ultra high pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS). The non-volatile composition of the whiskeys was used to model differences among the samples using discriminant analysis. The blended American whiskeys were readily distinguished from the remaining types. Additionally, most Tennessee whiskeys could be differentiated from bourbon and rye whiskeys. Similarly, younger (8 years old) whiskeys could be separated. The compounds important for differentiating among these whiskeys included wood derived phenolic compounds, lignan derived compounds and several C8 and larger lipids. A number of additional compounds differentiated the whiskeys but could not be identified using MS and MS/MS data alone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An introduction to the technique of combined ion mobility spectrometry-mass spectrometry for the analysis of complex biological samples

    International Nuclear Information System (INIS)

    McDowall, Mark A.; Bateman, Robert H.; Bajic, Steve; Giles, Kevin; Langridge, Jim; McKenna, Therese; Pringle, Steven D.; Wildgoose, Jason L.

    2008-01-01

    Full Text: Ultra Performance Liquid Chromatography (UPLC) offers several advantages compared with conventional High Performance Liquid Chromatography (HPLC) as an 'inlet system' for mass spectrometry. UPLC provides improved chromatographic resolution, increased sensitivity and reduced analysis time. This is achieved through the use of sub 2μm particles (stationary phase) combined with high-pressure solvent delivery (up to 15,000 psi). When coupled with orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS), UPLC presents a means to achieve high sample throughput with reduced spectral overlap, increased sensitivity, and exact mass measurement capabilities with high mass spectral resolution (Ca 20,000 FWHM). Dispersive ion mobility spectrometry (IMS) implemented within a traveling-wave ion guide provides an orthogonal separation strategy for ions in the gas phase that can resolve isobaric ions formed by either Electrospray of MALDI ionization typically in Ca 20 mille seconds. All three techniques have the potential to be combined on-line (e.g. UPLC-IMS-MS/MS) in real time to maximize peak capacity and resolving power for the analysis of complex biological mixtures including; intact proteins, modified peptides and endogenous/exogenous metabolites

  19. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul

    2018-05-01

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.

  20. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine.

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul

    2018-05-07

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.

  1. Differentiation of Clinically Relevant mucorales Rhizopus microsporus and R. arrhizus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dolatabadi, S.; Kolecka, A.; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    This study addresses the usefulness of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for reliable identification of the two most frequently occuring clinical species of Rhizopus, namely R. arrhizus with its two varieties arrhizus and delemar and R.

  2. A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP.

    Science.gov (United States)

    Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul

    2013-07-15

    There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Simultaneous determination of amoxicillin and clavulanic acid in the human plasma by high performance liquid chromatography: Mass spectrometry (UPLC/MS

    Directory of Open Access Journals (Sweden)

    Ćirić Biljana

    2010-01-01

    Full Text Available Background/Aim. Quantitative analysis of amoxicillin and clavulanic acid in biological matrices requires sensitive and specific methods which allow determination of therapeutic concentration in μg/mL range. Analytical methods for determination of their concentrations in body fluids described in literature include high performance liquid chromatography coupled to UV detector (HPLC-UV and liquid chromatography-mass spectrometry (LC-MS. The aim of this study was to develop sensitive and specific ultra performance liquid chromatography/ mass spectrometry (UPLC/MS method which could be used for the spectral identification and quantification of the low concentrations of amoxicillin and clavulanic acid in the human plasma. Method. A sensitive and specific UPLC/MS method for amoxicillin and clavulanic acid determination was developed in this study. The samples were taken from the adult healthy volunteers receiving per os one tablet of amoxicillin (875 mg in combination with clavulanic acid (125 mg. Results. Plasma samples were pretreated by direct deproteinization with perchloric acid. Quantification limit of 0.01 μg/ml for both amoxicillin and clavulanic acid was achieved. The method was reproducible day by day (RSD < 7 %. Analytical recoveries for amoxicillin ranged from 98.82% to 100.9% (for concentrations of 1, 5 and 20 μg/mL, and recoveries for clavulanic acid were 99,89% to 100.1% (for concentrations of 1, 2 and 5 μg/mL. This assay was successfully applied to a pilot pharmacokinetic study in healthy volunteers after a single-oral administration of amoxicillin/ clavulanic combination. The determined plasma concentrations of both amoxicillin and clavulanic acid were in the range of the expected values upon the literature data for HPLC-UV and LC-MS methods. Conclusion. The described method provided a few advantages comparing with LC/MS-MS method. The method is faster using running time of 5 minute, has lower limit of quantification (LOQ and it

  4. LC-MS (/MS) in clinical toxicology screening methods.

    Science.gov (United States)

    Viette, Véronique; Hochstrasser, Denis; Fathi, Marc

    2012-01-01

    Toxicological screening is the analysis of biological samples to detect and identify unknown compounds. The high selectivity and sensitivity of liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) technology provide an attractive alternative to the current methods (LC-UV, GC/MS, etc.). For these reasons, an increasing number of applications are being published. This paper is a brief overview of LC-MS(/MS) screening methods developed for clinical toxicology in recent years. Various sample treatments, chromatographic separations and detection by mass spectrometry can be combined to obtain screening methods adapted to the constraints and needs of clinical toxicology laboratories. Currently the techniques are in the hands of specialists, mainly in academic institutions. However, the evolution in technology should allow application of these techniques as a tool in toxicology laboratories, thus allowing a more widespread exploitation of their potential.

  5. Expanded newborn screening by mass spectrometry: New tests, future perspectives.

    Science.gov (United States)

    Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo

    2016-01-01

    Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs. © 2015 Wiley Periodicals, Inc.

  6. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    Science.gov (United States)

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  7. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology.

    Science.gov (United States)

    Peters, Frank T

    2011-01-01

    Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) has become increasingly important in clinical and forensic toxicology as well as doping control and is now a robust and reliable technique for routine analysis in these fields. In recent years, methods for LC-MS(/MS)-based systematic toxicological analysis using triple quadrupole or ion trap instruments have been considerably improved and a new screening approach based on high-resolution MS analysis using benchtop time-of-flight MS instruments has been developed. Moreover, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in various biomatrices have been published. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2006. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  9. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    Energy Technology Data Exchange (ETDEWEB)

    Post, Ekkehard [NETZSCH Geraetebau GmbH, Wittelsbacherstrasse 42, 95100 Selb (Germany); Henderson, Jack B. [NETZSCH Instruments North America, LLC, 129 Middlesex Turnpike, Burlington, MA 01803 (United States)

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  10. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  11. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao

    2015-01-01

    This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.

  12. Mass Spectrometry Applications for Toxicology

    OpenAIRE

    Mbughuni, Michael M.; Jannetto, Paul J.; Langman, Loralie J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used i...

  13. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS data. Application and comparative study of selected tools

    Directory of Open Access Journals (Sweden)

    O'Callaghan Sean

    2012-05-01

    Full Text Available Abstract Background Gas chromatography–mass spectrometry (GC-MS is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX, noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI, allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS. Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs

  14. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  15. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. Quantification of isoflavones in coffee by using solid phase extraction (SPE) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

    Science.gov (United States)

    Caprioli, Giovanni; Navarini, Luciano; Cortese, Manuela; Ricciutelli, Massimo; Torregiani, Elisabetta; Vittori, Sauro; Sagratini, Gianni

    2016-09-01

    A new method for extracting isoflavones from espresso coffee (EC) was coupled with high-performance liquid chromatography-tandem mass spectrometry (MS/MS) for the first time to analyse five isoflavones, which included both a glycosilated form, genistin and the aglycons daidzein, genistein, formononetin and biochanin A. Isoflavones were extracted from coffee samples using methanol, stored in a freezer overnight to precipitate proteic or lipidic residues and purified on SPE C18 cartridges before high-performance liquid chromatography-MS/MS analysis. The recovery percentages obtained by spiking the matrix at concentrations of 10 and 100 µg l(-1) with a standard mixture of isoflavones were in the range of 70 to 104%. The limits of detection and limits of quantification were in the range of 0.015-0.3 µg l(-1) and 0.05-1 µg l(-1) , respectively. Once validated, the method was used to analyze the concentrations of isoflavones in six ECs and ten ground coffee samples. Only formononetin and biochanin A were found, and their respective concentrations ranged from 0.36 to 0.41 µg l(-1) and from 0.58 to 3.26 µg l(-1) in ECs and from 0.36 to 4.27 µg kg(-1) and from 0.71 to 3.95 µg kg(-1) in ground coffees. This method confirms the high specificity and selectivity of MS/MS systems for detecting bioactives in complex matrices such as coffee.Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    OpenAIRE

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of post...

  18. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  19. Sharing and community curation of mass spectrometry data with GNPS

    Science.gov (United States)

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  20. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  1. Analytical and clinical performance of the new Fujirebio 25-OH vitamin D assay, a comparison with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and three other automated assays.

    Science.gov (United States)

    Saleh, Lanja; Mueller, Daniel; von Eckardstein, Arnold

    2016-04-01

    We evaluated the analytical and clinical performance of the new Lumipulse® G 25-OH vitamin D assay from Fujirebio, and compared it to a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and three other commercial automated assays. Total 25 hydroxy vitamin D (25(OH)D) levels were measured in 100 selected serum samples from our routine analysis with Fujirebio 25(OH)D assay. The results were compared with those obtained with LC-MS/MS and three other automated 25(OH)D assays (Abbott, Beckman, and Roche). The accuracy of each assay tested was evaluated against a Labquality reference serum panel for 25(OH)D (Ref!25OHD; University of Ghent). Intra- and inter-day imprecision of the Fujirebio 25(OH)D assay was Lumipulse G 25-OH vitamin D assay from Fujirebio demonstrated a good correlation with LC-MS/MS and some immunoassays. The performance of the assay is well-suited for routine 25(OH)D measurement in clinical serum samples. A correction for the observed negative bias vs. LC-MS/MS could be considered.

  2. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS.

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten

    2016-02-01

    Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  4. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    Science.gov (United States)

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  5. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis.

    Science.gov (United States)

    Bouchal, Pavel; Roumeliotis, Theodoros; Hrstka, Roman; Nenutil, Rudolf; Vojtesek, Borivoj; Garbis, Spiros D

    2009-01-01

    The present pilot study constitutes a proof-of-principle in the use of a quantitative LC-MS/MS based proteomic method for the comparative analysis of representative low-grade breast primary tumor tissues with and without metastases and metastasis in lymph node relative to the nonmetastatic tumor type. The study method incorporated iTRAQ stable isotope labeling, two-dimensional liquid chromatography, nanoelectrospray ionization and high resolution tandem mass spectrometry using the hybrid QqTOF platform (iTRAQ-2DLC-MS/MS). The principal aims of this study were (1) to define the protein spectrum obtainable using this approach, and (2) to highlight potential candidates for verification and validation studies focused on biomarkers involved in metastatic processes in breast cancer. The study resulted in the reproducible identification of 605 nonredundant proteins (p biomarker discovery program.

  6. BatMass: a Java Software Platform for LC-MS Data Visualization in Proteomics and Metabolomics.

    Science.gov (United States)

    Avtonomov, Dmitry M; Raskind, Alexander; Nesvizhskii, Alexey I

    2016-08-05

    Mass spectrometry (MS) coupled to liquid chromatography (LC) is a commonly used technique in metabolomic and proteomic research. As the size and complexity of LC-MS-based experiments grow, it becomes increasingly more difficult to perform quality control of both raw data and processing results. In a practical setting, quality control steps for raw LC-MS data are often overlooked, and assessment of an experiment's success is based on some derived metrics such as "the number of identified compounds". The human brain interprets visual data much better than plain text, hence the saying "a picture is worth a thousand words". Here, we present the BatMass software package, which allows for performing quick quality control of raw LC-MS data through its fast visualization capabilities. It also serves as a testbed for developers of LC-MS data processing algorithms by providing a data access library for open mass spectrometry file formats and a means of visually mapping processing results back to the original data. We illustrate the utility of BatMass with several use cases of quality control and data exploration.

  7. Pulsed flow modulation two-dimensional comprehensive gas chromatography-tandem mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Poliak, Marina; Fialkov, Alexander B; Amirav, Aviv

    2008-11-07

    Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.

  8. Integrative Mass Spectrometry Approaches to Monitor Protein Structures, Modifications, and Interactions

    NARCIS (Netherlands)

    Lössl, P.

    2017-01-01

    This thesis illustrates the current standing of mass spectrometry (MS) in molecular and structural biology. The primary aim of the herein described research is to facilitate protein characterization by combining mass spectrometric methods among each other and with complementary analytical

  9. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Electrospray and MALDI mass spectrometry in the identification of spermicides in criminal investigations.

    Science.gov (United States)

    Hollenbeck, T P; Siuzdak, G; Blackledge, R D

    1999-07-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been used to examine evidence in a sexual assault investigation. Because condoms are being used increasingly by sexual assailants and some condom brands include the spermicide nonoxynol-9 (nonylphenoxy polyethoxyethanol) in the lubricant formulation, the recovery, and identification of nonoxynol-9 from evidence items may assist in proving corpus delicti. A method was developed for the recovery of nonoxynol-9 from internal vaginal swabs and for its identification by reverse phase liquid chromatography/electrospray ionization mass spectrometry (LC ESI-MS), nanoelectrospray ionization (nanoESI) mass spectrometry, and high resolution MALDI Fourier transform mass spectrometry (MALDI-FTMS). The method was tested on extracts from precoitus, immediate postcoitus, and four-hours postcoitus vaginal swabs provided by a volunteer whose partner does not normally use condoms, but for this trial used a condom having a water-soluble gel-type lubricant that includes 5% nonoxynol-9 in its formulation. Subsequently, LC ESI-MS was used to identify traces of nonoxynol-9 from the internal vaginal swab of a victim of a sexual assault.

  11. Imaging of plant materials using indirect desorption electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Janfelt, Christian

    2015-01-01

    Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a method for imaging distributions of metabolites in plant materials, in particular leaves and petals. The challenge in direct imaging of such plant materials with DESI-MS is particularly the protective layer of cu...... of interest from parts of their matrix while preserving the spatial information in the two dimensions. The imprint can then easily be imaged by DESI-MS. The method delivers simple and robust mass spectrometry imaging of plant material with very high success ratios....... of cuticular wax present in leaves and petals. The cuticle protects the plant from drying out, but also makes it difficult for the DESI sprayer to reach the analytes of interest inside the plant material. A solution to this problem is to imprint the plant material onto a surface, thus releasing the analytes...

  12. A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen

    Directory of Open Access Journals (Sweden)

    Yohei Miyamoto

    2013-09-01

    Full Text Available The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS. We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery.

  13. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  14. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  15. Cell-patterned glass spray for direct drug assay using mass spectrometry

    International Nuclear Information System (INIS)

    Wu, Jing; Wang, Shiqi; Chen, Qiushui; Jiang, Hao; Liang, Shuping; Lin, Jin-Ming

    2015-01-01

    In this work, the establishment of a glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was described. Cell co-culture, drug-induced cell apoptosis, proliferation analysis and intracellular drug absorption measurement were performed simultaneously on this specifically designed platform. Two groups of co-cultured cells (NIH-3T3/HepG2 and HepG2/MCF-7) were cultivated and they showed high viability within 3 days. The biocompatibility of the platform facilitated the subsequent bioassays, in which, cyclophosphamide (CPA) and genistein were used as the model drugs. The distinctions of cell apoptosis and proliferation between the mono-cultured and co-cultured cells were clearly observed and well explained by in situ GS-MS measurements. A satisfactory linearity of the calibration curve between the relative MS intensity and CPA concentrations was obtained using stable isotope labeling method (y = 0.16545 + 0.0985x, R"2 = 0.9937). The variations in the quantity of absorbed drug were detected and the results were consistent with the concentration-dependence of cell apoptosis. All the results demonstrated that direct cell-based drug assay could be performed on the stable isotope labeling assisted GS-MS platform in a facile and quantitative manner. - Highlights: • A versatile glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was developed in this paper. • It has characteristics of the atmospheric pressure ionization method. • It is multifunctional for cell co-culture, bioassays, qualitative and quantitative intracellular drug absorption measurement. • GS-MS has the potential to increase the use of mass spectrometry in biological analysis.

  16. Method Development for Binding Media Analysis in Painting Cross-Sections by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS).

    Science.gov (United States)

    Watts, Kristen; Lagalante, Anthony

    2018-06-06

    Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.

  17. Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS).

    Science.gov (United States)

    Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2016-05-30

    A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability 0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS.

    Science.gov (United States)

    Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2012-03-01

    A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Alkaloid profiling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrometry with liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Wang, J.; Heijden, R. van der; Spijksma, G.; Reijmers, T.; Wang, M.; Xu, G.; Hankemeier, T.; Greef, J. van der

    2009-01-01

    A matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method was developed for the high throughput and robust qualitative profiling of alkaloids in Fuzi-the processed lateral roots of the Chinese herbal medicine Aconitum carmichaeli Debx (A. carmichaeli). After optimization,

  20. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders

    Directory of Open Access Journals (Sweden)

    Venugopal Abhilash

    2009-01-01

    Full Text Available Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.

  1. SOLID PHASE MICRO EXTRACTION (SPME) FLAVOR ANALYSIS OF APPLE JUICE AND COFFEE MIXTURES USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)

    OpenAIRE

    Mi Ja Kim; Jeehyun Lee; Jaeyoung Byun; Sunmi Choi; Wonsik Choi

    2016-01-01

    This research was conducted to evaluate the flavor of apple juice and coffee mixtures and the sensory quality of SPME extracts using gas chromatography-mass spectrometry (GC-MS). Three samples with different compositions were examined. Sample A1 contained85% apple juiceand 15% coffee, sample A2 had87.5% apple and 12.5% coffee, and sample A3 had90% apple juiceand 10% coffee. The sensory analysis involved 100 panelists and a sequential monadic test. Sample presentation orders were balanced in ...

  2. Development of a Multi-class Steroid Hormone Screening Method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

    Science.gov (United States)

    Boggs, Ashley S. P.; Bowden, John A.; Galligan, Thomas M.; Guillette, Louis J.; Kucklick, John R.

    2016-01-01

    Monitoring complex endocrine pathways is often limited by indirect measurement or measurement of a single hormone class per analysis. There is a burgeoning need to develop specific direct-detection methods capable of providing simultaneous measurement of biologically relevant concentrations of multiple classes of hormones (estrogens, androgens, progestogens, and corticosteroids). The objectives of this study were to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for multi-class steroid hormone detection using biologically relevant concentrations, then test limits of detection (LOD) in a high-background matrix by spiking charcoal-stripped fetal bovine serum (FBS) extract. Accuracy was tested with National Institute of Standards and Technology Standard Reference Materials (SRMs) with certified concentrations of cortisol, testosterone, and progesterone. 11-Deoxycorticosterone, 11-deoxycortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, adrenosterone, androstenedione, cortisol, corticosterone, dehydroepiandrosterone, dihydrotestosterone, estradiol, estriol, estrone, equilin, pregnenolone, progesterone, and testosterone were also measured using isotopic dilution. Dansyl chloride (DC) derivatization was investigated maintaining the same method to improve and expedite estrogen analysis. Biologically relevant LODs were determined for 15 hormones. DC derivatization improved estrogen response two- to eight-fold, and improved chromatographic separation. All measurements had an accuracy ≤ 14 % difference from certified values (not accounting for uncertainty) and relative standard deviation ≤ 14 %. This method chromatographically separated and quantified biologically relevant concentrations of four hormone classes using highly specific fragmentation patterns and measured certified values of hormones that were previously split into three separate chromatographic methods. PMID:27039201

  3. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  4. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Science.gov (United States)

    Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars

    2015-01-01

    In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  5. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Hannes L Röst

    Full Text Available In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size.Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11, making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data.Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  6. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  7. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    Science.gov (United States)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  8. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    Science.gov (United States)

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  9. Role of mass spectrometry in nuclear forensic science

    International Nuclear Information System (INIS)

    Joseph, M.; Sivaraman, N.

    2016-01-01

    The present talk will focus on the role of mass spectrometry in NFS in general; besides that, the various chromatographic methods developed towards separation of actinides and lanthanide fission products and characterization of dissolver solutions of nuclear reactor fuels using TIMS and some applications of using ICP-MS as well

  10. Urinary metabonomics study in a rat model in response to protein-energy malnutrition by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wu, Zeming; Li, Min; Zhao, Chunxia; Zhou, Jia; Chang, Yuwei; Li, Xiang; Gao, Peng; Lu, Xin; Li, Yousheng; Xu, Guowang

    2010-11-01

    Systematic studies were performed on the biological perturbations in metabolic phenotype responding to protein-energy malnutrition through global metabolic profiling analysis, in combination with pattern recognition. The malnutrition rat model was established through five weeks of strict diet restriction, and the metabonome data obtained from gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were integrated to approximate the comprehensive metabolic signature. Principal component analysis and orthogonal projection to latent structure analysis were used for the classification of metabolic phenotypes and discovery of differentiating metabolites. The perturbations in the urine profiles of malnourished rats were marked by higher levels of creatine, threitol, pyroglutamic acid, gluconic acid and kynurenic acid, as well as decreased levels of succinic acid, cis-aconitic acid, citric acid, isocitric acid, threonic acid, trimethylglycine, N-methylnicotinic acid and uric acid. The alterations in these metabolites were associated with perturbations in energy metabolism, carbohydrate, amino acid, and fatty acid metabolism, purine metabolism, cofactor and vitamin metabolism, in response to protein and energy malnutrition. Our findings show the integration of GC-MS and LC-MS techniques for untargeted metabolic profiling analysis was promising for nutriology.

  11. Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

    OpenAIRE

    Pevzner, Pavel A.; Mulyukov, Zufar; Dancik, Vlado; Tang, Chris L

    2001-01-01

    Although protein identification by matching tandem mass spectra (MS/MS) against protein databases is a widespread tool in mass spectrometry, the question about reliability of such searches remains open. Absence of rigorous significance scores in MS/MS database search makes it difficult to discard random database hits and may lead to erroneous protein identification, particularly in the case of mutated or post-translationally modified peptides. This problem is especially important for high-thr...

  12. MacMS: A Mass Spectrometer Simulator: Abstract of Issue 9906M

    Science.gov (United States)

    Bigger, Stephen W.; Craig, Robert A.

    1999-10-01

    , fixed-value range and gain settings, which can be used to enhance the resolution and sensitivity of the instrument respectively. Figure 1. The "Path" module of MacMS showing the control panel (upper section) and graphics display region (lower section). The graphics display region incorporates a "data collector", which includes a "Grab" button to collect data and an area where data are displayed. Figure 2. The "Spectrometer" module of MacMS showing the control panel (upper section) and a graphics display region (lower section). A mass spectrum is produced in the graphics display region upon scanning. A "data collector" similar to that of the "Path" module forms part of the graphics display region. Hardware and Software Requirements Literature Cited Kiser, R. N. Introduction to Mass Spectrometry and its Applications; Prentice-Hall: Englewood Cliffs, N. J., 1965; pp 1-3; pp 32-65. Johnstone, R. A. W.; Rose, M. E. Mass Spectrometry for Chemists and Biochemists, 2nd ed.; Cambridge University Press: Cambridge, 1996. Hill, H. C.; Loudon, A. G. Introduction to Mass Spectrometry; 2nd ed.; Heyden: London, 1972; p 5. Farmer, J. B. In Mass Spectrometry, McDowell, C. A., Ed.; McGraw-Hill: New York, 1963; pp 10-11. Message, G. M. Practical Aspects of Gas Chromatography-Mass Spectrometry, Wiley: New York, 1984; Chapter 3. CRC Handbook of Chemistry and Physics, 55th ed.; CRC: Cleveland, 1974.

  13. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  14. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  15. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    International Nuclear Information System (INIS)

    Mager, Frauke; Lintzel, Julia; Nussberger, Stephan; Sokolova, Lucie; Brutschy, Bernhard

    2010-01-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  16. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    Science.gov (United States)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  17. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method

  18. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine

    2002-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new

  19. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  20. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  1. Method-MS. Final report

    International Nuclear Information System (INIS)

    Skipperud, L.; Popic, J.M.; Roos, P.; Salminen, S.; Nygren, U.; Sigmarsson, O.; Palsson, S.E.

    2011-05-01

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry (AMS) have shown several advantages compared to traditional methods when measuring long-lived radionuclides. Mass spectrometric methods for determination of very low concentrations of elemental isotopes, and thereby isotopic ratios, have been developed using a variety of ion sources. Although primarily applied to the determination of the lighter stable element isotopes and radioactive isotopes in geological studies, the techniques can equally well be applied to the measurement of activity concentrations of long-lived low-level radionuclides in various samples using 'isotope dilution' methods such as those applied in inductively coupled plasma mass spectrometry (ICP-MS). Due to the low specific activity of long-lived radionuclides, many of these are more conveniently detected using mass spectrometric techniques. Mass spectrometry also enables the individual determination of Pu-239 and Pu-240, which cannot be obtained by alpha spectrometry. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are rapidly growing techniques for the ultra-trace analytical determination of stable and long-lived isotopes and have a wide potential within environmental science, including ecosystem tracers and radio ecological studies. Such instrumentation, of course needs good radiochemical separation, to give best performance. The objectives of the project is to identify current needs and problems within low-level determination of long-lived radioisotopes by ICP-MS, to perform intercalibration and development and improvement of ICP-MS methods for the measurement of radionuclides and isotope ratios and to develop new methods based on modified separation chemistry applied to new auxiliary

  2. Method-MS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Skipperud, L.; Popic, J.M. (Norwegian Univ. of Life Science (UMB), Isotope Lab. (Norway)); Roos, P. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Salminen, S. (Univ. of Helsinki (UH) (Finland)); Nygren, U. (Swedish Defence Research Agency (FOI) (Sweden)); Sigmarsson, O.; Palsson, S.E. (Univ. of Iceland/Icelandic Radiation Protection Institute (Iceland))

    2011-05-15

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry (AMS) have shown several advantages compared to traditional methods when measuring long-lived radionuclides. Mass spectrometric methods for determination of very low concentrations of elemental isotopes, and thereby isotopic ratios, have been developed using a variety of ion sources. Although primarily applied to the determination of the lighter stable element isotopes and radioactive isotopes in geological studies, the techniques can equally well be applied to the measurement of activity concentrations of long-lived low-level radionuclides in various samples using 'isotope dilution' methods such as those applied in inductively coupled plasma mass spectrometry (ICP-MS). Due to the low specific activity of long-lived radionuclides, many of these are more conveniently detected using mass spectrometric techniques. Mass spectrometry also enables the individual determination of Pu-239 and Pu-240, which cannot be obtained by alpha spectrometry. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) are rapidly growing techniques for the ultra-trace analytical determination of stable and long-lived isotopes and have a wide potential within environmental science, including ecosystem tracers and radio ecological studies. Such instrumentation, of course needs good radiochemical separation, to give best performance. The objectives of the project is to identify current needs and problems within low-level determination of long-lived radioisotopes by ICP-MS, to perform intercalibration and development and improvement of ICP-MS methods for the measurement of radionuclides and isotope ratios and to develop new methods based on modified separation chemistry applied to new

  3. Identification of protein biomarkers in Dupuytren's contracture using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    Science.gov (United States)

    O'Gorman, David; Howard, Jeffrey C; Varallo, Vincenzo M; Cadieux, Peter; Bowley, Erin; McLean, Kris; Pak, Brian J; Gan, Bing Siang

    2006-06-01

    To study the protein expression profiles associated with Dupuytren's contracture (DC) to identify potential disease protein biomarkers (PBM) using a proteomic technology--Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). Normal and disease palmar fascia from DC patients were analyzed using Ciphergen's SELDI-TOF-MS Protein Biological System II (PBSII) ProteinChip reader. Analysis of the resulting SELDI-TOF spectra was carried out using the peak cluster analysis program (BioMarker Wizard, Ciphergen). Common peak clusters were then filtered using a bootstrap algorithm called SAM (Significant Analysis of Microarrays) for increased fidelity in our analysis. Several differentially expressed low molecular weight (mass standard deviation for both methods of biomarker-rich low molecular weight region of the human proteome. Application of such novel technology may help clinicians to focus on specific molecular abnormalities in diseases with no known molecular pathogenesis, and uncover therapeutic and/or diagnostic targets.

  4. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Pedersen, Jacob Sønderby; Poulsen, Nicklas Nørgård

    2012-01-01

    A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study the in v......A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study...

  5. Method-MS, final report 2010

    DEFF Research Database (Denmark)

    Skipperud, Lindis; Popic, Jelena M.; Roos, Per

    Radiometric determination methods, such as alpha spectrometry require long counting times when low activities are to be determined. Mass spectrometric techniques as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionisation Mass Spectrometry (TIMS) and Accelerator Mass Spectrometry...

  6. Catch and measure-mass spectrometry-based immunoassays in biomarker research.

    Science.gov (United States)

    Weiß, Frederik; van den Berg, Bart H J; Planatscher, Hannes; Pynn, Christopher J; Joos, Thomas O; Poetz, Oliver

    2014-05-01

    Mass spectrometry-based (MS) methods are effective tools for discovering protein biomarker candidates that can differentiate between physiological and pathophysiological states. Promising candidates are validated in studies comprising large patient cohorts. Here, targeted protein analytics are used to increase sample throughput. Methods involving antibodies, such as sandwich immunoassays or Western blots, are commonly applied at this stage. Highly-specific and sensitive mass spectrometry-based immunoassays that have been established in recent years offer a suitable alternative to sandwich immunoassays for quantifying proteins. Mass Spectrometric ImmunoAssays (MSIA) and Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA/iMALDI) are two prominent types of MS-based immunoassays in which the capture is done either at the protein or the peptide level. We present an overview of these emerging types of immunoassays and discuss their suitability for the discovery and validation of protein biomarkers. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  7. Automated mass correction and data interpretation for protein open-access liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wagner, Craig D; Hall, John T; White, Wendy L; Miller, Luke A D; Williams, Jon D

    2007-02-01

    Characterization of recombinant protein purification fractions and final products by liquid chromatography-mass spectrometry (LC/MS) are requested more frequently each year. A protein open-access (OA) LC/MS system was developed in our laboratory to meet this demand. This paper compares the system that we originally implemented in our facilities in 2003 to the one now in use, and discusses, in more detail, recent enhancements that have improved its robustness, reliability, and data reporting capabilities. The system utilizes instruments equipped with reversed-phase chromatography and an orthogonal accelerated time-of-flight mass spectrometer fitted with an electrospray source. Sample analysis requests are accomplished using a simple form on a web-enabled laboratory information management system (LIMS). This distributed form is accessible from any intranet-connected company desktop computer. Automated data acquisition and processing are performed using a combination of in-house (OA-Self Service, OA-Monitor, and OA-Analysis Engine) and vendor-supplied programs (AutoLynx, and OpenLynx) located on acquisition computers and off-line processing workstations. Analysis results are then reported via the same web-based LIMS. Also presented are solutions to problems not addressed on commercially available, small-molecule OA-LC/MS systems. These include automated transforming of mass-to-charge (m/z) spectra to mass spectra and automated data interpretation that considers minor variants to the protein sequence-such as common post-translational modifications (PTMs). Currently, our protein OA-LC/MS platform runs on five LC/MS instruments located in three separate GlaxoSmithKline R&D sites in the US and UK. To date, more than 8000 protein OA-LC/MS samples have been analyzed. With these user friendly and highly automated OA systems in place, mass spectrometry plays a key role in assessing the quality of recombinant proteins, either produced at our facilities or bought from external

  8. Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS).

    Science.gov (United States)

    Oliveira, Bruno G; Costa, Helber B; Ventura, José A; Kondratyuk, Tamara P; Barroso, Maria E S; Correia, Radigya M; Pimentel, Elisângela F; Pinto, Fernanda E; Endringer, Denise C; Romão, Wanderson

    2016-08-01

    Mangifera indica L., mango fruit, is consumed as a dietary supplement with purported health benefits; it is widely used in the food industry. Herein, the chemical profile of the Ubá mango at four distinct maturation stages was evaluated during the process of growth and maturity using negative-ion mode electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS) and physicochemical characterisation analysis (total titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, and total polyphenolic content). Primary (organic acids and sugars) and secondary metabolites (polyphenolic compounds) were mostly identified in the third maturation stage, thus indicating the best stage for harvesting and consuming the fruit. In addition, the potential cancer chemoprevention of the secondary metabolites (phenolic extracts obtained from mango samples) was evaluated using the induction of quinone reductase activity, concluding that fruit polyphenols have the potential for cancer chemoprevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tracking juniper berry content in oils and distillates by spectral deconvolution of gas chromatography/mass spectrometry data.

    Science.gov (United States)

    Robbat, Albert; Kowalsick, Amanda; Howell, Jessalin

    2011-08-12

    The complex nature of botanicals and essential oils makes it difficult to identify all of the constituents by gas chromatography/mass spectrometry (GC/MS) alone. In this paper, automated sequential, multidimensional gas chromatography/mass spectrometry (GC-GC/MS) was used to obtain a matrix-specific, retention time/mass spectrometry library of 190 juniper berry oil compounds. GC/MS analysis on stationary phases with different polarities confirmed the identities of each compound when spectral deconvolution software was used to analyze the oil. Also analyzed were distillates of juniper berry and its oil as well as gin from four different manufacturers. Findings showed the chemical content of juniper berry can be traced from starting material to final product and can be used to authenticate and differentiate brands. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Identifying the related compounds using electrospray ionization tandem mass spectrometry: bromotyrosine alkaloids from marine sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; DeSouza, L.

    electrospray ionization tandem mass spectrometry (ESI-MS/MS). This sponge has tremendous chemical diversity of bromotyrosine alkaloids. Here we have used the proteomics approach in identifying related bromotyrosine alkaloids based on the predicated mass...

  11. Simultaneous analysis by Quadrupole-Orbitrap mass spectrometry and UHPLC-MS/MS for the determination of sedative-hypnotics and sleep inducers in adulterated products.

    Science.gov (United States)

    Lee, Ji Hyun; Park, Han Na; Choi, Ji Yeon; Kim, Nam Sook; Park, Hyung-Joon; Park, Seong Soo; Baek, Sun Young

    2017-12-01

    Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative-hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first-generation antihistamines, in adulterated products using Quadrupole-Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole-Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05-53 and 0.17-177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra- and interassay accuracies were 86-110 and 84-111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014-2016) from online and in-person vendors were tested using established methods. After rapidly screening with Quadrupole-Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Detection of nicotine as an indicator of tobacco smoke by direct analysis in real time (DART) tandem mass spectrometry

    Science.gov (United States)

    Kuki, Ákos; Nagy, Lajos; Nagy, Tibor; Zsuga, Miklós; Kéki, Sándor

    2015-01-01

    The residual tobacco smoke contamination (thirdhand smoke, THS) on the clothes of a smoker was examined by direct analysis in real time (DART) mass spectrometry. DART-MS enabled sensitive and selective analysis of nicotine as the indicator of tobacco smoke pollution. Tandem mass spectrometric (MS/MS) experiments were also performed to confirm the identification of nicotine. Transferred thirdhand smoke originated from the fingers of a smoker onto other objects was also detected by DART mass spectrometry. DART-MS/MS was utilized for monitoring the secondhand tobacco smoke (SHS) in the air of the laboratory using nicotine as an indicator. To the best of our knowledge, this is the first report on the application of DART-MS and DART-MS/MS to the detection of thirdhand smoke and to the monitoring of secondhand smoke.

  13. Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry

    DEFF Research Database (Denmark)

    Zubel, Tabea; Martello, Rita; Bürkle, Alexander

    2017-01-01

    PARP inhibitors, which represent a novel class of promising chemotherapeutics. Previously, we have developed a bioanalytical platform based on isotope dilution mass spectrometry (LC-MS/MS) to quantify cellular PAR with unequivocal chemical specificity in absolute terms with femtomol sensitivity...... research, as well as in drug development (Martello et al. ACS Chem Biol 8(7):1567-1575, 2013; Mangerich et al. Toxicol Lett 244:56-71, 2016). Here, we present an improved and adjusted version of the original protocol by Martello/Mangerich et al., which uses UPLC-MS/MS instrumentation....

  14. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  15. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  16. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  17. Тhe mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids

    OpenAIRE

    A. V. Lysytsya; A. V. Rebriev

    2014-01-01

    In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG) mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the m...

  18. Two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to study the excretion and metabolic interaction of edaravone and taurine in rats.

    Science.gov (United States)

    Tang, Dao-quan; Zheng, Xiao-xiao; Li, Yin-jie; Bian, Ting-ting; Yu, Yan-yan; Du, Qian; Yang, Dong-zhi; Jiang, Shui-shi

    2014-11-01

    In this study, two independent and complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were respectively developed and validated for the determination of edaravone or taurine in rat urine, feces and bile after intravenous administration, using 3-methyl-l-p-tolyl-5-pyrazolone and sulfanilic acid as the internal standards (IS). Edaravone was separated on an Agilent Eclipse Plus C18 column (100×2.1 mm, 3.5 μm) using methanol and water (containing 5 mM ammonium formate and 0.02% formic acid) as mobile phase, while taurine was performed on a Waters Atlantis HILIC Silica column (150×2.1 mm, 3 μm) using acetonitrile and water (containing 5mM ammonium formate and 0.2% formic acid) as mobile phase. The mass analysis was performed in a Triple Quadrupole mass spectrometer via multiple reaction monitoring (MRM) with negative ionization mode. The optimized mass transition ion pairs (m/z) for quantification were 173.1→92.2 and 187.2→106.0 for edaravone and its IS, 124.1→80.0 and 172.0→80.0 for taurine and its IS, respectively. The validated methods have been successfully applied to the excretion and metabolism interaction study of edaravone and taurine in rats after independent intravenous administration and co-administration with a single dose. The results demonstrated that there were no significant alternations on the metabolism and cumulative excretion rate of edaravone and taurine, implying that the proposed combination therapy was pharmacologically viable. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  20. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  1. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal

  2. Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2016-01-01

    Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  4. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  5. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  6. Chemical characterization of neonicotinoids in surface waters by high performance liquid chromatography with Tandem Mass Spectrometry (HPLC MS/MS); Caracterização química dos neonicotinóides em águas superficiais via cromatografia liquída de alta eficiência acoplada a Espectrometria de Massas em Tandem (HPLC-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Priscila Oliveira

    2017-07-01

    The present study aimed to develop a method for the determination and validation of a method for the identification and quantification of Neonicotinoids in surface waters collected in the Bauru region, in the state of São Paulo. The analytical techniques studied for the development of this method were the high performance liquid chromatography with tandem mass spectrometry (HPLC - MS / MS), gas chromatography with mass spectrometry (GC / MS) and gas chromatography with electron capture detector (GC / ECD). The class of pesticides Neonicotinoids was chosen for this work because it is related to a sudden disappearance of bees in colonies around the world. This phenomenon is known as Colony Collapse Disorder (CCD) and it is characterized by a rapid loss in the population of adult bees. The Neonicotinoids used in this study were the compounds Clothianidin, Imidacloprid and Thiamethoxam which were banned in their use as pesticides in Europe by Implementing Regulation No. 540/2011. The samples were concentrated using solid phase extraction (SPE) and liquid liquid extraction (LLE) techniques and injected into HPLC-MS / MS, GC / MS and GC / ECD. The GC / ECD and GC / MS techniques were not satisfactory for determination in the water matrix because the detection limit (10 mg L{sup -1}) is above the maximum allowed by the US Environmental Protection Agency (0.6 μg L{sup -1}). The HPLC - MS / MS technique using the multiple reaction monitoring (MRM) proved to be adequate for this study because it obtained quantification limits between 5.89 and 8.06 μg L{sup -1} and a linearity between 0.9963 and 0.9999 for the three compounds. (author)

  7. A general method for targeted quantitative cross-linking mass spectrometry

    Science.gov (United States)

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  8. Determination of chlormequat in pears by liquid chromatography/mass spectrometry

    NARCIS (Netherlands)

    Mol, H.G.J.; Dam, R.C.J. van; Vreeken, R.J.; Steijger, O.M.

    2000-01-01

    A straightforward and reliable method was developed for the determination of chlormequat in pears by liquid chromatography/mass spectrometry (LC/MS). Water and methanol were compared as extraction solvents. Because no significant differences in extraction efficiency or repeatability were found,

  9. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%-12.3% for intra-day and 0.9%-7.8% for inter-day) and good accuracy (91%-109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Simultaneous analysis of fourteen tertiary amine stimulants in human urine for doping control purposes by liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Lu Jianghai; Wang San; Dong Ying; Wang Xiaobing; Yang Shuming; Zhang Jianli; Deng Jing; Qin Yang; Xu Youxuan; Wu Moutian; Ouyang Gangfeng

    2010-01-01

    A method for the simultaneous screening and confirmation of the presence of fourteen tertiary amine stimulants in human urine by gas chromatography-mass spectrometry (GC-MS) in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated. Solid phase extraction (SPE) and liquid-liquid extraction (LLE) approaches were utilized for the pre-treatment of the urine samples. The study indicated that the capillary temperature played a significant role in the signal abundances of the protonated molecules of cropropamide and crotethamide under positive ion electrospray ionization (ESI) conditions. In addition, comparison studies of two different pre-treatment approaches as well as the two ionization modes were conducted. The LODs of the developed method for all the analytes were lower than the minimum required performance limit (MRPL) as set forth in the World Anti-Doping Agency (WADA) technical document for laboratories. The human urine sample obtained after oral administration of prolintane.HCl was successfully analyzed by the developed method, which demonstrated the applicability and reliability of the method for routine doping control analysis.

  12. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry

    Science.gov (United States)

    Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-01

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.

  13. Determination of rivaroxaban in patient’s plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS)

    Science.gov (United States)

    Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos

    2017-01-01

    Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels. PMID:28170419

  14. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    . Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...

  15. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics.

    Science.gov (United States)

    Scifo, Enzo; Calza, Giulio; Fuhrmann, Martin; Soliymani, Rabah; Baumann, Marc; Lalowski, Maciej

    2017-06-01

    Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.

  16. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-05

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons.

  17. The allure of mass spectrometry: From an earlyday chemist's perspective.

    Science.gov (United States)

    Tőkés, László

    2017-07-01

    sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co-founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520-542, 2017. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  18. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Emami, K.; Askari, V.; Ullrich, M.; Mohinudeen, K.; Anil, A.C.; Khandeparker, L.; Burgess, J.G.; Mesbahi, E.

    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since...

  19. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND COMMUNICATING SCIENCE: PHARMACEUTICALS IN THE ENVIRONMENT

    Science.gov (United States)

    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers...

  20. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    Science.gov (United States)

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  2. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  3. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.; Anderson, G. A.; Smith, R. D.; Dabney, A. R.

    2012-01-01

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics datasets have substantial

  4. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    Science.gov (United States)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  5. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  6. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards

    DEFF Research Database (Denmark)

    Mirgorodskaya, O A; Kozmin, Y P; Titov, M I

    2000-01-01

    A method for quantitating proteins and peptides in the low picomole and sub-picomole range has been developed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with internal (18)O-labeled standards. A simple procedure is proposed to produce such internal standards for...... inhibitor, were quantified by MALDI-time-of-flight (TOF) mass spectrometry.......A method for quantitating proteins and peptides in the low picomole and sub-picomole range has been developed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with internal (18)O-labeled standards. A simple procedure is proposed to produce such internal standards...

  7. Identification of hydroxylcinnamoyl tartaric acid esters in Bidens pilosa by UPLC-tandem mass spectrometry

    CSIR Research Space (South Africa)

    Khoza, BS

    2016-03-01

    Full Text Available of these extracts using UPLC-qTOF-MS/MS revealed the presence of several hydoxylcinnamoyl tartaric acids. Here, different isomers of coutaric-, caftaric-, fertaric-, chicoric acid and caftaric acid glycosides were detected. The contribution of mass spectrometry...

  8. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies.

    Science.gov (United States)

    Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E

    2012-06-05

    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.

  9. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul

    2016-10-01

    Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.

  10. Standard addition strip for quantitative electrostatic spray ionization mass spectrometry analysis: determination of caffeine in drinks.

    Science.gov (United States)

    Tobolkina, Elena; Qiao, Liang; Roussel, Christophe; Girault, Hubert H

    2014-12-01

    Standard addition strips were prepared for the quantitative determination of caffeine in different beverages by electrostatic spray ionization mass spectrometry (ESTASI-MS). The gist of this approach is to dry spots of caffeine solutions with different concentrations on a polymer strip, then to deposit a drop of sample mixed with an internal standard, here theobromine on each spot and to measure the mass spectrometry signals of caffeine and theobromine by ESTASI-MS. This strip approach is very convenient and provides quantitative analyses as accurate as the classical standard addition method by MS or liquid chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    Science.gov (United States)

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  12. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry.

    Science.gov (United States)

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Kharbatia, Najeh M

    2015-01-01

    To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.

  13. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry.

    Science.gov (United States)

    Contreras-Acuña, M; García-Barrera, T; García-Sevillano, M A; Gómez-Ariza, J L

    2013-03-22

    Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Analysis of carbohydrates in Fusarium verticillioides using size-exclusion HPLC – DRI and direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS)

    Science.gov (United States)

    Direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS) and size-exclusion HPLC – DRI are used, respectively, to qualitatively and quantitatively determine the carbohydrates extracted from the corn rot fungus Fusarium verticillioides. In situ permethylation in the DART...

  15. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology - An update.

    Science.gov (United States)

    Remane, Daniela; Wissenbach, Dirk K; Peters, Frank T

    2016-09-01

    Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) is a well-established and widely used technique in clinical and forensic toxicology as well as doping control especially for quantitative analysis. In recent years, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in biological matrices have been developed. Such methods have proven particularly useful for analysis of so-called new psychoactive substances that have appeared on recreational drug markets throughout the world. Moreover, the evolvement of high resolution MS techniques and the development of data-independent detection modes have opened new possibilities for applications of LC-(MS/MS) in systematic toxicological screening analysis in the so called general unknown setting. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2010. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Electrochemically assisted fast-atom-bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Phillips, L.R.

    1988-01-01

    The hybridization of electrochemistry and fast atom bombardment (FAB) mass spectrometry (MS) creates a new hyphenated technique, referred to as electrochemically assisted FAB (EFAB) MS, which improves the applicability of FAB MS in selectivity and extends the range of compounds to include low polarity molecules, and also reduces mass spectral complications due to matrix-related artifacts. FAB MS has proven to be indispensable in analysis of samples that are otherwise too intractable for conventional MS, such as peptides, oligosaccharides, and oligonucleotides, due to low volatility and ready thermal degradation. There are limits on its applicability, however, in that it works best with samples that are already ionic, or predisposed to become so by simple proton transfer to or from the matrix. A wide range of chemical substances can be ionized/analyzed by electrochemical methods. Therefore, a possible approach towards improving applicability of FAB MS is through its hybridization with electrochemistry. Samples are activated by electrolysis, carried out directly in the sample matrix through use of a modified FAB sample probe which was constructed containing a small electrolytic cell on the tip. In operation, one electrode is held at normal sample-probe/ion-source voltage, while the other electrode can be continuously varied ±15 volts to create electrochemical potentials. Several chemical substances, known to be unresponsive to FAB MS, have been examined by EFAB MS. Resultant spectra generally show a dramatic increases in signal/chemical noise ratio of structurally significant ions when compared to normal FAB spectra

  17. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    Directory of Open Access Journals (Sweden)

    Arthur Henriques Pontes

    2016-10-01

    Full Text Available The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  18. Liquid chromatography - mass spectrometry analysis of pharmaceuticals

    International Nuclear Information System (INIS)

    Macasek, F.

    2003-01-01

    The drugs represent mostly non-volatile and thermally labile solutes, often available only in small amounts like it is in case of radiopharmaceuticals. Therefor, the favourable separation techniques for such compounds are HPLC, capillary electrophoresis and also TLC 1. Liquid chromatography with mass spectrometric detector (LC/MS) is especially powerful for their microanalysis. Mass spectrometry separating the ions in high vacuum was presumably used as detector for gas chromatography effluent but the on-line coupling with liquid eluant flow 0.1-1 mL/min is far more challenging. New types of ion sources were constructed for simultaneous removal of solvent and ionisation of solutes at atmospheric pressure (API). At present, a relatively wide choice of successfully designed commercial equipment is available either for small organic molecules and larger biomolecules (Perkin-Elmer, Agilent, Jeol, Bruker Daltonics, ThermoQuest, Shimadzu). The features of the LC/MS systems are presented. LC/MS as a new quality control tool for [F-18]fluorodeoxyglucose (FDG) radiopharmaceutical, which has became the most spread radiopharmaceutical for positron emission tomography (PET), was proposed. Other applications of the LC/MS are reviewed. (author)

  19. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  20. Ways for accurate analysis of high purity materials using the glow discharge mass spectrometry (GD-MS); Wege zur genauen Charakterisierung hochreiner Materialien mit der Glimmentladungs-Massenspektrometrie (GD-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Gusarova, Tamara

    2010-04-14

    The main aim of this work consists in the investigation, development and application of improved possibilities of accurate analysis of high purity materials using the solid sample technique of Glow Discharge Mass Spectrometry (GD-MS), as well as in the sensitivity enhancement of GD Optical Emission Spectrometry (GD-OES) by implicating the hollow cathode effect. The emphasis of the PhD thesis consists in the accurate quantification for GD-MS. As appropriate certified reference materials (CRMs) for calibration are lacking in most cases an accurate quantification especially for trace elements mass fractions at {mu}g kg{sup -1} level can often not be achieved. To overcome this problem and to expand the possibilities of modern GD-MS hereby, synthetic standards were applied for calibration of both high resolution GD-MS instruments ''VG 9000'' and ''Element GD''. The standards were prepared by doping of matrix powder with trace element standard solutions followed by drying and pressing the doped powder to compact pellets. With the quantification approach worked out and described here accurate analysis results with small uncertainties can be achieved for most elements of periodic table in almost every matrix composition. Furthermore direct traceability of the analytical results to the International System of Units (SI) is provided ensuring their higher metrological quality. Numerous additional systematic investigations concerning the preparation of the synthetic standards and their properties were carried out. The results of calibration of GD-MS instruments with synthetic standards for Co (Co-C), Cu, In, Fe and Zn matrices were checked by measuring CRMs. These results were also contrasted with those of other quantification approaches, as usually used in GD-MS routine. The results achieved with synthetic standards had the highest accuracy. The successful participation in the round robin test CCQM-P107 between international

  1. LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea.

    Science.gov (United States)

    Krock, Bernd; Tillmann, Urban; John, Uwe; Cembella, Allan

    2008-11-01

    Phycotoxins produced by various species of toxigenic microalgae occurring in the plankton are a global threat to the security of seafood resources and the health of humans and coastal marine ecosystems. This has necessitated the development and application of advanced methods in liquid chromatography coupled to mass spectrometry (LC-MS) for monitoring of these compounds, particularly in plankton and shellfish. Most such chemical analyses are conducted in land-based laboratories on stored samples, and thus much information on the near real-time biogeographical distribution and dynamics of phycotoxins in the plankton is unavailable. To resolve this problem, we conducted ship-board analysis of a broad spectrum of phycotoxins collected directly from the water column on an oceanographic cruise along the North Sea coast of Scotland, Norway, and Denmark. We equipped the ship with a triple-quadrupole linear ion-trap hybrid LC-MS-MS system for detection and quantitative analysis of toxins, such as domoic acid, gymnodimine, spirolides, dinophysistoxins, okadaic acid, pectenotoxins, yessotoxins, and azaspiracids (AZAs). We focused particular attention on the detection of AZAs, a group of potent nitrogenous polyether toxins, because the culprit species associated with the occurrence of these toxins in shellfish has been controversial. Marine toxins were analyzed directly from size-fractionated plankton net tows (20 microm mesh size) and Niskin bottle samples from discrete depths, after rapid methanolic extraction but without any further clean-up. Almost all expected phycotoxins were detected in North Sea plankton samples, with domoic acid and 20-methylspirolide G being most abundant. Although AZA was the least abundant of these toxins, the high sensitivity of the LC-MS-MS enabled detailed quantification, indicating that the highest amounts of AZA-1 were present in the southern Skagerrak in the 3-20 microm size-fraction. The direct on-board toxin measurements enabled isolation

  2. Enhancement of biological mass spectrometry by using separations based on changes in ion mobility (FAIMS and DMS).

    Science.gov (United States)

    Purves, Randy W

    2013-01-01

    Analysis of complex biological samples for low-level analytes by liquid chromatography-tandem mass spectrometry (LC-MS/MS) often requires additional selectivity. Differential mobility techniques (FAIMS and DMS) have been shown to enhance LC-MS/MS analyses by separating ions in the gas-phase on a millisecond timescale by use of a mechanism that is complementary to both liquid chromatography and mass spectrometry. In this overview, a simplified description of the operation of these devices is given and an example presented that illustrates the utility of FAIMS (DMS) for solving a challenging analytical assay. Important recent advances in the field, including work with gas modifiers, are presented, along with an outlook for the technology.

  3. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and sensory analysis.

    Science.gov (United States)

    Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; van Ruth, Saskia

    2017-09-01

    The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Introducing AAA-MS, a rapid and sensitive method for amino acid analysis using isotope dilution and high-resolution mass spectrometry.

    Science.gov (United States)

    Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie

    2012-07-06

    Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.

  5. Determination of Aspartame and Caffeine in Carbonated Beverages Utilizing Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Bergen, H. Robert, III; Benson, Linda M.; Naylor, Stephen

    2000-10-01

    Mass spectrometry has undergone considerable changes in the past decade. The advent of "soft ionization" techniques such as electrospray ionization (ESI) affords the direct analysis of very polar molecules without need for the complex inefficient derivatization procedures often required in GC-MS. These ionization techniques make possible the direct mass spectral analysis of polar nonvolatile molecules such as DNA and proteins, which previously were difficult or impossible to analyze by MS. Compounds that readily take on a charge (acids and bases) lend themselves to ESI-MS analysis, whereas compounds that do not readily accept a charge (e.g. sugars) are often not seen or are seen only as inefficient adducts (e.g., M+Na+). To gain exposure to this state-of-the-art analytical procedure, high school students utilize ESI-MS in an analysis of aspartame and caffeine. They dilute a beverage sample and inject the diluted sample into the ESI-MS. The lab is procedurally simple and the results clearly demonstrate the potential and limitations of ESI-coupled mass spectrometry. Depending upon the instructional goals, the outlined procedures can be used to quantify the content of caffeine and aspartame in beverages or to understand the capabilities of electrospray ionization.

  6. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry.

    Science.gov (United States)

    Planatscher, Hannes; Supper, Jochen; Poetz, Oliver; Stoll, Dieter; Joos, Thomas; Templin, Markus F; Zell, Andreas

    2010-06-25

    Mass spectrometry (MS) based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. For small datasets (a few hundred proteins) it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  7. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  8. Determination of {sup 126}Sn half-life from ICP-MS and gamma spectrometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bienvenu, P.; Arnal, N.; Comte, J. [CEA Cadarache DEN/DEC/SA3C/LARC, Paul Lez Durance (France); Ferreux, L.; Lepy, M.C.; Be, M.M. [CEA Saclay LIST LNE/LNHB, Gif sur Yvette (France); Andreoletti, G. [AREVA Cogema SL/UP2-800, Beaumont Hague (France)

    2009-07-01

    A new value of {sup 126}Sn half-life was determined by combination of inductively coupled plasma-mass spectrometry (ICP-MS) and gamma spectrometry measurements on purified sample solutions collected from nuclear fuel reprocessing. {sup 126}Sn was isolated through dissolution of fission product precipitates and liquid-liquid extraction with N-benzoyl-N-phenyl-hydroxylamine (BPHA). The abundance of {sup 126}Sn atoms together with the absence of interfering species in the analysed solutions made it possible to measure both mass concentration and nuclide activity with high precision and accuracy. This led to a {sup 126}Sn half-life value of 1.980 (57) x 10{sup 5} a. (orig.)

  9. Differentiation of 2- and 6-isomers of (2-dimethylaminopropylbenzofuran by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    V. A. Shevyrin

    2016-07-01

    Full Text Available Reliable identification of new psychoactive substances of 2-(2-methylaminopropylbenzofuran and 6-(2-methylaminopropylbenzofuran is problematic when analyzing by gas chromatography–mass spectrometry method. It found that these two isomers can be reliably differentiated by MS/MS spectra obtained by collision-induced dissociation of their protonated molecules.

  10. Tissue gadolinium deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    Science.gov (United States)

    Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi

    2015-06-01

    This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.

  11. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  12. Characterization of cationic glycoporphyrins by electrospray tandem mass spectrometry.

    Science.gov (United States)

    Silva, Eduarda M P; Serra, Vanda Vaz; Ribeiro, Anderson O; Tomé, João P C; Domingues, Pedro; Faustino, M Amparo F; Neves, M Graça P M S; Tomé, Augusto C; Cavaleiro, José A S; Ferrer-Correia, António J; Iamamoto, Yassuko; Domingues, M Rosário M

    2006-01-01

    Novel cationic porphyrin derivatives having a galactose or a bis(isopropylidene)galactose unit linked directly to a pyridine or to an aminophenyl group were characterized by electrospray tandem mass spectrometry (ESI-MS/MS). The electrospray mass spectra (ESI-MS) show the M(+) ions, since these porphyrins are already monocharged in solution. The fragmentation of these ions under ESI-MS/MS conditions was studied and it was found that elimination of the sugar residue as a radical (-163 or -243 Da) is a common fragmentation pathway. Loss of the sugar unit as a neutral fragment (-162 or -242 Da) and cross-ring fragmentations typical of glyco-derivatives are also observed for the pyridinium glycoporphyrins, but they are absent in the case of ammonium glycoporphyrins. The cationic beta-pyridiniumvinyl porphyrins show an atypical fragmentation due to the cleavage of the C(5)-C(6) bond of the sugar unit. Overall, the different patterns of fragmentation observed in the ESI-MS/MS spectra of the sugar pyridinium porphyrins and of the sugar ammonium phenyl porphyrins can give important information about the type of spacer between the porphyrin and the sugar unit. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. Authentication of organically and conventionally grown basils by gas chromatograpy/mass spectrometry chemical profiles

    Science.gov (United States)

    Basil plants cultivated by organic and conventional farming practices were differentiated using gas chromatography/mass spectrometry (GC/MS) and chemometric methods. The two-way GC/MS data sets were baseline-corrected and retention time-aligned prior to data processing. Two self-devised fuzzy clas...

  14. Multiplatform Mass Spectrometry-Based Approach Identifies Extracellular Glycolipids of the Yeast Rhodotorula babjevae UCDFST 04-877.

    Science.gov (United States)

    Cajka, Tomas; Garay, Luis A; Sitepu, Irnayuli R; Boundy-Mills, Kyria L; Fiehn, Oliver

    2016-10-28

    A multiplatform mass spectrometry-based approach was used for elucidating extracellular lipids with biosurfactant properties produced by the oleaginous yeast Rhodotorula babjevae UCDFST 04-877. This strain secreted 8.6 ± 0.1 g/L extracellular lipids when grown in a benchtop bioreactor fed with 100 g/L glucose in medium without addition of hydrophobic substrate, such as oleic acid. Untargeted reversed-phase liquid chromatography-quadrupole/time-of-flight mass spectrometry (QTOFMS) detected native glycolipid molecules with masses of 574-716 Da. After hydrolysis into the fatty acid and sugar components and hydrophilic interaction chromatography-QTOFMS analysis, the extracellular lipids were found to consist of hydroxy fatty acids and sugar alcohols. Derivatization and chiral separation gas chromatography-mass spectrometry (GC-MS) identified these components as d-arabitol, d-mannitol, (R)-3-hydroxymyristate, (R)-3-hydroxypalmitate, and (R)-3-hydroxystearate. In order to assemble these substructures back into intact glycolipids that were detected in the initial screen, potential structures were in-silico acetylated to match the observed molar masses and subsequently characterized by matching predicted and observed MS/MS fragmentation using the Mass Frontier software program. Eleven species of acetylated sugar alcohol esters of hydroxy fatty acids were characterized for this yeast strain.

  15. Origin of the chemical noise in ambient mass spectrometry

    International Nuclear Information System (INIS)

    Yang Shuiping; Zhu Zhiqiang; Huang Longzhu; Zhang Xinglei; Zhu Tenggao; Chen Huanwen

    2012-01-01

    The instrumental background of ambient mass spectrometry, (API-MS) is analyzed and the possible potential origins of the background noise is identified. According to the mass spectra obtained using the API-MS instruments by different manufacturers, the characteristic fragment ions all indicated that the background noise are resulted from the phthalates such as diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), and silicones such as decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). These chemicals are probably released from the polymeric materials used in the ionization sources, such as O-type sealing ring etc. In addition, the instrumental background has to be considered especially during the analysis of phthalate and peptide compounds. (authors)

  16. Mass spectrometry as a quantitative tool in plant metabolomics

    Science.gov (United States)

    Jorge, Tiago F.; Mata, Ana T.

    2016-01-01

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644967

  17. Accuracy of immunoassay and mass spectrometry urinary free cortisol in the diagnosis of Cushing's syndrome.

    Science.gov (United States)

    Aranda, G; Careaga, M; Hanzu, F A; Patrascioiu, I; Ríos, P; Mora, M; Morales-Romero, B; Jiménez, W; Halperin, I; Casals, G

    2016-10-01

    Urinary free cortisol (UFC) determination by highly specific methods as mass spectrometry instead of commercially available antibody-based immunoassays is increasingly recommended. However, clinical comparisons of both analytical approaches in the screening of Cushing's syndrome (CS) are not available. The aim of this study was to evaluate the diagnostic value of mass spectrometry versus immunoassay measurements of 24 h-UFC in the screening of CS. Cross-sectional study of 33 histologically confirmed CS patients: 25 Cushing's disease, 5 adrenal CS and 3 ectopic CS; 92 non-CS patients; and 35 healthy controls. UFC by immunoassay (UFCxIA) and mass spectrometry (UFCxMS), urinary free cortisone (UFCo) and UFC:UFCo ratio were measured, together with creatinine-corrected values. Sensitivity, specificity, AUC and Landis and Koch concordance index were determined. AUC for UFCxIA and UFCxMS were 0.77 (CI 0.68-0.87) and 0.77 (CI 0.67-0.87) respectively, with a kappa coefficient 0.60 and strong Landis and Koch concordance index. The best calculated cutoff values were 359 nmol/24 h for UFCxIA (78 % sensitivity, 62 % specificity) and 258.1 nmol/24 h for UCFxMS (53 % sensitivity, 86 % specificity). The upper limit of UFCxIA and UCFxMS reference ranges were 344.7 and 169.5 nmol/24 h respectively. Sensitivity and specificity for CS diagnosis at these cutpoints were 84 and 56 % for UFCxIA and 81 and 54 % for UFCxMS. According to our data, both methods present a very similar diagnostic value. However, results suggest that lower cutoff points for mass spectrometry may be necessary in order to improve clinical sensitivity.

  18. A piezo-ring-on-chip microfluidic device for simple and low-cost mass spectrometry interfacing.

    Science.gov (United States)

    Tsao, Chia-Wen; Lei, I-Chao; Chen, Pi-Yu; Yang, Yu-Liang

    2018-02-12

    Mass spectrometry (MS) interfacing technology provides the means for incorporating microfluidic processing with post MS analysis. In this study, we propose a simple piezo-ring-on-chip microfluidic device for the controlled spraying of MALDI-MS targets. This device uses a low-cost, commercially-available ring-shaped piezoelectric acoustic atomizer (piezo-ring) directly integrated into a polydimethylsiloxane microfluidic device to spray the sample onto the MS target substrate. The piezo-ring-on-chip microfluidic device's design, fabrication, and actuation, and its pulsatile pumping effects were evaluated. The spraying performance was examined by depositing organic matrix samples onto the MS target substrate by using both an automatic linear motion motor, and manual deposition. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was performed to analyze the peptide samples on the MALDI target substrates. Using our technique, model peptides with 10 -6 M concentration can be successfully detected. The results also indicate that the piezo-ring-on-chip approach forms finer matrix crystals and presents better MS signal uniformity with little sample consumption compared to the conventional pipetting method.

  19. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    Science.gov (United States)

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  20. Adapting mass spectrometry-based platforms for clinical proteomics applications: The capillary electrophoresis coupled mass spectrometry paradigm

    Science.gov (United States)

    Metzger, Jochen; Luppa, Peter B.; Good, David M.; Mischak, Harald

    2018-01-01

    Single biomarker detection is common in clinical laboratories due to the currently available method spectrum. For various diseases, however, no specific single biomarker could be identified. A strategy to overcome this diagnostic void is to shift from single analyte detection to multiplexed biomarker profiling. Mass spectrometric methods were employed for biomarker discovery in body fluids. The enormous complexity of biofluidic proteome compartments implies upstream fractionation. For this reason, mass spectrometry (MS) was coupled to two-dimensional gel electrophoresis, liquid chromatography, surface-enhanced laser desorption/ionization, or capillary electrophoresis (CE). Differences in performance and operating characteristics make them differentially suited for routine laboratory applications. Progress in the field of clinical proteomics relies not only on the use of an adequate technological platform, but also on a fast and efficient proteomic workflow including standardized sample preparation, proteomic data processing, statistical validation of biomarker selection, and sample classification. Based on CE-MS analysis, we describe how proteomic technology can be implemented in a clinical laboratory environment. In the last part of this review, we give an overview of CE-MS-based clinical studies and present information on identity and biological significance of the identified peptide biomarkers providing evidence of disease-induced changes in proteolytic processing and posttranslational modification. PMID:19404829

  1. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  2. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Science.gov (United States)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.

    2017-01-01

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728

  3. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Science.gov (United States)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  4. Data on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic compounds and peptides

    Directory of Open Access Journals (Sweden)

    Ana S.P. Moreira

    2017-08-01

    Full Text Available The data presented here are related to the research paper entitled “Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: inhibition by Maillard reaction” (Moreira et al., 2017 [1]. Methanolysis was applied in coffee fractions to quantify glycosidically-linked phenolics in melanoidins. Moreover, model mixtures mimicking coffee beans composition were roasted and analyzed using mass spectrometry-based approaches to disclose the regulatory role of proteins in transglycosylation reactions extension. This article reports the detailed chemical composition of coffee beans and derived fractions. In addition, it provides gas chromatography–mass spectrometry (GC–MS chromatograms and respective GC–MS spectra of silylated methanolysis products obtained from phenolic compounds standards, as well as the detailed identification of all compounds observed by electrospray mass spectrometry (ESI-MS analysis of roasted model mixtures, paving the way for the identification of the same type of compounds in other samples.

  5. Porous silicon mass spectrometry as an alternative confirmatory assay for compliance testing of methadone.

    Science.gov (United States)

    Guinan, Taryn M; Neldner, Declan; Stockham, Peter; Kobus, Hilton; Della Vedova, Christopher B; Voelcker, Nicolas H

    2017-05-01

    Porous silicon based surface-assisted laser desorption ionization mass spectrometry (pSi SALDI-MS) is an analytical technique well suited for high throughput analysis of low molecular weight compounds from biological samples. A potential application of this technology is the compliance monitoring of opioid addiction programmes, where methadone is used as a pharmacological treatment for drugs such as heroin. Here, we present the detection and quantification of methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) from water and clinical samples (saliva, urine, and plasma) from opioid dependent participants using pSi SALDI-MS. A one-step solvent phase extraction using chloroform was developed for the detection of methadone from clinical samples for analysis by pSi SALDI-MS. Liquid chromatography-mass spectrometry (LC-MS) was used as a comparative technique for the quantification of methadone from clinical saliva and plasma samples. In all cases, we obtained a good correlation of pSi SALDI-MS and LC-MS results, suggesting that pSi SALDI-MS may be an alternative procedure for high-throughput screening and quantification for application in opioid compliance testing. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    Science.gov (United States)

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Omar, Jone; Navarro, Patricia; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2014-01-01

    High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means

  8. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Mo, Shunyan; Dong, Linlin; Hurst, W. Jeffrey; van Breemen, Richard B.

    2014-01-01

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays. PMID:23884629

  9. Screening of acetylcholinesterase inhibitors in snake venom by electrospray mass spectrometry

    NARCIS (Netherlands)

    Liesener, A.; Perchuc, Anna-Maria; Schöni, Reto; Schebb, Nils Helge; Wilmer, Marianne; Karst, U.

    2007-01-01

    An electrospray ionization/mass spectrometry (ESI/MS)-based assay for the determination of acetylcholinesterase (AChE)-inhibiting activity in snake venom was developed. It allows the direct monitoring of the natural AChE substrate acetylcholine (AC) and the respective product choline. The assay

  10. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data

    NARCIS (Netherlands)

    Mellacheruvu, D.; Wright, Z.; Couzens, A.L.; Low, T.Y.|info:eu-repo/dai/nl/411298437; Halim, V.A.|info:eu-repo/dai/nl/326157441; Heck, A.J.R.|info:eu-repo/dai/nl/105189332; Mohammed, S.|info:eu-repo/dai/nl/30483632X; Nesvizhskii, A.

    2013-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background

  11. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  12. Fe- and Cu-complex formation with artificial ligands investigated by ultra-high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS: Implications for natural metal-organic complex studies

    Directory of Open Access Journals (Sweden)

    Hannelore Waska

    2016-07-01

    Full Text Available In recent years, electrospray-ionization mass spectrometry (ESI-MS has been increasingly used to complement the bulk determination of metal-ligand equilibria, for example via competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV. However, ESI-MS speciation analyses may be impacted by instrumental artefacts such as reduction reactions, fragmentation, and adduct formation at the ESI source, changes in the ionization efficiencies of the detected species in relation to sample matrix, and peak overlaps in response to increasing sample complexity. In our study, equilibria of the known artificial ligands citrate, ethylenediaminetetraacetic acid (EDTA, 1-nitroso-2-naphthol (NN, and salicylaldoxime (SA with iron (Fe and copper (Cu were investigated by ultra-high resolution ESI-MS, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, under a variety of sample matrix and ionization settings. The acquired mass spectra were compared with metal-ligand equilibrium data from the literature as well as an adapted speciation model. Overall, the mass spectra produced representative species mentioned in previous reports and predicted by the speciation calculations, such as Fe(Cit, Cu(Cit2, Fe(EDTA, Cu(EDTA, Fe(NN3, and Cu(SA2. The analyses furthermore revealed new species which had been hypothesized but not measured directly using other methods, for example ternary complexes of citrate with Fe and Cu, Cu(SA monomers, and the dimer Fe(SA2. Finally, parallel measurements of a Cu+SA calibration series and a Cu+SA+EDTA competition series indicated that FT-ICR-MS can produce linear responses and low detection limits analogous to those of ACSV. We propose that ultra-high resolution FT-ICR-MS can be used as a representative tool to study interactions of trace metals with artificial as well as natural, unknown ligands at the molecular level.

  13. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis.

    Science.gov (United States)

    Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K; Virdi, Jugsharan S

    2015-01-01

    Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.

  15. Accuracy of the Precision® point-of-care ketone test examined by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in the same fingerstick sample.

    Science.gov (United States)

    Janssen, Marcel J W; Hendrickx, Ben H E; Habets-van der Poel, Carin D; van den Bergh, Joop P W; Haagen, Anton A M; Bakker, Jaap A

    2010-12-01

    The Precision(®) (Abbott Diabetes Care) point-of-care biosensor test strips are widely used by patients with diabetes and clinical laboratories for measurement of plasma β-hydroxybutyrate (β-HB) concentrations in capillary blood samples obtained by fingerstick. In the literature, this procedure has been validated only against the enzymatic determination of β-HB in venous plasma, i.e., the method to which the Precision(®) has been calibrated. In this study, the Precision(®) Xceed was compared to a methodologically different and superior procedure: determination of β-HB by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in capillary blood spots. Blood spots were obtained from the same fingerstick sample from out of which Precision(®) measurements were performed. Linearity was tested by adding varying amounts of standard to an EDTA venous whole blood matrix. The Precision(®) was in good agreement with LC-MS/MS within the measuring range of 0.0-6.0 mmol/L (Passing and Bablok regression: slope=1.20 and no significant intercept, R=0.97, n=59). Surprisingly, the Precision(®) showed non-linearity and full saturation at concentrations above 6.0 mmol/L, which were confirmed by a standard addition experiment. Results obtained at the saturation level varied between 3.0 and 6.5 mmol/L. The Precision(®) β-HB test strips demonstrate good comparison with LC-MS/MS. Inter-individual variation around the saturation level, however, is large. Therefore, we advise reporting readings above 3.0 as >3.0 mmol/L. The test is valid for use in the clinically relevant range of 0.0-3.0 mmol/L.

  16. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi; Baker, Erin Shammel; Metz, Thomas O.

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  17. MALDI-TOF-mass spectrometry applications in clinical microbiology.

    Science.gov (United States)

    Seng, Piseth; Rolain, Jean-Marc; Fournier, Pierre Edouard; La Scola, Bernard; Drancourt, Michel; Raoult, Didier

    2010-11-01

    MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost-effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.

  18. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    Science.gov (United States)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  19. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Savolainen, Otto I; Ross, Alastair B

    2016-01-01

    measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many...... biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses...

  20. Fingerprinting Deepwater Horizon Oil in the northern Gulf of Mexico using biomarkers and Gas Chromatography-Triple Quadrupole Mass Spectrometry (GC/MS/MS)

    Science.gov (United States)

    Adhikari, P. L.; Overton, E. B.; Maiti, K.; Wong, R. L.

    2016-02-01

    Petroleum biomarkers such as hopanes, steranes, and triaromatic steroids are more persistent than alkanes and aromatic compounds. Thus, they are often used to track spilled oil in the environments and as a proxy for weathering processes. The present study utilizes water samples, suspended and sinking particles, and seafloor sediments collected during 2011-2013 from various locations of the northern Gulf of Mexico with wide range of contaminated oil for Deepwater Horizon (DWH) oil fingerprinting. The MC252 source oil along with the samples collected in this study were analyzed using a gas chromatography coupled with a triple quadrupole mass spectrometry (GC/MS/MS) in Multiple Reaction Monitoring (MRM) mode and the results were compared with results from commonly used GC/MS selective ion monitoring (SIM) method. The results indicate that the MRM method separates interfering ions from interfering compounds and can be a powerful analytical strategy for a reliable identification and determination of trace levels of biomarkers in complex matrices. Source indicators such as the MRM fragment ion chromatograms of the biomarkers and their diagnostic ratios in samples were compared with the MC252 source oil. The preliminary results show that the biomarkers were below detection limits in dissolved samples. However, in few particulate and seafloor sediment samples, primarily from the immediate vicinity of the Macondo wellhead, contained their patterns. The results also illustrate that these biomarker compounds have been weathered within 1-3 years following the oil spill, and their DWH oil signature in some of these samples reflects this weathering.

  1. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water.

    Science.gov (United States)

    Huang, Guang; Jiang, Ping; Li, Xing-Fang

    2017-04-04

    We report the identification of N-chlorinated dipeptides as chlorination products in drinking water using complementary high-resolution quadrupole time-of-flight (QTOF) and quadrupole ion-trap mass spectrometry techniques. First, three model dipeptides, tyrosylglycine (Tyr-Gly), tyrosylalanine (Tyr-Ala), and phenylalanylglycine (Phe-Gly), reacted with sodium hypochlorite, and these reaction solutions were analyzed by QTOF. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N,N-di-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala were identified as the major products based on accurate masses, 35 Cl/ 37 Cl isotopic patterns, and MS/MS spectra. These identified N-chlorinated dipeptides were synthesized and found to be stable in water over 10 days except N,N-di-Cl-Phe-Gly. To enable sensitive detection of N-chlorinated dipeptides in authentic water, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with multiple reaction monitoring (MRM) mode. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala along with their corresponding dipeptides were detected in authentic tap water samples. The dipeptides were clearly detected in the raw water, but the N-chlorinated dipeptides were at background levels. These results suggest that the N-chlorinated dipeptides are produced by chlorination. This study has identified N-chlorinated dipeptides as new disinfection byproducts in drinking water. The strategy developed in this study can be used to identify chlorination products of other peptides in drinking water.

  2. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode.

    Science.gov (United States)

    Yang, Junqing; Zheng, Mei; Liu, Qiuju; Yang, Meiling Zhu Chushan; Zhang, Yan; Zhu, Zhiqiang

    2017-09-26

    Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS² (the second tandem mass spectrometry) procedure was estimated to be at the level of 10μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0-500 μg/L and 20-200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions.

  3. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Manveen K. Sethi

    2015-12-01

    Full Text Available Colorectal cancer (CRC is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.

  4. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    Science.gov (United States)

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  5. Improved sensitivity of ochratoxin A analysis in coffee using high-performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS).

    Science.gov (United States)

    Kokina, Aija; Pugajeva, Iveta; Bartkevics, Vadims

    2016-01-01

    A novel and sensitive method utilising high-performance liquid chromatography coupled to triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS) was developed in order to analyse the content of ochratoxin A (OTA) in coffee samples. The introduction of the triple-stage MS scanning mode (MS(3)) has been shown to increase greatly sensitivity and selectivity by eliminating the high chromatographic baseline caused by interference of complex coffee matrices. The analysis included the sample preparation procedure involving extraction of OTA using a methanol-water mixture and clean-up by immunoaffinity columns and detection using the MS(3) scanning mode of LC-QqQLIT-MS/MS. The proposed method offered a good linear correlation (r(2) > 0.998), excellent precision (RSD coffee beans and espresso beverages was 0.010 and 0.003 µg kg(-1), respectively. The developed procedure was compared with traditional methods employing liquid chromatography coupled to fluorescent and tandem quadrupole detectors in conjunction with QuEChERS and solid-phase extraction. The proposed method was successfully applied to the determination of OTA in 15 samples of coffee beans and in 15 samples of espresso coffee beverages obtained from the Latvian market. OTA was found in 10 samples of coffee beans and in two samples of espresso in the ranges of 0.018-1.80 µg kg(-1) and 0.020-0.440 µg l(-1), respectively. No samples exceeded the maximum permitted level of OTA in the European Union (5.0 µg kg(-1)).

  6. Molecular analysis of intact preen waxes of Calidris canutus (Aves : Scolopacidae) by gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Dekker, MHA; Piersma, T; Damste, JSS; Dekker, Marlèn H.A.; Sinninghe Damsté, Jaap S.

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  7. Characterization of the designer drug deschloroketamine (2-methylamino-2-phenylcyclohexanone) by gas chromatography/mass spectrometry, liquid chromatography/high-resolution mass spectrometry, multistage mass spectrometry, and nuclear magnetic resonance.

    Science.gov (United States)

    Frison, Giampietro; Zamengo, Luca; Zancanaro, Flavio; Tisato, Francesco; Traldi, Pietro

    2016-01-15

    Clinical and forensic toxicology laboratories are challenged every day by the analytical aspects of the new psychoactive substances phenomenon. In this study we describe the analytical characterization of a new ketamine derivative, deschloroketamine (2-methylamino-2-phenylcyclohexanone), contained in seized powders. The analytical techniques employed include gas chromatography/mass spectrometry (GC/MS), liquid chromatography/electrospray ionization coupled with Orbitrap high-resolution/MS (LC/ESI-HRMS), multistage MS (ESI-MS(n)), and NMR. The LC/ESI-HRMS analyses consisted of accurate mass measurements of MH(+) ions in full-scan mode; comparison of experimental and calculated MH(+) isotopic patterns; and examination of the isotopic fine structure (IFS) of the M + 1, M + 2, M + 3 isotopic peaks relative to the monoisotopic M + 0 peak. The collision-induced product ions of the MH(+) ions were studied by both HRMS and MS(n). (1)H and (13)C NMR measurements were carried out to confirm the chemical structure of the analyte. The EI mass spectra obtained by GC/MS analysis showed the presence of molecular ions at m/z 203, and main fragment ions at m/z 175, 174, 160, 147, 146, and 132. The application of LC/ESI-HRMS allowed us to obtain: the accurate mass of deschloroketamine MH(+) ions with a mass accuracy of 1.47 ppm; fully superimposable experimental and calculated MH(+) isotopic patterns, with a relative isotopic abundance value of 3.69 %; and the IFS of the M + 1, M + 2, M + 3 isotopic peaks completely in accordance with theoretical values. Examination of the product ions of MH(+), as well as the study of both (1)H and (13)C NMR spectra, enabled the full characterization of the molecular structure of deschloroketamine. The combination of the employed analytical techniques allowed the characterization of the seized psychoactive substance, in spite of the lack of a reference standard. Deschloroketamine is a ketamine analogue considered to be

  8. Analysis of volatile compounds by open-air ionization mass spectrometry.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-05-08

    This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry.

    Science.gov (United States)

    Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys

    2011-09-01

    The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the connectivity. These combinatorial libraries were separated and characterized by ion mobility mass spectrometry (IM MS) and tandem mass spectrometry (MS(2)). The 180°-angle building blocks generate exclusively linear complexes, which were used as standards to determine the architectures of the assemblies resulting from the 120°-angle ligands. The latter ligand geometry promotes the formation of macrocyclic hexamers, but other n-mers with smaller (n = 5) or larger ring sizes (n = 7-9) were identified as minor products, indicating that the angles in the bis(terpyridine) ligand and within the coordinative tpy-Zn(II)-tpy bonds are not as rigid, as previously believed. Macrocyclic and linear isomers were detected in penta- and heptameric assemblies; in the larger octa- and nonameric assemblies, ring-opened conformers with compact and folded geometries were observed in addition to linear extended and cyclic architectures. IM MS(2) experiments provided strong evidence that the macrocycles present in the libraries were already formed in solution, during the self-assembly process, not by dissociation of larger complexes in the gas phase. The IM MS/MS(2) methods provide a means to analyze, based on size and shape (architecture), supramolecular libraries that are not amenable to liquid chromatography, LC-MS, NMR, and/or X-ray techniques.

  10. Use of Maldi-Tof Mass spectrometry in direct microorganism identification in clinical laboratories

    Directory of Open Access Journals (Sweden)

    Tamara Brunelli

    2010-09-01

    Full Text Available Mass Spectrometry is an old technique that has recently been introduced in the clinical microbiology laboratory as Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS. MALDI is a soft ionization technique used in mass spectrometry that allows the analysis of biomolecules and large organic molecules which tend to be fragile and fragment when ionized.To obtain ions biological specimens are mixed with a matrix which specifically absorbs the ionization source (a laser beam. The high energy impact is followed by the formation of ions which are extract through an elastic field, focussed and detected as mass/charge (m/z spectrum.The differences between ions are seen with TOF, a revelation system that relates the time of flight of a ion to the charge/mass value: ion with a higher m/z have are slower (a bigger time of flight than ions with lower m/z. MALDI-TOF MS, in clinical microbiology laboratory, is used to identify bacteria and fungi directly from samples. The identification of microorganisms can be performed directly from body fluids (e.g. urine, blood culture, after centrifugation and recovery of microorganisms or from colonies (after cultivation. The rapidity of identification is of great importance in blood cultures. Positive cultures with one microorganism are processed in a different way than those with more than one microorganism. In positive monomicrobial cultures, after separation of microbs from blood cells,we can perform an immediate identification with MALDI-TOF MS that we can communicate to the clinician, and that gives indication to perform the correct antibiogram. Major problems are present when more than one microorganism are in the culture: in this case we have to use the method of subcultivation and then the identification with mass-spectrometry can be performed. MALDI-TOF MS is a rapid, reliable and low cost technique, that can identify a growing number of microorganisms. This technique can

  11. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cordeau

    Full Text Available In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC associated with elemental mass spectrometry (ICP-MS to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully

  12. Screening of carnitine and biotin deficiencies on tandem mass spectrometry.

    Science.gov (United States)

    Hagiwara, Shin-Ichiro; Kubota, Mitsuru; Nambu, Ryusuke; Kagimoto, Seiichi

    2017-04-01

    It is important to assess pediatric patients for nutritional deficiency when they are receiving specific interventions, such as enteral feeding. We focused on measurement of C0 and 3-hydroxyisovalerylcarnitine (C5-OH) with tandem mass spectrometry (MS/MS), which is performed as part of the newborn mass screening. The purpose of this study was to investigate the usefulness of MS/MS for screening carnitine and biotin deficiencies. Forty-two children (24 boys, 18 girls) were enrolled between December 2013 and December 2015. Blood tests, including measurement of serum free carnitine via the enzyme cycling method, and acylcarnitine analysis on MS/MS of dried blood spot (DBS), were performed for the evaluation of nutrition status. Median patient age was 2 years (range, 2 months-14 years). Mean serum free carnitine was 41.8 ± 19.2 μmol/L. In six of the 42 patients, serum free carnitine was 1.00 nmol/L. Therapy-resistant eczema was improved by treatment with additional biotin and a non-hydrolyzed formula. C0 and C5-OH, measured on MS/MS of DBS, were useful for screening carnitine and biotin deficiencies. © 2016 Japan Pediatric Society.

  13. Mass spectrometry in clinical chemistry

    International Nuclear Information System (INIS)

    Pettersen, J.E.

    1977-01-01

    A brief description is given of the functional elements of a mass spectrometer and of some currently employed mass spectrometric techniques, such as combined gas chromatography-mass spectrometry, mass chromatography, and selected ion monitoring. Various areas of application of mass spectrometry in clinical chemistry are discussed, such as inborn errors of metabolism and other metabolic disorders, intoxications, quantitative determinations of drugs, hormones, gases, and trace elements, and the use of isotope dilution mass spectrometry as a definitive method for the establishment of true values for concentrations of various compounds in reference sera. It is concluded that mass spectrometry is of great value in clinical chemistry. (Auth.)

  14. The yeast metabolome addressed by electrospray ionization mass spectrometry: Initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul; Smedsgaard, Jørn; Nielsen, Jens

    2008-01-01

    Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited...... for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination......, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological...

  15. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    Science.gov (United States)

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  16. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry.

    Science.gov (United States)

    Eikel, Daniel; Henion, Jack

    2011-08-30

    An automated surface-sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano-electrospray high-resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high-resolution and full-scan collision-induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100,000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five-pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high-resolution mass spectrometry and full-scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20-fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA-MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    Science.gov (United States)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  18. Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Lin, Chiann Tso; Kim, Jong Seo; Heibeck, Tyler H.; Wang, Jun; Qian, Weijun; Lin, Yuehe

    2012-04-20

    Paraoxon (diethyl 4-nitrophenyl phosphate) is an active metabolite of the common insecticide parathion and is acutely toxic due to the inhibition of cholinesterase (ChE) activity in the nervous systems. The Inhibition of butyrylcholinesterase (BChE) activity by paraoxon is due to the formation of phosphorylated BChE adduct, and the detection of the phosphorylated BChE adduct in human plasma can serve as an exposure biomarker of organophosphate pesticides and nerve agents. In this study, we performed immunoaffinity purification and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for identifying phosphorylated BChE in human plasma treated by paraoxon. BChE was captured by biotinylated anti-BChE polyclonal antibodies conjugated to streptavidin magnetic beads. Western blot analysis showed that the antibody was effective to recognize both native and modified BChE with high specificity. The exact phosphorylation site of BChE was confirmed on Serine 198 by MS/MS with a 108 Da modification mass and accurately measured parent ion masses. The phosphorylated BChE peptide was also successfully detected in the immunoaffinity purified sample from paraoxon treated human plasma. Thus, immunoaffinity purification combined with mass spectrometry represents a viable approach for the detection of paraoxon-modified BChE and other forms of modified BChE as exposure biomarkers of organophosphates and nerve agents.

  19. Matrix effect on the determination of synthetic corticosteroids and diuretics by liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.

    2009-04-01

    This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.

  20. DNA adducts: Mass spectrometry methods and future prospects

    International Nuclear Information System (INIS)

    Farmer, P.B.; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-01-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10 12 nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [ 14 C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [ 14 C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing 32 P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens

  1. Usefulness of MALDI-TOF mass spectrometry in epidemiological control of etiologic agents of infection

    Directory of Open Access Journals (Sweden)

    Roberto Degl’Innocenti

    2013-08-01

    Full Text Available Introduction: The use of the MALDI-TOF mass spectrometry in the routine of microbiological diagnostics has revolutionized procedures and response times of bacteriology.The use of this technique aims to epidemiological investigations in a hospital environment and represents a further significant opportunity, quickly feasible and extremely economical. Methods: By means of the MALDI-TOF-MS Vitek2 (MS Vitek2 mass spectrometer, accompanied by the AgnosTec-SARAMIS (bioMérieux, France software, were analyzed the spectra of 149 bacterial isolates (139 Staphylococcus aureus and 10 Staphylococcus epidermidis obtained from cultures of 148 patients (141 inpatients and 7 outpatients. Clinical isolates were stored at a temperature of -20°C.The isolates were then thawed and immediately cultured on agar blood medium. The colonies were subjected to analysis by MS Vitek on the day after sowing. The spectra obtained were analyzed and compared using the software AgnosTec-SARAMIS, which allowed the construction of a dendrogram. Results and conclusions: The evaluation of the data collected suggests that mass spectrometry could be an useful tool in epidemiological surveys. Speed of analysis and low costs make the MS Vitek2 an usable tool by many microbiology laboratories.

  2. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  3. MALDI-TOF MS/MS measurements of PMMA

    NARCIS (Netherlands)

    Becer, C.R.; Baumgaertel, A.; Gottschaldt, M.; Schubert, U.S.

    2008-01-01

    The polymer poly(Me methacrylate) (PMMA) was analyzed using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique. The MALDI-TOF MS app. was coupled with a collision-induced dissocn. (CID) unit. The performance of the MALDI-TOF/TOF MS method in

  4. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    Science.gov (United States)

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  5. Tandem mass spectrometry: analysis of complex mixtures

    International Nuclear Information System (INIS)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated

  6. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Hauserová, Eva; Amakorová, Petra; Doležal, Karel; Strnad, Miroslav

    2008-01-01

    Roč. 69, č. 11 (2008), s. 2214-2224 ISSN 0031-9422 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511 Keywords : Ultra-performance liquid chromatography (UPLC) * Tandem mass spectrometry (MS/MS) * Microextraction Subject RIV: EC - Immunology Impact factor: 2.946, year: 2008

  7. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review.

    Science.gov (United States)

    Altuntaş, Esra; Schubert, Ulrich S

    2014-01-15

    Mass spectrometry (MS) is the most versatile and comprehensive method in "OMICS" sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MS(n)) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In "OMICS" sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin M.

    2017-06-12

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC), supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.

  9. On-target digestion of collected bacteria for MALDI mass spectrometry.

    Science.gov (United States)

    Dugas, Alton J; Murray, Kermit K

    2008-10-03

    An on-target protein digestion system was developed for the identification of microorganisms in collected bioaerosols using off-line matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Bacteria analysis techniques based on MALDI-MS were adapted for use with an orthogonal MALDI quadrupole-time-of-flight mass spectrometer. Bioaerosols were generated using a pneumatic nebulizer and infused into a chamber for sampling. An Andersen N6 single-stage impactor was used to collect the bioaerosols on a MALDI target. On-target digestion was carried out inside temporary mini-wells placed over the impacted samples. The wells served as miniature reactors for proteolysis. Collected test aerosol particles containing the protein cytochrome c and E. coli bacteria were proteolyzed in situ using trypsin or cyanogen bromide. A total of 19 unique proteins were identified for E. coli. Using the TOF-MS spectra of the digested samples, peptide mass mapping was performed using the MASCOT search engine and an iterative search technique.

  10. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  11. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  12. Determination of Endocrine Disrupting Compounds in surface waters by means of chromatographic techniques coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Di Carro

    2011-01-01

    Full Text Available Two analytical methods were developed to study five endocrine disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol in waters. One method includes a fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS analysis, while the second comprise a Stir Bar Sorptive Extraction (SBSE followed by a headspace derivatization and gaschromatography-mass spectrometry (GC-MS analysis. Passive samplers POCIS (Polar Organic Chemical Integrative Samplers were used as sampling and preconcentration steps in order to reach the very low levels of the analytes in environmental waters. Both methods were then applied to the determination of the analytes in different water samples.

  13. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb.

    Science.gov (United States)

    Erasmus, Sara W; Muller, Magdalena; Alewijn, Martin; Koot, Alex H; van Ruth, Saskia M; Hoffman, Louwrens C

    2017-10-15

    The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile fingerprints were affected by the origin of the meat. The classification of the origin of the lamb was achieved by examining the calculated and recorded fingerprints in combination with chemometrics. Four different partial least squares discriminant analysis (PLS-DA) models were fitted to the data to classify lamb meat and fat samples into "region of origin" (six different regions) and "origin" (Karoo vs. Non-Karoo). The estimation models classified samples 100% correctly. Validation of the first two models gave 42% (fat) and 58% (meat) correct classification of region, while the second two models performed better with 92% (fat) and 83% (meat) correct classification of origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination

    International Nuclear Information System (INIS)

    Krata, A.; Bulska, E.

    2005-01-01

    The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO 3 +HF. The digestion solutions were analyzed by CV AAS using NaBH 4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g -1 were achieved by ICP-MS, CV AAS and GF AAS, respectively

  15. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling

    Science.gov (United States)

    Fiehn, Oliver

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based metabolomics is ideal for identifying and quantitating small molecular metabolites (metabolomics easily allows integrating targeted assays for absolute quantification of specific metabolites with untargeted metabolomics to discover novel compounds. Complemented by database annotations using large spectral libraries and validated, standardized standard operating procedures, GC-MS can identify and semi-quantify over 200 compounds per study in human body fluids (e.g., plasma, urine or stool) samples. Deconvolution software enables detection of more than 300 additional unidentified signals that can be annotated through accurate mass instruments with appropriate data processing workflows, similar to liquid chromatography-MS untargeted profiling (LC-MS). Hence, GC-MS is a mature technology that not only uses classic detectors (‘quadrupole’) but also target mass spectrometers (‘triple quadrupole’) and accurate mass instruments (‘quadrupole-time of flight’). This unit covers the following aspects of GC-MS-based metabolomics: (i) sample preparation from mammalian samples, (ii) acquisition of data, (iii) quality control, and (iv) data processing. PMID:27038389

  16. Application of CE-ICP-MS and CE-ESI-MS/MS for identification of Zn-binding ligands in Goji berries extracts.

    Science.gov (United States)

    Ruzik, Lena; Kwiatkowski, Piotr

    2018-06-01

    The identification of groups of ligands binding metals is a crucial issue for the better understanding of their bioaccessibility. In the current study, we have intended an approach for identification of Zn-binding ligands based on using capillary electrophoresis combined with inductively coupled plasma mass spectrometry (CE-ICP-MS) and tandem electrospray ionization mass spectrometry (CE-ESI-MS/MS). The approach, which featured the use of the coupling of capillary electrophoresis with inductively coupled plasma mass spectrometry allows to separate and observe zinc ions present in complexes with respect to their size and charge and to identify nine compounds with zinc isotopic profile. CE-ICP-MS provides us with information about presence of zinc species and elemental information about zinc distribution. CE-ESI-MS/MS provide us with information about the most favorable Zn binding ligands: amino acids, flavonols, stilbenoids, fenolic acids and carotenoids. The presented work is the continuation of previous studies based on using LC-ESI-MS/MS, though, now we presented a new solutions with the possibility of changing detectors without changing the separation techniques, what is important without re-optimizing the method. The new presented method allows to identify the zinc-binding ligands in shorter time. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. MassSieve: Panning MS/MS peptide data for proteins

    OpenAIRE

    Slotta, Douglas J.; McFarland, Melinda A.; Markey, Sanford P.

    2010-01-01

    We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequ...

  18. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-01-01

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%–12.3% for intra-day and 0.9%–7.8% for inter-day) and good accuracy (91%–109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. - Highlights: • The separation power of DTIMS-MS enhanced peak capacity, spectral clarity, and specificity of benzil labeled GCs and UCs. • Short-column LC for on-line desalting increased the throughput with a measurement cycle of 5.0 min. • CCS and accurate mass as a pair of qualifiers were used for the profiling and identification of GCs and UCs. • An integral abundance arising from 3-D ion features (RT, DT, m/z) was used as a novel quantifier for quantitation. • The developed method was applied to screen and quantify the GCs and UCs in human thyroid tissues.

  19. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Chen, Xiu-Ping; Qi, Wan-Shu [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%–12.3% for intra-day and 0.9%–7.8% for inter-day) and good accuracy (91%–109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. - Highlights: • The separation power of DTIMS-MS enhanced peak capacity, spectral clarity, and specificity of benzil labeled GCs and UCs. • Short-column LC for on-line desalting increased the throughput with a measurement cycle of 5.0 min. • CCS and accurate mass as a pair of qualifiers were used for the profiling and identification of GCs and UCs. • An integral abundance arising from 3-D ion features (RT, DT, m/z) was used as a novel quantifier for quantitation. • The developed method was applied to screen and quantify the GCs and UCs in human thyroid tissues.

  20. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    Science.gov (United States)

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  1. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    Science.gov (United States)

    Ridder, Lars; van der Hooft, Justin J J; Verhoeven, Stefan

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed.

  2. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 77-82 ISSN 1469-0667 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : selected ion flow tube mass spectroscopy (SIFT-MS) * breath analysis * breath metabolities * flowing afterglow mass spectrometry (FA-MS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.198, year: 2007

  3. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry.

    Science.gov (United States)

    Byliński, Hubert; Gębicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2017-07-04

    One of the major sources of error that occur during chemical analysis utilizing the more conventional and established analytical techniques is the possibility of losing part of the analytes during the sample preparation stage. Unfortunately, this sample preparation stage is required to improve analytical sensitivity and precision. Direct techniques have helped to shorten or even bypass the sample preparation stage; and in this review, we comment of some of the new direct techniques that are mass-spectrometry based. The study presents information about the measurement techniques using mass spectrometry, which allow direct sample analysis, without sample preparation or limiting some pre-concentration steps. MALDI - MS, PTR - MS, SIFT - MS, DESI - MS techniques are discussed. These solutions have numerous applications in different fields of human activity due to their interesting properties. The advantages and disadvantages of these techniques are presented. The trends in development of direct analysis using the aforementioned techniques are also presented.

  4. Comparison of 15N analysis by optical emission spectrometry and mass spectrometry for clinical studies during total parenteral nutrition

    International Nuclear Information System (INIS)

    Ragon, A.; Reynier, J.P.; Guiraud, G.

    1985-01-01

    During total and stable parenteral nutrition, a branched chain amino acid enriched solution containing [ 15 N]leucine was infused into a patient to determine the fate of the nitrogen administered through this formulation. Measurements of 15 N isotopic enrichments were performed on the same biological samples (urinary urea, total plasma proteins and albumin) by optical emission spectrometry (OES) and mass spectrometry (MS) to determine if OES with its specific advantages (cost, handling maintenance) constituted even with low enrichments a useful alternative technique to MS considered as the reference method. The results show that OES constituted a very useful analytical technique to obtain reliable information in clinical metabolic studies when low 15 N enrichments must be determined. (Auth.)

  5. Gas chromatography-mass spectrometry/mass spectrometry analysis to determine natural and post-administration levels of oestrogens in bovine serum and urine

    International Nuclear Information System (INIS)

    Biddle, S.; Teale, P.; Robinson, A.; Bowman, J.; Houghton, E.

    2007-01-01

    A novel analytical approach has been developed and shown to be capable of detecting the isomers of oestradiol in the low ppt (pg mL -1 ) range in bovine serum and urine. Following extractive derivatisation the analytes were detected as their 3-pentafluorobenzoyl 17-trimethylsilyl ether derivatives by gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS), using electron capture negative ion chemical ionisation. The isomers of oestradiol were quantified in both blank and post-administration urine and serum samples, with a view to setting action/threshold levels for these compounds, to allow discrimination between normal samples and samples from animals treated with growth promoting ear implants. A non-parametric statistical assessment of the data resulted in proposed action levels (with a false positive probability of 1 in 1000) of 1.6 and 2.7 ng mL -1 for 17α-oestradiol, in male and female urine, respectively, and 40 and 44 pg mL -1 for 17β-oestradiol, in male and female urine, respectively. An action level of 20 pg mL -1 was proposed for 17α- and 17β-oestradiol in male serum. In female serum the proposed action levels were 40 and 20 pg mL -1 for 17α- and 17β-oestradiol, respectively

  6. Low Mass MS/MS Fragments of Protonated Amino Acids Used for Distinction of Their 13C- Isotopomers in Metabolic Studies

    Science.gov (United States)

    Ma, Xin; Dagan, Shai; Somogyi, Árpád; Wysocki, Vicki H.; Scaraffia, Patricia Y.

    2013-04-01

    Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments ( m/z 27-30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (≤ m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain.

  7. Urine Proteomics in the Era of Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ashley Beasley-Green

    2016-11-01

    Full Text Available With the technological advances of mass spectrometry (MS-based platforms, clinical proteomics is one of the most rapidly growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein biomarkers.

  8. Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains.

    Science.gov (United States)

    Cejnar, Pavel; Kuckova, Stepanka; Prochazka, Ales; Karamonova, Ludmila; Svobodova, Barbora

    2018-06-15

    Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available

  9. MassCascade: Visual Programming for LC-MS Data Processing in Metabolomics.

    Science.gov (United States)

    Beisken, Stephan; Earll, Mark; Portwood, David; Seymour, Mark; Steinbeck, Christoph

    2014-04-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) is commonly applied to investigate the small molecule complement of organisms. Several software tools are typically joined in custom pipelines to semi-automatically process and analyse the resulting data. General workflow environments like the Konstanz Information Miner (KNIME) offer the potential of an all-in-one solution to process LC-MS data by allowing easy integration of different tools and scripts. We describe MassCascade and its workflow plug-in for processing LC-MS data. The Java library integrates frequently used algorithms in a modular fashion, thus enabling it to serve as back-end for graphical front-ends. The functions available in MassCascade have been encapsulated in a plug-in for the workflow environment KNIME, allowing combined use with e.g. statistical workflow nodes from other providers and making the tool intuitive to use without knowledge of programming. The design of the software guarantees a high level of modularity where processing functions can be quickly replaced or concatenated. MassCascade is an open-source library for LC-MS data processing in metabolomics. It embraces the concept of visual programming through its KNIME plug-in, simplifying the process of building complex workflows. The library was validated using open data.

  10. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review.

    Science.gov (United States)

    Gouveia, Maria João; Brindley, Paul J; Santos, Lúcio Lara; Correia da Costa, José Manuel; Gomes, Paula; Vale, Nuno

    2013-09-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F

    2016-01-01

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-milliseco......Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub......-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution...

  12. Eleventh ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.

    2004-10-01

    This volume deals with the latest developments in this field, exposing the innumerable applications of mass spectrometry. The topics covered include basic fundamentals of mass spectrometry, qualitative and quantitative aspects and data interpretation, maintenance of mass spectrometers, selection of a mass spectrometer, its applications in various branches of science as well as recent advances in mass spectrometry. Emphasis is also laid on the practical aspects of mass spectrometry. Papers relevant to INIS are indexed separately

  13. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  14. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Bednar, A.J.; Kirgan, R.A.; Jones, W.T.

    2009-01-01

    Elemental speciation is becoming a common analytical procedure for geochemical investigations. The various redox species of environmentally relevant metals can have vastly different biogeochemical properties, including sorption, solubility, bioavailability, and toxicity. The use of high performance liquid chromatography (HPLC) coupled to elemental specific detectors, such as inductively coupled plasma mass spectrometry (ICP-MS), has become one of the most important speciation methods employed. This is due to the separation versatility of HPLC and the sensitive and selective detection capabilities of ICP-MS. The current study compares standard mode ICP-MS to recently developed reaction cell (RC) ICP-MS, which has the ability to remove or reduce many common polyatomic interferences that can limit the ability of ICP-MS to quantitate certain analytes in complex matrices. Determination of chromium and selenium redox species is achieved using ion-exchange chromatography with elemental detection by standard and RC-ICP-MS, using various chromium and selenium isotopes. In this study, method performance and detection limits for the various permutations of the method (isotope monitored or ICP-MS detection mode) were found to be comparable and generally less than 1 μg L -1 . The method was tested on synthetic laboratory samples, surface water, groundwater, and municipal tap water matrices

  15. Ninth ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2000-12-01

    Mass spectrometry has wide-ranging applications in such diverse areas as nuclear industry, agriculture, drugs, environment, petroleum and lentils. There is an urgent need to absorb and assimilate state-of-the-art technological developments in the field. Emerging trends in atomic mass spectrometry, advances in organic mass spectrometry, qualitative and quantitative analyses by mass spectrometry and mass spectrometry in oceanography are some of the areas that need to be expeditiously examined and are covered in this volume. Papers relevant to INIS are indexed separately

  16. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    Science.gov (United States)

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  18. Targeted mass spectrometry analysis of neutrophil-derived proteins released during sepsis progression

    DEFF Research Database (Denmark)

    Malmström, E; Davidova, A; Mörgelin, M

    2014-01-01

    systemic stimulation an immediate increase of neutrophil-borne proteins can be observed into the circulation of sepsis patients. We applied a combination of mass spectrometry (MS) based approaches, LC-MS/MS and selected reaction monitoring (SRM), to characterise and quantify the neutrophil proteome......Early diagnosis of severe infectious diseases is essential for timely implementation of lifesaving therapies. In a search for novel biomarkers in sepsis diagnosis we focused on polymorphonuclear neutrophils (PMNs). Notably, PMNs have their protein cargo readily stored in granules and following...

  19. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    International Nuclear Information System (INIS)

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    Highlights: ► Survey of bio-analytical approaches utilizing biomolecule labelling. ► Detailed discussion of methodology and chemistry of elemental labelling. ► Biomedical and bio-analytical applications of elemental labelling. ► FI-ICP-MS and LC–ICP-MS for quantification of elemental labelled biomolecules. ► Review of selected applications. - Abstract: This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given.

  20. Combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with photodiode array detector (HPLC-DAD) in systematic toxicological analysis.

    Science.gov (United States)

    Broecker, Sebastian; Pragst, Fritz; Bakdash, Abdulsallam; Herre, Sieglinde; Tsokos, Michael

    2011-10-10

    Time of flight mass spectrometry provides new possibilities of substance identification by determination of the molecular formula from accurate molecular mass and isotope pattern. However, the huge number of possible isomers requires additional evidence. As a suitable way for routine performance of systematic toxicological analysis, a method for combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with diode array detector (HPLC-DAD) was developed and applied to blood samples from 77 death cases. The blood samples were prepared by extraction with CH(2)Cl(2) and by protein precipitation with acetonitrile (1:4 (v/v)). The evaporated extracts were reconstituted in 35% acetonitril/0.1% formic acid/H(2)O and aliquots were injected for analysis by LC-QTOF-MS (Agilent 6530) and HPLC-DAD (Agilent 1200). A valve switching system enabled simultaneous operation of both separated chromatographic lines under their respective optimal conditions using the same autosampler. The ESI-QTOF-MS instrument was run in data dependent acquisition mode with switching between MS and MS/MS (cycle time 1.1s) and measuring the full mass spectra and the collision induced dissociation (CID) fragment spectra of all essential [M+H](+) ions. Libraries of accurate mass CID spectra (~2500 substances) and of DAD-UV spectra (~3300 substances) of the authors were used for substance identification. The application of this procedure is demonstrated in detail at four examples with multiple drug intake or administration. In the 77 cases altogether 198 substances were identified (87 by DAD and 195 by QTOF-MS) with a frequency between 1 and 20. In practical application, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. The automatic performance of the measurements was efficient and robust. Mutual confirmation, decrease of false positive and

  1. Determination of Trace Iron in Red Wine by Isotope Dilution Mass Spectrometry Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Zhou Tao; Wang Jun; Lu Hai; Zhou Yuanjing; Li Haifeng

    2009-01-01

    This paper introduces determination of trace iron in red wine certified reference material by isotope dilution mass spectrometry (IDMS) method using a multiplecollector inductively coupled plasma mass spectrometry, equipped with a hexapole collision cell. The measurement procedure of iron isotopic abundance ratios was deeply researched. Reduced polyatomic ion interferences to iron isotopes ion by collision reaction using Ar and H 2 gas, high precise isotopic abundance ratios were achieved. Two relative measurement methods (ICP-MS and ICP-OES) were used to analyze trace iron in red wine. The results are compared with IDMS results, which indicate that they are accordant. The uncertainty analyses include each uncertainty factor in whole experiment and the uncertainty of used certified reference material and it shows that the procedure blank is not neglectable to detect limit and precision of the method. The establishment of IDMS method for analysis of trace iron in red wine supports the certification of certified reference materials. (authors)

  2. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4

    International Nuclear Information System (INIS)

    Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; Lierse von Gostomski, Ch.; Kardinal, Ch.; Loi, E.; Keegan, E.; Kristo, M.J.

    2018-01-01

    Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted. (author)

  3. Analyses of organochlorine pesticides residues in eels (Anguilla anguilla from Lake Garda using Gas chromatography coupled with Tandem Mass Spectrometry (GC-MS/MS.

    Directory of Open Access Journals (Sweden)

    Giuseppe Federico Labella

    2017-05-01

    Full Text Available Lake Garda is located in Insubria region, that is known for being the most populated and industrialized area of Italy (Camusso et al., 2001. Therefore, the Lake water, and also the fish species present, could be affected by environmental contamination.  European eel (Anguilla anguilla are considered as suitable matrix for biomonitoring environmental contaminants in European water (Belpaire et al., 2007, being widespread in many European waters and highly contaminated by lipophilic compounds, due to the high lipid content (up to 40% (Larsson et al., 1991. Moreover, eel is an edible species (its farming currently supplies approximately 45,000 tons/year (Nielsen et al., 2008, so it also represents a public health issue. Based on these considerations, the aim of this study was to evaluate the occurrence of fourteen organochlorine pesticides (OCs in forty-five eels (Anguilla anguilla from Lake Garda, using Accelerated Solvent Extraction (ASE procedure for the analytes extraction and Gas chromatography coupled with Tandem Mass Spectrometry (GC-MS/MS for the analysis of OCs. GC-MS/MS analysis was developed and validated according to the SANTE/11945/2015 guidelines.  Uncontaminated eel sample (previously checked for the presence of OCs and considered blank with a concentration of compounds < Limit of Detection were used for all procedure's optimization steps. For all the OCs analysed, satisfactory results were achieved. Regarding eel samples, several pesticides were detected, but DDTs (DDT and its metabolites were found with the highest prevalence (92 %. The concentration rage was from not detected (n.d. to 19000 ng g-1. Although DDTs levels in the environment are declining (Albaiges et al., 2011, they continue to bioaccumulate in tissues of human and animal and biomagnify in food chains.

  4. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    International Nuclear Information System (INIS)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-01

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  5. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  6. Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.

    Science.gov (United States)

    Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice

    2016-01-01

    The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.

  7. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  8. Direct analysis of traditional Chinese medicines by mass spectrometry.

    Science.gov (United States)

    Wong, Melody Yee-Man; So, Pui-Kin; Yao, Zhong-Ping

    2016-07-15

    Analysis of traditional Chinese medicines (TCMs) plays important roles in quality control of TCMs and understanding their pharmacological effects. Mass spectrometry (MS) is a technique of choice for analysis of TCMs due to its superiority in speed, sensitivity and specificity. However, conventional MS analysis of TCMs typically requires extensive sample pretreatment and chromatographic separation, which could be time-consuming and laborious, prior to the analysis. The expanding usage of TCMs worldwide demands development of rapid, cost-effective and reliable methods for analysis of TCMs. In recent years, new sample preparation and ionization techniques have been developed to enable direct analysis of TCMs by MS, significantly reducing the analysis time and cost. In this review, various MS-based techniques, mainly including ambient ionization-MS and MALDI-MS based techniques, applied for direct analysis of TCMs are summarized and their applicability and future prospects are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of vitamins D2 and D3 in selected food matrices by online high-performance liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS).

    Science.gov (United States)

    Nestola, Marco; Thellmann, Andrea

    2015-01-01

    An online normal-phase liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS) method was developed for the determination of vitamins D2 and D3 in selected food matrices. Transfer of the sample from HPLC to GC was realized by large volume on-column injection; detection was performed with a time-of-flight mass spectrometer (TOF-MS). Typical GC problems in the determination of vitamin D such as sample degradation or sensitivity issues, previously reported in the literature, were not observed. Determination of total vitamin D content was done by quantitation of its pyro isomer based on an isotopically labelled internal standard (ISTD). Extracted ion traces of analyte and ISTD showed cross-contribution, but non-linearity of the calibration curve was not determined inside the chosen calibration range by selection of appropriate quantifier ions. Absolute limits of detection (LOD) and quantitation (LOQ) for vitamins D2 and D3 were calculated as approximately 50 and 150 pg, respectively. Repeatability with internal standard correction was below 2 %. Good agreement between quantitative results of an established high-performance liquid chromatography with UV detection (HPLC-UV) method and HPLC-GC-MS was found. Sterol-enriched margarine was subjected to HPLC-GC-MS and HPLC-MS/MS for comparison, because HPLC-UV showed strong matrix interferences. HPLC-GC-MS produced comparable results with less manual sample cleanup. In summary, online hyphenation of HPLC and GC allowed a minimization in manual sample preparation with an increase of sample throughput.

  10. Continued development of an atmospheric monitoring mass spectrometry system - task 2.2. Topical report, January 1, 1995 - December 31, 1995

    International Nuclear Information System (INIS)

    King, F.L.

    1998-01-01

    The objective of this project was the development of a mass spectrometric methodology applicable to the field determination of Volatile Organic Compounds (VOC's), such as BTEX components (Benzene, Toluene, Ethylbenzene, and Xylenes). A combination of chemical ionization, selective ion storage, and tandem mass spectrometry was planned to be employed with an ion trap mass spectrometry system. The Gas Chromatography Mass Spectrometry (GC-MS) interface on the ion trap system was modified to permit direct atmospheric monitoring. Through the use of tandem mass spectrometry methods the need for chromatographic separation would be eliminated reducing the overall size and complexity of the system

  11. Examining the Heterogeneous Genome Content of Multipartite Viruses BMV and CCMV by Native Mass Spectrometry

    Science.gov (United States)

    van de Waterbeemd, Michiel; Snijder, Joost; Tsvetkova, Irina B.; Dragnea, Bogdan G.; Cornelissen, Jeroen J.; Heck, Albert J. R.

    2016-06-01

    Since the concept was first introduced by Brian Chait and co-workers in 1991, mass spectrometry of proteins and protein complexes under non-denaturing conditions (native MS) has strongly developed, through parallel advances in instrumentation, sample preparation, and data analysis tools. However, the success rate of native MS analysis, particularly in heterogeneous mega-Dalton (MDa) protein complexes, still strongly depends on careful instrument modification. Here, we further explore these boundaries in native mass spectrometry, analyzing two related endogenous multipartite viruses: the Brome Mosaic Virus (BMV) and the Cowpea Chlorotic Mottle Virus (CCMV). Both CCMV and BMV are approximately 4.6 megadalton (MDa) in mass, of which approximately 1 MDA originates from the genomic content of the virion. Both viruses are produced as mixtures of three particles carrying different segments of the genome, varying by approximately 0.1 MDA in mass (~2%). This mixture of particles poses a challenging analytical problem for high-resolution native MS analysis, given the large mass scales involved. We attempt to unravel the particle heterogeneity using both Q-TOF and Orbitrap mass spectrometers extensively modified for analysis of very large assemblies. We show that manipulation of the charging behavior can provide assistance in assigning the correct charge states. Despite their challenging size and heterogeneity, we obtained native mass spectra with resolved series of charge states for both BMV and CCMV, demonstrating that native MS of endogenous multipartite virions is feasible.

  12. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  13. Contribution to the development of new analytical methods by the coupling between capillary electrophoresis and mass spectrometry (ICP-MS and ESI-MS): applications to the nuclear and biological fields; Contribution au developpement de nouvelles methodes analytiques par le couplage entre l'electrophorese capillaire et la spectrometrie de masse (ICP-MS et ESI-MS): applications dans les domaines nucleaires et biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Pitois, A

    2006-04-15

    The coupling between chromatographic and electrophoretic separation techniques and mass spectrometry is used to combine the efficiency of the separation technique to the selectivity and sensitivity of the detectors. In this work, the number of applications of the CE-MS couplings has been increased. New analytical methods have been set up in the nuclear and biological fields. New analytical methods for the determination of fission products (cesium and lanthanides) have been developed by CE-ICP-MS. They enable to determine both concentration and isotopic composition of the fission products for very low detection limits (ng/mL by CE-Q-ICPMS, pg/mL by CE-HR-ICP-MS), since all the isobaric interferences are resolved. Moreover, only some nano-liters of sample are necessary to perform the analysis. These method have been applied with success to a simulated sample of spent fuel, to a nuclear sample from PUREX process and to a leaching of MOX fuel. Then, lanthanides have been analysed by CE-ESI-MS and the capability of ESI-MS to provide structural information has been studied. Elementary information has been obtained for strong potentials. Structural information has been obtained for low potentials. Finally, a new analytical method by CE-ESI-MS for the determination of 10B-boronophenylalanine (10B-BPA) has been developed for Boron Neutron Capture Therapy (BNCT). It has been applied to the cellular lines F98 and HUVEC. This CE-ESI-MS method has been validated by HR-ICP-MS. It enables a direct quantification of the chemical form 10B-BPA in samples of limited size (some nano-liters) and for low concentrations (ng/mL). As a consequence, this CE-ESI-MS method has enabled the study of the kinetics of 10B-BPA release and uptake for the F98 cells. (author)

  14. Critical Evaluation of Native Electrospray Ionization Mass Spectrometry for Fragment-Based Screening.

    Science.gov (United States)

    Göth, Melanie; Badock, Volker; Weiske, Jörg; Pagel, Kevin; Kuropka, Benno

    2017-08-08

    Fragment-based screening presents a promising alternative to high-throughput screening and has gained great attention in recent years. So far, only a few studies have discussed mass spectrometry as a screening technology for fragments. Herein, we report the application of native electrospray ionization mass spectrometry (MS) for screening defined sets of fragments against four different target proteins. Fragments were selected from a primary screening conducted with a thermal shift assay (TSA) and represented different binding categories. Our data indicated that, beside specific complex formation, many fragments show extensive multiple binding and also charge-state shifts. Both of these factors complicate automated data analysis and decrease the attractiveness of native MS as a primary screening tool for fragments. A comparison of the hits identified by native MS and TSA showed good agreement for two of the proteins. Furthermore, we discuss general challenges, including the determination of an optimal fragment concentration and the question of how to rank fragment hits according to their affinity. In conclusion, we consider native MS to be a highly valuable tool for the validation and deeper investigation of promising fragment hits rather than a method for primary screening. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang

    2009-01-01

    We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.

  16. Plutonium determination in urine by techniques of mass spectrometry; Determinacion de plutonio en orina por tecnicas de espectrometria de masas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, H. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Yllera de Ll, A., E-mail: hector.hernandez520@gmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Departamento de Medio Ambiente, Av. Complutense 22, 28040 Madrid (Spain)

    2013-10-15

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of {sup 239}Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of {sup 239}Pu). (author)

  17. Determination of elemental composition of metals using ambient organic mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shiea, Christopher [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Cheng, Sy-Chyi; Chen, Yi-Lun [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Shiea, Jentaie, E-mail: jetea@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China)

    2017-05-22

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  18. Determination of elemental composition of metals using ambient organic mass spectrometry

    International Nuclear Information System (INIS)

    Shiea, Christopher; Huang, Yeou-Lih; Cheng, Sy-Chyi; Chen, Yi-Lun; Shiea, Jentaie

    2017-01-01

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  19. Structure Annotation and Quantification of Wheat Seed Oxidized Lipids by High-Resolution LC-MS/MS.

    Science.gov (United States)

    Riewe, David; Wiebach, Janine; Altmann, Thomas

    2017-10-01

    Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat ( Triticum aestivum ) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions. © 2017 The author(s). All Rights Reserved.

  20. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata.

    Science.gov (United States)

    Bluemlein, Katharina; Raab, Andrea; Meharg, Andrew A; Charnock, John M; Feldmann, Jörg

    2008-04-01

    The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.

  1. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  2. Determination of ketone bodies in blood by headspace gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Karen Marie Dollerup; Linnet, Kristian; Rasmussen, Brian Schou

    2010-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for determination of ketone bodies (ß-hydroxybutyrate, acetone, and acetoacetate) in blood is presented. The method is based on enzymatic oxidation of D-ß-hydroxybutyrate to acetoacetate, followed by decarboxylation to acetone, which...... was quantified by the use of headspace GC-MS using acetone-(13)C(3) as an internal standard. The developed method was found to have intra- and total interday relative standard deviations

  3. Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel; Liu, Tao; Petyuk, Vladislav A.; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2012-08-31

    Mass spectrometry (MS)-based proteomics measurements have become increasingly utilized in a wide range of biological and biomedical applications, and have significantly enhanced the understanding of the complex and dynamic nature of the proteome and its connections to biology and diseases. While some MS techniques such as those for targeted analysis are increasingly applied with great success, others such as global quantitative analysis (for e.g. biomarker discovery) are more challenging and continue to be developed and refined to provide the desired throughput, sensitivity and/ or specificity. New MS capabilities and proteomics-based pipelines/strategies also keep enhancing for the advancement of clinical proteomics applications such as protein biomarker discovery and validation. Herein, we provide a brief review to summarize the current state of MS-based proteomics with respect to its advantages and present limitations, while highlighting its potential in future clinical applications.

  4. Hyphenation of supercritical fluid chromatography with tandem mass spectrometry for fast determination of four aflatoxins in edible oil.

    Science.gov (United States)

    Lei, Fang; Li, Chenglong; Zhou, Shuang; Wang, Dan; Zhao, Yunfeng; Wu, Yongning

    2016-08-01

    Aflatoxins (AFTs) are of great concern all over the world. Supercritical fluid chromatography (SFC) has the advantage of fast, high resolution and excellent compatibility with a broad range of organic solvents and samples, thus hyphenating SFC with tandem mass spectrometry (MS/MS) can be used for the easy and fast determination of AFTs in edible oils. Edible oil was spiked with isotope-labeled aflatoxin standards, diluted with hexane and extracted with acetonitrile. The extraction was directly loaded to an SFC apparatus and separated on a UPC(2) 2-EP column with CO2 -methanol gradient elution. A post-column make-up flow was introduced to facilitate mass spectrometry performance, and the mixture was analyzed by MS/MS with an electrospray ionization (ESI) source. The SFC conditions including separation column, modifier and sample solvent were optimized, and the four target aflatoxins were baseline separated. The ESI interface parameters were also investigated, implicating the make-up flow as a critical factor for sensitive determination by SFC-MS/MS. The LOQs for the AFTs were 0.05-0.12 μg L(-1) , while the RSDs were lower than 8.5%. Supercritical fluid chromatography was successfully coupled to tandem mass spectrometry to establish a simple, fast and sensitive method for the analysis of four aflatoxins in edible oil. This shows the combination of SFC-MS/MS has great potential in determination of trace contaminants in food. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  6. The Means: Cytometry and Mass Spectrometry Converge in a Single Cell Deep Profiling Platform

    Science.gov (United States)

    Weis-Garcia, Frances; Bandura, Dmitry; Baranov, Vladimir; Ornatsky, Olga; Tanner, Scott

    2013-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a distinct flavor of mass spectrometry that has had little association with cell biology: it remains the state of the art for the determination of the atomic composition of materials. Unrelatedly, flow cytometry is the superior method for distinguishing the heterogeneity of cells through the determination of antigen signatures using tagged antibodies. Simply replacing fluorophore tags with stable isotopes of the heavy metals, and measuring these cell-by-cell with ICP-MS, dramatically increases the number of probes that can be simultaneously measured in cytometry and enables a transformative increase in the resolution of rare cell populations in complex biological samples. While this can be thought of as a novel incarnation of single-cell targeted proteomics, the metal-labeling reagents, ICP-MS of single cells, and accompanying informatics comprise a new field of technology termed Mass Cytometry. While the conception of mass cytometry is simple the embodiment to address the issues of multi-parameter flow cytometry has been far more challenging. There are many elements, and many more stable isotopes of those elements, that might be used as distinct reporter tags. Still, there are many approaches to conjugating metals to antibodies (or other affinity reagents) and work in this area along with developing new applications is ongoing. The mass resolution and linear (quantitative) dynamic range of ICP-MS allows those many stable isotopes to be measured simultaneously and without the spectral overlap issues that limit fluorescence assay. However, the adaptation of ICP-MS to allow high-speed simultaneous measurement with single cell distinction at high throughput required innovation of the cell introduction system, ion optics (sampling, transmission and beam-shaping), mass analysis, and signal handling and processing. An overview of “the nuts and bolts” of Mass Cytometry is presented.

  7. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.

    Science.gov (United States)

    Tong, Jiefei; Cao, Biyin; Martyn, Gregory D; Krieger, Jonathan R; Taylor, Paul; Yates, Bradley; Sidhu, Sachdev S; Li, Shawn S C; Mao, Xinliang; Moran, Michael F

    2017-03-01

    Recently, "superbinder" SH2 domain variants with three amino acid substitutions (sSH2) were reported to have 100-fold or greater affinity for protein-phosphotyrosine (pY) than natural SH2 domains. Here we report a protocol in which His-tagged Src sSH2 efficiently captures pY-peptides from protease-digested HeLa cell total protein extracts. Affinity purification of pY-peptides by this method shows little bias for pY-proximal amino acid sequences, comparable to that achieved by using antibodies to pY, but with equal or higher yield. Superbinder-SH2 affinity purification mass spectrometry (sSH2-AP-MS) therefore provides an efficient and economical approach for unbiased pY-directed phospho-proteome profiling without the use of antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    Science.gov (United States)

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  9. Structural elucidation and identification of a new derivative of phenethylamine using quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sekuła, Karolina; Zuba, Dariusz

    2013-09-30

    In recent years, the phenomenon of uncontrolled distribution of new psychoactive substances that were marketed without prior toxicological studies has been observed. Because many designer drugs are related in chemical structure, the potential for misidentifying them is an important problem. It is therefore essential to develop an analytical procedure for unequivocal elucidation of the structures of these compounds. The issue has been discussed in the context of 25I-NBMD [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2,3-methylenedioxyphenyl)methyl]ethanamine], a psychoactive substance first discovered on the drug market in 2012. The substance was extracted from blotter papers with methanol. Separation was achieved via liquid chromatography. Analysis was conducted by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). Identification of the psychoactive component was supported by electron impact gas chromatography/mass spectrometry (GC/EI-MS). The high accuracy of the LC/ESI-QTOFMS method allowed the molecular mass of the investigated substance (M(exp) = 441.0438 Da; mass error, ∆m = 0.2 ppm) and the formulae of ions formed during fragmentation to be determined. The main ions were recorded at m/z = 135.0440, 290.9876 and 305.9981. Structures of the obtained ions were elucidated in the tandem mass spectrometry (MS/MS) experiments by comparing them to mass spectra of previously detected derivatives of phenethylamine. The performed study indicated the potential for using LC/QTOFMS method to identify new designer drugs. This technique can be used supplementary to standard GC/MS. Prior knowledge of the fragmentation mechanisms of phenethylamines allowed to predict the mass spectra of the novel substance--25I-NBMD. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van

    2000-01-01

    Chemical analysis for the characterisation of micro-organisms is rapidly evolving, after the recent advent of new ionisation methods in mass spectrometry (MS): electrospray (ES) and matrix-assisted laser desorption/ionisation (MALDI). These methods allow quick characterisation of micro-organisms,

  11. Microextraction with polyethersulfone for bisphenol-A, alkylphenols and hormones determination in water samples by means of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis.

    Science.gov (United States)

    Ros, O; Vallejo, A; Blanco-Zubiaguirre, L; Olivares, M; Delgado, A; Etxebarria, N; Prieto, A

    2015-03-01

    In the present work, the suitability of polyethersulfone (PES) tube was assessed for the simultaneous sorptive microextraction of commonly found endocrine disrupting compounds in natural waters such as bisphenol-A (BPA), nonylphenol technical mixture (NP mix), 4-tert-octylphenol (4tOP), 4-n-octylphenol (4-nOP), 17β-estradiol (E2) and 17α-ethynilestradiol (EE2). After the concentration of target compounds in the PES polymer, the analytes were recovered soaking the polymer with a suitable solvent (ethyl acetate or methanol), derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide with 1% of trimethylchlorosilane (BSTFA+1% TMCS) and determined by gas chromatography-mass spectrometry (GC-MS). The analysis was also performed without derivatization step by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Extraction parameters (addition of MeOH, ionic strength, extraction speed and time and desorption time) were evaluated and the optimum conditions were fixed as follows: 150 mL water samples containing a 10% (w/v) of sodium chloride and using 5 tubular PES sorbent fibers (1.5 cm length×0.7 mm o.d.). Equilibrium conditions were achieved after 9 h, with absolute extraction efficiencies ranging from 27 to 56%. On the whole, good apparent recoveries were achieved (68-103% and 81-122% for GC-MS and LC-MS/MS, respectively) using deuterated analogues as surrogates. Achieved quantification limits (LOQs) varied between 2-154 ng/L and 2-63 ng/L for all the compounds using GC-MS and LC-MS/MS, respectively. The effect of organic matter was evaluated previous to apply the final method to the analysis of estuarine and wastewater real samples. The comparison of both methods showed that overall, PES-LC-MS/MS provided shorter sample preparation time and better LODs, but PES-silylation-GC-MS allowed the simultaneous determination of all the studied compounds with adequate repeatability and accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Suzuki, Hiromichi; Yoshida, Shiomi; Yoshida, Atsushi; Okuzumi, Katsuko; Fukusima, Atsuhito; Hishinuma, Akira

    2015-12-01

    Mycobacterium abscessus complex is a rapidly growing mycobacterium consisting of 3 subspecies, M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. However, rapid and accurate species identification is difficult. We first evaluated a suitable protocol of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for distinguishing these subspecies. Then, we studied spectral signals by MALDI-TOF MS in 59 M. abscessus, 42 M. massiliense, and 2 M. bolletii. Among several specific spectral signals, 4 signals clearly differentiate M. massiliense from the other 2 subspecies, M. abscessus and M. bolletii. Moreover, 6 of the 42 M. massiliense isolates showed a spectral pattern similar to M. abscessus. These isolates correspond to the distinctive class of M. massiliense (cluster D) which is closer to M. abscessus by the previous variable number tandem repeat analysis. These results indicate that MALDI-TOF MS is not only useful for the identification of 3 subspecies of M. abscessus complex but also capable of distinguishing clusters of M. massiliense. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

    Directory of Open Access Journals (Sweden)

    Monica Soldi

    2013-03-01

    Full Text Available Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs and DNA methylation, which act in a concerted manner to enforce a specific “chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry (MS has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.

  14. Marine environment pollution: The contribution of mass spectrometry to the study of seawater.

    Science.gov (United States)

    Magi, Emanuele; Di Carro, Marina

    2016-09-09

    The study of marine pollution has been traditionally addressed to persistent chemicals, generally known as priority pollutants; a current trend in environmental analysis is a shift toward "emerging pollutants," defined as newly identified or previously unrecognized contaminants. The present review is focused on the peculiar contribution of mass spectrometry (MS) to the study of pollutants in the seawater compartment. The work is organized in five paragraphs where the most relevant groups of pollutants, both "classical" and "emerging," are presented and discussed, highlighting the relative data obtained by the means of different MS techniques. The hyphenation of MS and separative techniques, together with the development of different ion sources, makes MS and tandem MS the analytical tool of choice for the determination of trace organic contaminants in seawater. © 2016 Wiley Periodicals, Inc. Mass Spec Rev. © 2016 Wiley Periodicals, Inc.

  15. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine.

    Science.gov (United States)

    Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André

    2015-12-15

    Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.

  16. Progress in mass spectrometry for the analysis of set-off phenomena in plastic food packaging materials.

    Science.gov (United States)

    Aznar, Margarita; Alfaro, Pilar; Nerín, Cristina; Jones, Emrys; Riches, Eleanor

    2016-07-01

    In most cases, food packaging materials contain inks whose components can migrate to food by diffusion through the material as well as by set-off phenomena. In this work, different mass spectrometry approaches had been used in order to identify and confirm the presence of ink components in ethanol (95%) and Tenax(®) as food simulants. Three different sets of materials, manufactured with different printing technologies and with different structures, were analyzed. Sample analysis by ultra performance liquid chromatography mass spectrometry (UPLC-MS), using a quadrupole-time of flight (Q-TOF) as a mass analyser proved to be an excellent tool for identification purposes while ion mobility mass spectrometry (IM-MS) shown to be very useful for the confirmation of the candidates proposed. The results showed the presence of different non-volatile ink components in migration such as colorants (Solvent Red 49), plasticizers (dimethyl sebacate, tributyl o-acetyl citrate) or surfactants (SchercodineM, triethylene glycol caprilate). An oxidation product of an ink additive (triphenyl phosphine oxide) was also detected. In addition, a surface analysis technique, desorption electrospray mass spectrometry (DESI-MS), was used for analyzing the distribution of some ink components (tributyl o-acetyl citrate Schercodine L, phthalates) in the material. The detection of some of these compounds in the back-printed side confirmed the transference of this compound from the non-food to the food contact side. The results also showed that concentration of ink migrants decreased when an aluminum or polypropylene layer covered the ink. When aluminum was used, concentration of most of ink migrants decreased, and for 5 out of the 9 even disappeared. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  18. Glycomics using mass spectrometry

    OpenAIRE

    Wuhrer, Manfred

    2013-01-01

    Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage di...

  19. Identification of phase-II metabolites of flavonoids by liquid chromatography-ion-mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Chalet, Clément; Hollebrands, Boudewijn; Janssen, Hans-Gerd; Augustijns, Patrick; Duchateau, Guus

    2018-01-01

    Flavonoids are a class of natural compounds with a broad range of potentially beneficial health properties. They are subjected to an extensive intestinal phase-II metabolism, i.e., conjugation to glucuronic acid, sulfate, and methyl groups. Flavonoids and their metabolites can interact with drug transporters and thus interfere with drug absorption, causing food-drug interactions. The site of metabolism plays a key role in the activity, but the identification of the various metabolites remains a challenge. Here, we developed an analytical method to identify the phase-II metabolites of structurally similar flavonoids. We used liquid chromatography-ion-mobility spectrometry-mass spectrometry (LC-IMS-MS) analysis to identify phase-II metabolites of flavonols, flavones, and catechins produced by HT29 cells. We showed that IMS could bring valuable structural information on the different positional isomers of the flavonols and flavones. The position of the glucuronide moiety had a strong influence on the collision cross section (CCS) of the metabolites, with only minor contribution of hydroxyl and methyl moieties. For the catechins, fragmentation data obtained from MS/MS analysis appeared more useful than IMS to determine the structure of the metabolites, mostly due to the high number of metabolites formed. Nevertheless, CCS information as a molecular fingerprint proved to be useful to identify peaks from complex mixtures. LC-IMS-MS thus appears as a valuable tool for the identification of phase-II metabolites of flavonoids. Graphical abstract Structural identification of phase-II metabolites of flavonoids using LC-IMS-MS.

  20. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  1. Gas chromatography-mass spectrometry/mass spectrometry analysis to determine natural and post-administration levels of oestrogens in bovine serum and urine

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, S. [HFL, Newmarket Road, Fordham, Cambridgeshire (United Kingdom)]. E-mail: sbiddle@hfl.co.uk; Teale, P. [HFL, Newmarket Road, Fordham, Cambridgeshire (United Kingdom); Robinson, A. [HFL, Newmarket Road, Fordham, Cambridgeshire (United Kingdom); Bowman, J. [HFL, Newmarket Road, Fordham, Cambridgeshire (United Kingdom); Houghton, E. [HFL, Newmarket Road, Fordham, Cambridgeshire (United Kingdom)

    2007-03-14

    A novel analytical approach has been developed and shown to be capable of detecting the isomers of oestradiol in the low ppt (pg mL{sup -1}) range in bovine serum and urine. Following extractive derivatisation the analytes were detected as their 3-pentafluorobenzoyl 17-trimethylsilyl ether derivatives by gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS), using electron capture negative ion chemical ionisation. The isomers of oestradiol were quantified in both blank and post-administration urine and serum samples, with a view to setting action/threshold levels for these compounds, to allow discrimination between normal samples and samples from animals treated with growth promoting ear implants. A non-parametric statistical assessment of the data resulted in proposed action levels (with a false positive probability of 1 in 1000) of 1.6 and 2.7 ng mL{sup -1} for 17{alpha}-oestradiol, in male and female urine, respectively, and 40 and 44 pg mL{sup -1} for 17{beta}-oestradiol, in male and female urine, respectively. An action level of 20 pg mL{sup -1} was proposed for 17{alpha}- and 17{beta}-oestradiol in male serum. In female serum the proposed action levels were 40 and 20 pg mL{sup -1} for 17{alpha}- and 17{beta}-oestradiol, respectively.

  2. Quantitative Analysis of Bioactive Compounds from Aromatic Plants by Means of Dynamic Headspace Extraction and Multiple Headspace Extraction-Gas Chromatography-Mass Spectrometry

    NARCIS (Netherlands)

    Omar, Jone; Olivares, Maitane; Alonso, Ibone; Vallejo, Asier; Aizpurua-Olaizola, Oier; Etxebarria, Nestor

    2016-01-01

    Seven monoterpenes in 4 aromatic plants (sage, cardamom, lavender, and rosemary) were quantified in liquid extracts and directly in solid samples by means of dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS) and multiple headspace extraction-gas chromatography-mass spectrometry

  3. ToF-SIMS Parallel Imaging MS/MS of Lipid Species in Thin Tissue Sections.

    Science.gov (United States)

    Bruinen, Anne Lisa; Fisher, Gregory L; Heeren, Ron M A

    2017-01-01

    Unambiguous identification of detected species is essential in complex biomedical samples. To date, there are not many mass spectrometry imaging techniques that can provide both high spatial resolution and identification capabilities. A new and patented imaging tandem mass spectrometer, exploiting the unique characteristics of the nanoTOF II (Physical Electronics, USA) TOF-SIMS TRIFT instrument, was developed to address this.Tandem mass spectrometry is based on the selection of precursor ions from the full secondary ion spectrum (MS 1 ), followed by energetic activation and fragmentation, and collection of the fragment ions to obtain a tandem MS spectrum (MS 2 ). The PHI NanoTOF II mass spectrometer is equipped with a high-energy collision induced dissociation (CID) fragmentation cell as well as a second time-of-flight analyzer developed for simultaneous ToF-SIMS and tandem MS imaging experiments.We describe here the results of a ToF-SIMS imaging experiment on a thin tissue section of an infected zebrafish as a model organism for tuberculosis. The focus is on the obtained ion distribution plot of a fatty acid as well as its identification by tandem mass spectrometry.

  4. An ultra-sensitive instrument for collision activated dissociation mass spectrometry with high mass resolution

    International Nuclear Information System (INIS)

    Louter, G.J.

    1982-01-01

    During the last decade Collision Activated Dissociation Mass Spectrometry (CAD-MS) has developed into an important and sometimes unique technique for the structure elucidation of ions. An extensive description of the double stage MS is given, which has been especially devloped for CAD-MS. A high mass resolution and a very high sensitivity are obtained by application of special techniques like post-acceleration of fragment ions, quadrupole (Q-pole) lenses and an electro-optical, simultaneous ion detection system. The operation of the rather complex ion-optics is demonstrated by application of a computer simulation of the tandem MS. Special attention is given to the action of the four Q-pole lenses and the second sector magnet upon curvature and position of the mass focal plane. Two mass calibration methods are described for the fragment spectra. The so-called polynomial-method applies a fifth-order polynomial approximation of the functional relation between position on the detector and corresponding relative momentum of fragment ions. The second method uses the matrix model of the instrument. The detector consists of two channelplates (CEMA), a fibre optics slab, coated with a phosphor layer, a camera objective and a 1024-channels photodiode-array. A bio-chemical and an organic-chemical application of the instrument are given. As bio-chemical application the peak m/z 59 in the pyrolysis mass spectrum of complete mycobacteria is identified. As an example of organic-chemical application the fragmentation process of 2,3-butadienoic acid has been investigated. (Auth.)

  5. Systematic review of serum steroid reference intervals developed using mass spectrometry.

    Science.gov (United States)

    Tavita, Nevada; Greaves, Ronda F

    2017-12-01

    The aim of this study was to perform a systematic review of the published literature to determine the available serum/plasma steroid reference intervals generated by mass spectrometry (MS) methods across all age groups in healthy subjects and to suggest recommendations to achieve common MS based reference intervals for serum steroids. MEDLINE, EMBASE and PubMed databases were used to conduct a comprehensive search for English language, MS-based reference interval studies for serum/plasma steroids. Selection of steroids to include was based on those listed in the Royal College of Pathologists of Australasia Quality Assurance Programs, Chemical Pathology, Endocrine Program. This methodology has been registered onto the PROSPERO International prospective register of systematic reviews (ID number: CRD42015029637). After accounting for duplicates, a total of 60 manuscripts were identified through the search strategy. Following critical evaluation, a total of 16 studies were selected. Of the 16 studies, 12 reported reference intervals for testosterone, 11 for 17 hydroxy-progesterone, nine for androstenedione, six for cortisol, three for progesterone, two for dihydrotestosterone and only one for aldosterone and dehydroepiandrosterone sulphate. No studies established MS-based reference intervals for oestradiol. As far as we are aware, this report provides the first comparison of the peer reviewed literature for serum/plasma steroid reference intervals generated by MS-based methods. The reference intervals based on these published studies can be used to inform the process to develop common reference intervals, and agreed reporting units for mass spectrometry based steroid methods. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Desorption electro-spray ionization - orbitrap mass spectrometry of synthetic polymers and copolymers

    International Nuclear Information System (INIS)

    Friia, Manel; Legros, Veronique; Tortajada, Jeanine; Buchmann, William

    2012-01-01

    Desorption Electro-Spray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol -1 up to more than 20000 g.mol -1 . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. (authors)

  7. Platform dependencies in bottom-up hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Burns, Kyle M; Rey, Martial; Baker, Charles A H; Schriemer, David C

    2013-02-01

    Hydrogen-deuterium exchange mass spectrometry is an important method for protein structure-function analysis. The bottom-up approach uses protein digestion to localize deuteration to higher resolution, and the essential measurement involves centroid mass determinations on a very large set of peptides. In the course of evaluating systems for various projects, we established two (HDX-MS) platforms that consisted of a FT-MS and a high-resolution QTOF mass spectrometer, each with matched front-end fluidic systems. Digests of proteins spanning a 20-110 kDa range were deuterated to equilibrium, and figures-of-merit for a typical bottom-up (HDX-MS) experiment were compared for each platform. The Orbitrap Velos identified 64% more peptides than the 5600 QTOF, with a 42% overlap between the two systems, independent of protein size. Precision in deuterium measurements using the Orbitrap marginally exceeded that of the QTOF, depending on the Orbitrap resolution setting. However, the unique nature of FT-MS data generates situations where deuteration measurements can be inaccurate, because of destructive interference arising from mismatches in elemental mass defects. This is shown through the analysis of the peptides common to both platforms, where deuteration values can be as low as 35% of the expected values, depending on FT-MS resolution, peptide length and charge state. These findings are supported by simulations of Orbitrap transients, and highlight that caution should be exercised in deriving centroid mass values from FT transients that do not support baseline separation of the full isotopic composition.

  8. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry

    NARCIS (Netherlands)

    Lou, X.; Dongen, van J.L.J.; Meijer, E.W.

    2010-01-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3)

  9. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  10. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  11. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haixiang [College of Science, China Agricultural University, Beijing 100094 (China); Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Department of Basic Agricultural Science, Hebei North College, Zhangjiakou Hebei 075131 (China); Wang Liping [College of Science, China Agricultural University, Beijing 100094 (China); Qiu Yueming [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Zhou Zhiqiang [College of Science, China Agricultural University, Beijing 100094 (China)]. E-mail: zqzhou@cau.edu.cn; Zhong Weike [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Li Xiang [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China)

    2007-03-14

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH{sub 3}I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 {mu}g kg{sup -1}. Limit of detection (LOD) of barbital was 0.2 {mu}g kg{sup -1} and that of amobarbital and phenobarbital were both 0.1 {mu}g kg{sup -1} (S/N {>=} 3). Limit of quatification (LOQ) was 0.5 {mu}g kg{sup -1} for three barbiturates (S/N {>=} 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.

  12. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    International Nuclear Information System (INIS)

    Zhao Haixiang; Wang Liping; Qiu Yueming; Zhou Zhiqiang; Zhong Weike; Li Xiang

    2007-01-01

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH 3 I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 μg kg -1 . Limit of detection (LOD) of barbital was 0.2 μg kg -1 and that of amobarbital and phenobarbital were both 0.1 μg kg -1 (S/N ≥ 3). Limit of quatification (LOQ) was 0.5 μg kg -1 for three barbiturates (S/N ≥ 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%

  13. Assessment of four protocols for rapid bacterial identification from positive blood culture pellets by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Vitek® MS).

    Science.gov (United States)

    Thomin, Jean; Aubin, Guillaume Ghislain; Foubert, Fabrice; Corvec, Stéphane

    2015-08-01

    In this study, we developed and compared four protocols to prepare a bacterial pellet from 944 positive blood cultures for direct MALDI-TOF mass spectrometry Vitek® MS analysis. Protocol 4, tested on 200 monomicrobial samples, allowed 83% of bacterial identification. This easy, fast, cheap and accurate method is promising in daily practice, especially to limit broad range antibiotic treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysing persistent organic pollutants in eggs, blood and tissue of the green sea turtle (Chelonia mydas) using gas chromatography with tandem mass spectrometry (GC-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Merwe, Jason Paul van de; Lee, Shing Yip [Griffith University, Griffith School of Environment and Australian Rivers Institute, Gold Coast, QLD (Australia); Hodge, Mary [Queensland Health Scientific Services, Queensland Government, Coopers Plains, QLD (Australia); Whittier, Joan Margaret [Univ. of Queensland, St. Lucia (Australia). School of Biomedical Sciences

    2009-03-15

    Investigation into persistent organic pollutants (POPs) in sea turtles is an important area of conservation research due to the harmful effects of these chemicals. However, the analysis of POPs in the green sea turtle (Chelonia mydas) has been limited by methods with relatively high limits of detection and high costs associated with multiple sample injections into complex arrangements of analytical equipment. The present study aimed to develop a method that could detect a large number of POPs in the blood, eggs and tissue of C. mydas at trace concentrations. A gas chromatography with tandem mass spectrometry (GC-MS/MS) method was developed that could report 125 POP compounds to a limit of detection of <35 pg g{sup -1} using a single sample injection. The recoveries of internal standards ranged from 30% to 96%, and the standard reference materials were reported to within 70% of the certified values. The coefficient of variation of ten replicates of pooled egg sample was <20% for all compounds, indicating low within-run variation. This GC-MS/MS method is an improvement of previous methods for analysing POPs in C. mydas in that more compounds can be reported at lower concentrations and the accuracy and precision of the method are sound. This is particularly important for C. mydas as they occupy a low trophic level and have lower concentrations of POPs. This method is also simple to set up, and there are minimal differences in sample preparation for the different tissue types. (orig.)

  15. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  16. Food contaminant analysis at ultra-high mass resolution: application of hybrid linear ion trap - orbitrap mass spectrometry for the determination of the polyether toxins, azaspiracids, in shellfish.

    LENUS (Irish Health Repository)

    2010-10-30

    The biotoxins, azaspiracids (AZAs), from marine phytoplankton accumulate in shellfish and affect human health by causing severe gastrointestinal disturbance, diarrhea, nausea and vomiting. Specific and sensitive methods have been developed and validated for the determination of the most commonly occurring azaspiracid analogs. An LTQ Orbitrap mass spectrometer is a hybrid instrument that combines linear ion trap (LIT) mass spectrometry (MS) with high-resolution Fourier transform (FT) MS and this was exploited to perform simultaneous ultra-high-resolution full-scan MS analysis and collision-induced dissociation (CID) tandem mass spectrometry (MS\\/MS). Using the highest mass resolution setting (100,000 FWHM) in full-scan mode, the methodology was validated for the determination of six AZAs in mussel (Mytilus galloprovincialis) tissue extracts. Ultra-high mass resolution, together with a narrow mass tolerance window of ±2 mDa, dramatically improved detection sensitivity. In addition to employing chromatographic resolution to distinguish between the isomeric azaspiracid analogs, AZA1\\/AZA6 and AZA4\\/AZA5, higher energy collisionally induced dissociation (HCD) fragmentation on selected precursor ions were performed in parallel with full-scan FTMS. Using HCD MS\\/MS, most precursor and product ion masses were determined within 1 ppm of the theoretical m\\/z values throughout the mass spectral range and this enhanced the reliability of analyte identity.For the analysis of mussels (M. galloprovincialis), the method limit of quantitation (LOQ) was 0.010 µg\\/g using full-scan FTMS and this was comparable with the LOQ (0.007 µg\\/g) using CID MS\\/MS. The repeatability data were; intra-day RSD% (1.8-4.4%; n = 6) and inter-day RSD% (4.7-8.6%; n = 3). Application of these methods to the analysis of mussels (M. edulis) that were naturally contaminated with azaspiracids, using high-resolution full-scan Orbitrap MS and low-resolution CID MS\\/MS, produced

  17. Determination of ten carbamate pesticides in aquatic and sediment samples by liquid chromatography-ionspray and thermospray mass spectrometry.

    NARCIS (Netherlands)

    Honing, M.; Riu, J.; Barceló, D.; van Baar, B.L.M.; Brinkman, U.A.T.

    1996-01-01

    Ten carbamate pesticides which exhibit large differences in polarity were determined simultaneously in various environmental samples, using both column liquid chromatography (LC)-thermospray (TSP) mass spectrometry (MS) and LC-ionspray (ISP) MS. For sample clean-up, column chromatography with three

  18. Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NARCIS (Netherlands)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-01-01

    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds

  19. Quadrupole Time-of-Flight Mass Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The system generates superior quality mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data from both atmospheric pressure ionization (API) and...

  20. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    Science.gov (United States)

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  1. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Meer, S. H.; Amr, M. A. [Central Laboratories Unit, Qatar University, Doha (Qatar); Helal, A.I. [Atomic Energy Authority, Cairo (Egypt); Al-Kinani, A.T. [Minstery of Environment, Doha (Qatar)

    2013-07-01

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. The solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)

  3. Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS

    Directory of Open Access Journals (Sweden)

    A. Kmita

    2018-03-01

    Full Text Available The article presents the results of research on thermal decomposition of Ester-Cured Alkaline Phenolic No-Bake (ALPHASET binders used in molding technology. In the ALPHASET system phenol-formaldehyde resin of resole type is cured with a liquid mixture of esters. Under the influence of the molten metal the thermal decomposition of the binder follows, resulting in the evolution of gases, often harmful, e.g. from benzene, toluene, ethylbenzene and xylenes (BTEX or Polycyclic Aromatic Hydrocarbon (PAH groups. The identification of gases evolved during the pyrolysis of the binders was carried out and their decomposition temperatures were determined using the Thermogravimetry–Gas Chromatography–Mass Spectrometry (TG–GC–MS technique. The tests were subjected to two types of binders from different manufacturers. Among the products of pyrolysis there have been identified mainly benzene and its derivatives, and phenol and its derivatives. Compounds identified in pyrolytic gas are largely considered to be harmful to humans and the environment (some of the compounds are carcinogenic and mutagenic. The presented results of the TG–GC–MS measurements show that the applied analytic methods are feasible to perform a qualitative and also quantitative characterization of the binder samples.

  4. Quantification of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    Science.gov (United States)

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of GABA in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Determination of total GABA in CSF requires additional sample preparation in order to hydrolyze all the bound GABA in the sample to the free form. This requires hydrolyzing the sample by boiling in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90 % acetonitrile/0.1 % formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 nM to 1000 nM and 0.63 μM to 80 μM for free and total GABA, respectively.

  5. Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Rieux, Laurent; Bischoff, Rainer; Verpoorte, Elisabeth; Niederlander, Harm A. G.

    2007-01-01

    Poor repeatability of peak areas is a problem frequently encountered in peptide analysis with nanoLiquid Chromatography coupled on-line with Mass Spectrometry (nanoLC-MS). As a result, quantitative analysis will be seriously hampered unless the observed variability can be corrected in some way.

  6. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium

  7. Contribution to the development of new analytical methods by the coupling between capillary electrophoresis and mass spectrometry (ICP-MS and ESI-MS): applications to the nuclear and biological fields

    International Nuclear Information System (INIS)

    Pitois, A.

    2006-04-01

    The coupling between chromatographic and electrophoretic separation techniques and mass spectrometry is used to combine the efficiency of the separation technique to the selectivity and sensitivity of the detectors. In this work, the number of applications of the CE-MS couplings has been increased. New analytical methods have been set up in the nuclear and biological fields. New analytical methods for the determination of fission products (cesium and lanthanides) have been developed by CE-ICP-MS. They enable to determine both concentration and isotopic composition of the fission products for very low detection limits (ng/mL by CE-Q-ICPMS, pg/mL by CE-HR-ICP-MS), since all the isobaric interferences are resolved. Moreover, only some nano-liters of sample are necessary to perform the analysis. These method have been applied with success to a simulated sample of spent fuel, to a nuclear sample from PUREX process and to a leaching of MOX fuel. Then, lanthanides have been analysed by CE-ESI-MS and the capability of ESI-MS to provide structural information has been studied. Elementary information has been obtained for strong potentials. Structural information has been obtained for low potentials. Finally, a new analytical method by CE-ESI-MS for the determination of 10B-boronophenylalanine (10B-BPA) has been developed for Boron Neutron Capture Therapy (BNCT). It has been applied to the cellular lines F98 and HUVEC. This CE-ESI-MS method has been validated by HR-ICP-MS. It enables a direct quantification of the chemical form 10B-BPA in samples of limited size (some nano-liters) and for low concentrations (ng/mL). As a consequence, this CE-ESI-MS method has enabled the study of the kinetics of 10B-BPA release and uptake for the F98 cells. (author)

  8. Pathology interface for the molecular analysis of tissue by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jeremy L Norris

    2016-01-01

    Full Text Available Background: Imaging mass spectrometry (IMS generates molecular images directly from tissue sections to provide better diagnostic insights and expand the capabilities of clinical anatomic pathology. Although IMS technology has matured over recent years, the link between microscopy imaging currently used by pathologists and MS-based molecular imaging has not been established. Methods: We adapted the Vanderbilt University Tissue Core workflow for IMS into a web-based system that facilitates remote collaboration. The platform was designed to perform within acceptable web response times for viewing, annotating, and processing high resolution microscopy images. Results: We describe a microscopy-driven approach to tissue analysis by IMS. Conclusion: The Pathology Interface for Mass Spectrometry is designed to provide clinical access to IMS technology and deliver enhanced diagnostic value.

  9. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    Science.gov (United States)

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  11. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    International Nuclear Information System (INIS)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J.

    2015-01-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  12. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Du-Xin; Gan, Lin; Bronja, Amela [University of Duisburg-Essen, Applied Analytical Chemistry, Universitaetsstr. 5-7, 45141 Essen (Germany); Schmitz, Oliver J., E-mail: oliver.schmitz@uni-due.de [University of Duisburg-Essen, Applied Analytical Chemistry, Universitaetsstr. 5-7, 45141 Essen (Germany)

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  13. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  14. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    Science.gov (United States)

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Stephan, Roger; Cernela, Nicole; Ziegler, Dominik; Pflüger, Valentin; Tonolla, Mauro; Ravasi, Damiana; Fredriksson-Ahomaa, Maria; Hächler, Herbert

    2011-11-01

    Yersinia enterocolitica are Gram-negative pathogens and known as important causes of foodborne infections. Rapid and reliable identification of strains of the species Y. enterocolitica within the genus Yersinia and the differentiation of the pathogenic from the non-pathogenic biotypes has become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid species identification and subtyping of Y. enterocolitica. To this end, we developed a reference MS database library including 19 Y. enterocolitica (non-pathogenic biotype 1A and pathogenic biotypes 2 and 4) as well as 24 non-Y. enterocolitica strains, belonging to eleven different other Yersinia spp. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2000 to 30,000 Da). Species-specific and biotype-specific biomarker protein mass patterns were determined for Y. enterocolitica. The defined biomarker mass patterns (SARAMIS SuperSpectrum™) were validated using 117 strains from various Y. enterocolitica bioserotypes in a blind-test. All strains were correctly identified and for all strains the mass spectrometry-based identification scheme yielded identical results compared to a characterization by a combination of biotyping and serotyping. Our study demonstrates that MALDI-TOF-MS is a reliable and powerful tool for the rapid identification of Y. enterocolitica strains to the species level and allows subtyping of strains to the biotype level. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  17. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    Science.gov (United States)

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. © 2016 by The American Society for Biochemistry and Molecular Biology

  18. A comparison between DART-MS and DSA-MS in the forensic analysis of writing inks.

    Science.gov (United States)

    Drury, Nicholas; Ramotowski, Robert; Moini, Mehdi

    2018-05-23

    Ambient ionization mass spectrometry is gaining momentum in forensic science laboratories because of its high speed of analysis, minimal sample preparation, and information-rich results. One such application of ambient ionization methodology includes the analysis of writing inks from questioned documents where colorants of interest may not be soluble in common solvents, rendering thin layer chromatography (TLC) and separation-mass spectrometry methods such as LC/MS (-MS) impractical. Ambient ionization mass spectrometry uses a variety of ionization techniques such as penning ionization in Direct Analysis in Real Time (DART), and atmospheric pressure chemical ionization in Direct Sample Analysis (DSA), and electrospray ionization in Desorption Electrospray Ionization (DESI). In this manuscript, two of the commonly used ambient ionization techniques are compared: Perkin Elmer DSA-MS and IonSense DART in conjunction with a JEOL AccuTOF MS. Both technologies were equally successful in analyzing writing inks and produced similar spectra. DSA-MS produced less background signal likely because of its closed source configuration; however, the open source configuration of DART-MS provided more flexibility for sample positioning for optimum sensitivity and thereby allowing smaller piece of paper containing writing ink to be analyzed. Under these conditions, the minimum sample required for DART-MS was 1mm strokes of ink on paper, whereas DSA-MS required a minimum of 3mm. Moreover, both techniques showed comparable repeatability. Evaluation of the analytical figures of merit, including sensitivity, linear dynamic range, and repeatability, for DSA-MS and DART-MS analysis is provided. To the forensic context of the technique, DART-MS was applied to the analysis of United States Secret Service ink samples directly on a sampling mesh, and the results were compared with DSA-MS of the same inks on paper. Unlike analysis using separation mass spectrometry, which requires sample

  19. Comparative urine analysis by liquid chromatography-mass spectrometry and multivariate statistics : Method development, evaluation, and application to proteinuria

    NARCIS (Netherlands)

    Kemperman, Ramses F. J.; Horvatovich, Peter L.; Hoekman, Berend; Reijmers, Theo H.; Muskiet, Frits A. J.; Bischoff, Rainer

    2007-01-01

    We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit

  20. Mass spectrometry-based metabolomics for tuberculosis meningitis.

    Science.gov (United States)

    Zhang, Peixu; Zhang, Weiguanliu; Lang, Yue; Qu, Yan; Chu, Fengna; Chen, Jiafeng; Cui, Li

    2018-04-18

    Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described. Copyright © 2018. Published by Elsevier B.V.