WorldWideScience

Sample records for mass spectrometry methodology

  1. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  2. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory

    OpenAIRE

    Klepárník, K. (Karel)

    2015-01-01

    This review focuses on the latest development of microseparation electromigration methods in capillaries and microfluidic devices with mass spectrometry detection and identification. A wide selection of 183 relevant articles covers the literature published from June 2012 till May 2014.

  3. Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Sehgal, Akansha

    2014-01-01

    This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J( 1 H 15 N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15 N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)

  4. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi; Baker, Erin Shammel; Metz, Thomas O.

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  5. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory

    Czech Academy of Sciences Publication Activity Database

    Klepárník, Karel

    2015-01-01

    Roč. 36, č. 1 (2015), s. 159-179 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : capillary electrophoresis * electrospray * mass spectrometry * Microfluidic devices Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  6. Headspace mass spectrometry methodology: application to oil spill identification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pavon, J.L.; Garcia Pinto, C.; Moreno Cordero, B. [Universidad de Salamanca, Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Salamanca (Spain); Guerrero Pena, A. [Universidad de Salamanca, Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Salamanca (Spain); Laboratorio de Suelos, Plantas y Aguas, Campus Tabasco, Colegio de Postgraduados, Cardenas, Tabasco (Mexico)

    2008-05-15

    In the present work we report the results obtained with a methodology based on direct coupling of a headspace generator to a mass spectrometer for the identification of different types of petroleum crudes in polluted soils. With no prior treatment, the samples are subjected to the headspace generation process and the volatiles generated are introduced directly into the mass spectrometer, thereby obtaining a fingerprint of volatiles in the sample analysed. The mass spectrum corresponding to the mass/charge ratios (m/z) contains the information related to the composition of the headspace and is used as the analytical signal for the characterization of the samples. The signals obtained for the different samples were treated by chemometric techniques to obtain the desired information. The main advantage of the proposed methodology is that no prior chromatographic separation and no sample manipulation are required. The method is rapid, simple and, in view of the results, highly promising for the implementation of a new approach for oil spill identification in soils. (orig.)

  7. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    Science.gov (United States)

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Methodology of the carbonates dating by the uranium series unbalance by mass spectrometry

    International Nuclear Information System (INIS)

    Lima, Barbara Alcantara Ferreira

    2006-01-01

    There are many dating methods largely used according to the kind of material to be dated. Methods that rely on the time-dependency of geochemical disequilibrium between daughter and parent isotope, from the '2 38 U, 235 U and 232 Th natural decay system, whose final members are stable Pb isotopes, are the most useful in a broader variety of geological, hydrological and archaeological problems. The use of this method in cave deposits like speleothems and clastic sediments proved to be a powerful tool to study past climatic and environmental changes. Speleothems like stalagmites are frequently used in paleoenvironmental interpretations. This method may be applied to rocks and underground water dating, erosion studies, transport and sedimentation processes, interactions between rock-groundwater, among others. The present work focuses on the chemical preparation of the U-Th method including the chemical procedures to avoid laboratory contamination and the mass spectrometer precise calibration in order to get high reproducibility. The process has many steps: samples preparation; digestion and chromatographic separation using standards and samples already dated in other laboratories; determination of the isotopic ratios by mass spectrometers, and a case study based on a stalagmite from Joao Arruda cave, Bonito, Mato Grosso State, Brazil. The obtained data shows the reliability of the method works, mostly in relation to co precipitation of U and Th and to the chromatographic separation of these metals. It is also observed that the obtained dates are within the errors for each sample and are very similar to the dates obtained in other laboratories (validated to this methodology). Further improvements are necessary to achieve better results, mostly related to the reading method in the MC-ICP-MS. The case study in the JA-5 stalagmite shows that it stopped growing around 2,0 ky. This is a different result from that obtained on JA-3 stalagmite, from the same cave, but placed

  9. Glycomics using mass spectrometry

    OpenAIRE

    Wuhrer, Manfred

    2013-01-01

    Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage di...

  10. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  11. Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  12. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  13. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  14. Forensic Mass Spectrometry

    Science.gov (United States)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  15. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  16. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  17. Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    le Gac, S.; le Gac, Severine; van den Berg, Albert; van den Berg, A.; Unknown, [Unknown

    2009-01-01

    With this book we want to illustrate how two quickly growing fields of instrumentation and technology, both applied to life sciences, mass spectrometry and microfluidics (or microfabrication) naturally came to meet at the end of the last century and how this marriage impacts on several types of

  18. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  19. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  20. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  1. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  2. Optimization of Reversed-Phase Peptide Liquid Chromatography Ultraviolet Mass Spectrometry Analyses Using an Automated Blending Methodology

    Science.gov (United States)

    Chakraborty, Asish B.; Berger, Scott J.

    2005-01-01

    The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described. PMID:16522853

  3. Double spike methodology for uranium determination by thermal ionisation mass spectrometry: separation and purification of 234U

    International Nuclear Information System (INIS)

    Shah, P.M.; Saxena, M.K.; Sanjai Kumar; Aggarwal, S.K.; Jain, H.C.

    1995-01-01

    With an objective to prepare double spike of 233 U+ 234 U for determination of uranium concentration by Isotopic Dilution Thermal Ionisation Mass Spectrometry (ID-TIMS), 234 U was separated and purified from aged 238 Pu sample (15 years old) using several ion exchange and solvent extraction procedures. Final product containing 95% and 5% alpha activities of 234 and 238 Pu, respectively, which translates into 99.998 atom% of 234 U and 0.002 atom% of 238 Pu was found suitable for double spike. (author). 1 ref

  4. Mass spectrometry in clinical chemistry

    International Nuclear Information System (INIS)

    Pettersen, J.E.

    1977-01-01

    A brief description is given of the functional elements of a mass spectrometer and of some currently employed mass spectrometric techniques, such as combined gas chromatography-mass spectrometry, mass chromatography, and selected ion monitoring. Various areas of application of mass spectrometry in clinical chemistry are discussed, such as inborn errors of metabolism and other metabolic disorders, intoxications, quantitative determinations of drugs, hormones, gases, and trace elements, and the use of isotope dilution mass spectrometry as a definitive method for the establishment of true values for concentrations of various compounds in reference sera. It is concluded that mass spectrometry is of great value in clinical chemistry. (Auth.)

  5. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  6. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2002-01-01

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  7. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  8. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  9. Laboratory of acceleration mass spectrometry

    International Nuclear Information System (INIS)

    Hybler, P.; Chrapan, J.

    2002-01-01

    In this paper authors describe the principle of the method of acceleration mass spectrometry and the construction plans of this instrument at the Faculty of ecology and environmental sciences in Banska Stiavnica. Using of this instrument for radiocarbon dating is discussed. A review of laboratories with acceleration mass spectrometry is presented

  10. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  11. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  13. Mass Spectrometry of Halopyrazolium Salts

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Pande, U. C.

    1983-01-01

    Eleven halogen substituted 1-methyl-2-phenylpyrazolium bromides or chlorides were investigated by field desorption, field ionization, and electron impact mass spectrometry. Dealkylation was found to be the predominant thermal decomposition. An exchange between covalent and ionic halogen prior...

  14. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  16. Development of a Novel, Sensitive, Selective, and Fast Methodology to Determine Malondialdehyde in Leaves of Melon Plants by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Melisa E. Yonny

    2017-01-01

    Full Text Available Early production of melon plant (Cucumis melo is carried out using tunnels structures, where extreme temperatures lead to high reactive oxygen species production and, hence, oxidative stress. Malondialdehyde (MDA is a recognized biomarker of the advanced oxidative status in a biological system. Thus a reliable, sensitive, simple, selective, and rapid separative strategy based on ultra-high-performance liquid chromatography coupled to positive electrospray-tandem mass spectrometry (UPLC-(+ESI-MS/MS was developed for the first time to measure MDA, without derivatization, in leaves of melon plants exposed to stress conditions. The detection and quantitation limits were 0.02 μg·L−1 and 0.08 μg·L−1, respectively, which was demonstrated to be better than the methodologies currently reported in the literature. The accuracy values were between 96% and 104%. The precision intraday and interday values were 2.7% and 3.8%, respectively. The optimized methodology was applied to monitoring of changes in MDA levels between control and exposed to thermal stress conditions melon leaves samples. Important preliminary conclusions were obtained. Besides, a comparison between MDA levels in melon leaves quantified by the proposed method and the traditional thiobarbituric acid reactive species (TBARS approach was undertaken. The MDA determination by TBARS could lead to unrealistic conclusions regarding the oxidative stress status in plants.

  17. Pesticides residues in water treatment plant sludge: validation of analytical methodology using liquid chromatography coupled to Tandem mass spectrometry (LC-MS/MS)

    International Nuclear Information System (INIS)

    Moracci, Luiz Fernando Soares

    2008-01-01

    The evolving scenario of Brazilian agriculture brings benefits to the population and demands technological advances to this field. Constantly, new pesticides are introduced encouraging scientific studies with the aim of determine and evaluate impacts on the population and on environment. In this work, the evaluated sample was the sludge resulted from water treatment plant located in the Vale do Ribeira, Sao Paulo, Brazil. The technique used was the reversed phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Compounds were previously liquid extracted from the matrix. The development of the methodology demanded data processing in order to be transformed into reliable information. The processes involved concepts of validation of chemical analysis. The evaluated parameters were selectivity, linearity, range, sensitivity, accuracy, precision, limit of detection, limit of quantification and robustness. The obtained qualitative and quantitative results were statistically treated and presented. The developed and validated methodology is simple. As results, even exploring the sensitivity of the analytical technique, the work compounds were not detected in the sludge of the WTP. One can explain that these compounds can be present in a very low concentration, can be degraded under the conditions of the water treatment process or are not completely retained by the WTP. (author)

  18. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  19. Instrumentation for mass spectrometry: 1997

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  20. Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach.

    Science.gov (United States)

    Kroumova, Vesselina; Gobbato, Elisa; Basso, Elisa; Mucedola, Luca; Giani, Tommaso; Fortina, Giacomo

    2011-08-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently been demonstrated to be a powerful tool for the rapid identification of bacteria from growing colonies. In order to speed up the identification of bacteria, several authors have evaluated the usefulness of this MALDI-TOF MS technology for the direct and quick identification bacteria from positive blood cultures. The results obtained so far have been encouraging but have also shown some limitations, mainly related to the bacterial growth and to the presence of interference substances belonging to the blood cultures. In this paper, we present a new methodological approach that we have developed to overcome these limitations, based mainly on an enrichment of the sample into a growing medium before the extraction process, prior to mass spectrometric analysis. The proposed method shows important advantages for the identification of bacterial strains, yielding an increased identification score, which gives higher confidence in the results. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Analysis of post-operative changes in serum protein expression profiles from colorectal cancer patients by MALDI-TOF mass spectrometry: a pilot methodological study

    Directory of Open Access Journals (Sweden)

    Marsh Simon

    2010-04-01

    Full Text Available Abstract Background Mass spectrometry-based protein expression profiling of blood sera can be used to discriminate colorectal cancer (CRC patients from unaffected individuals. In a pilot methodological study, we have evaluated the changes in protein expression profiles of sera from CRC patients that occur following surgery to establish the potential of this approach for monitoring post-surgical response and possible early prediction of disease recurrence. Methods In this initial pilot study, serum specimens from 11 cancer patients taken immediately prior to surgery and at approximately 6 weeks following surgery were analysed alongside 10 normal control sera by matrix-assisted laser desorption ionisation time of-flight-mass spectrometry (MALDI-TOF MS. Using a two-sided t-test the top 20 ranked protein peaks that discriminate normal from pre-operative sera were identified. These were used to classify post-operative sera by hierarchical clustering analysis (Spearman's Rank correlation and, as an independent 'test' dataset, by k-nearest neighbour and weighted voting supervised learning algorithms. Results Hierarchical cluster analysis classified post-operative sera from all six early Dukes' stage (A and B patients as normal. The remaining five post-operative sera from more advanced Dukes' stages (C1 and C2 were classified as cancer. Analysis by supervised learning algorithms similarly grouped all advanced Dukes' stages as cancer, with four of the six post-operative sera from early Dukes' stages being classified as normal (P = 0.045; Fisher's exact test. Conclusions The results of this pilot methodological study illustrate the proof-of-concept of using protein expression profiling of post-surgical blood sera from individual patients to monitor disease course. Further validation on a larger patient cohort and using an independent post-operative sera dataset would be required to evaluate the potential clinical relevance of this approach. Prospective

  2. Dried Blood Spot Methodology in Combination With Liquid Chromatography/Tandem Mass Spectrometry Facilitates the Monitoring of Teriflunomide

    Science.gov (United States)

    Lunven, Catherine; Turpault, Sandrine; Beyer, Yann-Joel; O'Brien, Amy; Delfolie, Astrid; Boyanova, Neli; Sanderink, Ger-Jan; Baldinetti, Francesca

    2016-01-01

    Background: Teriflunomide, a once-daily oral immunomodulator approved for treatment of relapsing-remitting multiple sclerosis, is eliminated slowly from plasma. If necessary to rapidly lower plasma concentrations of teriflunomide, an accelerated elimination procedure using cholestyramine or activated charcoal may be used. The current bioanalytical assay for determination of plasma teriflunomide concentration requires laboratory facilities for blood centrifugation and plasma storage. An alternative method, with potential for greater convenience, is dried blood spot (DBS) methodology. Analytical and clinical validations are required to switch from plasma to DBS (finger-prick sampling) methodology. Methods: Using blood samples from healthy subjects, an LC-MS/MS assay method for quantification of teriflunomide in DBS over a range of 0.01–10 mcg/mL was developed and validated for specificity, selectivity, accuracy, precision, reproducibility, and stability. Results were compared with those from the current plasma assay for determination of plasma teriflunomide concentration. Results: Method was specific and selective relative to endogenous compounds, with process efficiency ∼88%, and no matrix effect. Inaccuracy and imprecision for intraday and interday analyses were blood deposit volume and punch position within spot, and hematocrit level had a limited but acceptable effect on measurement accuracy. Teriflunomide was stable for at least 4 months at room temperature, and for at least 24 hours at 37°C with and without 95% relative humidity, to cover sampling, drying, and shipment conditions in the field. The correlation between DBS and plasma concentrations (R2 = 0.97), with an average blood to plasma ratio of 0.59, was concentration independent and constant over time. Conclusions: DBS sampling is a simple and practical method for monitoring teriflunomide concentrations. PMID:27015245

  3. Discovery of undefined protein cross-linking chemistry: a comprehensive methodology utilizing 18O-labeling and mass spectrometry.

    Science.gov (United States)

    Liu, Min; Zhang, Zhongqi; Zang, Tianzhu; Spahr, Chris; Cheetham, Janet; Ren, Da; Zhou, Zhaohui Sunny

    2013-06-18

    Characterization of protein cross-linking, particularly without prior knowledge of the chemical nature and site of cross-linking, poses a significant challenge, because of their intrinsic structural complexity and the lack of a comprehensive analytical approach. Toward this end, we have developed a generally applicable workflow-XChem-Finder-that involves four stages: (1) detection of cross-linked peptides via (18)O-labeling at C-termini; (2) determination of the putative partial sequences of each cross-linked peptide pair using a fragment ion mass database search against known protein sequences coupled with a de novo sequence tag search; (3) extension to full sequences based on protease specificity, the unique combination of mass, and other constraints; and (4) deduction of cross-linking chemistry and site. The mass difference between the sum of two putative full-length peptides and the cross-linked peptide provides the formulas (elemental composition analysis) for the functional groups involved in each cross-linking. Combined with sequence restraint from MS/MS data, plausible cross-linking chemistry and site were inferred, and ultimately confirmed, by matching with all data. Applying our approach to a stressed IgG2 antibody, 10 cross-linked peptides were discovered and found to be connected via thioethers originating from disulfides at locations that had not been previously recognized. Furthermore, once the cross-link chemistry was revealed, a targeted cross-link search yielded 4 additional cross-linked peptides that all contain the C-terminus of the light chain.

  4. Symposium on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base

  5. Symposium on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  6. Study of New Analytical Methodologies for the Analysis of Polychlorinated Dibenzo-P-Dioxins (PcDDs) and Polychlorinated Di benzofurans (PCDFs) by Quadrupole Ion Storage Tandem-in-time Mass Spectrometry. Application to Environmental Samples

    International Nuclear Information System (INIS)

    Sanz Chichon, M. P.

    2008-01-01

    Two alternative analytical methodologies have been developed for the analysis of polychlorinated dibenzo-p-dioxins ( PCDDs) and di benzofurans (PCDFs) in environmental samples. The techniques studied have been: Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) versus Soxhlet extraction; the automated system Power-PrepTM versus the conventional cleanup using open chromatographic columns with different adsorbents and the application of tandem mass spectrometry (HRGC-MS/MS) versus high resolution mass spectrometry (HRGC-HRMS) for PCDD/Fs detection and quantification. (Author) 233 refs

  7. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    Science.gov (United States)

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Eleventh ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.

    2004-10-01

    This volume deals with the latest developments in this field, exposing the innumerable applications of mass spectrometry. The topics covered include basic fundamentals of mass spectrometry, qualitative and quantitative aspects and data interpretation, maintenance of mass spectrometers, selection of a mass spectrometer, its applications in various branches of science as well as recent advances in mass spectrometry. Emphasis is also laid on the practical aspects of mass spectrometry. Papers relevant to INIS are indexed separately

  9. Mass spectrometry in epigenetic research

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2010-01-01

    cancers has gained tremendous interest in recent years, and many of these inhibitors are currently undergoing clinical trials. Despite intense research, however, the exact molecular mechanisms of action of these molecules remain, to a wide extent, unclear. The recent application of mass spectrometry...

  10. Mass spectrometry of large molecules

    International Nuclear Information System (INIS)

    Facchetti, S.

    1985-01-01

    The lectures in this volume were given at a course on mass spectrometry of large molecules, organized within the framework of the Training and Education programme of the Joint Research Centre of the European Communities. Although first presented in 1983, most of the lectures have since been updated by their authors. (orig.)

  11. Mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The heavy ion accelerator use is renewing the ultrasensitive mass spectrometry in extending the detection limits. These new devices allow the measurement of rare isotope ratio, as 10 Be, 14 C, 26 Al, 36 Cl or 41 Ca, from the earth natural reservoirs [fr

  12. Chemical ionisation mass spectrometry: a survey of instrument technology

    International Nuclear Information System (INIS)

    Mather, R.E.; Todd, J.F.J.

    1979-01-01

    The purpose of this review is to survey the innovations and improvements which have been made in both instrumentation and methodology in chemical ionization mass spectrometry in the past ten years. (Auth.)

  13. Emerging mass spectrometry techniques for the direct analysis of microbial colonies

    OpenAIRE

    Fang, Jinshu; Dorrestein, Pieter C.

    2014-01-01

    One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three dimensional visualization of the distri...

  14. Establishment of methodology for determination of 93Zr in radioactive wastes by Liquid Scintillation Counting (LSC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Oliveira, Thiago Cesar de

    2014-01-01

    The zirconium-93 is a long-lived pure β-particle-emitting radionuclide produced from 235 U fission and from neutron activation of the stable isotope 92 Zr and thus occurring as one of the radionuclides found in nuclear reactors. Due to its long half life, 93 Zr is one of the radionuclides of interest for the performance of assessment studies of waste storage or disposal. Measurement of 93 Zr is difficult owing to its trace level concentration and its low activity in nuclear wastes and further because its certified standards are not frequently available. The aim of this work was to develop a selective radiochemical separation methodology for the determination of 93 Zr in nuclear waste and analyze it by Liquid Scintillation Counting (LSC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). To set up the radiochemical separation procedure for zirconium, a tracer solution of 95 Zr and its 724 keV γ-ray measurements by γ- spectrometry were used in order to follow the behavior of zirconium during the radiochemical separation. For the LSC technique a 55 Fe solution, which is one of the major interfering measures zirconium, was used to verify the decontamination factor during the separation process. The efficiency detection for 63 Ni was used to determination of 93 Zr activity in the matrices analyzed. The limit of detection of the 0.05 Bq 1 −1 was obtained for 63 Ni standard solutions by using a sample:cocktail ratio of 3:17 mL for Optiphase Hisafe 3 cocktail. For the ICP-MS technique a zirconium stable solution was used to verify the zirconium behavior and recovery during radiochemical separation and a solution of Ba, Co, Eu, Fe, Mn, Nb, Sr and Y was used to verify the decontamination factor during the separation process. A standard solution 93 Nb as isotope for determining the 93 Zr by ICP-MS was used for calibration and analysis. The detection limit of 0.039 ppb was obtained for the standard solution of zirconium. Then, the protocol was applied to low level

  15. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    Science.gov (United States)

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  16. Mass spectrometry by means of tandem accelerators

    International Nuclear Information System (INIS)

    Tuniz, C.

    1985-01-01

    Mass spectrometry based on an accelerator allows to measure rare cosmogenic isotopes found in natural samples with isotopic abundances up to 10E-15. The XTU Tandem of Legnaro National Laboratories can measure mean heavy isotopes (36Cl, 41Ca, 129I) in applications interesting cosmochronology and Medicine. The TTT-3 Tandem of the Naples University has been modified in view of precision studies of C14 in Archeology, Paleantology and Geology. In this paper a review is made of principles and methodologies and of some applicationy in the framework of the National Program for mass spectrametry research with the aid of accelerators

  17. Imaging Mass Spectrometry in Neuroscience

    Science.gov (United States)

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  18. Mass Spectrometry Applications for Toxicology

    OpenAIRE

    Mbughuni, Michael M.; Jannetto, Paul J.; Langman, Loralie J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used i...

  19. Mass spectrometry. [review of techniques

    Science.gov (United States)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  20. Functional genomics by mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Mann, M

    2000-01-01

    Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene f...... numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes....

  1. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  2. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  3. Ninth ISMAS workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2000-12-01

    Mass spectrometry has wide-ranging applications in such diverse areas as nuclear industry, agriculture, drugs, environment, petroleum and lentils. There is an urgent need to absorb and assimilate state-of-the-art technological developments in the field. Emerging trends in atomic mass spectrometry, advances in organic mass spectrometry, qualitative and quantitative analyses by mass spectrometry and mass spectrometry in oceanography are some of the areas that need to be expeditiously examined and are covered in this volume. Papers relevant to INIS are indexed separately

  4. Principle of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Matsuzaki, Hiroyuki

    2007-01-01

    The principle of accelerator mass spectrometry (AMS) is described mainly on technical aspects: hardware construction of AMS, measurement of isotope ratio, sensitivity of measurement (measuring limit), measuring accuracy, and application of data. The content may be summarized as follows: rare isotope (often long-lived radioactive isotope) can be detected by various use of the ion energy obtained by the acceleration of ions, a measurable isotope ratio is one of rare isotope to abundant isotopes, and a measured value of isotope ratio is uncertainty to true one. Such a fact must be kept in mind on the use of AMS data to application research. (M.H.)

  5. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  6. Ion detection in mass spectrometry

    International Nuclear Information System (INIS)

    Bolbach, Gerard

    2016-03-01

    This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials

  7. Mass Spectrometry Applications for Toxicology.

    Science.gov (United States)

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS n ) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  8. Mass Spectrometry Applications for Toxicology

    Science.gov (United States)

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  9. Role of Mass Spectrometry in Clinical Endocrinology.

    Science.gov (United States)

    Ketha, Siva S; Singh, Ravinder J; Ketha, Hemamalini

    2017-09-01

    The advent of mass spectrometry into the clinical laboratory has led to an improvement in clinical management of several endocrine diseases. Liquid chromatography tandem mass spectrometry found some of its first clinical applications in the diagnosis of inborn errors of metabolism, in quantitative steroid analysis, and in drug analysis laboratories. Mass spectrometry assays offer analytical sensitivity and specificity that is superior to immunoassays for many analytes. This article highlights several areas of clinical endocrinology that have witnessed the use of liquid chromatography tandem mass spectrometry to improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Accelerator mass spectrometry in NIPNE

    International Nuclear Information System (INIS)

    Ivascu, M; Marinescu, L.; Dima, R.; Cata-Danil, D.; Petrascu, M.; Popescu, I.; Stan-Sion, C.; Radulescu, M.; Plostinaru, D.

    1997-01-01

    The Accelerator Mass Spectrometry (AMS) is today the method capable to measure the lowest concentration of a particular nuclide in sample materials. The method has applications in environmental physics, medicine, measurements of cosmic-ray or nuclear power plant produced radionuclides in the earth's atmosphere. All over the world, more than 40 charged particles and heavy ion accelerators are performing such analyses concerning the research interest of a huge number of laboratories. The Romanian Institute of Nuclear Physics and Engineering in Bucharest has initiated a construction project for the AMS facility at the FN - Van de Graaff Tandem accelerator. This program benefits of technical and financial assistance provided by IAEA in the frame of the IAEA-TC Project ROM 8014-265C. A general lay-out of the AMS project is presented. The construction work has begun and first tests of the AMS injector will take place between July - September this year. (authors)

  11. A REVIEW ON MASS SPECTROMETRY DETECTORS

    OpenAIRE

    Khatri Neetu; Gupta Ankit; Taneja Ruchi; Bilandi Ajay; Beniwal Prashant

    2012-01-01

    Mass spectrometry is an analytical technique for "weighing" molecules. Obviously, this is not done with a conventional scale or balance. Instead, mass spectrometry is based upon the principle of the motion of a charged particle that is called an ion, in an electric or magnetic field. The mass to charge ratio (m/z) of the ion affects particles motion. Since the charge of an electron is known, the mass to charge ratio (m/z) is a measurement of mass of an ion. Mass spectrometry research focuses ...

  12. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  13. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  14. Atom counting with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, Walter

    1995-01-01

    A brief review of the current status and some recent applications of accelerator mass spectrometry (AMS) are presented. Some connections to resonance ionization mass spectroscopy (RIS) as the alternate atom counting method are discussed

  15. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    -phase chromatography they are analyzed by tandem mass spectrometry and the substrates identified by database searching. The proof of principle in this study is demonstrated by incubating immobilized human plasma proteins with thrombin and by identifying by tandem mass spectrometry the fibrinopeptides, released...

  16. Inorganic mass spectrometry of solid samples

    International Nuclear Information System (INIS)

    Adams, F.; Vertes, A.

    1990-01-01

    In this review some recent developments in the field of inorganic mass spectrometry of solids are described with special emphasis on the actual state of understanding of the ionization processes. It concentrates on the common characteristics of methods such as spark source-, laser-, secondary ion-, inductively coupled plasma- and glow discharge mass spectrometry. (orig.)

  17. Surface analysis by imaging mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vidová, Veronika; Volný, Michael; Lemr, Karel; Havlíček, Vladimír

    2009-01-01

    Roč. 74, 7-8 (2009), s. 1101-1116 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z50200510 Keywords : secondary ion mass spectrometry * matrix assisted laser desorption ionization * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.856, year: 2009

  18. Introduction to mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Matthiesen, R.; Bunkenborg, J.

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive informati...

  19. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  20. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples.

    Science.gov (United States)

    Lind, Mads V; Savolainen, Otto I; Ross, Alastair B

    2016-08-01

    Data quality is critical for epidemiology, and as scientific understanding expands, the range of data available for epidemiological studies and the types of tools used for measurement have also expanded. It is essential for the epidemiologist to have a grasp of the issues involved with different measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses, focusing on metabolites and their application and potential issues related to large-scale epidemiology studies, the use of MS "omics" approaches for biomarker discovery and how MS-based results can be used for increasing biological knowledge gained from epidemiological studies. Better understanding of the possibilities and possible problems related to MS-based measurements will help the epidemiologist in their discussions with analytical chemists and lead to the use of the most appropriate statistical tools for these data.

  1. Determination of multiresidue analysis of β-agonists in muscle and viscera using liquid chromatograph/tandem mass spectrometry with Quick, Easy, Cheap, Effective, Rugged, and Safe methodologies

    Directory of Open Access Journals (Sweden)

    Yen-Ping Lin

    2017-04-01

    Full Text Available The official analytical method of the Taiwan Food and Drug Administration, Ministry of Health and Welfare for testing for veterinary drug residues in foods is the multiresidue analysis of β-agonists. Samples are pretreated through liquid–liquid extraction and solid-phase extraction. This method is time consuming and requires the intensive use of solvents. To improve analytical efficiency and reduce costs, our study incorporated QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe techniques to establish a new method of multiresidue analysis of β-agonists in animal muscle and viscera. The pretreatment time was shortened and solvent usage was minimized. The modified analysis was conducted using liquid chromatography/tandem mass spectrometry (LC–MS/MS and quantification was performed using multiple reaction monitoring. The results demonstrated that the correlation coefficients of the tissue calibration curve were higher than 0.99 and the limit of quantification (LOQ was 1 ppb. The average recoveries in spiked samples varied from 70% to 120%, and the relative difference between duplicated analysis results was lower than 10%. On the basis of the results, the proposed method was concluded to be an appropriate procedure for determining the presence of β-agonists, and demonstrated the advantages of high recovery rates in spiked samples, high precision, reduced analysis time and solvent usage, and lower costs.

  2. Zero voltage mass spectrometry probes and systems

    Science.gov (United States)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  3. Mass spectrometry at the Pittsburgh conference

    International Nuclear Information System (INIS)

    Borman, S.

    1987-01-01

    Each year analytical chemists flock to the Pittsburgh Conference to learn about the latest trends in analytical instrumentation. In this Focus, a number of prominent mass spectroscopists who attended this year's meeting in Atlantic City, NJ, discuss their perceptions of current developments in the field of mass spectrometry (MS). In the June 1 issue of Analytical Chemistry, the authors coverage of the Pittsburgh Conferences continues with a follow-up article on specific developments in hyphenated mass spectrometry - primarily liquid chromatography - MS (LC/MS) and gas chromatography - infrared spectrometry MS (GC/IR/MS)

  4. Chromatography–mass spectrometry in aerospace industry

    International Nuclear Information System (INIS)

    Buryak, Alexey K; Serduk, T M

    2013-01-01

    The applications of chromatography–mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography–mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography–mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  5. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  6. Ultra-sensitive radionuclide spectrometry. Radiometrics and mass spectrometry synergy

    International Nuclear Information System (INIS)

    Povinec, P.P.

    2005-01-01

    Recent developments in radiometrics and mass spectrometry techniques for ultra-sensitive analysis of radionuclides in the marine environment are reviewed. In the radiometrics sector the dominant development has been the utilization of large HPGe detectors in underground laboratories with anti-cosmic or anti-Compton shielding for the analysis of short and medium-lived radionuclides in the environment. In the mass spectrometry sector, applications of inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS) for the analysis of long-lived radionuclides in the environment are the most important recent achievements. The recent developments do not only considerably decrease the detection limits for several radionuclides (up to several orders of magnitude), but they also enable to decrease sample volumes so that sampling, e.g., of the water column can be much easier and more effective. A comparison of radiometrics and mass spectrometry results for the analysis of radionuclides in the marine environment shows a reasonable agreement - within quoted uncertainties, for wide range of activities and different sample matrices analyzed. (author)

  7. Tandem mass spectrometry at low kinetic energy

    International Nuclear Information System (INIS)

    Cooks, R.G.; Hand, O.W.

    1987-01-01

    Recent progress in mass spectrometry, as applied to molecular analysis, is reviewed with emphasis on tandem mass spectrometry. Tandem instruments use multiple analyzers (sector magnets, quadrupole mass filters and time-of-flight devices) to select particular molecules in ionic form, react them in the gas-phase and then record the mass, momenta or kinetic energies of their products. The capabilities of tandem mass spectrometry for identification of individual molecules or particular classes of compounds in complex mixtures are illustrated. Several different types of experiments can be run using a tandem mass spectrometer; all share the feature of sifting the molecular mixture being analyzed on the basis of chemical properties expressed in terms of ionic mass, kinetic energy or charge state. Applications of mass spectrometry to biological problems often depend upon desorption methods of ionization in which samples are bombarded with particle beams. Evaporation of preformed charged species from the condensed phase into the vacuum is a particularly effective method of ionization. It is suggested that the use of accelerator mass spectrometers be extended to include problems of molecular analysis. In such experiments, low energy tandem mass spectrometry conducted in the eV or keV range of energies, would be followed by further characterization of the production ion beam using high selective MeV collision processes

  8. Methods for recalibration of mass spectrometry data

    Science.gov (United States)

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  9. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F; Saiz-Jimenez, C; Gonzalez-Vila, F J

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  10. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  11. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  12. Radiation Biomarker Research Using Mass Spectrometry

    National Research Council Canada - National Science Library

    Bach, Stephan B; Hubert, Walter

    2007-01-01

    .... This review is intended to give an overview of mass spectrometry and its application to biological systems and biomarker discovery and how that might relate to relevant radiation dosimetry studies...

  13. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Botero-Coy, A M; Ibáñez, M; Sancho, J V; Hernández, F

    2013-05-31

    The determination of glyphosate (GLY) in soils is of great interest due to the widespread use of this herbicide and the need of assessing its impact on the soil/water environment. However, its residue determination is very problematic especially in soils with high organic matter content, where strong interferences are normally observed, and because of the particular physico-chemical characteristics of this polar/ionic herbicide. In the present work, we have improved previous LC-MS/MS analytical methodology reported for GLY and its main metabolite AMPA in order to be applied to "difficult" soils, like those commonly found in South-America, where this herbicide is extensively used in large areas devoted to soya or maize, among other crops. The method is based on derivatization with FMOC followed by LC-MS/MS analysis, using triple quadrupole. After extraction with potassium hydroxide, a combination of extract dilution, adjustment to appropriate pH, and solid phase extraction (SPE) clean-up was applied to minimize the strong interferences observed. Despite the clean-up performed, the use of isotope labelled glyphosate as internal standard (ILIS) was necessary for the correction of matrix effects and to compensate for any error occurring during sample processing. The analytical methodology was satisfactorily validated in four soils from Colombia and Argentina fortified at 0.5 and 5mg/kg. In contrast to most LC-MS/MS methods, where the acquisition of two transitions is recommended, monitoring all available transitions was required for confirmation of positive samples, as some of them were interfered by unknown soil components. This was observed not only for GLY and AMPA but also for the ILIS. Analysis by QTOF MS was useful to confirm the presence of interferent compounds that shared the same nominal mass of analytes as well as some of their main product ions. Therefore, the selection of specific transitions was crucial to avoid interferences. The methodology developed

  15. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  16. Native Mass Spectrometry in Fragment-Based Drug Discovery.

    Science.gov (United States)

    Pedro, Liliana; Quinn, Ronald J

    2016-07-28

    The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  17. Enantioselectivity of mass spectrometry: challenges and promises.

    Science.gov (United States)

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach. © 2013 Wiley Periodicals, Inc.

  18. Mass Spectrometry in the Home and Garden

    Science.gov (United States)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  19. Mass Spectrometry Imaging of Drugs of Abuse in Hair.

    Science.gov (United States)

    Flinders, Bryn; Cuypers, Eva; Porta, Tiffany; Varesio, Emmanuel; Hopfgartner, Gérard; Heeren, Ron M A

    2017-01-01

    Hair testing is a powerful tool routinely used for the detection of drugs of abuse. The analysis of hair is highly advantageous as it can provide prolonged drug detectability versus that in biological fluids and chronological information about drug intake based on the average growth of hair. However, current methodology requires large amounts of hair samples and involves complex time-consuming sample preparation followed by gas or liquid chromatography coupled with mass spectrometry. Mass spectrometry imaging is increasingly being used for the analysis of single hair samples, as it provides more accurate and visual chronological information in single hair samples.Here, two methods for the preparation of single hair samples for mass spectrometry imaging are presented.The first uses an in-house built cutting apparatus to prepare longitudinal sections, the second is a method for embedding and cryo-sectioning hair samples in order to prepare cross-sections all along the hair sample.

  20. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  1. Mass spectrometry: a revolution in clinical microbiology?

    Science.gov (United States)

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  2. Mass spectrometry in nuclear science and technology

    International Nuclear Information System (INIS)

    Komori, Takuji

    1985-01-01

    Mass spectrometry has been widely used and playing a very important role in the field of nuclear science and technology. A major reason for this is that not only the types of element but also its isotopes have to be identified and measured in this field. Thus, some applications of this analytical method are reviewed and discussed in this article. Its application to analytical chemistry is described in the second section following an introductory section, which includes subsections for isotropic dilution mass spectrometry, resonance ionization mass spectrometry and isotopic correlation technique. The isotopic ratio measurement for hydrogen, uranium and plutonium as well as nuclear material control and safeguards are also reviewed in this section. In the third section, mass spectrometry is discussed in relation to nuclear reactors, with subsections on natural uranium reactor and neutron flux observation. Some techniques for measuring the burnup fraction, including the heavy isotopic ratio method and fission product monitoring, are also described. In the fourth section, application of mass spectrometry to measurement of nuclear constants, such as ratio of effective cross-sectional area for 235 U, half-life and fission yield is reviewed. (Nogami, K.)

  3. [Imaging Mass Spectrometry in Histopathologic Analysis].

    Science.gov (United States)

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  4. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  5. Parsimonious Charge Deconvolution for Native Mass Spectrometry

    Science.gov (United States)

    2018-01-01

    Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new “parsimonious” charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies. PMID:29376659

  6. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  7. A history of mass spectrometry in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Downard, K.M.; de Laeter, J.R. [University of Sydney, Sydney, NSW (Australia)

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. It focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important contributions to the field.

  8. Laser-induced mass spectrometry

    International Nuclear Information System (INIS)

    Polanyi, J.C.

    1981-01-01

    This invention provides a method for the spectroscopic analysis of gas. The gas molecules are internally excited by irradiation with laser light having a wavelength which is absorbed by the sample. The gas is then ionized and passed through a mass spectrometer and the amount of the ionized species in the irradiated and ionized sample is compared with that in a similar ionized but not irradiated sample

  9. Phylogenetic Analysis Using Protein Mass Spectrometry.

    Science.gov (United States)

    Ma, Shiyong; Downard, Kevin M; Wong, Jason W H

    2017-01-01

    Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

  10. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79 ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  11. Four decades of joy in mass spectrometry

    NARCIS (Netherlands)

    Nibbering, N.M.M.

    2006-01-01

    Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic

  12. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  13. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  14. Nanostructure-initiator mass spectrometry biometrics

    Science.gov (United States)

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  15. Characterization of microbial siderophores by mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pluháček, Tomáš; Lemr, Karel; Ghosh, D.; Milde, D.; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Roč. 35, č. 1 (2016), s. 35-47 ISSN 0277-7037 R&D Projects: GA MŠk(CZ) LD13038; GA ČR(CZ) GAP206/12/1150; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : iron * siderophores * mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 9.373, year: 2016

  16. Polymer and Additive Mass Spectrometry Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-06

    The use of mass spectrometry in fields related to polymers has increased significantly over the past three decades and will be explored in this literature review. The importance of this technique is highlighted when exploring how polymers degrade, verifying purchased materials, and as internal requirements change. The primary focus will be on four ionization techniques and the triple quadrupole and quadrupole / time-of-flight mass spectrometers. The advantages and limitations of each will also be explored.

  17. Radiocarbon accelerator mass spectrometry: background and contamination

    International Nuclear Information System (INIS)

    Beukens, R.P.

    1993-01-01

    Since the advent of radiocarbon accelerator mass spectrometry (AMS) many studies have been conducted to understand the background from mass spectrometric processes and the origins of contamination associated with the ion source and sample preparation. By studying the individual contributions a better understanding of these processes has been obtained and it has been demonstrated that it is possible to date samples reliably up to 60 000 BP. (orig.)

  18. Optimization Of A Mass Spectrometry Process

    International Nuclear Information System (INIS)

    Lopes, Jose; Alegria, F. Correa; Redondo, Luis; Barradas, N. P.; Alves, E.; Rocha, Jorge

    2011-01-01

    In this paper we present and discuss a system developed in order to optimize the mass spectrometry process of an ion implanter. The system uses a PC to control and display the mass spectrum. The operator interacts with the I/O board, that interfaces with the computer and the ion implanter by a LabVIEW code. Experimental results are shown and the capabilities of the system are discussed.

  19. Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: A comparison with traditional methods adopted by food industry to identify fraud.

    Science.gov (United States)

    da Silveira, Roberta; Vágula, Julianna Matias; de Lima Figueiredo, Ingrid; Claus, Thiago; Galuch, Marilia Bellanda; Santos Junior, Oscar Oliveira; Visentainer, Jesui Vergilio

    2017-12-01

    Fast and innovative methodology to monitors the addition of soybean oil in extra virgin olive oil was developed employing ESI-MS with ionization operating in positive mode. A certified extra virgin olive oil and refined soybean oil samples were analyzed by direct infusion, the identification of a natural lipid marker present only in soybean oil (m/z 886.68 [TAG+NH 4 ] + ) was possible. The certified extra virgin olive oil was purposely adulterated with soybean oil in different levels (1, 5, 10, 20, 50, 70, 90%) being possible to observe that the new methodology is able to detect even small fraud concentration, such as 1% (v/v). Additionally, commercial samples were analyzed and were observed the addition of soybean oil as a common fraud in this segment. This powerful analytical method proposed could be applied as routine analysis by control organization, as well as food industries, considering its pronounced advantages; simplicity, rapidity, elevated detectability and minor amounts of sample and solvent consumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cortisol production rates measured by liquid chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Esteban, N.V.; Yergey, A.L.

    1990-01-01

    Cortisol production rates (FPRs) in physiologic and pathologic states in humans have been investigated over the past 30 years. However, there has been conflicting evidence concerning the validity of the currently accepted value of FPRs in humans (12 to 15 mg/m2/d) as determined by radiotracer methodology. The present study reviews previous methods proposed for the measurement of FPRs in humans and discusses the applications of the first method for the direct determination of 24-hour plasma FPRs during continuous administration of a stable isotope, using a thermospray high-pressure liquid chromatography-mass spectrometry technique. The technique is fast, sensitive, and, unlike gas chromatography-mass spectrometry methods, does not require derivatization, allowing on-line detection and quantification of plasma cortisol after a simple extraction procedure. The results of determination of plasma FPRs by stable tracer/mass spectrometry are directly in units of mass/time and, unlike radiotracer methods, are independent of any determination of volume of distribution or cortisol concentration. Our methodology offers distinct advantages over radiotracer techniques in simplicity and reliability since only single measurements of isotope ratios are required. The technique was validated in adrenalectomized patients. Circadian variations in daily FRPs were observed in normal volunteers, and, to date, results suggest a lower FRP in normal children and adults than previously believed. 88 references

  1. New Methodologies for Qualitative and Semi-Quantitative Determination of Carbon-Centered Free Radicals in Cigarette Smoke Using Liquid ChromatographyTandem Mass Spectrometry and Gas Chromatography-Mass Selective Detection

    Directory of Open Access Journals (Sweden)

    Gerardi AR

    2014-12-01

    Full Text Available Several approaches were explored to develop a high throughput procedure for relative determination of 14 different carbon-centered free radicals, both acyl and alkylaminocarbonyl type, in cigarette smoke. Two trapping procedures using 3-cyano-2,2,5,5-tetramethyl-1-pyrrolidinyloxy, or 3-cyanoproxyl radical (3-CNP were designed for this study: a trapping in solution and b trapping on a solid support which was a Cambridge filter pad. Fresh whole smoke and vapor phase smoke from mainstream cigarette smoke from Kentucky Reference Cigarettes 2R4F, as partitioned via an unadulterated Cambridge filter pad, were transferred into each trapping system in separate experiments. The 3-CNP coated Cambridge filter pad approach was shown to be superior to the impinger procedure as described in this study. Gas chromatography coupled with mass selective detection (GC-MS was employed for the first time as an alternate means of detecting several relatively highly concentrated radical adducts. Liquid chromatography tandem mass spectrometry (LC-MS/MS with precursor ion monitoring and selected ion monitoring (SIM was used for detecting the large array of radicals, including several not previously reported: formyl, crotonyl, acrolein, aminocarbonyl, and anilinocarbonyl radicals. Relative quantitation was achieved using as external calibration standards of 4-(1-pyrrolidinobenzaldehyde and nicotine. It was determined that the yield of carbon-centered free radicals by reference cigarette 2R4F was approximately 265 nmoles/cigarette at 35 mL puff/60 sec interval/2 sec duration smoking conditions.

  2. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  3. Accelerator mass spectrometry: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Accelerator Mass Spectrometry (AMS) is the analytical technique of choice for the detection of long-lived radionuclides which cannot be practically analysed with decay counting or conventional mass spectrometry. The main use of AMS has been in the analysis of radiocarbon and other cosmogenic radionuclides for archaeological, geological and environmental applications. In addition, AMS has been recently applied in biomedicine to study exposure of human tissues to chemicals and biomolecules at attomole levels. There is also a world-wide effort to analyse rare nuclides of heavier masses, such as long-lived actinides, with important applications in safeguards and nuclear waste disposal. The use of AMS is limited by the expensive accelerator technology required and there are several attempts to develop smaller and cheaper AMS spectrometers. 5 refs.

  4. Guideline on Isotope Dilution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Amy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-19

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. This method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.

  5. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  6. Methodology to detect and quantify the presence of recycled PET in bottle-grade PET blends: mass spectrometry (MALDI-TOF) and X-ray fluorescence

    International Nuclear Information System (INIS)

    Romao, Wanderson; Franco, Marcos F.; Gozzo, Fabio C.; Iglesias, Amadeu H.; Sanvido, Gustavo B.; Eberlin, Marcos N.; Bueno, Maria I.M.S.; Maretto, Danilo A.; Poppi, Ronei J.; Paoli, Marco-Aurelio de

    2009-01-01

    New methodologies were developed to detect and to quantify the presence of the bottle-grade post-consumption PET (PET pc -btg) in the bottle-grade virgin PET (PET v -btg), preventing frauds and illegal uses of recycled PET pc -btg. MALDI-MS results together with PCA (principal component analysis) was used to classify the samples into several groups: intrinsic viscosity changes; processed and not submitted to some industrial process; wt % PET pc -btg in the PET v -btg; synthesis process change (manufacturer). From these results, it was possible to create a calibration model, that differentiated between PET v -btg and PET pc -btg resins. XRF results show that some manufacturers use one or more catalysts for PET v -btg synthesis, where our prediction model is valid only when the studied resin is known. We observed also that the Fe concentration in PET increase in as a function of the recycling process. Therefore, this variable could be used, in the future work, to create chemometric models including a higher number of variables. (author)

  7. Study of New Analytical Methodologies for the Analysis of Polychlorinated Dibenzo-P-Dioxins (PCDDs) and Polychlorinated Di benzofurans (PCDFs) by Quadrupole Ion Storage Tandem-in-time Mass Spectrometry. Application to Environmental Samples; Estudio de nuevas metodologias analiticas en la determinacion de policlorodibenzo-P-dioxinas (PCDDs) y policlosrodibenzofuranos (PCDFs) por espectrometria de masas con trampa ionica. Aplicacion a muestras medioambientales

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Chichon, M. P.

    2008-07-01

    Two alternative analytical methodologies have been developed for the analysis of polychlorinated dibenzo-p-dioxins (PCDDs) and di benzofurans (PCDFs) in environmental samples. The techniques studied have been: Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) versus Soxhlet extraction; the automated system Power-PrepTM versus the conventional cleanup using open chromatographic columns with different adsorbents and the application of tandem mass spectrometry (HRGC-MS/MS) versus high resolution mass spectrometry (HRGC-HRMS) for PCDD/Fs detection and quantification. (Author) 233 refs.

  8. Ionic liquid based vortex assisted liquid-liquid microextraction combined with liquid chromatography mass spectrometry for the determination of bisphenols in thermal papers with the aid of response surface methodology.

    Science.gov (United States)

    Asati, Ankita; Satyanarayana, G N V; Panchal, Smita; Thakur, Ravindra Singh; Ansari, Nasreen G; Patel, Devendra K

    2017-08-04

    A sensitive, rapid and efficient ionic liquid-based vortex assisted liquid-liquid microextraction (IL-VALLME) with Liquid Chromatography Mass spectrometry (LC-MS/MS) method is proposed for the determination of bisphenols in thermal paper. Extraction factors were systematically optimized by response surface methodology. Experimental factors showing significant effects on the analytical responses were evaluated using design of experiment. The limit of detection for Bisphenol-A (BPA) and Bisphenol-S (BPS) in thermal paper were 1.25 and 0.93μgkg -1 respectively. The dynamic linearity range for BPA was between 4 and 100μgkg -1 and the determination of coefficient (R 2 ) was 0.996. The values of the same parameters were 3-100μgkg -1 and 0.998 for BPS. The extraction recoveries of BPA and BPS in thermal paper were 101% and 99%. Percent relative standard deviation (% RSD) for matrix effect and matrix match effects were not more than 10%, for both bisphenols. The proposed method uses a statistical approach for the analysis of bisphenols in environmental samples, and is easy, rapid, requires minimum organic solvents and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Methodology for monitoring gold nanoparticles and dissolved gold species in culture medium and cells used for nanotoxicity tests by liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    López-Sanz, Sara; Fariñas, Nuria Rodríguez; Vargas, Rosario Serrano; Martín-Doimeadios, Rosa Del Carmen Rodríguez; Ríos, Ángel

    2017-03-01

    An analytical methodology based on coupling reversed-phase liquid chromatography (HPLC) to an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the characterization and identification of gold nanoparticles (AuNPs) and gold dissolved species (Au 3+ ) in culture medium (Dulbecco's Modified Eagle Medium, DMEM) and HeLa cells (a human cervical adenocarcinoma cell line) used in nanotoxicity tests. The influence of the culture medium was also studied and the method applied for nanotoxicity tests. It was also observed that AuNPs can undergo an oxidation process in the supernatants and only a small amount of AuNPs and dissolved Au 3+ was associated with cells. To evaluate the biological impact of AuNPs, a classical viability assay onto HeLa cells was performed using cellular media DMEM in the presence of increasing dosage of 10nm AuNPs. The results showed that 10nm AuNPs exhibit a slight toxic effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Alpha spectrometry and the secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, J.; Kuruc, J.; Galanda, D.; Matel, L.; Aranyosiova, M.; Velic, D.

    2009-01-01

    The main objective of this master thesis was preparation of samples with thorium content on the steel discs by electrodeposition for determination of natural thorium isotope by alpha spectrometry and the secondary ion mass spectrometry and finding out their possible linear correlation between these methods. The samples with electrolytically excluded isotope of 232 Th were prepared by electrodeposition from solution Th(NO 3 ) 4 ·12 H2 O on steel discs in electrodeposition cell with use of solutions Na 2 SO 4 , NaHSO 4 , KOH and (NH 4 ) 2 (C 2 O 4 ) by electric current 0.75 A. Discs were measured by alpha spectrometer. Activity was calculated from the registered impulses for 232 Th and surface's weight. After alpha spectrometry measurements discs were analyzed by TOF-SIMS IV which is installed in the International Laser Centre in Bratislava. Intensities of isotope of 232 Th and ions of ThO + , ThOH + , ThO 2 H + , Th 2 O 4 H + , ThO 2 - , ThO 3 H - , ThH 3 O 3 - and ThN 2 O 5 H - were identified. The linear correlation is between surface's weights of Th and intensities of ions of Th + from SIMS, however the correlation coefficient has relatively low value. We found out with SIMS method that oxidized and hydride forms of thorium are significantly represented in samples with electroplated thorium. (authors)

  11. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  12. Boundaries of mass resolution in native mass spectrometry

    NARCIS (Netherlands)

    Lössl, Philip|info:eu-repo/dai/nl/371559693; Snijder, Joost|info:eu-repo/dai/nl/338018328; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even

  13. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  14. Native Mass Spectrometry in Fragment-Based Drug Discovery

    Directory of Open Access Journals (Sweden)

    Liliana Pedro

    2016-07-01

    Full Text Available The advent of native mass spectrometry (MS in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein–ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD. Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.

  15. [Sample preparation and bioanalysis in mass spectrometry].

    Science.gov (United States)

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  16. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  17. Accelerator mass spectrometry - From DNA to astrophysics

    International Nuclear Information System (INIS)

    Kutschera, W.

    2013-01-01

    A brief review of accelerator mass spectrometry (AMS) is presented. The present work touches on a few technical aspects and recent developments of AMS, and describes two specific applications of AMS, the dating of human DNA with the 14 C bomb peak and the search for superheavy elements in nature. Since two extended general reviews on technical developments in AMS [1] and applications of AMS [2] will appear in 2013, frequent reference to these reviews is made. (authors)

  18. A mass spectrometry proteomics data management platform.

    Science.gov (United States)

    Sharma, Vagisha; Eng, Jimmy K; Maccoss, Michael J; Riffle, Michael

    2012-09-01

    Mass spectrometry-based proteomics is increasingly being used in biomedical research. These experiments typically generate a large volume of highly complex data, and the volume and complexity are only increasing with time. There exist many software pipelines for analyzing these data (each typically with its own file formats), and as technology improves, these file formats change and new formats are developed. Files produced from these myriad software programs may accumulate on hard disks or tape drives over time, with older files being rendered progressively more obsolete and unusable with each successive technical advancement and data format change. Although initiatives exist to standardize the file formats used in proteomics, they do not address the core failings of a file-based data management system: (1) files are typically poorly annotated experimentally, (2) files are "organically" distributed across laboratory file systems in an ad hoc manner, (3) files formats become obsolete, and (4) searching the data and comparing and contrasting results across separate experiments is very inefficient (if possible at all). Here we present a relational database architecture and accompanying web application dubbed Mass Spectrometry Data Platform that is designed to address the failings of the file-based mass spectrometry data management approach. The database is designed such that the output of disparate software pipelines may be imported into a core set of unified tables, with these core tables being extended to support data generated by specific pipelines. Because the data are unified, they may be queried, viewed, and compared across multiple experiments using a common web interface. Mass Spectrometry Data Platform is open source and freely available at http://code.google.com/p/msdapl/.

  19. High-sensitivity mass spectrometry with a tandem accelerator

    International Nuclear Information System (INIS)

    Henning, W.

    1984-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems

  20. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology.

    Science.gov (United States)

    Gómez-Caravaca, Ana María; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2011-10-26

    A new liquid chromatography methodology coupled to a diode array detector and a time-of-flight mass spectrometer has been developed for the simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd). This method has allowed the simultaneous determination of these two families of compounds with the same analytical method for the first time. A fused-core column C18 has been used, and the analysis has been performed in less than 27 min. Both chromatographic and electrospray ionization time-of-flight mass spectrometry parameters have been optimized to improve the sensitivity and to maximize the number of compounds detected. A validation of the method has also been carried out, and free and bound polar fractions of quinoa have been studied. Twenty-five compounds have been tentatively identified and quantified in the free polar fraction, while five compounds have been tentatively identified and quantified in the bound polar fraction. It is important to highlight that 1-O-galloyl-β-D-glucoside, acacetin, protocatechuic acid 4-O-glucoside, penstebioside, ethyl-m-digallate, (epi)-gallocatechin, and canthoside have been tentatively identified for the first time in quinoa. Free phenolic compounds have been found to be in the range of 2.746-3.803 g/kg of quinoa, while bound phenolic compounds were present in a concentration that varies from 0.139 and 0.164 g/kg. Indeed, saponins have been found to be in a concentration that ranged from 5.6 to 7.5% of the total composition of whole quinoa flour.

  1. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  2. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  3. Mass spectrometry imaging: Towards a lipid microscope?

    Science.gov (United States)

    Touboul, David; Brunelle, Alain; Laprévote, Olivier

    2011-01-01

    Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians. Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position. Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition. Copyright © 2010

  4. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  5. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    Science.gov (United States)

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  6. Computational mass spectrometry for small molecules

    Science.gov (United States)

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  7. Delineation of pulmonary airway fluid protein fractions with HRPO binding-avidity by far-Western ligand blot and mass spectrometry analyses: a model methodology for detecting mannose-binding protein expression profiles.

    Science.gov (United States)

    Coyne, Cody P; Rashmir-Raven, Ann; Jones, Toni; Mochal, Cathleen; Linford, Robert L; Brashier, Michael; Eddy, Alison

    2009-01-01

    Limited research to date has characterized the potential for HRPO to function as a primary molecular probe. Pulmonary airway fluid was developed by non-reducing far-Western (ligand) blot analyses utilizing conjugated HRPO-strepavidin or non-conjugated HRPO without the presence of primary immunoglobulin. Endogenous esterase-like biochemical activity of fractions within pulmonary airway fluid was inactivated to determine if they were capable of biochemically converting HRPO chemiluminescent substrate. Complementary analyses modified pulmonary fluid and HRPO with beta-galactosidase and alpha-mannosidase respectively, in addition to determining the influence of mannose and maltose competitive binding on HRPO far-Western (ligand) blot analyses. Identification of pulmonary fluid fractions detected by HRPO far-Western blot analyses was determined by mass spectrometry. Modification of pulmonary fluid with beta-galactosidase, and HRPO with alpha-mannosidase in concert with maltose and mannose competitive binding analyses altered the intensity and spectrum of pulmonary fluid fractions detected by HRPO far-Western blot analysis. Identity of pulmonary airway fluid fractions detected by HRPO far-Western (ligand) blot analysis were transferrin, dynein, albumin precursor, and two 156 kDa equine peptide fragments. HRPO can function as a partially-selective primary molecular probe when applied in either a conjugated or non-conjugated form. Some protein fractions can form complexes with HRPO through molecular mechanisms that involve physical interactions at the terminal alpha-mannose-rich regions of HRPO glycan side-chains. Based on its known molecular composition and structure, HRPO provides an opportunity for the development of diagnostics methodologies relevant to disease biomarkers that possess mannose-binding avidity.

  8. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    Baldrich, C.A

    1998-01-01

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  9. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  10. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful...

  11. Depth resolution of secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    The effect of the solid body discreteness in the direction of the normal to the sample surface on the depth resolution of the secondary ion mass spectrometry method is analyzed. It is shown that for this case the dependence of the width at the semi-height of the delta profiles of the studied elements depth distribution on the energy and angle of incidence of the initial ions should have the form of the stepwise function. This is experimentally proved by the silicon-germanium delta-layers in the silicon samples [ru

  12. Mass spectrometry investigation of magnetron sputtering discharges

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Petr; Musil, Jindřich; Lančok, Ján; Fitl, Přemysl; Novotný, Michal; Bulíř, Jiří; Vlček, Jan

    2017-01-01

    Roč. 143, č. 6 (2017), s. 438-443 ISSN 0042-207X R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA TA ČR(CZ) TA03010490; GA ČR GA17-13427S Institutional support: RVO:68378271 Keywords : mass spectrometry * atoms * radicals and ions * RF discharge * contamination * metallic films Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.530, year: 2016

  13. Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry.

    Science.gov (United States)

    Doussineau, Tristan; Mathevon, Carole; Altamura, Lucie; Vendrely, Charlotte; Dugourd, Philippe; Forge, Vincent; Antoine, Rodolphe

    2016-02-12

    Amyloid fibrils are self-assembled protein structures with important roles in biology (either pathogenic or physiological), and are attracting increasing interest in nanotechnology. However, because of their high aspect ratio and the presence of some polymorphism, that is, the possibility to adopt various structures, their characterization is challenging and basic information such as their mass is unknown. Here we show that charge-detection mass spectrometry, recently developed for large self-assembled systems such as viruses, provides such information in a straightforward manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  15. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  16. Boundaries of mass resolution in native mass spectrometry.

    Science.gov (United States)

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  17. Recent development in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Platzner, I.

    1992-01-01

    Within the limited of this review the following topics will be briefly discussed: a) Accuracy, precision, internal relative standard deviation (RISD) and external relative standard deviation (RESD) of isotope ratio measurements. With advanced instrumentation and use of standard reference materials, high accuracy and RESD = 0.002% (or better) may be achieved; b) The advantages of modern automatic isotope ratio mass spectrometer are briefly described. Computer controlled operation and data acquisition, and multiple ion collection are the recent important improvement; c) The isotopic fractionation during the course of isotope ratio measurement is considered as a major source of errors in thermal ionization of metallic elements. The phenomenon in strontium, neodymium, uranium, lead and calcium and methods to correct the measured data are discussed; d) Applications of isotope ratio mass spectrometry in atomic weight determinations, the isotope dilution technique, isotope geology, and isotope effects in biological systems are described together with specific applications in various research and technology area. (author)

  18. Radiocarbon positive-ion mass spectrometry

    International Nuclear Information System (INIS)

    Freeman, Stewart P.H.T.; Shanks, Richard P.; Donzel, Xavier; Gaubert, Gabriel

    2015-01-01

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  19. Radiocarbon positive-ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart P.H.T.; Shanks, Richard P. [Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Donzel, Xavier; Gaubert, Gabriel [Pantechnik S.A., 13 Rue de la Résistance, 14400 Bayeux (France)

    2015-10-15

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  20. Methodology for determination of activity of radionuclides by gamma spectrometry

    International Nuclear Information System (INIS)

    Fragoso, Maria da Conceicao de Farias; Oliveira, Victor Rogerio S. de; Oliveira, Mercia L.; Lima, Fernando Roberto de Andrade

    2014-01-01

    Due to the growth in the number of procedures that make use of the positron emission tomography (PET), there is a need for standard solutions for the calibration of the systems used for the measurement of the PET radiopharmaceutical (activimeter) in radiopharmacies and in nuclear medicine services. Among the existing alternatives for the standardization of radioactive sources, the method known as gamma spectrometry is widely used for short-lived radionuclides. The purpose of this study was to implement the methodology for standardization of the 18 F solutions by gamma spectrometry at the Regional Center for Nuclear Sciences of the Northeast (CRCN-NE/CNEN-NE), Brazil. (author)

  1. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  2. Lipid imaging by mass spectrometry - a review.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-03-07

    Mass spectrometry imaging (MSI) has proven to be extremely useful for applications such as the spatial analysis of peptides and proteins in biological tissue, the performance assessment of drugs in vivo or the measurement of protein or metabolite expression as tissue classifiers or biomarkers from disease versus control tissue comparisons. The most popular MSI technique is MALDI mass spectrometry. First invented by Richard Caprioli in the mid-1990s, it is the highest performing MSI technique in terms of spatial resolution, sensitivity for intact biomolecules and application range today. The unique ability to identify and spatially resolve numerous compounds simultaneously, based on m/z values has inter alia been applied to untargeted and targeted chemical mapping of biological compartments, revealing changes of physiological states, disease pathologies and metabolic faith and distribution of xenobiotics. Many MSI applications focus on lipid species because of the lipids' diverse roles as structural components of cell membranes, their function in the surfactant cycle, and their involvement as second messengers in signalling cascades of tissues and cells. This article gives a comprehensive overview of lipid imaging techniques and applications using established MALDI and SIMS methods but also other promising MSI techniques such as DESI.

  3. Impact of automation on mass spectrometry.

    Science.gov (United States)

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. [Mass spectrometry in the clinical microbiology laboratory].

    Science.gov (United States)

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  5. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  6. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  7. Mass Spectrometry for Large Undergraduate Laboratory Sections

    Science.gov (United States)

    Illies, A.; Shevlin, P. B.; Childers, G.; Peschke, M.; Tsai, J.

    1995-08-01

    Mass spectrometry is routinely covered in undergraduate organic chemistry courses and a number of valuable laboratory experiments featuring its use have been discussed (1-7). Although such experiments work well at institutions with limited laboratory enrollments, we typically teach laboratories with enrollments of 160 or more in which it is difficult to allow each student to carry out a meaningful "hands on" mass spectrometry experiment. Since we feel that some practical experience with this technique is important, we have designed a simple gas chromatography-mass spectrometry (gc/ms) exercise that allows each student to analyze the products of a simple synthesis that they have performed. The exercise starts with the microscale SN2 synthesis of 1-bromobutane from 1-butanol as described by Williamson (8). The students complete the synthesis and place one drop of the distilled product in a screw capped vial. The vials are then sealed, labeled with the students name and taken to the mass spectrometry laboratory by a teaching assistant. Students are instructed to sign up for a 20-min block of time over the next few days in order to analyze their sample. When the student arrives at the laboratory, he or she adds 1 ml CH2Cl2 to the sample and injects 0.3 microliters of the solution into the gas chromatograph. The samples typically contain the 1-butanol starting material and the 1-bromobutane product along with traces of dibutyl ether. The figure shows a mass chromatogram along with the mass spectra of the starting material and product from an actual student run. For this analysis to be applicable to large numbers of students, the gc separation must be as rapid as possible. We have been able to analyze each sample in 6 minutes on a 30 m DB-5 capillary column with the following temperature program: 70 oC for 1 min, 70-80 oC at 10 oC/min, 86-140 oC at 67.5 oC/min, 140-210 oC at 70 oC/min, and 210 oC for 1 min. A mass range of 20-200 amu is scanned with a solvent delay of 2

  8. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  9. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Bentz, B.L.; Weiss, H.; Liebl, H.

    1981-12-01

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  10. The emergence of mass spectrometry in biochemical research

    OpenAIRE

    1995-01-01

    The initial steps toward routinely applying mass spectrometry in the biochemical laboratory have been achieved. In the past, mass spectrometry was confined to the realm of small, relatively stable molecules; large or thermally labile molecules did not survive the desorption and ionization processes intact. Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allow for the analysis of both small and large biomolecules through "mild" desorption...

  11. Mass spectrometry a versatile aid to inorganic analysis

    International Nuclear Information System (INIS)

    Stefani, Rene

    1976-01-01

    Several hundred publications have appeared in the last three years that deal with applications of Mass Spectrometry to inorganic analysis. Bulk and localized trace analysis, surface and thin film characterization and microstructure examination are currently performed by Secondary Ion Mass Spectrometry, Spark Source Mass Spectrometry and the newly developed Laser Probe Mass Spectrometry. Suitable experimental procedures allow insulators, biologic materials and microsamples to be analysed. In spite of the classification by techniques this review is essentially devoted to the most significant papers in analytical applications but instrumental and basic features are sometimes introduced to support the discussions

  12. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  13. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  14. Application of Nanodiamonds in Biomolecular Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ping Cheng

    2010-03-01

    Full Text Available The combination of nanodiamond (ND with biomolecular mass spectrometry (MS makes rapid, sensitive detection of biopolymers from complex biosamples feasible. Due to its chemical inertness, optical transparency and biocompatibility, the advantage of NDs in MS study is unique. Furthermore, functionalization on the surfaces of NDs expands their application in the fields of proteomics and genomics for specific requirements greatly. This review presents methods of MS analysis based on solid phase extraction and elution on NDs and different application examples including peptide, protein, DNA, glycan and others. Owing to the quick development of nanotechnology, surface chemistry, new MS methods and the intense interest in proteomics and genomics, a huge increase of their applications in biomolecular MS analysis in the near future can be predicted.

  15. Calibration samples for accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Hershberger, R.L.; Flynn, D.S.; Gabbard, F.

    1981-01-01

    Radioactive samples with precisely known numbers of atoms are useful as calibration sources for lifetime measurements using accelerator mass spectrometry. Such samples can be obtained in two ways: either by measuring the production rate as the sample is created or by measuring the decay rate after the sample has been obtained. The latter method requires that a large sample be produced and that the decay constant be accurately known. The former method is a useful and independent alternative, especially when the decay constant is not well known. The facilities at the University of Kentucky for precision measurements of total neutron production cross sections offer a source of such calibration samples. The possibilities, while quite extensive, would be limited to the proton rich side of the line of stability because of the use of (p,n) and (α,n) reactions for sample production

  16. Subattomole sensitivity in biological accelerator mass spectrometry.

    Science.gov (United States)

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  17. Radiocarbon dating with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Blake, W. Jr.

    1985-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) has two great advantages over conventional dating: 1) much smaller samples can be handled and 2) counting time is significantly shorter. Three examples are given for Holocene-age material from east-central Ellesmere Island. The results demonstrate the potential use of this technique as a powerful research tool in studies of Quaternary chronology. Individual fragments of marine shells as small as 0.1 g have been dated successfully at the IsoTrace Laboratory, University of Toronto. In the case of an aquatic moss from a lake sediment core, an increment 0.5 cm thick could be used instead of a 5 cm-thick slice, thus allowing a much more precise estimate of the onset of organic sedimentation

  18. Analysis of barium by isotope mass spectrometry

    International Nuclear Information System (INIS)

    Long Kaiming; Jia Baoting; Liu Xuemei

    2004-01-01

    The isotopic abundance ratios for barium at sub-microgram level are analyzed by thermal surface ionization mass spectrometry (TIMS). Rhenium trips used for sample preparation are firstly treated to eliminate possible barium background interference. During the preparation of barium samples phosphoric acid is added as an emitting and stabilizing reagent. The addition of phosphoric acid increases the collection efficiency and ion current strength and stability for barium. A relative standard deviation of 0.02% for the isotopic abundance ratio of 137 Ba to 138 Ba is achieved when the 138 Ba ion current is (1-3) x 10 -12 A. The experimental results also demonstrate that the isotope fractionation effect is negligibly small in the isotopic analysis of barium

  19. Deep learning for tumor classification in imaging mass spectrometry.

    Science.gov (United States)

    Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter

    2018-04-01

    Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.

  20. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  1. Determination of ultra-low levels of uranium using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kiran Kumar, P.V.; Acharyulu, G.V.S.G.

    2015-01-01

    The determination of isotopic composition of actinides like U and Pu is important, due to their distribution in the environment as a result of nuclear weapons testing, fuel reprocessing, reactor operations and to a smaller extent from accidental releases. The analytical methods like fission track analysis (FTA), thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS) and resonance ionization mass spectrometry (RIMS) have evolved as sensitive techniques. Resonance Ionization Mass Spectrometry yields rapid isotopic signature data for material containing actinides without requiring time-consuming sample preparation and chemical separation procedures. In this paper, authors presented the details of the methodology and results for low-level detection of uranium using RIMS

  2. Liquid chromatography - mass spectrometry analysis of pharmaceuticals

    International Nuclear Information System (INIS)

    Macasek, F.

    2003-01-01

    The drugs represent mostly non-volatile and thermally labile solutes, often available only in small amounts like it is in case of radiopharmaceuticals. Therefor, the favourable separation techniques for such compounds are HPLC, capillary electrophoresis and also TLC 1. Liquid chromatography with mass spectrometric detector (LC/MS) is especially powerful for their microanalysis. Mass spectrometry separating the ions in high vacuum was presumably used as detector for gas chromatography effluent but the on-line coupling with liquid eluant flow 0.1-1 mL/min is far more challenging. New types of ion sources were constructed for simultaneous removal of solvent and ionisation of solutes at atmospheric pressure (API). At present, a relatively wide choice of successfully designed commercial equipment is available either for small organic molecules and larger biomolecules (Perkin-Elmer, Agilent, Jeol, Bruker Daltonics, ThermoQuest, Shimadzu). The features of the LC/MS systems are presented. LC/MS as a new quality control tool for [F-18]fluorodeoxyglucose (FDG) radiopharmaceutical, which has became the most spread radiopharmaceutical for positron emission tomography (PET), was proposed. Other applications of the LC/MS are reviewed. (author)

  3. Radiocarbon mass spectrometry for drug development

    International Nuclear Information System (INIS)

    Ulrich, Schulze-Konig Tim

    2011-01-01

    Full text: Radiocarbon has a huge potential as a tracer for metabolism studies in humans. By using Accelerator Mass Spectrometry (AMS) for its detection, a unique sensitivity is reached reducing required radiation doses to a negligible level. Until recently, a widespread use of AMS in biomedical research was impeded by the high complexity of the instrument, time-consuming sample preparation, and a limited availability of measurement capacity. Over the last few years, tremendous progress has been achieved in the reduction of size and complexity of AMS instruments. It allowed designing a compact AMS system, dubbed BioMICADAS to address the needs of biomedical users. For more than two years, this system is in successful operation at a commercial service provider for the pharmaceutical industry. A further drastic simplification of radiocarbon mass spectrometers seems possible and could establish a regular usage of this technology in drug development. However, to reach this goal a better integration of AMS into the workflow of bioanalytical laboratories will be necessary. For this purpose, CO 2 accepting ion sources may be a key, since they enable an almost automated sample preparation. The status of radiocarbon AMS in biomedical research and its perspective will be discussed

  4. Compressed sensing in imaging mass spectrometry

    International Nuclear Information System (INIS)

    Bartels, Andreas; Dülk, Patrick; Trede, Dennis; Alexandrov, Theodore; Maaß, Peter

    2013-01-01

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section. (paper)

  5. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  6. Ultratrace analysis of uranium and plutonium by mass spectrometry

    International Nuclear Information System (INIS)

    Wogman, N.A.; Wacker, J.F.; Olsen, K.B.; Petersen, S.L.; Farmer, O.T.; Kelley, J.M.; Eiden, G.C.; Maiti, T.C.

    2002-01-01

    Full text: Uranium and plutonium have traditionally been analyzed using alpha energy spectrometry. Both isotopic compositions and elemental abundances can be characterized on samples containing microgram to milligram quantities of uranium and nanogram to microgram quantities of plutonium. In the past ten years or so, considerable interest has developed in measuring nanograms quantities of uranium and sub-picogram quantities of plutonium in environmental samples. Such measurements require high sensitivity and as a consequence, sensitive mass spectrometric-based methods have been developed. Thus, the analysis of uranium and plutonium have gone from counting decays to counting atoms, with considerable increases in both sensitivity and precision for isotopic measurements. At the Pacific Northwest National Laboratory (PNNL), we have developed highly sensitive methods to analyze uranium and plutonium in environmental samples. The development of an ultratrace analysis capability for measuring uranium and plutonium has arisen from a need to detect and characterize environmental samples for signatures associated with nuclear industry processes. Our most sensitive well-developed methodologies employ thermal ionization mass spectrometry (TIMS), however, recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have shown considerable promise for use in detecting uranium and plutonium at ultratrace levels. The work at PNNL has included the development of both chemical separation and purification techniques, as well as the development of mass spectrometric instrumentation and techniques. At the heart of our methodology for TIMS analysis is a procedure that utilizes 100-microliter-volumes of analyte for chemical processing to purify, separate, and load actinide elements into resin beads for subsequent mass spectrometric analysis. The resin bead technique has been combined with a thorough knowledge of the physicochemistry of thermal ion emission to achieve

  7. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    van de Waterbeemd, M.J.

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  8. Statistical methods for mass spectrometry-based clinical proteomics

    NARCIS (Netherlands)

    Kakourou, A.

    2018-01-01

    The work presented in this thesis focuses on methods for the construction of diagnostic rules based on clinical mass spectrometry proteomic data. Mass spectrometry has become one of the key technologies for jointly measuring the expression of thousands of proteins in biological samples.

  9. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  10. Mass spectrometry for real-time quantitative breath analysis

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Herbig, J.; Beauchamp, J.

    2014-01-01

    Roč. 8, č. 2 (2014), 027101 ISSN 1752-7155 Institutional support: RVO:61388955 Keywords : breath analysis * proton transfer reaction mass spectrometry * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.631, year: 2014

  11. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  12. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    Science.gov (United States)

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  13. Secondary Ion Mass Spectrometry SIMS XI

    Science.gov (United States)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  14. New applications of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Davis, J.C.

    1991-01-01

    Since its invention in the late 70's, and reduction to near-routine practice by the mid-80's, accelerator mass spectrometry (AMS) has become a powerful tool for archaeological and geochemical measurements in which cosmogenic isotopes such as 10 Be, 14 C, 26 Al, 36 Cl and 129 I are used as either tracers or chronometers. The utility of such measurements is demonstrated by the fact that most accelerators having AMS capabilities have significant backlogs of samples awaiting measurement. In designing and justifying a new accelerator facility in which AMS was to be a major feature, we sought to advance the field and increase the resources available for it by two steps: (1) development of new research applications in which intentionally added isotopic labels were used rather than just naturally present ones; and (2) enhancement of spectrometer throughout, making new classes of experiments possible by greatly increasing the number of samples that could be measured in individual experiments. Results of the effort to date suggest that development of a family of very small spectrometers optimized for just tritium and/or radiocarbon will be attractive in the near future

  15. Accelerator mass spectrometry for radiocarbon dating

    International Nuclear Information System (INIS)

    Bronk, C.R.

    1987-01-01

    Accelerator mass spectrometry (AMS) has been used routinely for radiocarbon measurements for several years. This thesis describes theoretical work to understand the reasons for low accuracy and range and offers practical solutions. The production and transport of the ions used in the measurements are found to be the most crucial stages in the process. The theories behind ion production by sputtering are discussed and applied to the specific case of carbon sputtered by caesium. Experimental evidence is also examined in relation to the theories. The phenomena of space charge and lens aberrations are discussed along with the interaction between ion beams and gas molecules in the vacuum. Computer programs for calculating phase space transformations are then described; these are designed to help investigations of the effects of space charge and aberrations on AMS measurements. Calculations using these programs are discussed in relation both to measured ion beam profiles in phase space and to the current dependent transmission of ions through the Oxford radiocarbon accelerator. Improvements have been made to this accelerator and these are discussed in the context of the calculations. C - ions are produced directly from carbon dioxide at the Middleton High Intensity Sputter Source. Experiments to evaluate the performance of such a source are described and detailed design criteria established. An ion source designed and built specifically for radiocarbon measurements using carbon dioxide is described. Experiments to evaluate its performance and investigate the underlying physical processes are discussed. (author)

  16. 14C Accelerator mass spectrometry in Brazil

    International Nuclear Information System (INIS)

    Macario, K.D.; Gomes, P.R.S.; Anjos, Roberto M.; Linares, R.; Queiroz, E.A.; Oliveira, F.M.; Cardozo, L.; Carvalho, C.R.A.

    2011-01-01

    Radiocarbon Accelerator Mass Spectrometry is an ultra-sensitive technique that enables the direct measurement of carbon isotopes in samples as small as a few milligrams. The possibility of dating or tracing rare or even compound specific carbon samples has application in many fields of science such as Archaeology, Geosciences and Biomedicine. Several kinds of material such as wood, charcoal, carbonate and bone can be chemically treated and converted to graphite to be measured in the accelerator system. The Physics Institute of Universidade Federal Fluminense (UFF), in Brazil will soon be able to perform the complete 14 C-AMS measurement of samples. At the Nuclear Chronology Laboratory (LACRON) samples are prepared and converted to carbon dioxide. A stainless steel vacuum system was constructed for carbon dioxide purification and graphitization is performed in sealed tubes in a muffle oven. Graphite samples will be analyzed in a 250 kV Single Stage Accelerator produced by National Electrostatic Corporation which will be installed in the beginning of 2012. With the sample preparation laboratory at LACRON and the SSAMS system, the Physics Institute of UFF will be the first 14 C-AMS facility in Latin America. (author)

  17. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  18. Tandem mass spectrometry: analysis of complex mixtures

    International Nuclear Information System (INIS)

    Singleton, K.E.

    1985-01-01

    Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction products of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated

  19. Isotopic analysis of boron by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kakazu, M.H.; Sarkis, J.E.S.; Souza, I.M.S.

    1991-07-01

    This paper presents a methodology for isotopic analysis of boron by thermal ionization mass spectrometry technique through the ion intensity measurement of Na 2 BO + 2 in H 3 BO 3 , B o and B 4 C. The samples were loaded on single tantalum filaments by different methods. In the case of H 3 BO 3 , the method of neutralization with NaOH was used. For B 4 C the alcaline fusion with Na 2 CO 3 and for B o dissolution with 1:1 nitric sulfuric acid mixture followed by neutralization with NaOH was used. The isotopic ratio measurements were obtained by the use of s Faraday cup detector with external precision of ±0,4% and accuracy of ±0,1%, relative to H 3 BO 3 isotopic standard NBS 951. The effects of isotopic fractionation was studied in function of the time during the analyses and the different chemical forms of deposition. (author)

  20. Imaging mass spectrometry in drug development and toxicology.

    Science.gov (United States)

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  1. Complete Hexose Isomer Identification with Mass Spectrometry

    Science.gov (United States)

    Nagy, Gabe; Pohl, Nicola L. B.

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  2. Correcting mass shifts: A lock mass-free recalibration procedure for mass spectrometry imaging data

    Czech Academy of Sciences Publication Activity Database

    Kulkarni, P.; Kaftan, F.; Kynast, P.; Svatoš, Aleš; Böcker, S.

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7603-7613 ISSN 1618-2642 Institutional support: RVO:61388963 Keywords : mass spectrometry imaging * recalibration * mass shift correction * data processing Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.125, year: 2015

  3. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  4. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.

    1993-05-01

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  5. MALDI-TOF mass spectrometry for rapid diagnosis of postoperative endophthalmitis.

    Science.gov (United States)

    Mailhac, Adriane; Durand, Harmonie; Boisset, Sandrine; Maubon, Danièle; Berger, Francois; Maurin, Max; Chiquet, Christophe; Bidart, Marie

    2017-01-30

    This study describes an innovative strategy for rapid detection and identification of bacteria causing endophthalmitis, combining the use of an automated blood culture system with MALDI-TOF mass spectrometry methodology. Using this protocol, we could identify 96% of 45 bacterial strains isolated from vitreous samples collected in acute post-operative endophthalmitis patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    Science.gov (United States)

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  7. Mass spectrometry for characterizing plant cell wall polysaccharides

    Directory of Open Access Journals (Sweden)

    Stefan eBauer

    2012-03-01

    Full Text Available Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching and modifications are obtained from characteristic fragmentation patterns.

  8. [Latest development in mass spectrometry for clinical application].

    Science.gov (United States)

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  9. Proteomic Mass Spectrometry Imaging for Skin Cancer Diagnosis.

    Science.gov (United States)

    Lazova, Rossitza; Seeley, Erin H

    2017-10-01

    Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus. In the difficult area of atypical Spitzoid neoplasms, mass spectrometry diagnosis can predict clinical outcome better than histopathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. New developments in glow discharge optical emission and mass spectrometry

    International Nuclear Information System (INIS)

    Hoffmann, Volker; Dorka, Roland; Wilken, Ludger; Wetzig, Klaus

    2000-01-01

    This paper describes new developments in flow discharge optical emission (GD-OES) and mass spectrometry (GD-MS) at IFW and presents corresponding new applications (analysis of microelectronic multi-layer system by radio frequency glow discharge optical emission spectrometry (RF-GD-OES) and analysis of pure iron by a new Grimm-type GD-MS source)

  11. Mass spectrometry imaging: a novel technology in rheumatology.

    Science.gov (United States)

    Rocha, Beatriz; Ruiz-Romero, Cristina; Blanco, Francisco J

    2017-01-01

    Mass spectrometry imaging (MSI) is used to determine the relative abundance and spatial distribution of biomolecules such as peptides, proteins, lipids and other organic compounds in tissue sections by their molecular masses. This technique provides a sensitive and label-free approach for high-resolution imaging, and is currently used in an increasing number of biomedical applications such as biomarker discovery, tissue classification and drug monitoring. Owing to technological advances in the past 5 years in diverse MSI strategies, this technology is expected to become a standard tool in clinical practice and provides information complementary to that obtained using existing methods. Given that MSI is able to extract mass-spectral signatures from pathological tissue samples, this technique provides a novel platform to study joint-related tissues affected by rheumatic diseases. In rheumatology, MSI has been performed on articular cartilage, synovium and bone to increase the understanding of articular destruction and to characterize diagnostic and prognostic biomarkers for osteoarthritis, rheumatoid arthritis and osteoporosis. In this Review, we provide an overview of MSI technology and of the studies in which joint tissues have been analysed by use of this methodology. This approach might increase knowledge of rheumatic pathologies and ultimately prompt the development of targeted strategies for their management.

  12. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    Science.gov (United States)

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  13. Use of mass spectrometry for study of coordination compounds

    International Nuclear Information System (INIS)

    Gehrbehlehu, N.V.; Indrichan, K.M.

    1981-01-01

    A review on mass-spectrometry of coordination compounds including the works published up to 1979 inclusive is provided. Mainly the products of metals with bi- and tetradentate ligands are considered using the method. Mo and Be carboxylates for which molecular ions lines are found in mass-spectra are studied. The study of mass-spectra for VO chelates with thiosemicarbazone of salicyl aldehyde is carried out. Application of the mass-spectrometry method permits to establish the mass of coordination compounds, the structure of complexes, dentate structure and the way of ligand coordination, the bond strength [ru

  14. The allure of mass spectrometry: From an earlyday chemist's perspective.

    Science.gov (United States)

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high

  15. Microbial metabolomics with gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Koek, M.M.; Muilwijk, B.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with

  16. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    Science.gov (United States)

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  17. Analytical strategies in mass spectrometry-based phosphoproteomics

    DEFF Research Database (Denmark)

    Rosenqvist, Heidi; Ye, Juanying; Jensen, Ole N

    2011-01-01

    then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large...

  18. Biomarker discovery in high grade sarcomas by mass spectrometry imaging

    OpenAIRE

    Lou, S.

    2017-01-01

    This thesis demonstrates a detailed biomarker discovery Mass Spectrometry Imaging workflow for histologically heterogeneous high grade sarcomas. Panels of protein and metabolite signatures were discovered either distinguishing different histological subtypes or stratifying high risk patients with poor survival.

  19. A theory of stable-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Pickup, J.F.; McPherson, C.K.

    1977-01-01

    In order to perform quantitative analysis using stable isotope dilution with mass spectrometry, an equation is derived which describes the relationship between the relative proportions of natural and labelled material and measured isotope ratios

  20. 13th International Mass Spectrometry Conference. Book of Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.)

  1. OBT measurement of vegetation by mass spectrometry and radiometry

    International Nuclear Information System (INIS)

    Tamari, T.; Kakiuchi, H.; Momoshima, N.; Sugihara, S.; Baglan, N.; Uda, T.

    2011-01-01

    We carried out OBT (organically bound tritium) measurement by two different methods those are radiometry and mass spectrometry and compared the applicability of these methods for environmental tritium analysis. The dried grass sample was used for the experiments. To eliminate the exchangeable OBT, the sample was washed with tritium free water before analysis. Three times washing reduced the tritium activity in the labile sites below the detectable level. In radiometry the sample was combusted to convert the OBT as well as other hydrogen isotopes to. water and tritium activity in the water was measured by liquid scintillation counting (LSC). In mass spectrometry, the sample was kept in a glass container and 3 He produced by tritium decay was measured by mass spectrometry. The results were in good agreement suggesting applicability of these methods for environmental tritium analysis. The mass spectrometry is more suitable for environmental tritium research because of a lower detection limit than that of the LSC. (authors)

  2. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  3. Recent applications of mass spectrometry in forensic toxicology

    Science.gov (United States)

    Foltz, Rodger L.

    1992-09-01

    This review encompasses applications of mass spectrometry reported during the years 1989, 1990 and 1991 for the analysis of cannabinoids, cocaine, opiates, amphetamines, lysergic acid diethylamide (LSD), and their metabolites in physiological specimens.

  4. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  5. 13th International Mass Spectrometry Conference. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The collection contains abstracts of several hundred papers presented at the international conference on new research and development results and applications of mass spectrometry. Abstracts falling into the INIS scope were indexed separately in the INIS database. (Roboz, P.).

  6. Gas Chromatography Mass Spectrometry of Quassia undulata Seed ...

    African Journals Online (AJOL)

    Prof. Ogunji

    The use of gas chromatography mass spectrometry (GC MS) as a sensitive and specific technique ... cold flow properties and stability of the fuel to oxidation, peroxidation and polymerization .... determinants of both the physical and chemical ...

  7. Practical aspects and trends in analytical organic mass spectrometry

    International Nuclear Information System (INIS)

    Schlunegger, U.P.

    1981-01-01

    Proceeding from the fundamentals of mass spectrometry (MS), some more recent developments of analytical organic MS are shown in comparison with conventional MS. Sections are headed: the vacuum, production of ions in the mass spectrometer, ions in the analyzer of a mass spectrometer, general considerations, practice of modern MS: selected examples

  8. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  9. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  10. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  11. DNA adducts: Mass spectrometry methods and future prospects

    International Nuclear Information System (INIS)

    Farmer, P.B.; Brown, K.; Tompkins, E.; Emms, V.L.; Jones, D.J.L.; Singh, R.; Phillips, D.H.

    2005-01-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of this technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10 12 nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [ 14 C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [ 14 C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing 32 P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens

  12. Microbial proteomics: a mass spectrometry primer for biologists

    Directory of Open Access Journals (Sweden)

    Graham Ciaren

    2007-08-01

    Full Text Available Abstract It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level. In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.

  13. New approaches for metabolomics by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos [George Washington Univ., Washington, DC (United States)

    2017-07-10

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites do not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  14. The use of mass spectrometry to analyze dried blood spots.

    Science.gov (United States)

    Wagner, Michel; Tonoli, David; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to

  15. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  16. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    Science.gov (United States)

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  17. Data recording and processing in mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McKown, H. [International Atomic Energy Agency, Vienna (Austria)

    1978-12-15

    When a mass spectrometer is going to be obtained, it must be specified to do a particular task. It follows that the data recording system must be designed to work satisfactorily with hardware that produces the ion current or currents. The author describes two systems: the AVCO mass spectrometer and the tandem mass spectrometer.

  18. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  19. AM1 and electron impact mass spectrometry study of the ...

    African Journals Online (AJOL)

    Recently, in electron impact mass spectrometry (EIMS), it has been found a good correlation between the fragmentation processes of coumarins and the electronic charges of the atoms of their skeleton. In this paper, the same analytical method has been applied to 4-acyl isochroman-1,3-diones, whose mass spectra had ...

  20. A Review of the Emerging Field of Underwater Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Emily Chua

    2016-11-01

    Full Text Available Mass spectrometers are versatile sensor systems, owing to their high sensitivity and ability to simultaneously measure multiple chemical species. Over the last two decades, traditional laboratory-based membrane inlet mass spectrometers have been adapted for underwater use. Underwater mass spectrometry has drastically improved our capability to monitor a broad suite of gaseous compounds (e.g., dissolved atmospheric gases, light hydrocarbons, and volatile organic compounds in the aquatic environment. Here we provide an overview of the progress made in the field of underwater mass spectrometry since its inception in the 1990s to the present. In particular, we discuss the approaches undertaken by various research groups in developing in situ mass spectrometers. We also provide examples to illustrate how underwater mass spectrometers have been used in the field. Finally, we present future trends in the field of in situ mass spectrometry. Most of these efforts are aimed at improving the quality and spatial and temporal scales of chemical measurements in the ocean. By providing up-to-date information on underwater mass spectrometry, this review offers guidance for researchers interested in adapting this technology as well as goals for future progress in the field.

  1. Plutonium determination in urine by techniques of mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez M, H.; Yllera de Ll, A.

    2013-10-01

    The objective of this study was to develop an analytic method for quantification and plutonium reappraisal in plane tables of alpha spectrometry be means of the mass spectrometry technique of high resolution with plasma source inductively coupled and desolvator Aridus (Aridus-Hr-Icp-Ms) and mass spectrometry with accelerator (AMS). The obtained results were, the recovery percentage of Pu in the plane table was of ∼ 90% and activity minimum detectable obtained with Aridus-Hr-Icp-Ms and AMS was of ∼ 3 and ∼ 0.4 f g of 239 Pu, respectively. Conclusion, the results demonstrate the aptitude of the Aridus-Hr-Icp-Ms and AMS techniques in the Pu reappraisal in plane tables with bigger speed and precision, improving the values notably of the activity minimum detectable that can be obtained with the alpha spectrometry (∼ 50 f g of 239 Pu). (author)

  2. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters.

    Science.gov (United States)

    Gros, Meritxell; Petrović, Mira; Barceló, Damiá

    2006-11-15

    This paper describes development, optimization and validation of a method for the simultaneous determination of 29 multi-class pharmaceuticals using off line solid phase extraction (SPE) followed by liquid chromatography-triple quadrupole mass spectrometry (LC-MS-MS). Target compounds include analgesics and non-steroidal anti-inflammatories (NSAIDs), lipid regulators, psychiatric drugs, anti-histaminics, anti-ulcer agent, antibiotics and beta-blockers. Recoveries obtained were generally higher than 60% for both surface and wastewaters, with exception of several compounds that yielded lower, but still acceptable recoveries: ranitidine (50%), sotalol (50%), famotidine (50%) and mevastatin (34%). The overall variability of the method was below 15%, for all compounds and all tested matrices. Method detection limits (MDL) varied between 1 and 30ng/L and from 3 to 160ng/L for surface and wastewaters, respectively. The precision of the method, calculated as relative standard deviation (R.S.D.), ranged from 0.2 to 6% and from 1 to 11% for inter and intra-day analysis, respectively. A detailed study of matrix effects was performed in order to evaluate the suitability of different calibration approaches (matrix-matched external calibration, internal calibration, extract dilution) to reduce analyte suppression or enhancement during instrumental analysis. The main advantages and drawbacks of each approach are demonstrated, justifying the selection of internal standard calibration as the most suitable approach for our study. The developed analytical method was successfully applied to the analysis of pharmaceutical residues in WWTP influents and effluents, as well as in river water. For both, river and wastewaters, the most ubiquitous compounds belonged to the group of anti-inflammatories and analgesics, antibiotics, the lipid regulators being acetaminophen, trimethoprim, ibuprofen, ketoprofen, atenolol, propranolol, mevastatin, carbamazepine and ranitidine the most frequently

  3. Continued development of an atmospheric monitoring mass spectrometry system - task 2.2. Topical report, January 1, 1995 - December 31, 1995

    International Nuclear Information System (INIS)

    King, F.L.

    1998-01-01

    The objective of this project was the development of a mass spectrometric methodology applicable to the field determination of Volatile Organic Compounds (VOC's), such as BTEX components (Benzene, Toluene, Ethylbenzene, and Xylenes). A combination of chemical ionization, selective ion storage, and tandem mass spectrometry was planned to be employed with an ion trap mass spectrometry system. The Gas Chromatography Mass Spectrometry (GC-MS) interface on the ion trap system was modified to permit direct atmospheric monitoring. Through the use of tandem mass spectrometry methods the need for chromatographic separation would be eliminated reducing the overall size and complexity of the system

  4. Knudsen effusion mass spectrometry. Chapter 20

    International Nuclear Information System (INIS)

    Sai Baba, M.

    1997-01-01

    The Knudsen effusion mass spectrometric method for the determination of vapour pressures and thermodynamic properties is described. The aim of the article is to give a general introduction to the method rather than to give a critical review of the technique. The latest developments in this area of research are reviewed by the peers in the field during the triennial international mass spectrometric conferences. The Knudsen effusion mass spectrometric method is being applied for thermodynamic measurements. In recent times, laser vaporisation mass spectrometric methods have emerged as a source of determination of vapour pressures at very high temperatures and beyond the pressure regime far exceeding Knudsen effusion range

  5. Improving methodological aspects of the analysis of five regulated haloacetic acids in water samples by solid-phase extraction, ion-pair liquid chromatography and electrospray tandem mass spectrometry.

    Science.gov (United States)

    Prieto-Blanco, M C; Alpendurada, M F; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D; Machado, S; Gonçalves, C

    2012-05-30

    Haloacetic acids (HAAs) are organic pollutants originated from the drinking water disinfection process, which ought to be controlled and minimized. In this work a method for monitoring haloacetic acids (HAAs) in water samples is proposed, which can be used in quality control laboratories using the techniques most frequently available. Among its main advantages we may highlight its automated character, including minimal steps of sample preparation, and above all, its improved selectivity and sensitivity in the analysis of real samples. Five haloacetic acids (HAA5) were analyzed using solid-phase extraction (SPE) combined with ion-pair liquid chromatography and tandem mass spectrometry. For the optimization of the chromatographic separation, two amines (triethylamine, TEA and dibutylamine, DBA) as ion pair reagents were compared, and a better selectivity and sensitivity was obtained using DBA, especially for monohaloacetic acids. SPE conditions were optimized using different polymeric adsorbents. The electrospray source parameters were studied for maximum precursor ion accumulation, while the collision cell energy of the triple quadrupole mass spectrometer was adjusted for optimum fragmentation. Precursor ions detected were deprotonated, dimeric and decarboxylated ions. The major product ions formed were: ionized halogen atom (chloride and bromide) and decarboxylated ions. After enrichment of the HAAs in Lichrolut EN adsorbent, the limits of detection obtained by LC-MS/MS analysis (between 0.04 and 0.3 ng mL(-1)) were comparable to those obtained by GC-MS after derivatization. Linearity with good correlation coefficients was obtained over two orders of magnitude irrespective of the compound. Adequate recoveries were achieved (60-102%), and the repeatability and intermediate precision were in the range of 2.4-6.6% and 3.8-14.8%, respectively. In order to demonstrate the usefulness of the method for routine HAAs monitoring, different types of water samples were

  6. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  7. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  8. Improving tritium exposure reconstructions using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Love, A.H.; Hunt, J.R.; Vogel, J.S.; Knezovich, J.P.

    2004-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. (orig.)

  9. [Application of Imaging Mass Spectrometry for Drug Discovery].

    Science.gov (United States)

    Hayasaka, Takahiro

    2016-01-01

    Imaging mass spectrometry (IMS) can reveal the distribution of biomolecules on tissue sections. In this process, the biomolecules are directly ionized within tissue sections using matrix-assisted laser desorption/ionization, and then their distribution is visualized by pseudo-color based on the relative signal intensity. The biomolecules, such as fatty acids, phospholipids, glycolipids, peptides, proteins, and neurotransmitters, have been analyzed at a spatial resolution of 5 μm. A special instrument for IMS analysis was developed by Shimadzu. The IMS analysis does not require the labeling of biomolecules and is capable of analyzing all the ionized biomolecules. Interest in this method has expanded to many research fields, including biology, agriculture, medicine, and pharmacology. The technique is especially relevant to the drug discovery process. As practiced currently, drug discovery is expensive and time consuming, requiring the preparation of probes for each drug and its metabolites, followed by systematic probe tracking in animal models. The IMS technique is expected to overcome these drawbacks by revealing the distribution of drugs and their metabolites using only a single analysis. In this symposium, I introduced the methodology and applications of IMS and discussed the feasibility of its application to drug discovery in the near future.

  10. Improving tritium exposure reconstructions using accelerator mass spectrometry

    Science.gov (United States)

    Hunt, J. R.; Vogel, J. S.; Knezovich, J. P.

    2010-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. PMID:14735274

  11. Proceedings of twelfth ISMAS symposium cum workshop on mass spectrometry

    International Nuclear Information System (INIS)

    Alamelu, D.; Jaison, P.G.; Aggarwal, S.K.

    2007-03-01

    Mass Spectrometry is an important analytical tool and has encompassed almost all branches of science and technology including Agricultural, biology, Chemistry, Earth sciences, environment, Forensic Science, Medical Sciences, Hydrology, Nuclear Technology, Oceanography, Physics etc. Recent advancements in the instrumentation of Mass Spectrometry have further strengthened its role for various applications. It is indeed a matter of great pleasure to present this special Issue of ISMAS Bulletin which is brought out on the occasion of the 12th ISMAS Symposium cum Workshop on Mass spectrometry (12th ISMAS-WS 2007) being held at Cidade-de-Goa, Dona Paula, Goa from March 25 to 30, 2007 in association with National Institute of Oceanography, Goa. This Symposium cum Workshop is co-sponsored by Scientific Departments of Government of India. Papers relevant to INIS are indexed separately

  12. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis

    International Nuclear Information System (INIS)

    Meija, Juris; Mester, Zoltan

    2008-01-01

    Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method

  13. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  14. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  15. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  16. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  17. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  18. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    Doerfler, D.L.; Rosenblum, E.R.; Malloy, J.M.; Naworal, J.D.; McManus, I.R.; Campbell, I.M.

    1980-01-01

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[ 14 C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  19. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    Science.gov (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  20. Issues and opportunities in accelerator mass spectrometry for stable isotopes.

    Science.gov (United States)

    Matteson, Sam

    2008-01-01

    Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development. Copyright 2008 Wiley Periodicals, Inc.

  1. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    OpenAIRE

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2012-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter 1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution 3,4 . Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division ch...

  2. Major roles for minor bacterial lipids identified by mass spectrometry.

    Science.gov (United States)

    Garrett, Teresa A

    2017-11-01

    Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Identifying modifications in RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Douthwaite, Stephen; Kirpekar, Finn

    2007-01-01

    as RNA modifications added in cell-free in vitro systems. MALDI-MS is particularly useful in cases in which other techniques such as those involving primer extension or chromatographic analyses are not practicable. To date, MALDI-MS has been used to localize rRNA modifications that are involved......Posttranscriptional modifications on the base or sugar of ribonucleosides generally result in mass increases that can be measured by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a direct and accurate means of determining the masses of RNAs. Mass...... spectra produced by MALDI are relatively straightforward to interpret, because they are dominated by singly charged ions, making it possible to analyze complex mixtures of RNA oligonucleotides ranging from trinucleotides up to 20-mers. Analysis of modifications within much longer RNAs, such as ribosomal...

  4. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies.

    Science.gov (United States)

    Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E

    2012-06-05

    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.

  5. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    International Nuclear Information System (INIS)

    Manard, Manuel J.; Weeks, Stephan; Kyle, Kevin

    2010-01-01

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  6. Rapid species diagnosis for invasive candidiasis using mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Carine Marinach-Patrice

    Full Text Available BACKGROUND: Matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF-MS allows the identification of most bacteria and an increasing number of fungi. The potential for the highest clinical benefit of such methods would be in severe acute infections that require prompt treatment adapted to the infecting species. Our objective was to determine whether yeasts could be identified directly from a positive blood culture, avoiding the 1-3 days subculture step currently required before any therapeutic adjustments can be made. METHODOLOGY/PRINCIPAL FINDINGS: Using human blood spiked with Candida albicans to simulate blood cultures, we optimized protocols to obtain MALDI TOF-MS fingerprints where signals from blood proteins are reduced. Simulated cultures elaborated using a set of 12 strains belonging to 6 different species were then tested. Quantifiable spectral differences in the 5000-7400 Da mass range allowed to discriminate between these species and to build a reference database. The validation of the method and the statistical approach to spectral analysis were conducted using individual simulated blood cultures of 36 additional strains (six for each species. Correct identification of the species of these strains was obtained. CONCLUSIONS/SIGNIFICANCE: Direct MALDI TOF-MS analysis of aliquots from positive blood cultures allowed rapid and accurate identification of the main Candida species, thus obviating the need for sub-culturing on specific media. Subsequent to this proof-of-principle demonstration, the method can be extended to other clinically relevant yeast species, and applied to an adequate number of clinical samples in order to establish its potential to improve antimicrobial management of patients with fungemia.

  7. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  8. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  9. Elucidating rhizosphere processes by mass spectrometry – A review

    Energy Technology Data Exchange (ETDEWEB)

    Rugova, Ariana [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Puschenreiter, Markus [Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria); Koellensperger, Gunda [Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna (Austria); Hann, Stephan, E-mail: stephan.hann@boku.ac.at [Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences-BOKU, Vienna (Austria)

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification

  10. Elucidating rhizosphere processes by mass spectrometry – A review

    International Nuclear Information System (INIS)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-01-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. - Highlights: • State-of-the-art mass spectrometry methods developed and applied in rhizosphere research are reviewed. • Elemental and molecular mass spectrometry emphasizing different separation techniques (GC, LC or CE) are discussed. • Case studies on metal detoxification and

  11. Principles of isotopic analysis by mass spectrometry

    International Nuclear Information System (INIS)

    Herrmann, M.

    1980-01-01

    The use of magnetic sector field mass spectrometers in isotopic analysis, especially for nitrogen gas, is outlined. Two measuring methods are pointed out: the scanning mode for significantly enriched samples and the double collector method for samples near the natural abundance of 15 N. The calculation formulas are derived and advice is given for corrections. (author)

  12. A New Accelerator-Based Mass Spectrometry.

    Science.gov (United States)

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  13. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.

  14. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    Science.gov (United States)

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  15. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  16. Trace amount analysis using spark mass spectrometry

    International Nuclear Information System (INIS)

    Stefani, Rene

    1975-01-01

    Characteristics of spark mass spectrometers (ion source, properties of the ion beam, ion optics, and performance) and their use in qualitative and quantitative analysis are described. This technique is very interesting for the semi-quantitative analysis of trace amounts, down to 10 -8 atoms. Examples of applications such as the analysis of high purity materials and non-conducting mineral samples, and determination of carbon and gas trace amounts are presented. (50 references) [fr

  17. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  18. Total evaporation in thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Callis, E.L.; Cappis, J.H.

    1996-01-01

    Experiments were conducted to assess the effects of impurities on the total evaporation method for mass spectrometric measurement of the isotope ratio of uranium. Standard samples were spiked with Na, Ca, Fe, Zr and Ba. The results indicated that only Fe, and possible Na, displayed any interference, and then only at high concentrations. One problem limiting the accuracy of the method is the determination of the relative efficiency of the collectors in the multicollector system. 3 refs., 1 tab

  19. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  20. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  1. Calcium Isotope Analysis by Mass Spectrometry

    Science.gov (United States)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  2. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    Bayne, C.K.

    1996-11-01

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10 -17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included

  3. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  4. Absorption Mode FT-ICR Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O' Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  5. The combined measurement of uranium by alpha spectrometry and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Harvan, D.

    2009-01-01

    The aim of thesis was to found the dependence between radiometric method - alpha spectrometry and surface sensitive method - Secondary Ion Mass Spectrometry (SIMS). Uranium or naturally occurring uranium isotopes were studied. Samples (high polished stainless steel discs) with uranium isotopes were prepared by electrodeposition. Samples were measured by alpha spectrometry after electrodeposition and treatment. It gives surface activities. Weights, as well as surface's weights of uranium isotopes were calculated from their activities, After alpha spectrometry samples were analyzed by TOF-SIMS IV instrument in International Laser Centre in Bratislava. By the SIMS analysis intensities of uranium-238 were obtained. The interpretation of SIMS intensities vs. surface activity, or surface's weights of uranium isotopes indicates the possibility to use SIMS in quantitative analysis of surface contamination by uranium isotopes, especially 238 U. (author)

  6. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    Science.gov (United States)

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  7. Role of mass spectrometry in nuclear forensic science

    International Nuclear Information System (INIS)

    Joseph, M.; Sivaraman, N.

    2016-01-01

    The present talk will focus on the role of mass spectrometry in NFS in general; besides that, the various chromatographic methods developed towards separation of actinides and lanthanide fission products and characterization of dissolver solutions of nuclear reactor fuels using TIMS and some applications of using ICP-MS as well

  8. Identification of Secreted Candida Proteins Using Mass Spectrometry

    NARCIS (Netherlands)

    Gómez-Molero, E.; Dekker, H.L.; de Boer, A.D.; de Groot, P.W.; Calderone, R.; Cihlar, R.

    2016-01-01

    Analysis of fungal secretomes using mass spectrometry is a useful technique in cell biology. Knowledge of the secretome of a human fungal pathogen may yield important information of host-pathogen interactions and may be useful for identifying vaccines candidates or diagnostic markers for antifungal

  9. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  10. Biomedical applications of mass spectrometry. Clinical uses of stable isotopes

    International Nuclear Information System (INIS)

    Krahmer, U.I.; McCloskey, J.A.

    1978-01-01

    The review covers typical or important examples of stable isotope usage in clinical fields during the period since the last triennial mass spectrometry conference in 1973. Items are included which involve uses of stable isotopes in human or clinically oriented studies, including measurements carried out on materials of human origin. 163 references. (U.K.)

  11. Recent research and progress of laser mass spectrometry

    International Nuclear Information System (INIS)

    Li Jinying; Wang Fan; Zhao Yonggang; Xiao Guoping; Guo Dongfa; Cui Haiping

    2012-01-01

    The progress of laser mass spectrometry (LMS) was introduced. Its history and principle characteristics were reviewed. The research and applications of LMS in geology, mining, organics, biochemistry, environment and nuclear industry were given. The trend of LMS in the future was outlined, and the main issue and the available solutions were discussed. (authors)

  12. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    of ubiquitylation is a two-fold challenge that involves the mapping of ubiquitylation sites and the determination of ubiquitin chain topology. This review focuses on the technical advances in the mass spectrometry-based characterization of ubiquitylation sites, which have recently involved the large...

  13. The use of mass spectrometry in peptide chemistry

    NARCIS (Netherlands)

    Leclercq, P.A.; White, P.A.; Hägele, K.; Desiderio, D.M.; Meienhofer, J.

    1972-01-01

    A review with 16 refs. Methods are detailed for derivatizing peptides (mg quantities) in order to provide sufficient volatility for mass spectrometry (at least 10-5 mm vapor pressure at 300 Deg is required). Three steps are used in producing the desired derivs.: (a) arginine side chains are

  14. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  15. Fusion of mass spectrometry-based metabolomics data

    NARCIS (Netherlands)

    Smilde, Age K.; van der Werf, Mariët J.; Bijlsma, Sabina; van der Werff-van der Vat, Bianca J. C.; Jellema, Renger H.

    2005-01-01

    A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or

  16. Discovery based and targeted Mass Spectrometry in farm animal proteomics

    DEFF Research Database (Denmark)

    Bendixen, Emøke

    2013-01-01

    for investigating farm animal biology. SRM is particularly important for validation biomarker candidates This talk will introduce the use of different mass spectrometry approaches through examples related to food quality and animal welfare, including studies of gut health in pigs, host pathogen interactions...

  17. Thermal ionisation mass spectrometry: recent developments and future prospects

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    1996-01-01

    This paper presents the current state of art of thermal ionization mass spectrometry (TIMS) instrumentation and highlights some of the recent applications of TIMS in geological, biological and nuclear sciences with special emphasis on some of the recent work undertaken in the area of nuclear science and technology. A few examples from the published literature are also discussed here

  18. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  19. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  20. Mass Spectrometry Imaging for the Classification of Tumor Tissue

    NARCIS (Netherlands)

    Mascini, N.E.

    2016-01-01

    Mass spectrometry imaging (MSI) can detect and identify many different molecules without the need for labeling. In addition, it can provide their spatial distributions as ‘molecular maps’. These features make MSI well suited for studying the molecular makeup of tumor tissue. Currently, there is an

  1. Applications of accelerator mass spectrometry: advances and innovation

    International Nuclear Information System (INIS)

    Fifield, L.K.

    2004-01-01

    Emerging trends in the applications of accelerator mass spectrometry (AMS) are identified and illustrated with specific examples. Areas of application covered include rapid landscape evolution, calibration of the radiocarbon time scale, compound-specific radiocarbon studies, tracing of nuclear discharges, and searches for extraterrestrial isotopes

  2. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Welker (Martin); M. Erhard (Marcel); S. Chatellier (Sonia)

    2012-01-01

    textabstractClinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been

  3. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  4. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms

    International Nuclear Information System (INIS)

    1999-01-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  5. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    NARCIS (Netherlands)

    Ridder, L.O.; Hooft, van der J.J.J.; Verhoeven, S.

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS

  6. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  7. Molecular mass spectrometry imaging in biomedical and life science research

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Strohalm, Martin; Havlíček, Vladimír; Volný, Michael

    2010-01-01

    Roč. 134, č. 5 (2010), s. 423-443 ISSN 0948-6143 R&D Projects: GA MŠk LC545; GA ČR GPP206/10/P018 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Chemical imaging * Molecular imaging Subject RIV: EE - Microbiology, Virology Impact factor: 4.727, year: 2010

  8. 14 C dating by using mass spectrometry with particle accelerator

    International Nuclear Information System (INIS)

    Santos, G.M.; Gomes, P.R.S.; Yokoyama, Y.; Tada, M.L. di; Cresswell, R.G.; Fifield, L.K.

    1999-01-01

    The different aspects concerning the 14 C dating are described, including the cosmogenic origin of 14 C, its production and absorption by matter, the procedures to be followed for the age determination and the associated errors, particularly by the Accelerator Mass Spectrometry (AMS) technique, and the different steps of the sample preparation process. (author)

  9. Dynamic Secondary Ion Mass Spectrometry | Materials Science | NREL

    Science.gov (United States)

    Ion Mass Spectrometry (SIMS) uses a continuous, focused beam of primary ions to remove material from the surface of a sample by sputtering. The fraction of sputtered material that is ionized is extracted Identifies all elements or isotopes present in a material, from hydrogen to uranium. Different primary-ion

  10. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  11. Mass spectrometry with ionization induced by 252Cf fission fragments

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Artaev, V.B.

    1991-01-01

    The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface

  12. Mass spectrometry of submicrogram quantities of lead and cadmium

    International Nuclear Information System (INIS)

    Moraes, Noemia M.P. de; Kakazu, M.H.; Iyer, S.S.

    1980-01-01

    Isotope analyses of submicrogram quantities of lead and cadmium are carried out by single filament solid source mass spectrometry. Thermionic emission of Pb and Cd is enhanced using silica gel as an emitter. Details of the chemical and mass spectrometric techniques are described. The low blank levels are maintained by extra purification of the reagents. The applications of isotope ratios of Pb and Cd in environmental sciences and geochemistry are discussed. (Author) [pt

  13. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    DEFF Research Database (Denmark)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias

    2016-01-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid o......-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health. Graphical Abstract ᅟ....

  14. Focusing procedures in time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ioanoviciu, D.

    2002-01-01

    Time-of-flight mass spectrometry is a fast growing field due to its ability to handle very fast processes and due to its theoretically unlimited mass range. The performances of the time-of-flight mass analysers are heavily dependent on the progress in ion optics, a periodically reviewed field. In this presentation the various focusing procedures in time-of-flight mass spectrometry are reviewed. For ions of the same charge and mass flight time differences result from different potentials at the location of formation and from the initial velocity spread. There is no simultaneous space and velocity focusing in time-of-flight mass spectrometry. Space focusing of first and second order can be reached in time-of-flight mass analysers having two homogeneous electric field ion sources followed by a field free space in front of the detector. Single and double stage homogeneous electric field mirrors can focus in time ions of different energies. These different energies result when ions leaving different initial sites and arriving simultaneously to an intermediate space focus. Convenient mass dispersion can be obtained by including a mirror. Initial velocity focusing is obtained by the delayed extraction procedure in drift space and mirror time-of-flight mass analysers. Post source pulse focusing aims at the same purpose. Ion source electrodes of hyperbolic shape, operated by high voltage pulses can bring major improvements of the resolution, especially at high masses. For each focusing procedure the geometric and/or electric conditions are given as well as the aberrations allowing the mass resolution determination. The various focusing procedures are compared and a prediction of their future performances was tempted. (author)

  15. Mass spectrometry of fluorocarbon-labeled glycosphingolipids

    DEFF Research Database (Denmark)

    Li, Yunsen; Arigi, Emma; Eichert, Heather

    2010-01-01

    ceramide N-deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon-rich substituent (F-Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb(3)Cer), three purified bovine brain gangliosides...... with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application...

  16. Automated Intelligent Assistant for mass spectrometry operation

    International Nuclear Information System (INIS)

    Filby, E.E.; Rankin, R.A.; Yoshida, D.E.

    1991-01-01

    The Automated Intelligent Assistant is designed to insure that our mass spectrometers produce timely, high-quality measurement data. The design combines instrument interfacing and expert system technology to automate an adaptable set-point damage prevention strategy. When shutdowns occur, the Assistant can help guide troubleshooting efforts. Stored real-time data will help our development program upgrade and improve the system, and also make it possible to re-run previously-observed instrument problems as ''live'' training exercises for the instrument operators. Initial work has focused on implementing the Assistant for the instrument ultra-high vacuum components. 14 refs., 5 figs

  17. Mass spectrometry applied to high temperature chemistry, (2)

    International Nuclear Information System (INIS)

    Asano, Mitsuru; Kato, Eiichi; Sata, Toshiyuki.

    1980-01-01

    The application of mass spectrometry to high temperature chemistry is reviewed. As a blanket material for fusion reactors, the behavior of lithium has been investigated by using mass analysers. The enthalpies of the chemical reactions of metallic lithium were obtained. The enthalpies of isomolecular exchange reactions and the derived atomization energies of LiD, Li 2 D and Li 2 D 2 were also obtained by mass spectrometry. The thermomechanical character of lithium oxide was studied. The vaporization behaviors of LiCrO 2 and Li 5 FeO 4 were studied with a quadrupole mass analyser. The vaporization of cobalt from nickel alloy was studied. The evaporated ions were analysed with a mass analyser. The measurement of the vaporized molecules of metals and fused silicate was made by mass spectrometry. The activities of Fe-V system were determined by measuring the ion current ratio. The activities of Fe-V-Cr system were also obtained. The vapor pressure of phosphor from Fe-P alloys can be measured. The activity coefficients and interaction parameters for the dilute solutions of elements, such as Mn, Al, Cu, Cr, Co, Ni, Si, Ti, V, B, Zr, Mo, C, S, and P, dissolved in liquid iron are shown in a table. The activities of NaCl-KCl system were derived by measuring the ion current ratio and by monomer-dimer method. (Kato, T.)

  18. Application of Laser Mass Spectrometry to Art and Archaeology

    Science.gov (United States)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  19. Principles and applications of a research-oriented gas chromatography-mass spectrometry data system

    International Nuclear Information System (INIS)

    Campana, J.E.; Risby, T.H.; Jurs, P.C.

    1979-01-01

    A research-oriented gas chromatography-mass spectrometry data system for a quadrupole mass spectrometer has been developed based on a centrally located departmental computer facility. An overview of the hardware and software system is presented, emphasizing the important aspects of on-line computer data acquisition and control and the design philosophy used in the development of the system. The application of the system is demonstrated by the g.c.-m.s. analysis of a mixture of four transition metal β-diketonates (Al, Cr, Rh, and Ru tris-1,1,1-trifluoro-pentane-2,4-dionate). This anaysis involved vacuum gas chromatography with a support-coated open tubular column and detection of the eluent by chemical ionization mass spectrometry. The results demonstrate the data system capabilities and indicate the utility of the combined methodologies. (Auth.)

  20. Liquid chromatography-mass spectrometry in forensic toxicology.

    Science.gov (United States)

    Van Bocxlaer, J F; Clauwaert, K M; Lambert, W E; Deforce, D L; Van den Eeckhout, E G; De Leenheer, A P

    2000-01-01

    Liquid chromatography-mass spectrometry has evolved from a topic of mainly research interest into a routinely usable tool in various application fields. With the advent of new ionization approaches, especially atmospheric pressure, the technique has established itself firmly in many areas of research. Although many applications prove that LC-MS is a valuable complementary analytical tool to GC-MS and has the potential to largely extend the application field of mass spectrometry to hitherto "MS-phobic" molecules, we must recognize that the use of LC-MS in forensic toxicology remains relatively rare. This rarity is all the more surprising because forensic toxicologists find themselves often confronted with the daunting task of actually searching for evidence materials on a scientific basis without any indication of the direction in which to search. Through the years, mass spectrometry, mainly in the GC-MS form, has gained a leading role in the way such quandaries are tackled. The advent of robust, bioanalytically compatible combinations of liquid chromatographic separation with mass spectrometric detection really opens new perspectives in terms of mass spectrometric identification of difficult molecules (e.g., polar metabolites) or biopolymers with toxicological relevance, high throughput, and versatility. Of course, analytical toxicologists are generally mass spectrometry users rather than mass spectrometrists, and this difference certainly explains the slow start of LC-MS in this field. Nevertheless, some valuable applications have been published, and it seems that the introduction of the more universal atmospheric pressure ionization interfaces really has boosted interests. This review presents an overview of what has been realized in forensic toxicological LC-MS. After a short introduction into LC-MS interfacing operational characteristics (or limitations), it covers applications that range from illicit drugs to often abused prescription medicines and some

  1. Photoionization mass spectrometry of UF6

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1979-01-01

    The photoionization mass spectrum of 238 UF 6 was obtained. At 600 A = 20.66 eV, the relative ionic abundances were as follows: UF 6 + , 1.4; UF 5 + , 100; UF + , 17; UF 3 + , approx. 0.7; UF 2 + , very weak; UF + , very weak; U + , essentially zero. The adiabatic ionization potential for UF 6 was 13.897 +- 0.005 eV. The production of UF 5 + begins at approx. 887 A = 13.98 eV, at which energy the UF 6 + partial cross section abruptly declines and then levels off. This behavior suggests the vague possibility of an isotope effect. The UF 4 + signal begins at approx. 725 A = 17.10 eV, at which energy the UF 5 + signal reaches a plateau value. The UF 5 + photoionization yield curve displays some autoionization structure from its threshold to approx. 750 A

  2. Intact glycopeptide characterization using mass spectrometry.

    Science.gov (United States)

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prytkova, Iya; Wu, Si

    2016-05-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.

  3. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  4. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  5. Meet interesting abbreviations in clinical mass spectrometry: from compound classification by REIMS to multimodal and mass spectrometry imaging (MSI)

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Dominika; Pluháček, Tomáš; Palyzová, Andrea; Přichystal, Jakub; Balogh, J.; Lemr, Karel; Juránek, I.; Havlíček, Vladimír

    2017-01-01

    Roč. 61, č. 3 (2017), s. 353-360 ISSN 0001-723X R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : REIMS * multimodal * mass spectrometry imaging Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.673, year: 2016

  6. T cells recognizing a peptide contaminant undetectable by mass spectrometry

    DEFF Research Database (Denmark)

    Brezar, Vedran; Culina, Slobodan; Østerbye, Thomas

    2011-01-01

    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility...... complex (MHC) Class I-restricted ß-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid...... chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP(206-214) using a novel method confirmed the identity...

  7. Analytical applications of resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.

    1988-01-01

    A perspective on the role of resonance ionization mass spectrometry (RIMS) in the field of analytical chemistry is presented. RIMS provides new, powerful, and complementary capabilities relative to traditional methods of inorganic mass spectrometry. Much of the initial work in RIMS has been to illustrate these capabilities and define the potential of RIMS in the generalized field of chemical analysis. Three areas of application are reviewed here: (1) noble gas measurements; (2) materials analysis using isotope dilution (IDMS); and, (3) solids analysis using direct sampling. The role of RIMS is discussed relative to the more traditional mass spectrometric methods of analysis in these areas. The applications are meant to illustrate the present state-of-the-art as well as point to the future state-of-the-art of RIMS in chemical analysis. (author)

  8. Determination of {sup 135}Cs by accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, C.M.; Charles, C.R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L.; Kieser, W.E. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Cornett, R.J. [Andre. E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [IsoTrace Laboratory, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada)

    2015-10-15

    The ratio of anthropogenic {sup 135}Cs and {sup 137}Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying {sup 135}Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn{sub 2}, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10{sup −3} and 1.7 × 10{sup −7} respectively. This quantification of {sup 135}Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  9. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    International Nuclear Information System (INIS)

    Mager, Frauke; Lintzel, Julia; Nussberger, Stephan; Sokolova, Lucie; Brutschy, Bernhard

    2010-01-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  10. LILBID-mass spectrometry of the mitochondrial preprotein translocase TOM

    Science.gov (United States)

    Mager, Frauke; Sokolova, Lucie; Lintzel, Julia; Brutschy, Bernhard; Nussberger, Stephan

    2010-11-01

    In the present work we applied a novel mass spectrometry method termed laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS) to the outer mitochondrial membrane protein translocon TOM to analyze its subunit composition and stoichiometry. With TOM core complex, purified at high pH, we demonstrate that a TOM core complex of Neurospora crassa is composed of at least two Tom40 and Tom22 molecules, respectively, and more than five small Tom subunits between 5.5 and 6.4 kDa. We show that the multiprotein complex has a total molecular mass higher than 170 depending on the number of Tom5, Tom6 and Tom7 molecules bound.

  11. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  12. Mass spectrometry of selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2008-07-01

    Nonsteroidal selective androgen receptor modulators (SARMs) are an emerging class of drugs for treatment of various diseases including osteoporosis and muscle wasting as well as the correction of age-related functional decline such as muscle strength and power. Several SARMs, which have advanced to preclinical and clinical trials, are composed of diverse chemical structures including arylpropionamide-, bicyclic hydantoin-, quinoline-, and tetrahydroquinoline-derived nuclei. Since January 2008, SARMs have been categorized as anabolic agents and prohibited by the World Anti-Doping Agency (WADA). Suitable detection methods for these low-molecular weight drugs were based on mass spectrometric approaches, which necessitated the elucidation of dissociation pathways in order to characterize and identify the target analytes in doping control samples as well as potential metabolic products and synthetic analogs. Fragmentation patterns of representatives of each category of SARMs after electrospray ionization (ESI) and collision-induced dissociation (CID) as well as electron ionization (EI) are summarized. The complexity and structural heterogeneity of these drugs is a daunting challenge for detection methods. Copyright 2008 John Wiley & Sons, Ltd.

  13. Analytical capabilities of laser-probe mass spectrometry

    International Nuclear Information System (INIS)

    Kovalev, I.D.; Madsimov, G.A.; Suchkov, A.I.; Larin, N.V.

    1978-01-01

    The physical bases and quantitative analytical procedures of laser-probe mass spectrometry are considered in this review. A comparison is made of the capabilities of static and dynamic mass spectrometers. Techniques are studied for improving the analytical characteristics of laser-probe mass spectrometers. The advantages, for quantitative analysis, of the Q-switched mode over the normal pulse mode for lasers are: (a) the possibility of analysing metals, semiconductors and insulators without the use of standards; and (b) the possibility of layer-by-layer and local analysis. (Auth.)

  14. Computer automation of an accelerator mass spectrometry system

    International Nuclear Information System (INIS)

    Gressett, J.D.; Maxson, D.L.; Matteson, S.; McDaniel, F.D.; Duggan, J.L.; Mackey, H.J.; North Texas State Univ., Denton, TX; Anthony, J.M.

    1989-01-01

    The determination of trace impurities in electronic materials using accelerator mass spectrometry (AMS) requires efficient automation of the beam transport and mass discrimination hardware. The ability to choose between a variety of charge states, isotopes and injected molecules is necessary to provide survey capabilities similar to that available on conventional mass spectrometers. This paper will discuss automation hardware and software for flexible, high-sensitivity trace analysis of electronic materials, e.g. Si, GaAs and HgCdTe. Details regarding settling times will be presented, along with proof-of-principle experimental data. Potential and present applications will also be discussed. (orig.)

  15. Chemically assisted laser ablation ICP mass spectrometry.

    Science.gov (United States)

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis.

  16. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  17. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry--a method to differentiate isomers by mass spectrometry.

    Science.gov (United States)

    Ahmed, Arif; Kim, Sunghwan

    2013-12-01

    In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.

  18. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Science.gov (United States)

    Law, Kai P.; Han, Ting-Li; Tong, Chao; Baker, Philip N.

    2015-01-01

    Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered. PMID:26006232

  19. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Kai P. Law

    2015-05-01

    Full Text Available Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered.

  20. Study by Auger spectrometry and mass spectrometry of the chemisorption of carbon monoxide on polycrystalline molybdenum

    International Nuclear Information System (INIS)

    Gillet, E.; Chiarena, J.C.; Gillet, M.

    1976-01-01

    A combination of Auger spectrometry and mass spectrometry was employed to study CO chemisorption on polycrystalline Mo surfaces at room temperature. Five adsorption states were observed and the binding parameters (E,n 0 ,tau 0 ) were calculated for the three important states. The results obtained by the two methods are in accord but the occurence of electronic desorption in Auger experiments was pointed out. Contamination effects by C atoms in such studies were investigated by repeated cycles of adsorption-desorption and a characteristic evolution of flash desorption was observed. The results are discussed in this point of view enhancing the importance of a control of the adsorption surface cleanness by a method of great sensibility like Auger spectrometry. (Auth.)

  1. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  2. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  3. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Science.gov (United States)

    Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David

    2016-01-01

    Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175

  4. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Directory of Open Access Journals (Sweden)

    Lucy Lim

    2016-01-01

    Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.

  5. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory.

    Science.gov (United States)

    Zhang, Yan Victoria; Wei, Bin; Zhu, Yu; Zhang, Yanhua; Bluth, Martin H

    2016-12-01

    In the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in routine toxicology laboratories. LC-MS/MS offers significant advantages over other traditional testing, such as immunoassay and gas chromatography-mass spectrometry methodologies. Major strengths of LC-MS/MS include improvement in specificity, flexibility, and sample throughput when compared with other technologies. Here, the basic principles of LC-MS/MS technology are reviewed, followed by advantages and disadvantages of this technology compared with other traditional techniques. In addition, toxicology applications of LC-MS/MS for simultaneous detection of large panels of analytes are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Manveen K. Sethi

    2015-12-01

    Full Text Available Colorectal cancer (CRC is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.

  7. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling

    Directory of Open Access Journals (Sweden)

    Oberg Ann L

    2012-11-01

    Full Text Available Abstract Mass Spectrometry utilizing labeling allows multiple specimens to be subjected to mass spectrometry simultaneously. As a result, between-experiment variability is reduced. Here we describe use of fundamental concepts of statistical experimental design in the labeling framework in order to minimize variability and avoid biases. We demonstrate how to export data in the format that is most efficient for statistical analysis. We demonstrate how to assess the need for normalization, perform normalization, and check whether it worked. We describe how to build a model explaining the observed values and test for differential protein abundance along with descriptive statistics and measures of reliability of the findings. Concepts are illustrated through the use of three case studies utilizing the iTRAQ 4-plex labeling protocol.

  8. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling.

    Science.gov (United States)

    Oberg, Ann L; Mahoney, Douglas W

    2012-01-01

    Mass Spectrometry utilizing labeling allows multiple specimens to be subjected to mass spectrometry simultaneously. As a result, between-experiment variability is reduced. Here we describe use of fundamental concepts of statistical experimental design in the labeling framework in order to minimize variability and avoid biases. We demonstrate how to export data in the format that is most efficient for statistical analysis. We demonstrate how to assess the need for normalization, perform normalization, and check whether it worked. We describe how to build a model explaining the observed values and test for differential protein abundance along with descriptive statistics and measures of reliability of the findings. Concepts are illustrated through the use of three case studies utilizing the iTRAQ 4-plex labeling protocol.

  9. Centrosome isolation and analysis by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Schrøder, Jacob Morville; Larsen, Katja M

    2013-01-01

    Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advan...... to isolate centrosomes from human cells and strategies to selectively identify and study the properties of the associated proteins using quantitative mass spectrometry-based proteomics.......Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined...... with advances in protein identification using mass spectrometry-based proteomics, have revealed multiple centriole-associated proteins that are conserved during evolution in eukaryotes. Despite these advances, the molecular basis for the plethora of processes coordinated by cilia and centrosomes is not fully...

  10. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    Science.gov (United States)

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  11. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  12. Sharing and community curation of mass spectrometry data with GNPS

    Science.gov (United States)

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  13. Investigating quantitation of phosphorylation using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Parker, Laurie; Engel-Hall, Aaron; Drew, Kevin; Steinhardt, George; Helseth, Donald L; Jabon, David; McMurry, Timothy; Angulo, David S; Kron, Stephen J

    2008-04-01

    Despite advances in methods and instrumentation for analysis of phosphopeptides using mass spectrometry, it is still difficult to quantify the extent of phosphorylation of a substrate because of physiochemical differences between unphosphorylated and phosphorylated peptides. Here we report experiments to investigate those differences using MALDI-TOF mass spectrometry for a set of synthetic peptides by creating calibration curves of known input ratios of peptides/phosphopeptides and analyzing their resulting signal intensity ratios. These calibration curves reveal subtleties in sequence-dependent differences for relative desorption/ionization efficiencies that cannot be seen from single-point calibrations. We found that the behaviors were reproducible with a variability of 5-10% for observed phosphopeptide signal. Although these data allow us to begin addressing the issues related to modeling these properties and predicting relative signal strengths for other peptide sequences, it is clear that this behavior is highly complex and needs to be further explored. John Wiley & Sons, Ltd

  14. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  15. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  16. Accelerated identification of proteins by mass spectrometry by employing covalent pre-gel staining with Uniblue A.

    Directory of Open Access Journals (Sweden)

    Marco A Mata-Gómez

    Full Text Available BACKGROUND: The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools. CONCLUSIONS AND SIGNIFICANCE: The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.

  17. Authentication of Closely Related Fish and Derived Fish Products Using Tandem Mass Spectrometry and Spectral Library Matching

    NARCIS (Netherlands)

    Nessen, Merel A.; Zwaan, van der Dennis J.; Grevers, Sander; Dalebout, Hans; Staats, Martijn; Kok, Esther; Palmblad, Magnus

    2016-01-01

    Proteomics methodology has seen increased application in food authentication, including tandem mass spectrometry of targeted species-specific peptides in raw, processed, or mixed food products. We have previously described an alternative principle that uses untargeted data acquisition and

  18. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korte, Andrew R [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  19. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  20. High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts

    NARCIS (Netherlands)

    de Jong, C.F.; Derks, R.J.E.; Bruyneel, B.; Niessen, W.M.A.; Irth, H.

    2006-01-01

    The present paper describes a High-performance liquid chromatography-mass spectrometry (LC-MS) methodology for the screening of acetylcholinesterase (AChE) inhibitors in natural extracts. AChE activity of sample components is monitored by a post-column biochemical assay that is based on the

  1. Secondary neutral mass spectrometry depth profile analysis of silicides

    International Nuclear Information System (INIS)

    Beckmann, P.; Kopnarski, M.; Oechsner, H.

    1985-01-01

    The Direct Bombardment Mode (DBM) of Secondary Neutral Mass Spectrometry (SNMS) has been applied for depth profile analysis of two different multilayer systems containing metal silicides. Due to the extremely high depth resolution obtained with low energy SNMS structural details down to only a few atomic distances are detected. Stoichiometric information on internal oxides and implanted material is supplied by the high quantificability of SNMS. (Author)

  2. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  3. Report of the consultants' meeting on accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. Its use within the IAEA is recommended by the consultants in this meeting. The IAEA programs in which the technology would be useful and beneficial are: safeguards, physical and chemical sciences, human health, food and agriculture, radioactive waste management, radiation safety, industry and earth sciences.

  4. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Science.gov (United States)

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  5. Report of the consultants' meeting on accelerator mass spectrometry

    International Nuclear Information System (INIS)

    1995-01-01

    Accelerator Mass Spectrometry (AMS) has developed into a major analytical tool for the measurement of ultra-low-level long-lived radionuclides. Its use within the IAEA is recommended by the consultants in this meeting. The IAEA programs in which the technology would be useful and beneficial are: safeguards, physical and chemical sciences, human health, food and agriculture, radioactive waste management, radiation safety, industry and earth sciences

  6. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  7. Optimizing the identification of citrullinated peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Bennike, Tue; Lauridsen, Kasper B.; Olesen, Michael Kruse

    2013-01-01

    Citrullinated proteins have been associated with several diseases and citrullination can most likely function as a target for novel diagnostic agents and unravel disease etiologies. The correct identification of citrullinated proteins is therefore of most importance. Mass spectrometry (MS) driven...... of trypsin, digestion was performed on synthetic peptide sets containing either arginine or citrulline. The peptide sequences originated from disease-associated in vivo citrullinated proteins; some reported as being C-terminal tryptic citrullinated peptides. Furthermore, the proteolytic activity was verified...

  8. Myofiber metabolic type determination by mass spectrometry imaging

    OpenAIRE

    Théron, Laetitia; Vénien, Annie; Pujos-Guillot, Estelle; Astruc, Thierry; Chambon, Christophe

    2017-01-01

    In muscle imaging, myofiber type determination is of great importance to better understand biological mechanisms related to skeletal muscle changes associated with pathologies. However, reference methods (histo-enzymology and immunohistochemistry) require serial-cross sections, and several days from the sampling to the results of image analysis. In this work, a strategy based on MALDI-Mass Spectrometry Imaging was developed as an alternative to the classical methods for myofiber metabolic typ...

  9. High temperature mass spectrometry for thermodynamic study of radioactive materials

    International Nuclear Information System (INIS)

    Pattoret, Andre; Philippot, Joseph; Pesme, Olivier.

    1983-01-01

    Thermodynamic properties and evaporation kinetics are essential data to evaluate the nuclear fuel behaviour under accidental conditions. High temperature mass spectrometry appears as a valuable method to set up a such assessment. However, because of size, complexity and radioactivity of the irradiated samples, important improvements of the classical method are required. The device built in CEN/FAR to overcome these problems is described; performances and possible applications out of the nuclear safety field are presented [fr

  10. Diagrams of ion stability in radio-frequency mass spectrometry

    International Nuclear Information System (INIS)

    Sudakov, M.Yu.

    1994-01-01

    For solving radio-frequency mass spectrometry problems and dynamic ion containment are studied and systematized different ways for constructing the ion stability diagrams. A new universal set of parameters is proposed for diagram construction-angular variables, which are the phase raid of ion oscillational motion during positive and negative values of the supplying voltage. An effective analytical method is proposed for optimization of the parameters of the pulsed supplying voltage, in particular its repetition rate

  11. Analysis of Ketones by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Wang, T.; Španěl, Patrik

    2003-01-01

    Roč. 17, - (2003), s. 2655-2660 ISSN 0951-4198 R&D Projects: GA ČR GA202/03/0827; GA ČR GA203/02/0737 Institutional research plan: CEZ:AV0Z4040901 Keywords : mass spectrometry * selected ion flow tube * ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2003

  12. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  13. Mass spectrometry-based analysis of whole-grain phytochemicals.

    Science.gov (United States)

    Koistinen, Ville Mikael; Hanhineva, Kati

    2017-05-24

    Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.

  14. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  15. Characterization of individual particles in gaseous media by mass spectrometry

    Science.gov (United States)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  16. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  17. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  18. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  19. Elucidating rhizosphere processes by mass spectrometry - A review.

    Science.gov (United States)

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  1. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    International Nuclear Information System (INIS)

    Futrell, Jean H.; Laskin, Julia

    2010-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  2. Linking high resolution mass spectrometry data with exposure ...

    Science.gov (United States)

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  3. Lipidomic mass spectrometry and its application in neuroscience

    Institute of Scientific and Technical Information of China (English)

    Mabel; Enriquez-Algeciras; Sanjoy; K; Bhattacharya

    2013-01-01

    Central and peripheral nervous systems are lipid rich tissues. Lipids, in the context of lipid-protein complexes, surround neurons and provide electrical insulation for transmission of signals allowing neurons to remain embedded within a conducting environment. Lipids play a key role in vesicle formation and fusion in synapses. They provide means of rapid signaling, cell motility and migration for astrocytes and other cell types that surround and play supporting roles neurons. Unlike many other signaling molecules, lipids are capable of multiple signaling events based on the different fragments generated from a single precursor during each event. Lipidomics, until recently suffered from two major disadvantages:(1) level of expertise required an overwhelming amount of chemical detail to correctly identify a vast number of different lipids which could be close in their chemical reactivity; and(2) high amount of purified compounds needed by analytical techniques to determine their structures. Advances in mass spectrometry have enabled overcoming these two limitations. Mass spectrometry offers a great degree of simplicity in identification and quantification of lipids directly extracted from complex biological mixtures. Mass spectrometers can be regarded to as mass analyzers. There are those that separate and analyze the product ion fragments in space(spatial) and those which separate product ions in time in the same space(temporal). Databases and standardized instrument parameters have further aided the capabilities of the spatial instruments while recent advances in bioinformatics have made the identification and quantification possible using temporal instruments.

  4. Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids

    International Nuclear Information System (INIS)

    Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy

    2003-01-01

    The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions

  5. Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Baker, David R; Kasprzyk-Hordern, Barbara

    2011-11-04

    The main aim of this manuscript is to provide a comprehensive and critical verification of methodology commonly used for sample collection, storage and preparation in studies concerning the analysis of pharmaceuticals and illicit drugs in aqueous environmental samples with the usage of SPE-LC/MS techniques. This manuscript reports the results of investigations into several sample preparation parameters that to the authors' knowledge have not been reported or have received very little attention. This includes: (i) effect of evaporation temperature and (ii) solvent with regards to solid phase extraction (SPE) extracts; (iii) effect of silanising glassware; (iv) recovery of analytes during vacuum filtration through glass fibre filters and (v) pre LC-MS filter membranes. All of these parameters are vital to develop efficient and reliable extraction techniques; an essential factor given that target drug residues are often present in the aqueous environment at ng L(-1) levels. Presented is also the first comprehensive review of the stability of illicit drugs and pharmaceuticals in wastewater. Among the parameters studied are: time of storage, temperature and pH. Over 60 analytes were targeted including stimulants, opioid and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, human urine indicators and their metabolites. The lack of stability of analytes in raw wastewater was found to be significant for many compounds. For instance, 34% of compounds studied reported a stability change >15% after only 12 h in raw wastewater stored at 2 °C; a very important finding given that wastewater is typically collected with the use of 24 h composite samplers. The stability of these compounds is also critical given the recent development of so-called 'sewage forensics' or 'sewage epidemiology' in which concentrations of target drug residues in wastewater are used to back-calculate drug consumption. Without an understanding of stability

  6. Electronic sputtering of biomolecules and its application in mass spectrometry

    International Nuclear Information System (INIS)

    Haakansson, P.; Sundqvist, B.U.R.

    1989-01-01

    In 1974 Macfarlane discovered that fast heavy ions from a 252-Cf source can desorb and ionize molecules from a solid surface. The mass of the molecules was determined by time-of-flight technique. It has been shown that the desorption mechanism is associated with the electron part of the stopping power of the primary ion and the name 'electron sputtering' has been adopted for the phenomenon to distinguish it from the well-known sputtering process with ions of KeV energy. A review of electronic sputtering of biomolecules will be given as well as recent measurements on Langmuir-Blodgett films. One important application of electronic sputtering is in the field of mass spectrometry. With this technique large and nonvolatile molecules can be studied. Particularly adsorption of biomolecules to a nitrocellulose backing has proven to be very useful. Examples will be given of mass spectra from peptides with a molecular weight above 20,000 u. (author)

  7. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2017-05-01

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, R; García-Barrera, T; Gómez-Ariza, J L

    2014-11-01

    Currently, there is no cure for Alzheimer's disease and early diagnosis is very difficult, since no biomarkers have been established with the necessary reliability and specificity. For the discovery of new biomarkers, the application of omics is emerging, especially metabolomics based on the use of mass spectrometry. In this work, an analytical approach based on direct infusion electrospray mass spectrometry was applied for the first time to blood serum samples in order to elucidate discriminant metabolites. Complementary methodologies of extraction and mass spectrometry analysis were employed for comprehensive metabolic fingerprinting. Finally, the application of multivariate statistical tools allowed us to discriminate Alzheimer patients and healthy controls, and identify some compounds as potential markers of disease. This approach provided a global vision of disease, given that some important metabolic pathways could be studied, such as membrane destabilization processes, oxidative stress, hypometabolism, or neurotransmission alterations. Most remarkable results are the high levels of phospholipids containing saturated fatty acids, respectively, polyunsaturated ones and the high concentration of whole free fatty acids in Alzheimer's serum samples. Thus, these results represent an interesting approximation to understand the pathogenesis of disease and the identification of potential biomarkers.

  10. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  11. Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation.

    Science.gov (United States)

    Bhosale, Santosh D; Moulder, Robert; Kouvonen, Petri; Lahesmaa, Riitta; Goodlett, David R

    2017-01-01

    Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease risk cohorts, the plasma proteome has remained a target of proteomics research toward the characterization of disease-related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins and methodology for selected reaction monitoring mass spectrometry validation.

  12. Field ionization mass spectrometry (FIMS) applied to tracer studies and isotope dilution analysis

    International Nuclear Information System (INIS)

    Anbar, M.; Heck, H.d'A.; McReynolds, J.H.; St John, G.A.

    1975-01-01

    The nonfragmenting nature of field ionization mass spectrometry makes it a preferred technique for the isotopic analysis of multilabeled organic compounds. The possibility of field ionization of nonvolatile thermolabile materials significantly extends the potential uses of this technique beyond those of conventional ionization methods. Multilabeled tracers may be studied in biological systems with a sensitivity comparable to that of radioactive tracers. Isotope dilution analysis may be performed reliably by this technique down to picogram levels. These techniques will be illustrated by a number of current studies using multilabeled metabolites and drugs. The scope and limitations of the methodology are discussed

  13. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  14. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  15. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  16. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  17. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  18. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  19. Development of a highly sensitive methodology for quantitative determination of fexofenadine in a microdose study by multiple injection method using ultra-high performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Tanaka, Yukari; Yoshikawa, Yutaka; Yasui, Hiroyuki

    2012-01-01

    An ultra high-sensitivity method for quantifying fexofenadine concentration in rat plasma samples by multiple injection method (MIM) was developed for a microdose study. In this study, MIM involved continuous injections of multiple samples containing the single compound into a column of the ultra-HPLC (UHPLC) system, and then, temporary trapping of the analyte at the column head. This was followed by elution of the compound from the column and detection by mass spectrometer. Fexofenadine, used as a model compound in this study, was extracted from the plasma samples by a protein precipitation method. Chromatographic separation was achieved on a reversed-phase C18 column by using a gradient method with 0.1% formic acid and 0.1% formic acid in acetonitrile as the mobile phase. The analyte was quantified in the positive-ion electrospray ionization mode using selected reaction monitoring. In this study, the analytical time per fexofenadine sample was approximately 2 min according to the UHPLC system. The method exhibited the linear dynamic ranges of 5-5000 pg/mL for fexofenadine in rat plasma. The intra-day precisions were from 3.2 to 8.7% and the accuracy range was 95.2-99.3%. The inter-day precisions and accuracies ranged from 3.5 to 8.4% and from 98.6 to 102.6%, respectively. The validated MIM was successfully applied to a microdose study in the rats that received oral administration of 100 µg/kg fexofenadine. We suggest that this method might be beneficial for the quantification of fexofenadine concentrations in a microdose clinical study.

  20. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    Science.gov (United States)

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  1. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Science.gov (United States)

    Köfeler, Harald C.; Fauland, Alexander; Rechberger, Gerald N.; Trötzmüller, Martin

    2012-01-01

    One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS) and matrix assisted laser desorption ionization-time of flight (MALDI-TOF) based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows. PMID:24957366

  2. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Directory of Open Access Journals (Sweden)

    Harald C. Köfeler

    2012-01-01

    Full Text Available One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows.

  3. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  4. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  5. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  6. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  7. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  8. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  9. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  10. Multielement ultratrace analysis in tungsten using secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Wilhartitz, P.; Virag, A.; Friedbacher, G.; Grasserbauer, M.

    1987-01-01

    The ever increasing demands on properties of materials create a trend also towards ultrapure products. Characterization of these materials is only possible with modern, highly sophisticated analytical techniques such as activation analysis and mass spectrometry, particularly SSMS, SIMS and GDMS. Analytical strategies were developed for the determination of about 40 elements in a tungsten matrix with high-performance SIMS. Difficulties like the elimination of interferences had to be overcome. Extrapolated detection limits were established in the range of pg/g (alkali metals, halides) to ng/g (e.g. Ta, Th). Depth profiling and ion imaging gave additional information about the lateral and the depth distribution of the elements. (orig.)

  11. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  12. Multinozzle emitter arrays for ultrahigh-throughput nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing; Mao, Pan; Wang, Hung-Ta; Yang, Peidong

    2017-10-17

    The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.

  13. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  14. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  15. Application of accelerator mass spectrometry in aluminum metabolism studies

    International Nuclear Information System (INIS)

    Meirav, O.; Vetterli, D.; Johnson, R.R.; Sutton, R.A.L.; Walker, V.R.; Halabe, A.; Fink, D.; Middleton, R.; Klein, J.

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26 Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.)

  16. Application of accelerator mass spectrometry in aluminum metabolism studies

    Energy Technology Data Exchange (ETDEWEB)

    Meirav, O; Vetterli, D; Johnson, R R [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Sutton, R A.L.; Walker, V R; Halabe, A [British Columbia U.iv., Vancouver, BC (Canada). Dept. of Medicine; Fink, D; Middleton, R; Klein, J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1990-06-01

    The recent recognition that aluminum causes toxicity in uremic patients and may be associated with Alzheimer`s disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope {sup 26}Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as humans. (Author) (24 refs., 3 figs.).

  17. A novel ion imager for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Matsumoto, Kazuya; Miyata, Kenji; Nakamura, Tsutomu

    1993-01-01

    This paper describes a new area detector for secondary ion mass spectrometry (SIMS) ion microscope, and its performance. The operational principle is based on detecting the change in potential of a floating photodiode caused by the ion-induced secondary-electron emission and the incoming ion itself. The experiments demonstrated that 10 1 -10 5 aluminum ions per pixel can be detected with good linear response. Moreover, relative ion sensitivities from hydrogen to lead were constant within a factor of 2. The performance of this area detector provides the potential for detection of kiloelectronvolt ion images with current ion microscopy

  18. Imaging mass spectrometry tackles interfacial challenges in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Ying

    2017-12-01

    Electrochemistry has played a significant role in many research fields. Owing to its sensitivity and selectivity, in situ electroanalysis has been widely used as a fast and economical means for achieving outstanding results. Although many spectroscopic techniques have been used in electrochemistry, the challenges to capture short-lived intermediate species as a result of electron transfer in the buried solid electrode and electrolyte solution interface remains a grand challenge. In situ imaging mass spectrometry (IMS) recently has been extended to capture transient species in electrochemistry. This review intends to summarize newest development of IMS and its applications in advancing fundamental electrochemistry.

  19. Two possible improvements for mass spectrometry analysis of intact biomolecules.

    Science.gov (United States)

    Raznikov, Valeriy V; Zelenov, Vladislav V; Aparina, Elena V; Pikhtelev, Alexander R; Sulimenkov, Ilia V; Raznikova, Marina O

    2017-08-01

    The goals of our study were to investigate abilities of two approaches to eliminate possible errors in electrospray mass spectrometry measurements of biomolecules. Passing of a relatively dense supersonic gas jet through ionization region followed by its hitting the spray of the analyzed solution in low vacuum may be effective to keep an initial biomolecule structure in solution. Provided that retention of charge carriers for some sites in the biomolecule cannot be changed noticeably in electrospray ion source, decomposition and separation of charge-state distributions of electrosprayed ions may give additional information about native structure of biomolecules in solution.

  20. Uncertainty of relative sensitivity factors in glow discharge mass spectrometry

    Science.gov (United States)

    Meija, Juris; Methven, Brad; Sturgeon, Ralph E.

    2017-10-01

    The concept of the relative sensitivity factors required for the correction of the measured ion beam ratios in pin-cell glow discharge mass spectrometry is examined in detail. We propose a data-driven model for predicting the relative response factors, which relies on a non-linear least squares adjustment and analyte/matrix interchangeability phenomena. The model provides a self-consistent set of response factors for any analyte/matrix combination of any element that appears as either an analyte or matrix in at least one known response factor.

  1. Monitoring of wine aging process by electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Christine Helena Frankland Sawaya

    2011-09-01

    Full Text Available The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS, without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.

  2. Indigenous instrumentation for mass spectrometry. PD-5-1

    International Nuclear Information System (INIS)

    Handu, V.K.

    2007-01-01

    Mass Spectrometry is a powerful analytical technique due to its high sensitivity, specificity, selectivity, and wide field of applications in elemental analysis, especially in the determination of trace and ultra trace elements, precise and accurate isotopic ratio measurements. Due to these excellent features, it is a crucial analytical tool for number of Department of Atomic Energy's (DAE) programs. BARC, over the years, has developed several mass spectrometers suitable for needs of a number of programs in DAE and, in this process, technologies have been developed in HV/UHV systems, precision mechanical engineering and fabrication, design and fabrication of electromagnets, ion optics, ultra stable analog and digital electronics, data systems etc. A large number of these mass spectrometers are being used regularly in various units of DAE. Since users are demanding TIMS mass spectrometer with better specifications, efforts are being made in house to develop TIMS with improved specifications. Efforts are also under way to develop a multi collector, plasma source mass spectrometer (MC-ICP-MS) with magnetic sector mass analyzer, since such instrument is increasingly being used to measure isotopic ratios with high precision

  3. SwePep, a database designed for endogenous peptides and mass spectrometry.

    Science.gov (United States)

    Fälth, Maria; Sköld, Karl; Norrman, Mathias; Svensson, Marcus; Fenyö, David; Andren, Per E

    2006-06-01

    A new database, SwePep, specifically designed for endogenous peptides, has been constructed to significantly speed up the identification process from complex tissue samples utilizing mass spectrometry. In the identification process the experimental peptide masses are compared with the peptide masses stored in the database both with and without possible post-translational modifications. This intermediate identification step is fast and singles out peptides that are potential endogenous peptides and can later be confirmed with tandem mass spectrometry data. Successful applications of this methodology are presented. The SwePep database is a relational database developed using MySql and Java. The database contains 4180 annotated endogenous peptides from different tissues originating from 394 different species as well as 50 novel peptides from brain tissue identified in our laboratory. Information about the peptides, including mass, isoelectric point, sequence, and precursor protein, is also stored in the database. This new approach holds great potential for removing the bottleneck that occurs during the identification process in the field of peptidomics. The SwePep database is available to the public.

  4. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    Science.gov (United States)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  5. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  7. Tandem mass spectrometry data quality assessment by self-convolution.

    Science.gov (United States)

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  8. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    International Nuclear Information System (INIS)

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-01-01

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  9. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    Science.gov (United States)

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  10. Theory and technique of spark source mass spectrometry; Theorie et technique de la spectrometrie de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Trace analysis in solids by spark source mass spectrometry involves complicated phenomena: element ionization in spark and blacking of sensitive emulsion by focused ion beam. However the principal risk of selectivity lies in analyser system, which realizes double focusing only for a part of the ions. Therefore, each analyst has to known ionic optics of his apparatus, for ensuring the transmission of mean energetic ions, which are representative of sample composition. By a careful photometry of mass spectrum, good reproducibility can be obtained. Thereafter accuracy depends on the knowledge of sensitivity coefficients proper to this apparatus. (author) [French] L'analyse de traces dans les solides par spectrometrie de masse a etincelles met en jeu des phenomenes complexes qui sont l'ionisation des elements dans l'etincelle, et le noircissement de l'emulsion sensible par les faisceaux ioniques focalises. Cependant, le risque majeur de selectivite provient de l'ensemble analyseur, qui realise la double focalisation sur une fraction seulement du faisceau d'ions. L'analyste doit donc connaitre en detail l'optique ionique de son appareil, pour assurer le passage de la bande d'energie moyenne des ions, qui seule caracterise quantitativement la composition chimique de l'echantillon. Une exploitation photometrique soignee du spectrogramme donne alors des resultats reproductibles, dont la justesse ne depend plus que des coefficients de sensibilite propres a ce type d'instrument. (auteur)

  11. Steroid Profiling by Gas Chromatography–Mass Spectrometry and High Performance Liquid Chromatography–Mass Spectrometry for Adrenal Diseases

    Science.gov (United States)

    McDonald, Jeffrey G.; Matthew, Susan

    2012-01-01

    The ability to measure steroid hormone concentrations in blood and urine specimens is central to the diagnosis and proper treatment of adrenal diseases. The traditional approach has been to assay each steroid hormone, precursor, or metabolite using individual aliquots of serum, each with a separate immunoassay. For complex diseases, such as congenital adrenal hyperplasia and adrenocortical cancer, in which the assay of several steroids is essential for management, this approach is time consuming and costly, in addition to using large amounts of serum. Gas chromatography/mass spectrometry profiling of steroid metabolites in urine has been employed for many years but only in a small number of specialized laboratories and suffers from slow throughput. The advent of commercial high-performance liquid chromatography instruments coupled to tandem mass spectrometers offers the potential for medium- to high-throughput profiling of serum steroids using small quantities of sample. Here, we review the physical principles of mass spectrometry, the instrumentation used for these techniques, the terminology used in this field and applications to steroid analysis. PMID:22170384

  12. Isolation and mass spectrometry of transcription factor complexes.

    Science.gov (United States)

    Sebastiaan Winkler, G; Lacomis, Lynne; Philip, John; Erdjument-Bromage, Hediye; Svejstrup, Jesper Q; Tempst, Paul

    2002-03-01

    Protocols are described that enable the isolation of novel proteins associated with a known protein and the subsequent identification of these proteins by mass spectrometry. We review the basics of nanosample handling and of two complementary approaches to mass analysis, and provide protocols for the entire process. The protein isolation procedure is rapid and based on two high-affinity chromatography steps. The method does not require previous knowledge of complex composition or activity and permits subsequent biochemical characterization of the isolated factor. As an example, we provide the procedures used to isolate and analyze yeast Elongator, a histone acetyltransferase complex important for transcript elongation, which led to the identification of three novel subunits.

  13. Tritium depth profiling in carbon by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Friedrich, M.; Pilz, W.; Sun, G.; Behrisch, R.; Garcia-Rosales, C.; Bekris, N.; Penzhorn, R.-D.

    2000-01-01

    Tritium depth profiling measurements by accelerator mass spectrometry have been performed at the facility installed at the Rossendorf 3 MV Tandetron. In order to achieve a uniform erosion at the target surface inside a commercial Cs ion sputtering source and to avoid edge effects, the samples were mechanically scanned and the signals were recorded only during sputtering at the centre of the sputtered area. The sputtered negative ions were mass analysed by the injection magnet of the Tandetron. Hydrogen and deuterium profiles were measured with the Faraday cup between the injection magnet and the accelerator, while the tritium was counted after the accelerator with semiconductor detectors. Depth profiles have been measured for carbon samples which had been exposed to the plasma at the first wall of the Garching fusion experiment ASDEX-Upgrade and from the European fusion experiment JET, Culham, UK

  14. Differential Rapid Screening of Phytochemicals by Leaf Spray Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Thomas; Graham Cooks, R. [Univ. of Innsbruck, Innsbruck (Austria)

    2014-03-15

    Ambient ionization can be achieved by generating an electrospray directly from plant tissue ('leaf spray'). The resulting mass spectra are characteristic of ionizable phytochemicals in the plant material. By subtracting the leaf spray spectra recorded from the petals of two hibiscus species H. moscheutos and H. syriacus one gains rapid access to the metabolites that differ most in the two petals. One such compound was identified as the sambubioside of quercitin (or delphinidin) while others are known flavones. Major interest centered on a C{sub 19}H{sub 29}NO{sub 5} compound that occurs only in the large H. moscheutos bloom. Attempts were made to characterize this compound by mass spectrometry alone as a test of such an approach. This showed that the compound is an alkaloid, assigned to the polyhydroxylated pyrrolidine class, and bound via a C{sub 3} hydrocarbon unit to a monoterpene.

  15. Differential Rapid Screening of Phytochemicals by Leaf Spray Mass Spectrometry

    International Nuclear Information System (INIS)

    Mueller, Thomas; Graham Cooks, R.

    2014-01-01

    Ambient ionization can be achieved by generating an electrospray directly from plant tissue ('leaf spray'). The resulting mass spectra are characteristic of ionizable phytochemicals in the plant material. By subtracting the leaf spray spectra recorded from the petals of two hibiscus species H. moscheutos and H. syriacus one gains rapid access to the metabolites that differ most in the two petals. One such compound was identified as the sambubioside of quercitin (or delphinidin) while others are known flavones. Major interest centered on a C 19 H 29 NO 5 compound that occurs only in the large H. moscheutos bloom. Attempts were made to characterize this compound by mass spectrometry alone as a test of such an approach. This showed that the compound is an alkaloid, assigned to the polyhydroxylated pyrrolidine class, and bound via a C 3 hydrocarbon unit to a monoterpene

  16. Good quantification practices of flavours and fragrances by mass spectrometry.

    Science.gov (United States)

    Begnaud, Frédéric; Chaintreau, Alain

    2016-10-28

    Over the past 15 years, chromatographic techniques with mass spectrometric detection have been increasingly used to monitor the rapidly expanded list of regulated flavour and fragrance ingredients. This trend entails a need for good quantification practices suitable for complex media, especially for multi-analytes. In this article, we present experimental precautions needed to perform the analyses and ways to process the data according to the most recent approaches. This notably includes the identification of analytes during their quantification and method validation, when applied to real matrices, based on accuracy profiles. A brief survey of application studies based on such practices is given.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  17. Mass spectrometry as a quantitative tool in plant metabolomics

    Science.gov (United States)

    Jorge, Tiago F.; Mata, Ana T.

    2016-01-01

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644967

  18. Testing and Validation of Computational Methods for Mass Spectrometry.

    Science.gov (United States)

    Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas

    2016-03-04

    High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods.

  19. Determination of plutonium in soils by mass spectrometry

    International Nuclear Information System (INIS)

    Storms, H.A.; Carlson, D.C.; Hunter, F.F.

    1974-01-01

    A procedure is described in which mass spectrometry is utilized for the determination of plutonium in soils. Using this procedure we have measured plutonium isotopic compositions at concentrations as low as 2 x 10 -14 grams Pu per gram soil. A thermal ionization source with canoe-shaped rhenium filament, is utilized in the mass spectrometer. The plutonium, when loaded onto the filament, is contained in a single Dowex-1 resin bead which is about 350 micrometers in diameter. Concentrating the plutonium within this single bead is a key step in the procedure and produces a relatively clean plutonium fraction. The resin bead also serves as an effective diffusion barrier such that the plutonium is prevented from being removed with the lower boiling impurities. The Pu remains in the bead until the temperature is sufficiently high for efficient production of Pu + ions. Plutonium ionization efficiencies as high as 2.5 percent have been measured

  20. Origin of the chemical noise in ambient mass spectrometry

    International Nuclear Information System (INIS)

    Yang Shuiping; Zhu Zhiqiang; Huang Longzhu; Zhang Xinglei; Zhu Tenggao; Chen Huanwen

    2012-01-01

    The instrumental background of ambient mass spectrometry, (API-MS) is analyzed and the possible potential origins of the background noise is identified. According to the mass spectra obtained using the API-MS instruments by different manufacturers, the characteristic fragment ions all indicated that the background noise are resulted from the phthalates such as diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), and silicones such as decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). These chemicals are probably released from the polymeric materials used in the ionization sources, such as O-type sealing ring etc. In addition, the instrumental background has to be considered especially during the analysis of phthalate and peptide compounds. (authors)

  1. The quest for improved reproducibility in MALDI mass spectrometry.

    Science.gov (United States)

    O'Rourke, Matthew B; Djordjevic, Steven P; Padula, Matthew P

    2018-03-01

    Reproducibility has been one of the biggest hurdles faced when attempting to develop quantitative protocols for MALDI mass spectrometry. The heterogeneous nature of sample recrystallization has made automated sample acquisition somewhat "hit and miss" with manual intervention needed to ensure that all sample spots have been analyzed. In this review, we explore the last 30 years of literature and anecdotal evidence that has attempted to address and improve reproducibility in MALDI MS. Though many methods have been attempted, we have discovered a significant publication history surrounding the use of nitrocellulose as a substrate to improve homogeneity of crystal formation and therefore reproducibility. We therefore propose that this is the most promising avenue of research for developing a comprehensive and universal preparation protocol for quantitative MALDI MS analysis. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:217-228, 2018. © 2016 Wiley Periodicals, Inc.

  2. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  3. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  4. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry

    CERN Document Server

    Mertens, Bart

    2017-01-01

    This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass ...

  5. Hyperthermal surface ionization mass spectrometry of organic molecules: monoterpenes

    International Nuclear Information System (INIS)

    Kishi, Hiroshi; Fujii, Toshihiro.

    1997-01-01

    This paper describes an experimental study on the influence of kinetic energy of fast monoterpene molecules on the surface ionization efficiency and on the mass spectral patterns, using rhenium oxide (ReO 2 ) surface. Molecular kinetic energy, given to the molecules through the acceleration in the seeded supersonic molecular beam, ranged from 1 to 10 eV. Hyperthermal surface ionization mass spectra (HSIMS) were taken for various incident kinetic energies and surface temperatures. The observed mass spectra were interpreted in a purely empirical way, by means of evidence from the previous investigations, and they were compared with conventional EI techniques and with the thermal energy surface ionization technique (SIOMS; Surface Ionization Organic Mass Spectrometry). Ionization efficiency (β) was also studied. Under hyperthermal surface ionization (HSI) conditions, many kinds of fragment ions, including quite abundant odd electron ions (OE +· ) are observed. HSIMS patterns of monoterpenes are different among 6-isomers, contrary to those of SIOMS and EIMS, where very similar patterns for isomers are observed. HSIMS patterns are strongly dependent on the molecular kinetic energies. The surface temperature does not affect much the spectral patterns, but it controls the total amount of ion formation. We conclude from these mass spectral findings, HSI-mechanism contains an impulsive process of ion formation, followed by the fragmentation process as a results of the internal energies acquired through the collision processes. (author)

  6. Advances in ultrasensitive mass spectrometry of organic molecules.

    Science.gov (United States)

    Kandiah, Mathivathani; Urban, Pawel L

    2013-06-21

    Ultrasensitive mass spectrometric analysis of organic molecules is important for various branches of chemistry, and other fields including physics, earth and environmental sciences, archaeology, biomedicine, and materials science. It finds applications--as an enabling tool--in systems biology, biological imaging, clinical analysis, and forensics. Although there are a number of technical obstacles associated with the analysis of samples by mass spectrometry at ultratrace level (for example analyte losses during sample preparation, insufficient sensitivity, ion suppression), several noteworthy developments have been made over the years. They include: sensitive ion sources, loss-free interfaces, ion optics components, efficient mass analyzers and detectors, as well as "smart" sample preparation strategies. Some of the mass spectrometric methods published to date can achieve sensitivity which is by several orders of magnitude higher than that of alternative approaches. Femto- and attomole level limits of detection are nowadays common, while zepto- and yoctomole level limits of detection have also been reported. We envision that the ultrasensitive mass spectrometric assays will soon contribute to new discoveries in bioscience and other areas.

  7. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  8. Computational methods for protein identification from mass spectrometry data.

    Directory of Open Access Journals (Sweden)

    Leo McHugh

    2008-02-01

    Full Text Available Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology.

  9. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  10. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry.

    Science.gov (United States)

    Planatscher, Hannes; Supper, Jochen; Poetz, Oliver; Stoll, Dieter; Joos, Thomas; Templin, Markus F; Zell, Andreas

    2010-06-25

    Mass spectrometry (MS) based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. For small datasets (a few hundred proteins) it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  11. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  12. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  13. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  14. Expanded newborn screening by mass spectrometry: New tests, future perspectives.

    Science.gov (United States)

    Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo

    2016-01-01

    Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs. © 2015 Wiley Periodicals, Inc.

  15. Automated spike preparation system for Isotope Dilution Mass Spectrometry (IDMS)

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Clark, J.P.

    1990-01-01

    Isotope Dilution Mass Spectrometry (IDMS) is a method frequently employed to measure dissolved, irradiated nuclear materials. A known quantity of a unique isotope of the element to be measured (referred to as the ''spike'') is added to the solution containing the analyte. The resulting solution is chemically purified then analyzed by mass spectrometry. By measuring the magnitude of the response for each isotope and the response for the ''unique spike'' then relating this to the known quantity of the ''spike'', the quantity of the nuclear material can be determined. An automated spike preparation system was developed at the Savannah River Site (SRS) to dispense spikes for use in IDMS analytical methods. Prior to this development, technicians weighed each individual spike manually to achieve the accuracy required. This procedure was time-consuming and subjected the master stock solution to evaporation. The new system employs a high precision SMI Model 300 Unipump dispenser interfaced with an electronic balance and a portable Epson HX-20 notebook computer to automate spike preparation

  16. Isotope determination of sulfur by mass spectrometry in soil samples

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2012-12-01

    Full Text Available Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-, which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2- concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms was carried out by isotope ratio mass spectrometry (IRMS. In this work, the labeled material (K2(34SO4 was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.

  17. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  18. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  19. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping.

    Science.gov (United States)

    Scott, Alison J; Jones, Jace W; Orschell, Christie M; MacVittie, Thomas J; Kane, Maureen A; Ernst, Robert K

    2014-01-01

    Integral to the characterization of radiation-induced tissue damage is the identification of unique biomarkers. Biomarker discovery is a challenging and complex endeavor requiring both sophisticated experimental design and accessible technology. The resources within the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Consortium, Medical Countermeasures Against Radiological Threats (MCART), allow for leveraging robust animal models with novel molecular imaging techniques. One such imaging technique, MALDI (matrix-assisted laser desorption ionization) mass spectrometry imaging (MSI), allows for the direct spatial visualization of lipids, proteins, small molecules, and drugs/drug metabolites-or biomarkers-in an unbiased manner. MALDI-MSI acquires mass spectra directly from an intact tissue slice in discrete locations across an x, y grid that are then rendered into a spatial distribution map composed of ion mass and intensity. The unique mass signals can be plotted to generate a spatial map of biomarkers that reflects pathology and molecular events. The crucial unanswered questions that can be addressed with MALDI-MSI include identification of biomarkers for radiation damage that reflect the response to radiation dose over time and the efficacy of therapeutic interventions. Techniques in MALDI-MSI also enable integration of biomarker identification among diverse animal models. Analysis of early, sublethally irradiated tissue injury samples from diverse mouse tissues (lung and ileum) shows membrane phospholipid signatures correlated with histological features of these unique tissues. This paper will discuss the application of MALDI-MSI for use in a larger biomarker discovery pipeline.

  20. Method for predicting peptide detection in mass spectrometry

    Science.gov (United States)

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  1. Analysis of soils by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Duckworth, D.C.; Barshick, C.M.; Smith, D.H.

    1993-01-01

    The analysis of soils by conventional solution-based techniques, such as inductively coupled plasma and thermal ionization mass spectrometry, is complicated by the need for sample dissolution or the combination of a solids atomizer with an auxiliary ionization source. Since time is an important consideration in waste remediation, there exists a need for a method of rapidly analysing many soil samples with little sample preparation; glow discharge mass spectrometry (GDMS) has the potential to meet this need. Because GDMS is a bulk solids technique, sample preparation is simplified in comparison to other methods. Even with the most difficult samples (geological materials, such as soils and volcanic rock), all that is required is grinding, drying and mixing with a conducting host material prior to electrode formation. As a first test of GDMS for soil analysis, a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) was analysed by direct current GDMS. Fifty-one elements were quantified from a single cathode using ion beam ratios and ''standard'' relative elemental sensitivity factors (RSF). Average errors for the suite of elements were less than a factor of 4 and 1.4 for uncorrected and corrected values, respectively. User-generated RSF values were applied to the analysis of several elements in NIST SRM 2704 Buffalo River Sediment. In the absence of isobaric interferences, accuracies ranging from 0.6 to 73% were observed, demonstrating the potential of the technique for the determination of many elements. The presence of entrained water and inhomogeneity resulting from cathode preparation is thought to affect matrix-to-matrix reproducibility. While further success depends on developing means of circumventing mass spectral interferences and addressing factors affecting plasma chemistry, the immediate goal of developing a screening method for priority metals in soils was met. (Author)

  2. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms.

    Science.gov (United States)

    Jaffe, Jacob D; Feeney, Caitlin M; Patel, Jinal; Lu, Xiaodong; Mani, D R

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.

  3. Establishment of methodology for determination of {sup 93}Zr in radioactive wastes by Liquid Scintillation Counting (LSC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS); Estabelecimento de metodologia para determinacao de {sup 93}Zr em rejeitos radioativos por Espectrometria de Cintilacao Liquida (LSC) e Espectrometria de Massa com Plasma Indutivamente Acoplado (ICP-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Cesar de

    2014-06-01

    The zirconium-93 is a long-lived pure β-particle-emitting radionuclide produced from {sup 235}U fission and from neutron activation of the stable isotope {sup 92}Zr and thus occurring as one of the radionuclides found in nuclear reactors. Due to its long half life, {sup 93}Zr is one of the radionuclides of interest for the performance of assessment studies of waste storage or disposal. Measurement of {sup 93}Zr is difficult owing to its trace level concentration and its low activity in nuclear wastes and further because its certified standards are not frequently available. The aim of this work was to develop a selective radiochemical separation methodology for the determination of {sup 93}Zr in nuclear waste and analyze it by Liquid Scintillation Counting (LSC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). To set up the radiochemical separation procedure for zirconium, a tracer solution of {sup 95}Zr and its 724 keV γ-ray measurements by γ- spectrometry were used in order to follow the behavior of zirconium during the radiochemical separation. For the LSC technique a {sup 55}Fe solution, which is one of the major interfering measures zirconium, was used to verify the decontamination factor during the separation process. The efficiency detection for {sup 63}Ni was used to determination of {sup 93}Zr activity in the matrices analyzed. The limit of detection of the 0.05 Bq 1{sup −1} was obtained for {sup 63}Ni standard solutions by using a sample:cocktail ratio of 3:17 mL for Optiphase Hisafe 3 cocktail. For the ICP-MS technique a zirconium stable solution was used to verify the zirconium behavior and recovery during radiochemical separation and a solution of Ba, Co, Eu, Fe, Mn, Nb, Sr and Y was used to verify the decontamination factor during the separation process. A standard solution {sup 93}Nb as isotope for determining the {sup 93}Zr by ICP-MS was used for calibration and analysis. The detection limit of 0.039 ppb was obtained for the standard

  4. Mass spectrometry of hyper-velocity impacts of organic micrograins.

    Science.gov (United States)

    Srama, Ralf; Woiwode, Wolfgang; Postberg, Frank; Armes, Steven P; Fujii, Syuji; Dupin, Damien; Ormond-Prout, Jonathan; Sternovsky, Zoltan; Kempf, Sascha; Moragas-Klostermeyer, Georg; Mocker, Anna; Grün, Eberhard

    2009-12-01

    The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds. Copyright 2009 John Wiley & Sons, Ltd.

  5. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Watrous, Matthew George; Adamic, Mary Louise; Olson, John Eric; Baeck, D. L.; Fox, R. V.; Hahn, P. A.; Jenson, D. D.; Lister, T. E.

    2015-01-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world's best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  6. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Matthew George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adamic, Mary Louise [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, John Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baeck, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, R. V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hahn, P. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jenson, D. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lister, T. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  7. Isotope effects in mass-spectrometry; Les effets isotopiques en spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Leicknam, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physico-chimie, service des isotopes stables, section de spectrometrie de masse

    1967-05-01

    In the first part, a review is made of the work concerning the influence of isotopic substitution on the stabilities of ionised molecules and the bond-breaking probabilities; metastable transitions are also affected by this substitution. A model based on the Franck-Condon principle accounts for the experimentally observed isotopic effects for diatomic molecules; to a certain extent it is possible to generalise the calculation for the case of isotopic molecules of carbon dioxide gas. For deuterated polyatomic molecules there exist a {pi} effect making it possible to compare the relative stabilities of the X-H and X-D bonds, and a {gamma} effect which characterizes the different behaviours of the X-H bond in a normal molecule and in its partially deuterated homologue. Usually there is a very marked {pi} effect (e.g. the C-D bonds are more difficult to break than the homologous C-H bonds) and a {gamma} effect, the partial deuteration of a molecule leading in general to an increase in the probability of breakage of a given bond. An interpretation of {pi} and {gamma} effects based on Rosenstock near-equilibrium theory accounts for the observed phenomena, qualitatively at least, in the case of propane and acetylene. In the second part are gathered together results concerning isotopic effects produced during the formation of rearranged ions. The existence of cyclic transition ions has made it possible for Mc Lafferty to explain the existence of these ions in the mass spectrum; isotopic substitution leads to a modification of the rearrangement mechanism, the bonding forces being no longer the same. (author) [French] Dans une premiere partie, on rassemble les travaux concernant l'influence de la substitution isotopique sur les stabilites des molecules ionisees et les probabilites de rupture des liaisons; les transitions metastables sont egalement modifiees par cette substitution. Un modele base sur le principe de Franck-Condon rend compte des effets isotopiques

  8. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kiss, A.; Leach, F.E.; Robinson, E.W.; Paša-Tolić, L.; Heeren, R.M.A.

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically

  9. Symposium on fast atom and ion induced mass spectrometry of nonvolatile organic solids

    International Nuclear Information System (INIS)

    McNeal, C.J.

    1982-01-01

    The mechanisms of molecular and fragment ion production and the various parameters affecting ion yields were discussed by 6 invited speakers from Europe, Canada, and the US at this symposium. The work reported was almost equally divided between that using low-energy (keV) primary ion (or atom) beams, e.g. fast atom bombardment mass spectrometry (FABMS) and secondary ion mass spectrometry (SIMS) and that using high energy (MeV) particles, e.g. heavy ion induced mass spectrometry (HIIDMS) and 252 Cf-plasma desorption mass spectrometry ( 252 Cf-PDMS). Both theoretical foundations and observed experimental results for both techniques are included

  10. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data

    Directory of Open Access Journals (Sweden)

    Hendrik Treutler

    2016-10-01

    Full Text Available Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92 % of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0.

  11. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  12. Recent developments in and applications of resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Wendt, K.; Blaum, K.; Horn, R.; Huber, G.; Kunz, P.; Mueller, P.; Noertershaeuser, W.; Nunnemann, M.; Passler, G.; Schmitt, A.; Gruening, C.; Kratz, J.V.; Trautmann, N.; Waldek, A.

    1999-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has nowadays reached the status of a routine method for sensitive and selective ultratrace determination of long-lived radioactive isotopes in environmental, biomedical and technical samples. It provides high isobaric suppression, high to ultra-high isotopic selectivity and good overall efficiency. Experimental detection limits are as low as 10 6 atoms per sample and permit the fast and sensitive determination of ultratrace amounts of radiotoxic contaminations. Experimental arrangements for the detection of different radiotoxic isotopes, e.g. 236-244 Pu, 89,90 Sr and 99 Tc in environmental samples are described, and the application of RIMS to the ultrarare long-lived radioisotope 41 Ca for cosmochemical, radiodating and medical purposes are presented. (orig.)

  13. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  14. Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel; Liu, Tao; Petyuk, Vladislav A.; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2012-08-31

    Mass spectrometry (MS)-based proteomics measurements have become increasingly utilized in a wide range of biological and biomedical applications, and have significantly enhanced the understanding of the complex and dynamic nature of the proteome and its connections to biology and diseases. While some MS techniques such as those for targeted analysis are increasingly applied with great success, others such as global quantitative analysis (for e.g. biomarker discovery) are more challenging and continue to be developed and refined to provide the desired throughput, sensitivity and/ or specificity. New MS capabilities and proteomics-based pipelines/strategies also keep enhancing for the advancement of clinical proteomics applications such as protein biomarker discovery and validation. Herein, we provide a brief review to summarize the current state of MS-based proteomics with respect to its advantages and present limitations, while highlighting its potential in future clinical applications.

  15. Mass spectrometry-based proteomic quest for diabetes biomarkers.

    Science.gov (United States)

    Shao, Shiying; Guo, Tiannan; Aebersold, Ruedi

    2015-06-01

    Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia, which affects hundreds of millions of individuals worldwide. Early diagnosis and complication prevention of DM are helpful for disease treatment. However, currently available DM diagnostic markers fail to achieve the goals. Identification of new diabetic biomarkers assisted by mass spectrometry (MS)-based proteomics may offer solution for the clinical challenges. Here, we review the current status of biomarker discovery in DM, and describe the pressure cycling technology (PCT)-Sequential Window Acquisition of all Theoretical fragment-ion (SWATH) workflow for sample-processing, biomarker discovery and validation, which may accelerate the current quest for DM biomarkers. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The role of mass spectrometry in hydrocarbon analysis

    International Nuclear Information System (INIS)

    Kerenyi, E.

    1980-01-01

    Modern mass spectrometry has an outstandin.o role in solving problems concerning the composition and structure of hydrocarbon mixtures and their derivatives, petroleum and petrochemical products. Its efficiency in hydrocarbon analysis has been increased not only by high resolving power and computerized spectrum processing but also by the metastable ion spectrum technique promoting structural examinations, by mild ionization facilitating composition analysis, and by selective ion-detecting technique. The author presents the advantages of the metastable ion spectra, the field ionization, field desorption and other mild ionization methods, and finally, those of fragmentation analysis in connection with the examination of hydrocarbons and hydrocarbon derivatives. Examples taken from the literature and from the research work carried out in the Institute are also given. (author)

  17. Application of inorganic mass spectrometry to problems in atmospheric chemistry

    International Nuclear Information System (INIS)

    Kelly, W.R.

    1990-01-01

    The measurement of isotopes by thermal ionization mass spectrometry is a highly sensitive and accurate technique which can be used to determine the concentration of specific nuclides as well as the isotopic composition in environmental samples. The first application uses isotope dilution which makes possible the determination of all elements with two or more stable isotopes in all types of matrices. The second application is a very powerful and useful application in atmospheric chemistry because it permits the use of stable isotopes as definitive intentional tracers of emissions from high temperature combustion sources. The use of stable isotopes of S, Nd, Sm, and U in the study of visibility, deposition, and definitive tracing of emissions will be presented

  18. Urine Proteomics in the Era of Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ashley Beasley-Green

    2016-11-01

    Full Text Available With the technological advances of mass spectrometry (MS-based platforms, clinical proteomics is one of the most rapidly growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein biomarkers.

  19. Application of accelerator mass spectrometry in nuclear science

    International Nuclear Information System (INIS)

    Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei

    2013-01-01

    Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)

  20. Estimation of brassylic acid by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  1. Translational imaging mass spectrometry: From CERN to the surgeon

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    A comprehensive understanding of molecular patterns of health and disease is needed to pave the way for personalized medicine and tissue regeneration. New Mass Spectrometry based chemical microscopes that target biomedical tissue analysis in various diseases as well as other chemically complex surfaces have now firmly established themselves in translational research. In concert they elucidate the way in which local environments can influence molecular signaling pathways on various scales, from molecule to man. The integration of this pathway information in a surgical setting is imminent, but innovations that push the boundaries of the technology and its application are still needed. In particular, researchers investigate comprehensive and isolated biomolecular molecular patterns of health and disease. This is a key element needed to pave the way for personalized medicine and tissue regeneration. One barrier to predictive, personalized medicine is the lack of a comprehensive molecular understanding at the ti...

  2. MALDI-TOF-mass spectrometry applications in clinical microbiology.

    Science.gov (United States)

    Seng, Piseth; Rolain, Jean-Marc; Fournier, Pierre Edouard; La Scola, Bernard; Drancourt, Michel; Raoult, Didier

    2010-11-01

    MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost-effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.

  3. Dating of some fossil Romanian bones by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Olariu, Agata; Skog, Goeran; Emilian Alexandrescu; Hellborg, Ragnar; Stenstroem, Krstina; Faarinen, Mikko; Persson, Per

    2002-01-01

    Some fossil bones from Romanian territories have been dated by accelerator mass spectrometry (AMS) using the pelletron system from Lund University. The preparation of samples has been the classical procedure to produce pure graphite from bones specimens, The Paleolithic site from Malu Rosu, near Giurgiu was thoroughly analyzed. Two human fossil skulls from Cioclovina and Baia de Fier of special archaeological importance have been estimated to be of around 30 000 years old, a conclusion with great implications for the history of ancient Romania. By this physical analysis, a long scientific dispute was settled. The two fossil human skulls are the only ones of this age from Romania. One could advance the hypothesis that the skulls belong to a certain type of a branch of Central European Cro-Magon, the classical western type, considering both the chronological and the anthropological features. They constitute eastern limit of the Cro-Magnon man type. (authors)

  4. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Gore, J.A.; Sparrow, H.; Bhagwat, P.V.; Kailas, S.

    2006-01-01

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radio isotope 36 Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  5. Direct analysis of traditional Chinese medicines by mass spectrometry.

    Science.gov (United States)

    Wong, Melody Yee-Man; So, Pui-Kin; Yao, Zhong-Ping

    2016-07-15

    Analysis of traditional Chinese medicines (TCMs) plays important roles in quality control of TCMs and understanding their pharmacological effects. Mass spectrometry (MS) is a technique of choice for analysis of TCMs due to its superiority in speed, sensitivity and specificity. However, conventional MS analysis of TCMs typically requires extensive sample pretreatment and chromatographic separation, which could be time-consuming and laborious, prior to the analysis. The expanding usage of TCMs worldwide demands development of rapid, cost-effective and reliable methods for analysis of TCMs. In recent years, new sample preparation and ionization techniques have been developed to enable direct analysis of TCMs by MS, significantly reducing the analysis time and cost. In this review, various MS-based techniques, mainly including ambient ionization-MS and MALDI-MS based techniques, applied for direct analysis of TCMs are summarized and their applicability and future prospects are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    Science.gov (United States)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  7. Isotopic analysis of uranium by thermoionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de.

    1979-01-01

    Uranium isotopic ratio measurements by thermoionic spectrometry are presented. Emphasis is given upon the investigation of the parameters that directly affect the precision and accuracy of the results. Optimized procedures, namely, chemical processing, sample loading on the filaments, vaporization, ionization and measurements of ionic currents, are established. Adequate statistical analysis of the data for the calculation of the internal and external variances and mean standard deviation are presented. These procedures are applied to natural and NBS isotopic standard uranium samples. The results obtained agree with the certified values within specified limits. 235 U/ 238 U isotopic ratios values determined for NBS-U500, and a series of standard samples with variable isotopic compositon, are used to calculate mass discrimination factor [pt

  8. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies.

    Science.gov (United States)

    Zhang, Hao; Cui, Weidong; Gross, Michael L

    2014-01-21

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Instantaneous chemical profiles of banknotes by ambient mass spectrometry.

    Science.gov (United States)

    Eberlin, Livia S; Haddad, Renato; Sarabia Neto, Ramon C; Cosso, Ricardo G; Maia, Denison R J; Maldaner, Adriano O; Zacca, Jorge Jardim; Sanvido, Gustavo B; Romão, Wanderson; Vaz, Boniek G; Ifa, Demian R; Dill, Allison; Cooks, R Graham; Eberlin, Marcos N

    2010-10-01

    Using two desorption/ionization techniques (DESI and EASI) and Brazilian real, US$ dollar, and euro bills as proof-of-principle techniques and samples, direct analysis by ambient mass spectrometry is shown to function as an instantaneous, reproducible, and non-destructive method for chemical analysis of banknotes. Characteristic chemical profiles were observed for the authentic bills and for the counterfeit bills made using different printing processes (inkjet, laserjet, phaser and off-set printers). Detection of real-world counterfeit bills and identification of the counterfeiting method has also been demonstrated. Chemically selective 2D imaging of banknotes has also been used to confirm counterfeiting. The nature of some key diagnostic ions has also been investigated via high accuracy FTMS measurements. The general applicability of ambient MS analysis for anti-counterfeiting strategies particularly via the use of "invisible ink" markers is discussed.

  10. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations.

    Science.gov (United States)

    Mayya, Viveka; Han, David K

    2009-12-01

    Phosphorylation of proteins is a predominant, reversible post-translational modification. It is central to a wide variety of physiological responses and signaling mechanisms. Recent advances have allowed the global scope of phosphorylation to be addressed by mass spectrometry using phosphoproteomic approaches. In this perspective, we discuss four aspects of phosphoproteomics: the insights and implications from recently published phosphoproteomic studies and the applications and limitations of current phosphoproteomic strategies. Since approximately 50,000 known phosphorylation sites do not yet have any ascribed function, we present our perspectives on a major function of protein phosphorylation that may be of predictive value in hypothesis-based investigations. Finally, we discuss strategies to measure the stoichiometry of phosphorylation in a proteome-wide manner that is not provided by current phosphoproteomic approaches.

  11. Monitoring the synthesis of biomolecules using mass spectrometry.

    Science.gov (United States)

    Miyagi, Masaru; Kasumov, Takhar

    2016-10-28

    The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water ((2)H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  12. An improved interface for capillary zone electrophoresis-mass spectrometry

    International Nuclear Information System (INIS)

    Smith, R.D.; Loo, J.A.; Barinaga, C.J.; Udseth, H.R.

    1988-06-01

    We have recently developed an improved electrospray ionization interface for capillary electrophoresis mass-spectrometry (CZE-MS). Our initial interface employed a vacuum deposited metal film at the exit of the capillary to make an electrical contact with he eluting buffer and establish the electrospray field gradient. This interface did, however, impose significant limitations on the range of capillary electrophoretic (CE) separations that could be performed. To circumvent these limitations, an interface that does not require a metalized tip was designed nd developed. In the new approach, the electrical contact at the column exit is made through a flowing liquid sheath. The principal advantage of this interface is that it allows operation with a much broader range of electrophoresis conditions. The sheath flow can be readily varied in both composition and volume. An electrospray ionization spectrum is given for a previously intractable buffer solution. 5 refs., 2 figs

  13. Quality assurance for mass spectrometry research and development analysis

    International Nuclear Information System (INIS)

    Piciorea, Iuliana; Vremera, Raluca; Calota, Iulian Virgil

    2008-01-01

    Full text: A well functioning quality system need not stifle creativity in R and D, and is vital for ensuring the smooth transfer of technology from research to diagnostic or commercial environments. Research workers must have an evaluation of the quality requirements of clients and quality must be ensured by design in every process. No single method of assessment stands out as being the most suitable for monitoring the quality of non-routine and R and D work. It is recommended that where some kind of external assessment is required a combination of approaches should be conducted and formal assessment should be confined wherever possible to those parts of the quality system that remain stable from project to project, e.g. the management levels and technical infrastructure. Illustrations for the case of organophosphorus materials, mass spectrometry research and developments are presented. (authors)

  14. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  15. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  16. Decoding signalling networks by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Mann, Matthias

    2010-01-01

    Signalling networks regulate essentially all of the biology of cells and organisms in normal and disease states. Signalling is often studied using antibody-based techniques such as western blots. Large-scale 'precision proteomics' based on mass spectrometry now enables the system......-wide characterization of signalling events at the levels of post-translational modifications, protein-protein interactions and changes in protein expression. This technology delivers accurate and unbiased information about the quantitative changes of thousands of proteins and their modifications in response to any...... perturbation. Current studies focus on phosphorylation, but acetylation, methylation, glycosylation and ubiquitylation are also becoming amenable to investigation. Large-scale proteomics-based signalling research will fundamentally change our understanding of signalling networks....

  17. A Century of Progress in Molecular Mass Spectrometry

    Science.gov (United States)

    McLafferty, Fred W.

    2011-07-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  18. Petroleomics by Direct Analysis in Real Time-Mass Spectrometry.

    Science.gov (United States)

    Romão, Wanderson; Tose, Lilian V; Vaz, Boniek G; Sama, Sara G; Lobinski, Ryszard; Giusti, Pierre; Carrier, Hervé; Bouyssiere, Brice

    2016-01-01

    The analysis of crude oil and its fractions by applying ambient ionization techniques remains underexplored in mass spectrometry (MS). Direct analysis in real time (DART) in the positive-ion mode was coupled to a linear quadrupole ion trap Orbitrap mass spectrometer (LTQ Orbitrap) to analyze crude oil, paraffin samples, and porphyrin standard compounds. The ionization parameters of DART-MS were optimized for crude oil analysis. DART-MS rendered the optimum conditions of the operation using paper as the substrate, T = 400°C, helium as the carrier gas, and a sample concentration ≥6 mg mL(-1). In the crude oils analysis, the DART(+)-Orbitrap mass spectra detected the typical N, NO, and O-containing compounds. In the paraffin samples, oxidized hydrocarbon species (Ox classes, where x = 1-4) with double-bond equivalent of 1-4 were detected, and their structures and connectivity were confirmed by collision-induced dissociation (CID) experiments. DART(+)-MS has identified the porphyrin standard compounds as [M + H](+) ions of m/z 615.2502 and 680.1763, where M = C44H30N4 and C44H28N4OV, respectively, based on the formula assignment and by phenyl losses observed on CID experiments.

  19. U-series dating using thermal ionisation mass spectrometry (TIMS)

    International Nuclear Information System (INIS)

    McCulloch, M.T.

    1999-01-01

    U-series dating is based on the decay of the two long-lived isotopes 238 U(τ 1/2 =4.47 x 10 9 years) and 235 U (τ 1/2 0.7 x 10 9 years). 238 U and its intermediate daughter isotopes 234 U (τ 1/2 = 245.4 ka) and 230 Th (τ 1/2 = 75.4 ka) have been the main focus of recently developed mass spectrometric techniques (Edwards et al., 1987) while the other less frequently used decay chain is based on the decay 235 U to 231 Pa (τ 1/2 = 32.8 ka). Both the 238 U and 235 U decay chains terminate at the stable isotopes 206 Pb and 207 Pb respectively. Thermal ionization mass spectrometry (TIMS) has a number of inherent advantages, mainly the ability to measure isotopic ratios at high precision on relatively small samples. In spite of these now obvious advantages, it is only since the mid-1980's when Chen et al., (1986) made the first precise measurements of 234 U and 232 Th in seawater followed by Edwards et al., (1987) who made combined 234 U- 230 Th measurements, was the full potential of mass spectrometric methods first realised. Several examples are given to illustrate various aspects of TIMS U-series

  20. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.