WorldWideScience

Sample records for mass mixing ratios

  1. Mixed-mode chromatography/isotope ratio mass spectrometry.

    Science.gov (United States)

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  2. Influence of air mass source sector on variations in CO2 mixing ratio at a boreal site in northern Finland

    International Nuclear Information System (INIS)

    Aalto, T.; Hatakka, J.; Viisanen, Y.

    2003-01-01

    CO 2 mixing ratio in air masses coming from different source sectors was studied at Pallas measurement station in Lapland. Source sectors were defined using back trajectories and wind direction measurements. Air masses from the North and West sectors showed an annual variation of 17 ppm, possibly affected by a long range transported marine air. A larger variation of 20 ppm was observed in air masses from the more continental South and East sectors. During late autumn mixing ratios in air masses from the South sector were high in comparison with the other sectors. Different methods for a source sector definition were considered for the site, located in a contoured terrain. 52%-73% of wind direction-based source sector definitions agreed with trajectory- based definitions. However, the number of cases with reliable sector definitions may remain low when considering all observations. Different definition methods can cause differences of the order of 1 ppm in sectorially selected monthly mean CO 2 mixing ratios. (orig.)

  3. E2,M1 Multipole mixing ratios in odd-mass nuclei, 59< or =A< or =149

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of the E2,M1 mxing ratios of gamma-ray transitions in odd-mass nuclei with 59< or =A< or =149. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included, based on averages of results from various studies. The survey includes data available in the literature up to September 1976

  4. Mixing ratio sensor of alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-07

    In order to improve combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing and change the condition of control depending upon the mixing ratio of the mixed fuel. In order to detect the mixing ratio of the mixed fuel, the above mixing ratio has so far been detected by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, in case when a light emitting diode is used for the light source above, two kinds of sensors are further needed. Concerning the two kinds of sensors above, this invention offers a mixing ratio sensor for the alcohol mixed fuel which can abolish a temperature sensor to detect the environmental temperature by making a single compensatory light receiving element deal with the compensation of the amount of light emission of the light emitting element due to the temperature change and the compensation of the critical angle caused by the temperature change. (6 figs)

  5. Mixing ratio sensor for alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-24

    In order to improve the combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing. In order to detect the mixing ratio of the mixed fuel, a mixing ratio sensor has so far been proposed to detect the above mixing ratio by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, because of the arrangement of its transparent substance in the fuel passage with the sealing material in between, this sensor invited the leakage of the fluid due to deterioration of the sealing material, etc. and its cost became high because of too many parts to be assembled. In view of the above, in order to reduce the number of parts, to lower the cost of parts and the assembling cost and to secure no fluid leakage from the fuel passage, this invention formed the above fuel passage and the above transparent substance both concerning the above mixing ratio sensor in an integrated manner using light transmitting resin. (3 figs)

  6. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  7. Relating masses and mixing angles. A model-independent model

    Energy Technology Data Exchange (ETDEWEB)

    Hollik, Wolfgang Gregor [DESY, Hamburg (Germany); Saldana-Salazar, Ulises Jesus [CINVESTAV (Mexico)

    2016-07-01

    In general, mixing angles and fermion masses are seen to be independent parameters of the Standard Model. However, exploiting the observed hierarchy in the masses, it is viable to construct the mixing matrices for both quarks and leptons in terms of the corresponding mass ratios only. A closer view on the symmetry properties leads to potential realizations of that approach in extensions of the Standard Model. We discuss the application in the context of flavored multi-Higgs models.

  8. Convective mixing length and the galactic carbon to oxygen ratio

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    We have studied chemical evolution models, assuming instantaneous recycling, and considering: a) the effects of mass loss both in massive stars and in intermediate mass stars, and b) the initial mass function of the solar neighbourhood (Serrano 1978). From these models we have derived the yields of carbon and oxygen. It is concluded that the condition C/O approximately 0.58 in the solar neighbourhood can only be satisfied if, during advanced stages of stellar evolution of intermediate mass stars, the ratio of the convective mixing length to the pressure scale height is > approximately 2.

  9. The double mass hierarchy pattern: Simultaneously understanding quark and lepton mixing

    Science.gov (United States)

    Hollik, Wolfgang Gregor; Saldaña Salazar, Ulises Jesús

    2015-03-01

    The charged fermion masses of the three generations exhibit the two strong hierarchies m3 ≫m2 ≫m1. We assume that also neutrino masses satisfy mν3 >mν2 >mν1 and derive the consequences of the hierarchical spectra on the fermionic mixing patterns. The quark and lepton mixing matrices are built in a general framework with their matrix elements expressed in terms of the four fermion mass ratios, mu /mc, mc /mt, md /ms and ms /mb, and me /mμ, mμ /mτ, mν1 /mν2 and mν2 /mν3, for the quark and lepton sector, respectively. In this framework, we show that the resulting mixing matrices are consistent with data for both quarks and leptons, despite the large leptonic mixing angles. The minimal assumption we take is the one of hierarchical masses and minimal flavor symmetry breaking that strongly follows from phenomenology. No special structure of the mass matrices has to be assumed that cannot be motivated by this minimal assumption. This analysis allows us to predict the neutrino mass spectrum and set the mass of the lightest neutrino well below 0.01 eV. The method also gives the 1σ allowed ranges for the leptonic mixing matrix elements. Contrary to the common expectation, leptonic mixing angles are found to be determined solely by the four leptonic mass ratios without any relation to symmetry considerations as commonly used in flavor model building. Still, our formulae can be used to build up a flavor model that predicts the observed hierarchies in the masses - the mixing follows then from the procedure which is developed in this work.

  10. Volatile organic compound mixing ratios above Beijing in November and December 2016

    Science.gov (United States)

    Acton, William; Shaw, Marvin; Huang, Zhonghui; Wang, Zhaoyi; Wang, Xinming; Zhang, Yanli; Davison, Brian; Langford, Ben; Mullinger, Neil; Nemitz, Eiko; Fu, Pingqing; Squires, Freya; Carpenter, Lucy; Lewis, Alastair; Hewitt, Nick

    2017-04-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from vegetation and anthropogenic sources such as fossil fuel combustion, biomass burning and the evaporation of petroleum products. These compounds play an important role in the chemistry of the lower atmosphere through secondary organic aerosol (SOA) formation and facilitating the formation of tropospheric ozone. As well as their indirect impact on human health via the formation of ozone and SOA, some VOCs, including benzene, directly affect human health adversely. Here we report VOC mixing ratios measured in Beijing during a 5 week intensive field campaign from the 7th November to the 10th December 2016. This work was carried out as part of the Sources and Emissions of Air Pollutants in Beijing (AIRPOLL-Beijing) work project within the Air Pollution and Human Health in a Developing Megacity (APHH-Beijing) research programme. APHH is a large multi-institutional study which aims to record the concentrations and identify the sources of urban air pollutants in Beijing, determine exposure, understand their effects on human health, and to identify solutions. VOC mixing ratios were recorded using a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS, Ionicon Analytik) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS, SYFT Technologies). During the measurement period Beijing was subject to multiple pollution events that alternated with periods of relatively good air quality, allowing the VOCs within the polluted air masses to be identified and quantified. VOCs were sampled at 102 m with additional gradient measurements made at 3, 15, 32 and 64 m providing a vertical profile of VOC mixing ratios. Mixing ratios of methanol, acetonitrile, acetaldehyde, acetone, isoprene and aromatics species will be reported together with a discussion of potential sources. Comparisons will then be drawn with other large cities.

  11. Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Cabot, William H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Thornber, Ben [The University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering, New South Wales 2006, Sydney (Australia)

    2016-05-15

    Rayleigh–Taylor instability (RTI) and Richtmyer–Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixed mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.

  12. Neutrino mass and mixing with discrete symmetry

    International Nuclear Information System (INIS)

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  13. Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. D. Thornberry

    2013-06-01

    Full Text Available A chemical ionization mass spectrometer (CIMS instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS. A low-pressure flow of sample air passes through an ionization volume containing an α-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+ from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm, 10−6 mol mol−1 generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57F high-altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1 s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm−1 at 3 ppm with a signal to noise ratio (2 σ, 1 s greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

  14. Numerical Investigation of Mixing Characteristics in Cavity Flow at Various Aspect Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dongyang Mirae University, Seoul (Korea, Republic of); Yang, Seung Deok; Yoon, Joon Yong [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    This study numerically examined the mixing characteristics of rectangular cavity flows by using the hybrid lattice Boltzmann method (HLBM) applied to the finite difference method (FDM). Multi-relaxation time was used along with a passive scalar method which assumes that two substances have the same mass and that there is no interaction. First, we studied numerical results such as the stream function, position of vortices, and velocity profile for a square cavity and rectangular cavity with an aspect ratio of 2. The data were compared with previous numerical results that have been proven to be reliable. We also studied the mixing characteristics of a rectangular cavity flow such as the concentration profile and average Sherwood number at various Pe numbers and aspect ratios.

  15. MARKETING MIX BY BED OCCUPANCY RATIO (BOR

    Directory of Open Access Journals (Sweden)

    Abdul Muhith

    2017-04-01

    Full Text Available Introduction: Bed Occupancy Ratio (BOR in RSI Arafah Mojosari during the last three years are at under ideal rate and the lowest of the three existing hospitals in the area of Mojosari. The purpose of this study was to determine the relationship marketing mix with Bed Occupancy Ratio in RSI Arafah Mojosari. Methods: This research uses analytic methods with crossectional approach. Variables in the study is marketing mix and Bed Occupancy Ratio (BOR. The population in this study were all patients hospitalized in the RSI Arafah Mojosari. Samples amounted 44 respondents taken by the Stratified random sampling technique. Data were collected using the questionnaire and analyzed using Fisher's Exact test. Result: The results obtained more than 50% of respondents (59.1% rate well against the marketing mix is developed by the hospital management and the majority of respondents (79.5% are in the treatment room that has a number BOR is not ideal. Fisher Exact test test results obtained probabililty value=0.02<0.05 so that H0 is rejected, which means there is a relationship marketing mix with the Bed Occupancy Ratio in RSI Arafah Mojosari. Discussion: Hospitals which able to develop the marketing mix very well, can attract consumers to use inpatient services at the hospital, with that BOR value will increase as the increased use of inpatient services. Hospital management must be able to formulate a good marketing mix strategy that hospital marketing objectives can be achieved. Conformity between service quality and service rates must be addressed, otherwise it extent of media promotions can attract patients to inpatient services.

  16. Fritzsch-type mass matrices and the Wolfenstein parametrization of quark mixing

    International Nuclear Information System (INIS)

    Kang, K.; Hadjitheodoridis, S.; Brown Univ., Providence, RI

    1987-01-01

    We give approximate and analytic expressions of polynomial type in small parameters defined in terms of quark mass ratios for the elements of the flavor-mixing matrix predicted from the Fritzsch-type mass matrices of quarks. The results are successfully tested against experiments as represented by the Wolfenstein parametrization of quark mixing. From the reality of the CP phases we get an allowed range for m s , which in turn implies that m t can be as large as 80.8 GeV. In addition we find that the two CP phases α and β are very close, i.e., vertical strokeα-βvertical stroke ≅ O(λ). (orig.)

  17. E2,M1 multipole mixing ratios in even-even nuclei, 58< or =A< or =150

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of E2,M1 multipole mixing ratios of gamma-ray transitions in even-even nuclei in the mass range 58< or =A< or =150. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included based on averages of results from various studies. The survey includes data available in the literature up to December 1976

  18. Masses, flavor mix and CP violation

    International Nuclear Information System (INIS)

    Chaussard, L.

    2004-06-01

    The author describes the relationships between masses, mixing of flavors and CP violation. This document is divided into 4 chapters: 1) fermions' masses, 2) mixing of flavors and CP violation, 3) beauty physics and 4) neutrino physics. In chapter 1 an attempt is made to explain what is behind the concepts of lepton mass and quark mass. As for neutrinos, the only neutral fermion, Dirac's and Majorana's views are exposed as well as their consequences. Fermion flavors are mixed in the process of mass generation and this mix is responsible for the breaking of CP and T symmetries. In chapter 2 the author shows how the analysis of particle oscillations from neutral mesons (K 0 , D 0 , B d 0 and B s 0 ) and from neutrinos can shed light on CP violation. Chapter 3 is dedicated to the contribution of beauty physics to the determination of the unitary triangle, through the oscillations of beauty mesons. In chapter 4 the author reviews the experimental results obtained recently concerning neutrino mass and neutrino oscillations and draws some perspectives on future neutrino experiments. (A.C.)

  19. Mixing ratios of carbon monoxide in the troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Steele, L.P. (Univ. of Colorado, Boulder (United States)); Tans, P.P. (NOAA, Boulder, CO (United States))

    1992-12-20

    Carbon monoxide (CO) mixing ratios were measured in air samples collected weekly at eight locations. The air was collected as part of the CMDL/NOAA cooperative flask sampling program (Climate Monitoring and Diagnostics Laboratory, formerly Geophysical Monitoring for Climatic Change, Air Resources Laboratory/National Oceanic and Atmospheric Administration) at Point Barrow, Alaska, Niwot Ridge, Colorado, Mauna Loa and Cape Kumakahi, Hawaii, Guam, Marianas Islands, Christmas Island, Ascension Island and American Samoa. Half-liter or 3-L glass flasks fitted with glass piston stopcocks holding teflon O rings were used for sample collection. CO levels were determined within several weeks of collection using gas chromatography followed by mercuric oxide reduction detection, and mixing ratios were referenced against the CMDL/NOAA carbon monoxide standard scale. During the period of study (mid-1988 through December 1990) CO levels were greatest in the high latitudes of the northern hemisphere (mean mixing ratio from January 1989 to December 1990 at Point Barrow was approximately 154 ppb) and decreased towards the south (mean mixing ratio at Samoa over a similar period was 65 ppb). Mixing ratios varied seasonally, the amplitude of the seasonal cycle was greatest in the north and decreased to the south. Carbon monoxide levels were affected by both local and regional scale processes. The difference in CO levels between northern and southern latitudes also varied seasonally. The greatest difference in CO mixing ratios between Barrow and Samoa was observed during the northern winter (about 150 ppb). The smallest difference, 40 ppb, occurred during the austral winter. The annually averaged CO difference between 71[degrees]N and 14[degrees]S was approximately 90 ppb in both 1989 and 1990; the annually averaged interhemispheric gradient from 71[degrees]N to 41[degrees]S is estimated as approximately 95 ppb. 66 refs., 5 figs., 5 tabs.

  20. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  1. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  2. E2,M1 multipole mixing ratios in even--even nuclei, A greater than or equal to 152

    International Nuclear Information System (INIS)

    Krane, K.S.

    1975-01-01

    A survey is presented of E2,M1 mixing ratios of gamma-ray transitions in even-even nuclei with mass numbers A greater than or equal to 152. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. The cutoff date for the literature was June 1975. Based on an average of the experimental results from the literature, a recommended value of the E2,M1 mixing ratio for each transition is included

  3. Optimal sample to tracer ratio for isotope dilution mass spectrometry: the polyisotopic case

    International Nuclear Information System (INIS)

    Laszlo, G.; Ridder, P. de; Goldman, A.; Cappis, J.; Bievre, P. de

    1991-01-01

    The Isotope Dilution Mass Spectrometry (IDMS) measurement technique provides a means for determining the unknown amount of various isotopes of an element in a sample solution of known mass. The sample solution is mixed with an auxiliary solution, or tracer, containing a known amount of the same element having the same isotopes but of different relative abundances or isotopic composition and the induced change in the isotopic composition measured by isotope mass spectrometry. The technique involves the measurement of the abundance ratio of each isotope to a (same) reference isotope in the sample solution, in the tracer solution and in the blend of the sample and tracer solution. These isotope ratio measurements, the known element amount in the tracer and the known mass of sample solution are used to calculate the unknown amount of one isotope in the sample solution. Subsequently the unknown amount of element is determined. The purpose of this paper is to examine the optimization of the ratio of the estimated unknown amount of element in the sample solution to the known amount of element in the tracer solution in order to minimize the relative uncertainty in the determination of the unknown amount of element

  4. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  5. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  6. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  7. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  8. Higgs mass from neutrino-messenger mixing

    International Nuclear Information System (INIS)

    Byakti, Pritibhajan; Khosa, Charanjit K.; Mummidi, V.S.; Vempati, Sudhir K.

    2017-01-01

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  9. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    Science.gov (United States)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  10. Higgs mass from neutrino-messenger mixing

    Energy Technology Data Exchange (ETDEWEB)

    Byakti, Pritibhajan [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science,2A & 2B Raja S.C. Mullick Road, Kolkata 700 032 (India); Khosa, Charanjit K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Mummidi, V.S. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Vempati, Sudhir K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India)

    2017-03-06

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A{sub t}, relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  11. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  12. Hierarchical Neutrino Masses and Mixing in Flipped-SU(5)

    CERN Document Server

    Rizos, J

    2010-01-01

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansatze for the singlet couplings for which hierarchical neutrino masses emerge naturally, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta-(13) is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  13. Hierarchical fermion masses and mixing angles from the flipped string

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V. (Texas A and M Univ., College Station, TX (USA). Center for Theoretical Physics)

    1990-07-02

    We present a general method to obtain specific predictions for the fermion masses and mixings in the low-energy theory of the flipped SU(5) x U(1) superstring model. The condition of unbroken N=1 supergravity of M{sub Pl} in the presence of an anomalous U{sub A}(1) symmetry gives strong constraints on the parameters of the model. We obtain: (i) a top quark mass between 60 and 100 GeV, with values close to 100 GeV strongly favored; (ii) up- and down-type quark and lepton mass ratios and Cabibbo-Kobayashi-Maskawa mixings, which could be found consistent with their accepted values simultaneously in parameter space; (iii) a direct connection between the hierarchical fermion mass spectrum and baryon decay modes, we find p{yields}{mu}{sup +}{pi}{sup 0},anti {nu}{sub {mu}}{pi}{sup +}; n{yields}{mu}{sup +}{pi}{sup -},anti {nu}{sub {mu}}{pi}{sup 0}, with {tau}{sub p}{proportional to}{tau}{sub n}{proportional to}10{sup 35{plus minus}2} y; and (iv) a vanishing bare u quark mass that solves the strong CP problem in this model and is not in conflict with previous expectations. We stress that a full dynamical calculation would unambiguously determine these observables and hence constitute a definite test of the model. However, the whole framework is so constrained that crucial information can already be extracted from the model at this stage. (orig.).

  14. Multipole mixing ratios in /sup 154/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Won Mo; Song, Choong Sik; Joo, Koan Sik

    1985-06-01

    We have measured gamma-gamma angular correlations to determine the mixing ratios of several gamma transitions in /sup 154/Gd. The results are compared with those derived from the pairing-plus-quadrupole model and from the interacting boson model.

  15. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone in tropical, boreal, temperate and marine environments

    Directory of Open Access Journals (Sweden)

    A. M. Yáñez-Serrano

    2016-09-01

    Full Text Available Methyl ethyl ketone (MEK enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia. Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  16. Isotopic distributions, element ratios, and element mass fractions from enrichment-meter-type gamma-ray measurements of MOX

    International Nuclear Information System (INIS)

    Close, D.A.; Parker, J.L.; Haycock, D.L.; Dragnev, T.

    1991-01-01

    The gamma-ray spectra from ''infinitely'' thick mixed oxide samples have been measured. The plutonium isotopics, the U/Pu ratio, the high-Z mass fractions (assuming only plutonium, uranium, and americium), and the low-Z mass fraction (assuming the matrix is only oxygen) can be determined by carefully analyzing the data. The results agree well with the chemical determination of these parameters. 8 refs., 3 figs., 3 tabs

  17. Hierarchical neutrino masses and mixing in flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, J. [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Tamvakis, K., E-mail: tamvakis@uoi.g [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Physics Department, CERN, CH-1211, Geneva 23 (Switzerland)

    2010-02-22

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansaetze for the singlet couplings for which hierarchical neutrino masses emerge naturally as lambda{sup n}:lambda:1 or lambda{sup n}:lambda{sup 2}:1, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta{sub 13} is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  18. Visceral obesity, fat mass/muscle mass ratio and atherogenic dyslipidemia: cross-sectional study. Riobamba, Ecuador

    Directory of Open Access Journals (Sweden)

    Tomas Marcelo Nicolalde Cifuentes

    2015-10-01

    Full Text Available Introduction: The distribution and composition of fat mass is associated with different metabolic risks. The predominance of brown visceral fat is associated with risk factors for cardiovascular disease (CVD, such as: high triglycerides and apolipoprotein B, increased LDL cholesterol, ratio triglycerides/low HDL cholesterol elevated (atherogenic dyslipidemia indicator, insulin resistance, hyperinsulinemia and cardiovascular risk (CVR. Sarcopenia and obesity may act synergistically in functional and metabolic disorders. The aim of this study was to determine the relationship between visceral obesity, fat mass/muscular mass ratio and atherogenic dyslipidemia in adult individuals in order to determine the association pattern between these variables and set strategies for focused attention.Material and Methods: In a sample of 307 subjects of both sexes (21-71 years there was measured atherogenic dyslipidemia as the ratio of triglyceride/HDL cholesterol, visceral obesity measured by bio impedance as the relative score of visceral fat, and the ratio fat mass/lean mass.Results: A cluster analysis was performed to establish the structure of association between these variables with different risk groups. Three groups were identified: the first had visceral obesity with an average relative level of visceral fat of 13.6, the second group with an average of 8.9 and in the third group were placed individuals with the lowest visceral obesity score averaging 6.5. As for the fat mass/lean mas ratio the first two groups had a similar average of this index with a value of 1.56 and 1.69 respectively and the third group with the lowest average value of 1.3. Group 1 presented visceral obesity and impaired fat mass/lean mass ratio and had a high value of triglyceride/HDL ratio 4.1. Group 2 without visceral obesity and a deterioration in the relative fat mass/lean mass ratio had a triglyceride/HDL cholesterol of 3.6 and Group 3; not recorded visceral obesity or

  19. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Science.gov (United States)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  20. Hierarchy plus anarchy in quark masses and mixings

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.

    2003-01-01

    We introduce a parametrization of the effect of unknown corrections from new physics on quark and lepton mass matrices. This parametrization is used in order to study how the hierarchies of quark masses and mixing angles are modified by random perturbations of the Yukawa matrices. We discuss several examples of flavor relations predicted by different textures, analyzing how these relations are influenced by the random perturbations. We also comment on the unlikely possibility that unknown corrections contribute significantly to the hierarchy of masses and mixings

  1. Axial vector mass spectrum and mixing angles

    International Nuclear Information System (INIS)

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  2. A flavor symmetry model for bilarge leptonic mixing and the lepton masses

    Science.gov (United States)

    Ohlsson, Tommy; Seidl, Gerhart

    2002-11-01

    We present a model for leptonic mixing and the lepton masses based on flavor symmetries and higher-dimensional mass operators. The model predicts bilarge leptonic mixing (i.e., the mixing angles θ12 and θ23 are large and the mixing angle θ13 is small) and an inverted hierarchical neutrino mass spectrum. Furthermore, it approximately yields the experimental hierarchical mass spectrum of the charged leptons. The obtained values for the leptonic mixing parameters and the neutrino mass squared differences are all in agreement with atmospheric neutrino data, the Mikheyev-Smirnov-Wolfenstein large mixing angle solution of the solar neutrino problem, and consistent with the upper bound on the reactor mixing angle. Thus, we have a large, but not close to maximal, solar mixing angle θ12, a nearly maximal atmospheric mixing angle θ23, and a small reactor mixing angle θ13. In addition, the model predicts θ 12≃ {π}/{4}-θ 13.

  3. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    Directory of Open Access Journals (Sweden)

    M. Brass

    2010-12-01

    Full Text Available We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated by gas chromatography after pre-concentration of the CH4 sample. The purified sample is then either combusted to CO2 or pyrolyzed to H2 for stable isotope measurement. Apart from connecting samples and refilling liquid nitrogen as coolant the system is fully automated and allows an unobserved, continuous analysis of samples. The analytical system has been used for analysis of air samples with CH4 mixing ratios between ~100 and ~10 000 ppb, for higher mixing ratios samples usually have to be diluted.

  4. Neutrino mass and mixing in the seesaw playground

    International Nuclear Information System (INIS)

    King, Stephen F.

    2016-01-01

    We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.

  5. The Impact of Volute Aspect Ratio on the Performance of a Mixed Flow Turbine

    Directory of Open Access Journals (Sweden)

    Samuel P. Lee

    2017-11-01

    Full Text Available Current trends in the automotive industry towards engine downsizing mean turbocharging now plays a vital role in engine performance. A turbocharger increases charge air density using a turbine to extract waste energy from the exhaust gas to drive a compressor. Most turbocharger applications employ a radial inflow turbine. However, mixed flow turbines can offer non-zero blade angles, reducing leading edge (LE separation at low velocity ratios. The current paper investigates the performance of a mixed flow turbine with three different volute aspect ratio (AR designs (AR = 0.5, 1 and 2. With constant A/r (ratio of volute area to centroid radius, the AR = 0.5 volute design produced a 4.3% increase in cycle averaged mass flow parameter (MFP compared to the AR = 2 design. For the purpose of performance comparison, it was necessary to manipulate the volute A/r’s to ensure constant MFP for aerodynamic similarity. With the volute A/r’s manipulated to ensure constant MFP for aerodynamic similarity, the maximum variation of cycle averaged normalized efficiency measured between the designs was 1.47%. Purely in the rotor region, the variation in normalized cycle averaged efficiency was 1%. The smallest tested volute aspect ratio showed a significant increase in volute loss while the ARs of 1 and 2 showed similar levels of loss. The smallest AR volute showed significant secondary flow development in the volute. The resulting variation in LE incidence was found to vary as a result.

  6. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  7. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  8. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  9. Model Persamaan Massa Karbon Akar Pohon dan Root-Shoot Ratio Massa Karbon (Equation Models of Tree Root Carbon Mass and Root-Shoot Carbon Mass Ratio

    Directory of Open Access Journals (Sweden)

    Elias .

    2011-03-01

    Full Text Available The case study was conducted in the area of Acacia mangium plantation at BKPH Parung Panjang, KPH Bogor. The objective of the study was to formulate equation models of tree root carbon mass and root to shoot carbon mass ratio of the plantation. It was found that carbon content in the parts of tree biomass (stems, branches, twigs, leaves, and roots was different, in which the highest and the lowest carbon content was in the main stem of the tree and in the leaves, respectively. The main stem and leaves of tree accounted for 70% of tree biomass. The root-shoot ratio of root biomass to tree biomass above the ground and the root-shoot ratio of root biomass to main stem biomass was 0.1443 and 0.25771, respectively, in which 75% of tree carbon mass was in the main stem and roots of tree. It was also found that the root-shoot ratio of root carbon mass to tree carbon mass above the ground and the root-shoot ratio of root carbon mass to tree main stem carbon mass was 0.1442 and 0.2034, respectively. All allometric equation models of tree root carbon mass of A. mangium have a high goodness-of-fit as indicated by its high adjusted R2.Keywords: Acacia mangium, allometric, root-shoot ratio, biomass, carbon mass

  10. Introduction to models of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2004-01-01

    This review contains an introduction to models of neutrino masses for non-experts. Topics discussed are i) different types of neutrino masses ii) structure of neutrino masses and mixing needed to understand neutrino oscillation results iii) mechanism to generate neutrino masses in gauge theories and iv) discussion of generic scenarios proposed to realize the required neutrino mass structures. (author)

  11. Mixed meson masses with domain-wall valence and staggered sea fermions

    International Nuclear Information System (INIS)

    Orginos, Kostas; Walker-Loud, Andre

    2008-01-01

    Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.

  12. The ratio (fBs/fB)/(fDs/fD) and its implications for B-bar B mixing

    International Nuclear Information System (INIS)

    Grinstein, B.

    1993-01-01

    We observe that quantities like (f Bs /f B )/(f Ds /f D ) are predicted to be unity both by heavy quark and by light quark flavor symmetries. Hence, the deviation from the symmetry prediction must be simultaneously small in both symmetry breaking parameters, i.e., order of the ratio of light to heavy quark masses. We estimate the size of the correction. We observe that the ratio of (ΔM/Γ) for B s- bar Bs to B-bar B mixing can be expressed in terms of the measurable ratio f Ds /f D with good precision. We comment on applications of these ideas to other processes

  13. Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups.

    Science.gov (United States)

    Abe, T; Bemben, M G; Kondo, M; Kawakami, Y; Fukunaga, T

    2012-01-01

    Asians seem to have less skeletal muscle mass (SMM) than other ethnic groups, but it is not clear whether relative SMM, i.e., SMM / height square or SMM to fat-free mass (FFM) ratio, differs among different ethnic groups at the same level of body mass index (BMI). To compare the SMM to fat-free mass (FFM) ratio as well as anthropometric variables and body composition among 3 ethnic groups. Three hundred thirty-nine Japanese, 343 Brazilian, and 183 German men and women were recruited for this cross-sectional study. Muscle thickness (MTH) and subcutaneous fat thickness (FTH) were measured by ultrasound at nine sites on the anterior and posterior aspects of the body. FTH was used to estimate the body density, from which fat mass and fat-free mass (FFM) was calculated by using Brozek equation. Total SMM was estimated from ultrasound-derived prediction equations. Percentage body fat was similar among the ethnic groups in men, while Brazilians were higher than Japanese in women. In German men and women, absolute SMM and FFM were higher than in their Japanese and Brazilians counterparts. SMM index and SMM:FFM ratios were similar among the ethnic groups in women, excluding SMM:FFM ratio in Brazilian. In men, however, these relative values (SMM index and SMM:FFM ratio) were still higher in Germans. After adjusting for age and BMI, the SMM index and SMM:FFM ratios were lower in Brazilian men and women compared with the other two ethnic groups, while the SMM index and SMM:FFM ratios were similar in Japanese and German men and women, excluding SMM:FFM ratio in women. Our results suggest that relative SMM is not lower in Asian populations compared with European populations after adjusted by age and BMI.

  14. Prospects for experiments on neutrino masses and mixing via neutrino oscillations at future accelerators

    International Nuclear Information System (INIS)

    Lanou, R.E. Jr.

    1982-01-01

    A study is made of the requirements necessary for improvement in our knowledge of limits in mass and mixing parameters for neutrinos via oscillation phenomena at accelerators. It is concluded that increased neutrino event rate (flux x energy) at modest energy machines (e.g., AGS and LAMPF) is the single most important requirement. This will permit smaller E/L ratios and refinement of systematics

  15. Dynamic Responses of Flexible Cylinders with Low Mass Ratio

    Science.gov (United States)

    Olaoye, Abiodun; Wang, Zhicheng; Triantafyllou, Michael

    2017-11-01

    Flexible cylinders with low mass ratios such as composite risers are attractive in the offshore industry because they require lower top tension and are less likely to buckle under self-weight compared to steel risers. However, their relatively low stiffness characteristics make them more vulnerable to vortex induced vibrations. Additionally, numerical investigation of the dynamic responses of such structures based on realistic conditions is limited by high Reynolds number, complex sheared flow profile, large aspect ratio and low mass ratio challenges. In the framework of Fourier spectral/hp element method, the current technique employs entropy-viscosity method (EVM) based large-eddy simulation approach for flow solver and fictitious added mass method for structure solver. The combination of both methods can handle fluid-structure interaction problems at high Reynolds number with low mass ratio. A validation of the numerical approach is provided by comparison with experiments.

  16. Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios

    Directory of Open Access Journals (Sweden)

    R. Sinreich

    2013-06-01

    Full Text Available We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS differential slant column densities (dSCDs into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006 measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3° are compared to volume mixing ratios measured by two long-path (LP-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.

  17. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Directory of Open Access Journals (Sweden)

    R. Seco

    2011-12-01

    Full Text Available Atmospheric volatile organic compounds (VOCs are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce.

    We conducted seasonal (winter and summer measurements of VOC mixing ratios in an elevated (720 m a.s.l. holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula. Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air.

    The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these

  18. Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides [(U,Pu)O2

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Mixed oxide, a mixture of uranium and plutonium oxides, is used as a nuclear-reactor fuel in the form of pellets. The plutonium content may be up to 10 wt %, and the diluent uranium may be of any U-235 enrichment. In order to be suitable for use as a nuclear fuel, the material must meet certain criteria for combined uranium and plutonium content, effective fissile content, and impurity content. Analytical procedures used to determine if mixed oxides comply with specifications are: uranium by controlled-potential coulometry; plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron (II); nitrogen by distillation spectrophotometry using Nessler reagent; carbon (total) by direct combustion-thermal-conductivity; total chlorine and fluorine by pyrohydrolysis; sulfur by distillation-spectrophotometry; moisture by the coulometric, electrolytic moisture analyzer; isotopic composition by mass spectrometry; rare earths by copper spark spectroscopy; trace impurities by carrier distillation spectroscopy; impurities by spark-source mass spectrography; total gas in reactor-grade mixed dioxide pellets; tungsten by dithiol-spectrophotometry; rare earth elements by spectroscopy; plutonium-238 isotopic abundance by alpha spectrometry; uranium and plutonium isotopic analysis by mass spectrometry; oxygen-to-metal atom ratio by gravimetry

  19. Recent development in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Platzner, I.

    1992-01-01

    Within the limited of this review the following topics will be briefly discussed: a) Accuracy, precision, internal relative standard deviation (RISD) and external relative standard deviation (RESD) of isotope ratio measurements. With advanced instrumentation and use of standard reference materials, high accuracy and RESD = 0.002% (or better) may be achieved; b) The advantages of modern automatic isotope ratio mass spectrometer are briefly described. Computer controlled operation and data acquisition, and multiple ion collection are the recent important improvement; c) The isotopic fractionation during the course of isotope ratio measurement is considered as a major source of errors in thermal ionization of metallic elements. The phenomenon in strontium, neodymium, uranium, lead and calcium and methods to correct the measured data are discussed; d) Applications of isotope ratio mass spectrometry in atomic weight determinations, the isotope dilution technique, isotope geology, and isotope effects in biological systems are described together with specific applications in various research and technology area. (author)

  20. Remarks on ''Neutrino masses and mixing angles in a predictive theory of fermion masses''

    International Nuclear Information System (INIS)

    Lavoura, L.; Silva, J.P.

    1994-01-01

    In the extension of the Dimopoulos-Hall-Raby model of the fermion mass matrices to the neutrino sector, there is an entry in the up-quark and neutrino Dirac mass matrices which can be assumed to arise from the Yukawa coupling of a 120, instead of a 10 or a 126, of SO(10). Although this assumption leads to an extra undetermined complex parameter in the model, the resulting lepton mixing matrix exhibits the remarkable feature that the ν τ does not mix with the other two neutrinos. Making a reasonable assumption about the extra parameter, we are able to fit the large-mixing-angle MSW solution of the solar-neutrino problem, and we obtain m ντ ∼10 eV, the right mass range to close the Universe. Other possibilities for explaining the solar-neutrino deficit are also discussed

  1. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    Science.gov (United States)

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Five adjustable parameter fit of quark and lepton masses and mixings

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Takanishi, Y.

    2002-05-01

    We develop a model of ours fitting the quark and lepton masses and mixing angles by removing from the model a Higgs field previously introduced to organise a large atmospheric mixing angle for neutrino oscillations. Due to the off-diagonal elements dominating in the see-saw neutrino mass matrix the large atmospheric mixing angle comes essentially by itself. It turns out that we have now only five adjustable Higgs field vacuum expectation values needed to fit all the masses and mixings order of magnitudewise taking into account the renormalisation group runnings in all sectors. The CHOOZ angle comes out close to the experimental bound. (orig.)

  3. Mass-to-light ratios of nearby groups of galaxies

    CERN Document Server

    Materne, J

    1980-01-01

    The application of a probability density function gives the possibility of determining groups of galaxies and membership probabilities of the galaxies in a reliable unbiased way. For the five nearest groups so defined, the mean mass-to-light ratio was derived using the concept of negative energy. These groups have a mass-to- light ratio of 16 M/sub (.)//L/sub (.)/. The probability function gives also the possibility of deriving masses of groups in a direct and independent way. (22 refs).

  4. Neutrino Masses and Mixings and Astrophysics

    Science.gov (United States)

    Fuller, George M.

    1998-10-01

    Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.

  5. THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87

    International Nuclear Information System (INIS)

    Gebhardt, Karl; Thomas, Jens

    2009-01-01

    We model the dynamical structure of M87 (NGC4486) using high spatial resolution long-slit observations of stellar light in the central regions, two-dimensional stellar light kinematics out to half of the effective radius, and globular cluster velocities out to eight effective radii. We simultaneously fit for four parameters: black hole mass, dark halo core radius, dark halo circular velocity, and stellar mass-to-light (M/L) ratio. We find a black hole mass of 6.4(±0.5) x 10 9 M sun (the uncertainty is 68% confidence marginalized over the other parameters). The stellar M/L V = 6.3 ± 0.8. The best-fit dark halo core radius is 14 ± 2 kpc, assuming a cored logarithmic potential. The best-fit dark halo circular velocity is 715 ± 15 km s -1 . Our black hole mass is over a factor of 2 larger than previous stellar dynamical measures, and our derived stellar M/L ratio is two times lower than previous dynamical measures. When we do not include a dark halo, we measure a black hole mass and stellar M/L ratio that is consistent with previous measures, implying that the major difference is in the model assumptions. The stellar M/L ratio from our models is very similar to that derived from stellar population models of M87. The reason for the difference in the black hole mass is because we allow the M/L ratio to change with radius. The dark halo is degenerate with the stellar M/L ratio, which is subsequently degenerate with the black hole mass. We argue that dynamical models of galaxies that do not include the contribution from a dark halo may produce a biased result for the black hole mass. This bias is especially large for a galaxy with a shallow light profile such as M87, and may not be as severe in galaxies with steeper light profiles unless they have a large stellar population change with radius.

  6. Origins of tiny neutrino mass and large flavor mixings

    International Nuclear Information System (INIS)

    Haba, Naoyuki

    2015-01-01

    Active neutrino masses are extremely smaller than those of other quarks and leptons, and there are large flavor mixings in the lepton sector, contrary to the quark sector. They are great mysteries in the standard model, but also excellent hints of new physics beyond the standard model. Thus, questions 'What is an origin of tiny neutrino mass?' and 'What is an origin of large lepton flavor mixings?' are very important. In this paper, we overview various attempts to solve these big questions. (author)

  7. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  8. On the graphical extraction of multipole mixing ratios of nuclear transitions

    International Nuclear Information System (INIS)

    Rezynkina, K.; Lopez-Martens, A.; Hauschild, K.

    2017-01-01

    We propose a novel graphical method for determining the mixing ratios δ and their associated uncertainties for mixed nuclear transitions. It incorporates the uncertainties on both the measured and the theoretical conversion coefficients. The accuracy of the method has been studied by deriving the corresponding probability density function. The domains of applicability of the method are carefully defined.

  9. On the graphical extraction of multipole mixing ratios of nuclear transitions

    Energy Technology Data Exchange (ETDEWEB)

    Rezynkina, K., E-mail: kseniia.rezynkina@csnsm.in2p3.fr; Lopez-Martens, A.; Hauschild, K.

    2017-02-01

    We propose a novel graphical method for determining the mixing ratios δ and their associated uncertainties for mixed nuclear transitions. It incorporates the uncertainties on both the measured and the theoretical conversion coefficients. The accuracy of the method has been studied by deriving the corresponding probability density function. The domains of applicability of the method are carefully defined.

  10. Mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum

    NARCIS (Netherlands)

    Limpens, J.; Robroek, B.J.M.; Heijmans, M.M.P.D.; Tomassen, H.B.M.

    2008-01-01

    Question: Can mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum? Location: Poor fen in south Sweden and greenhouse in Wageningen, The Netherlands. Methods: Two mixing ratios of Sphagnum cuspidatum and S. magellanicum were exposed to two levels of CO2 by pumping CO2

  11. Microlensing discovery of a tight, low-mass-ratio planetary-mass object around an old field brown dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Han, C.; Jung, Y. K. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Skowron, J.; Kozłowski, S.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gaudi, B. S.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bennett, D. P. [University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Goleta, CA 93117 (United States); Abe, F. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Collaboration: OGLE Collaboration; MOA Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2013-11-20

    Observations of accretion disks around young brown dwarfs (BDs) have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around BDs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field BD via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 ± 0.001), relatively tightly separated (∼0.87 AU) binary composed of a planetary-mass object with 1.9 ± 0.2 Jupiter masses orbiting a BD with a mass 0.022 M {sub ☉}. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the BD host in a manner analogous to planets.

  12. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  13. CP violation and neutrino masses and mixings from quark mass hierarchies

    International Nuclear Information System (INIS)

    Buchmueller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S.

    2007-10-01

    We study the connection between quark and lepton mass matrices in a supersymmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pattern of mass matrices and high-energy CP violating phases. The hierarchy of up and down quark masses determines the CKM matrix and most charged lepton and neutrino masses and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of the up and down quark mass hierarchies. The effective CP violating phases in the quark sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can accomodate naturally sin θ 23 ∝1, sin θ 13 1 2 ∝√(Δm 2 sol ) 3 ∝√(Δm 2 atm ). (orig.)

  14. CP violation and neutrino masses and mixings from quark mass hierarchies

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Covi, Laura; Emmanuel-Costa, David; Wiesenfeldt, Soeren

    2007-01-01

    We study the connection between quark and lepton mass matrices in a supersymmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pattern of mass matrices and high-energy CP violating phases. The hierarchy of up and down quark masses determines the CKM matrix and most charged lepton and neutrino masses and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of the up and down quark mass hierarchies. The effective CP violating phases in the quark sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can accomodate naturally sin θ 23 ∼ 1, sin θ 13 ∼ 1 ∼ 2 ∼ (Δm 2 sol ) 1/2 3 ∼ (Δm 2 atm ) 1/2

  15. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  16. Physical Parameters of Late Type Spiral Galaxies - III. Mass and Mass to Luminosity Ratio of NGC 7793

    Directory of Open Access Journals (Sweden)

    Chang-Ha Kim

    1986-12-01

    Full Text Available The mass distribution and other related quantities were calculated by fitting the observed rotation curve(Davoust and de Vaucouleur 1980 to Brandt and Belton's mass distribution model. One of n values for mass model is determined as 1.5(Vm = 95 km/s and two pairs of them are determined as 0.8(Vm = 95 km/s and 2.0 and 0.8(Vm = 55 km/s and 2.0 because f the hump in observed rotation curve. Total masses and integrated mass to luminosity ratios are 1.8 x 10^10*Msolar, 1.5 x 10^10*Msolar, 1.4 x 10^10*Msolar, and 6.57, 5.33, 5.26 for three cases according to n values. Integrated mass to luminosity ratio in Holmberg radius is 3.44, 3.26, 3.00 in good agreement with the typical value of Sd type suggested by Faber and Gallagher(1979. Presented halo masses which are fifty percent of total masses and halo mass to luminosity ratios given as 75.83, 53.50, 58.75 are values less than Turner's(1976.

  17. Knitting neutrino mass textures with or without Tri-Bi maximal mixing

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K., E-mail: leonta@uoi.gr [Theoretical Physics Division, Ioannina University, GR-45110 Ioannina (Greece); Vlachos, N.D. [Theoretical Physics Division, Aristotle University, GR-54124 Thessaloniki (Greece)

    2011-08-03

    The solar and baseline neutrino oscillation data suggest bimaximal neutrino mixing among the first two generations, and trimaximal mixing between all three neutrino flavors. It has been conjectured that this indicates the existence of an underlying symmetry for the leptonic fermion mass textures. The experimentally measured quantities, however, are associated to the latter indirectly and in a rather complicated way through the mixing matrices of the charged leptons and neutrinos. Motivated by these facts, we derive exact analytical expressions which directly link the charged lepton and neutrino mass and mixing parameters to measured quantities and obtain constraints on the parameter space. We discuss deviations from Tri-Bi mixing matrices and present minimal extensions of the Harrison, Perkins and Scott matrices capable of interpreting all neutrino data.

  18. Electronics for processing of data from a double collector isotopic ratio mass spectrometer

    International Nuclear Information System (INIS)

    Handu, V.K.

    1979-01-01

    The output data available from the mass spectrometer type MS-660 developed in the mass spectrometry section of Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, for the determination of H/D ratios in liquid/gas sample consist of uncompensated mass 3 and mass 2 signals. After the mass 3 signal has been compensated for H 3 + formation, the on-line ratio of compensated mass 3 to mass 2 is calculated, displayed, and then printed on a printer for record. The electronic compensation circuit, the discrete voltage-to-frequency (V/F) converter circuit, the ratio calculating system using V/F converters, and a digital interface system for Hindustan Teleprinter to print out the ratios are explained. Results obtained on mass spectrometer MS-660 are presented. (auth.)

  19. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  20. Natural fermion mass hierarchy and mixings in family unification

    International Nuclear Information System (INIS)

    Dent, James B.; Feger, Robert; Kephart, Thomas W.; Nandi, S.

    2011-01-01

    We present an SU(9) model of family unification with three light chiral families, and a natural hierarchy of charged fermion masses and mixings. The existence of singlet right handed neutrinos with masses about two orders of magnitude smaller than the GUT scale, as needed to understand the light neutrinos masses via the see-saw mechanism, is compelling in our model.

  1. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    Science.gov (United States)

    Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the ongoing monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93 % above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols. ?? 2011 Author(s).

  2. An improved data acquisition system for isotopic ratio mass spectrometers

    International Nuclear Information System (INIS)

    Saha, T.K.; Reddy, B.; Nazare, C.K.; Handu, V.K.

    1999-01-01

    Isotopic ratio mass spectrometers designed and fabricated to measure the isotopic ratios with a precision of better than 0.05%. In order to achieve this precision, the measurement system consisting of ion signal to voltage converters, analog to digital converters, and data acquisition electronics should be at least one order better than the overall precision of measurement. Using state of the art components and techniques, a data acquisition system, which is an improved version of the earlier system, has been designed and developed for use with multi-collector isotopic ratio mass spectrometers

  3. A novel and economical explanation for SM fermion masses and mixings

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2016-09-15

    I propose the first multiscalar singlet extension of the standard model (SM), which generates tree level top quark and exotic fermion masses as well as one and three loop level masses for charged fermions lighter than the top quark and for light active neutrinos, respectively, without invoking electrically charged scalar fields. That model, which is based on the S{sub 3} x Z{sub 8} discrete symmetry, successfully explains the observed SM fermion mass and mixing pattern. The charged exotic fermions induce one loop level masses for charged fermions lighter than the top quark. The Z{sub 8} charged scalar singlet χ generates the observed charged fermion mass and quark mixing pattern. (orig.)

  4. The effect of design and scale on the mixing and mass transfer in U-loop bioreactors

    DEFF Research Database (Denmark)

    Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay

    is altered? In this study we have investigated the mixing time and mass transfer capabilities of U-loop reactors of different geometries (high vs. diameter ratio) in pilot (0.15m3) and semi-industrial scales (2.2m3). A new expression for the mechanical power input into the system is also proposed, which......A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. Previous studies have proven that a U-loop fermenter, a novel...... indicates that an even more favorable relationship between power input and mass transfer rate (compared to previous literature) applies to U-loop fermenters....

  5. Neutrino mixing in SO(10)

    International Nuclear Information System (INIS)

    Milton, K.; Hama, S.; Nandi, S.; Tanaka, K.

    1980-01-01

    Neutrino mixing angles were computed in terms of upquark mass ratios in a grand unified field theory based on the gauge group SO(10) supplemented by a discrete symmetry. Only large ν/sub μ/ - ν/sub tau/ mixing were found

  6. Determination of the mass-ratio distribution, I: single-lined spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    For single-lined spectroscopic binary stars (sbi), the mass ratio q = Msec=Mprim is calculated from the mass function f(m), which is determined from observations. For statistical investigations of the mass-ratio distribution, the term sin^3 i, that remains in the cubic equation from which q is

  7. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA

    Directory of Open Access Journals (Sweden)

    K. B. Haase

    2011-11-01

    Full Text Available Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA. Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ± 0.21 ppbv, a factor of 93% above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km−2 h−1 compared to an estimated clear weather rate of 116 to 193 g km−2 h−1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols.

  8. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L ∼> fL * galaxies follows the simple relation dN/dt ≅ 0.03(1+f)Gyr -1 (1+z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L * high-redshift galaxies (∼ 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the last 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman Break Galaxies (LBGs)

  9. Fermion masses and flavor mixings in a model with S4 flavor symmetry

    International Nuclear Information System (INIS)

    Ding Guijun

    2010-01-01

    We present a supersymmetric model of quark and lepton based on S 4 xZ 3 xZ 4 flavor symmetry. The S 4 symmetry is broken down to Klein four and Z 3 subgroups in the neutrino and the charged lepton sectors, respectively. Tri-Bimaximal mixing and the charged lepton mass hierarchies are reproduced simultaneously at leading order. Moreover, a realistic pattern of quark masses and mixing angles is generated with the exception of the mixing angle between the first two generations, which requires a small accidental enhancement. It is remarkable that the mass hierarchies are controlled by the spontaneous breaking of flavor symmetry in our model. The next to leading order contributions are studied, all the fermion masses and mixing angles receive corrections of relative order λ c 2 with respect to the leading order results. The phenomenological consequences of the model are analyzed, the neutrino mass spectrum can be normal hierarchy or inverted hierarchy, and the combined measurement of the 0ν2β decay effective mass m ββ and the lightest neutrino mass can distinguish the normal hierarchy from the inverted hierarchy.

  10. Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    International Nuclear Information System (INIS)

    Hopman, Clovis

    2009-01-01

    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M . of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M -1/4 . . Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M . → 0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.

  11. Control device of air-fuel ratio of alcohol-gasoline mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuo

    1987-08-19

    Concerning alcohol-gasoline mixed fuel, even the same amount of the fuel shows different air-fuel ratio depending upon alcohol concentration in the fuel, accordingly it is required to know the alcohol concentration when it is intended to make the air-fuel ratio to be the same as the predetermined ratio. Although a sensor which can detect in quick response and exactly the alcohol concentration has not been developed, the alcohol concentration in gasoline can be detected by detecting the concentration of the water in exhaust gas and many hygrometers which can detect the concentration of the water with high precision are available. With regard to an internal combustion engine equipped with a fuel supply device in order to supply alcohol-gasoline mixed fuel into an engine suction passage, this invention offers an air-fuel ratio control device to control the amount of the fuel to be supplied from the fuel supply device by detecting the concentration of alcohol in the gasoline from among the output signals of the main hygrometer and the auxiliary hygrometer. The former hygrometer to detect the concentration of the water in the exhaust gas is set in the engine exhaust gas passage and the latter is installed to detect the concentration of the water in the air. (4 figs)

  12. Scales of guide field reconnection at the hydrogen mass ratio

    International Nuclear Information System (INIS)

    Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.

    2010-01-01

    We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.

  13. Atmospheric ammonia mixing ratios at an open-air cattle feeding facility.

    Science.gov (United States)

    Hiranuma, Naruki; Brooks, Sarah D; Thornton, Daniel C O; Auvermann, Brent W

    2010-02-01

    Mixing ratios of total and gaseous ammonia were measured at an open-air cattle feeding facility in the Texas Panhandle in the summers of 2007 and 2008. Samples were collected at the nominally upwind and downwind edges of the facility. In 2008, a series of far-field samples was also collected 3.5 km north of the facility. Ammonium concentrations were determined by two complementary laboratory methods, a novel application of visible spectrophotometry and standard ion chromatography (IC). Results of the two techniques agreed very well, and spectrophotometry is faster, easier, and cheaper than chromatography. Ammonia mixing ratios measured at the immediate downwind site were drastically higher (approximately 2900 parts per billion by volume [ppbv]) than thos measured at the upwind site (open-air animal feeding operations, especially under the hot and dry conditions present during these measurements.

  14. REVISED MASS-TO-LIGHT RATIOS FOR NEARBY GALAXY GROUPS AND CLUSTERS

    International Nuclear Information System (INIS)

    Shan, Yutong; Courteau, Stéphane; McDonald, Michael

    2015-01-01

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M 500 ∼ 10 14 -10 15 M ☉ ), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/L i and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/L i and the fraction of blue galaxies (g – i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/L i ≅ 1.7 ± 0.2 M ☉ /L i, ☉ , a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ∼60% increase in M*/L i

  15. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    Science.gov (United States)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  16. Neutrino masses and mixing: evidence and implications

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M.C.; Nir, Yosef

    2003-01-01

    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. The authors review the phenomenology of neutrino oscillations in vacuum and in matter. They present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the Liquid Scintillator Neutrino Detector (LSND) experiment. The theoretical inputs that are used to interpret the experimental results are described in terms of neutrino oscillations. The allowed ranges for the mass and mixing parameters are derived in two frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three-active-neutrino framework. The theoretical implications of these results are then discussed, including the existence of new physics, the estimate of the scale of this new physics, and the lessons for grand unified theories, for models of extra dimensions and singlet fermions in the bulk, and for flavor models

  17. Theory of Neutrino Masses and Mixing

    CERN Document Server

    González-Garciá, M Concepción

    2003-01-01

    In this talk I will review our present knowledge on neutrino masses and mixing trying to emphasize what has been definitively proved and what is in the process of being probed. I will also discuss the most important theoretical implications of these results: the existence of new physics, the estimate of the scale of this new physics as well as some other possible consequences such as leptogenesis origin of the baryon asymmetry.

  18. Mixing and Mass Transfer in Industrial Bioreactors

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...... formulas are not in any way quantitatively correct, but based on dimensional analysis one is able to extrapolate from small-to large-scale operation. It is shown that linear scale-up may not give the smallest power input for a given mixing objective. The introduction presented is the basis...... for the visionary scale-up/scale-down design principles....

  19. A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Buccella, F. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Chianese, M. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Mangano, G. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S.; Santorelli, P. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy)

    2017-04-03

    Minimal SO(10) grand unified models provide phenomenological predictions for neutrino mass patterns and mixing. These are the outcome of the interplay of several features, namely: i) the seesaw mechanism; ii) the presence of an intermediate scale where B-L gauge symmetry is broken and the right-handed neutrinos acquire a Majorana mass; iii) a symmetric Dirac neutrino mass matrix whose pattern is close to the up-type quark one. In this framework two natural characteristics emerge. Normal neutrino mass hierarchy is the only allowed, and there is an approximate relation involving both light-neutrino masses and mixing parameters. This differs from what occurring when horizontal flavour symmetries are invoked. In this case, in fact, neutrino mixing or mass relations have been separately obtained in literature. In this paper we discuss an example of such comprehensive mixing-mass relation in a specific realization of SO(10) and, in particular, analyse its impact on the expected neutrinoless double beta decay effective mass parameter 〈m{sub ee}〉, and on the neutrino mass scale. Remarkably a lower limit for the lightest neutrino mass is obtained (m{sub lightest}≳7.5×10{sup −4} eV, at 3 σ level).

  20. Pattern of neutrino mixing in grand unified theories

    International Nuclear Information System (INIS)

    Milton, K.; Tanaka, K.

    1981-01-01

    It was found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx. 10 15 GeV) but no left-handed Majorana mass, there is small ν/sub e/ mixing but ν/sub μ/ - ν/sub tau/ mixing can be substantial. This problem is reexamined on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing produces results consistent with the above; however, in the optimum case, ν/sub e/ - ν/sub μ/ mixing can be of the order of the Cabbibo angle

  1. Neutrino masses, mixings, and FCNC’s in an S3 flavor symmetric extension of the standard model

    International Nuclear Information System (INIS)

    Mondragón, A.; Mondragón, M.; Peinado, E.

    2011-01-01

    By introducing threeHiggs fields that are SU(2) doublets and a flavor permutational symmetry, S 3 , in the theory, we extend the concepts of flavor and generations to the Higgs sector and formulate a Minimal S 3 -Invariant Extension of the Standard Model. The mass matrices of the neutrinos and charged leptons are re-parameterized in terms of their eigenvalues, then the neutrino mixing matrix, V PMNS , is computed and exact, explicit analytical expressions for the neutrino mixing angles as functions of the masses of neutrinos and charged leptons are obtained in excellent agreement with the latest experimental data. We also compute the branching ratios of some selected flavor-changing neutral current (FCNC) processes, as well as the contribution of the exchange of neutral flavor-changing scalars to the anomaly of the magnetic moment of the muon, as functions of the masses of charged leptons and the neutral Higgs bosons. We find that the S 3 × Z 2 flavor symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector, well below the present experimental bounds by many orders of magnitude. The contribution of FCNC’s to the anomaly of the muon’s magnetic moment is small, but not negligible.

  2. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  3. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    Science.gov (United States)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  4. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); José, Jordi [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona (Spain)

    2013-11-10

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, γ){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.

  5. Neutrino mass and mixing: from theory to experiment

    International Nuclear Information System (INIS)

    King, Stephen F; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu

    2014-01-01

    The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas

  6. Seesaw neutrino masses with large mixings from dimensional deconstruction

    International Nuclear Information System (INIS)

    Balaji, K.R.S.; Lindner, Manfred; Seidl, Gerhart

    2003-01-01

    We demonstrate a dynamical origin for the dimension-five seesaw operator in dimensional deconstruction models. Light neutrino masses arise from the seesaw scale which corresponds to the inverse lattice spacing. It is shown that the deconstructing limit naturally prefers maximal leptonic mixing. Higher-order corrections which are allowed by gauge invariance can transform the bimaximal into a bilarge mixing. These terms may appear to be nonrenormalizable at scales smaller than the deconstruction scale

  7. Flavor Mixing, CP-Violation and the Masses of the Light Quarks

    CERN Document Server

    Fritzsch, Harald

    1998-01-01

    The observed hierarchy of the quark masses is interpreted as a signal for an underlying ``subnuclear democracy'' as the relevant symmetry of the quark mass terms. A simple breaking of the symmetry leads to a mixing between the second and the third family, in agreement with observation. Introducing the mixing between the first and the second family, one finds an interesting pattern of maximal CP--violation as well as a complete determination of the elements of the CKM matrix and of the unitarity triangle.

  8. Flavor mixing, CP-violation and the masses of the light quarks

    International Nuclear Information System (INIS)

    Fritzsch, H.

    1998-01-01

    The observed hierarchy of the quark masses is interpreted as a signal for an underlying ''subnuclear democracy'' as the relevant symmetry of the quark mass terms. A simple breaking of the symmetry leads to a mixing between the second and the third family, in agreement with observation. Introducing the mixing between the first and the second family, one finds an interesting pattern of maximal CP-violation as well as a complete determination of the elements of the CKM matrix and of the unitarity triangle. (orig.)

  9. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  10. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  11. Balanced detection for self-mixing interferometry to improve signal-to-noise ratio

    Science.gov (United States)

    Zhao, Changming; Norgia, Michele; Li, Kun

    2018-01-01

    We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.

  12. Implications of neutrino masses and mixing for weak processes

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1981-01-01

    A general theory is presented of weak processes involving neutrinos which consistently incorporates the possibility of nonzero neutrino masses and associated lepton mixing. The theory leads to new tests for and bounds on such masses and mixing. These tests make use of (π,K)/sub l2/ decay, nuclear β decay, and μ and tau decays, among others. New experiments at SIN and KEK to apply the tests are mentioned. Further, some implications are discussed for (1) the analysis of the spectral parameters in leptonic decays to determine the Lorentz structure of the weak leptonic couplings; (2) fundamental weak interaction constants such as G/sub μ/, G/sub V/', f/sub π/, f/sub K/, V/sub uq/, q = d or s, m/sub W/, and m/sub Z/; and (3) neutrino propagation

  13. Fermion mass hierarchies and flavor mixing from T' symmetry

    International Nuclear Information System (INIS)

    Ding Guijun

    2008-01-01

    We construct a supersymmetric model based on T ' x Z 3 x Z 9 flavor symmetry. At the leading order, the charged lepton mass matrix is not diagonal, T ' is broken completely, and the hierarchy in the charged lepton masses is generated naturally. Nearly tribimaximal mixing is predicted, and subleading effects induce corrections of order λ 2 , where λ is the Cabibbo angle. Both the up quark and down quark mass matrices' textures of the well-known U(2) flavor theory are produced at the leading order; realistic hierarchies in quark masses and Cabibbo-Kobayashi-Maskawa matrix elements are obtained. The vacuum alignment and subleading corrections are discussed in detail.

  14. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  15. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Schmitt

    2013-05-01

    Full Text Available Stable carbon isotope analysis of methane (δ13C of CH4 on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC isotope ratio mass spectrometry (IRMS coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr can severely interfere during the mass spectrometric measurement, leading to significant biases in δ13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in δ13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.

  16. Algebraic structures of the fermion mass spectrum and the phenomenon of the quark mixing

    International Nuclear Information System (INIS)

    Plankl, J.

    1990-01-01

    In the present thesis algebraic structures of the fermion mass spectrum are considered, whereby especially a possible connection with the phenomenon of the flavor mixing is looked for. After a presentation of the relevant theoretical and experimental foundations arguments are given, which call for the hypothesis of a relation of the mass and mixing parameters. We discuss the populary approaches of the mass matrices of the quarks. A main topic of this thesis form studies on the 'democratic' mass matrix. For this approximation, which corresponds to a matrix of the rank one, specific corrections are proposed, which have a breaking of chiral permutation symmetries as consequence, from which the masses of the first two generations result. The generation of possible small neutrino masses follows by the see-saw mechanism, which in generalized form serves also for the foundation of the smallness of the masses of the first two families. The mass hierarchy becomes understandable, if the corrections to the rank-1-matrix are of radiative nature. In this connection we especially enter the model of the 'see-saw democracy' more closely. The second main topic represents another access to the present theme, whic is given by the mixing matrix of the quarks. We diagonalize the mixing matrix for two and three families. Furthermore we define eigenstates of the weak interaction and give for the real 3x3 matrix a geometrical interpretation of the flavor mixing. Beyond we obtain in the current eigen base in the case of a decoupled third generation for the first two families mass matrices with democratic structure. (orig.) [de

  17. Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, Carolina; Hernandez, A.E.C.; Kovalenko, Sergey; Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso-CCTVal, Valparaiso (Chile)

    2017-06-15

    We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S{sub 3} x Z{sub 2} x Z{sub 12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern. (orig.)

  18. The Mass-Ratio Distribution of Visual Binary Stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1990-01-01

    The selection effects that govern the observations of Visual Binary Stars are in- vestigated, in order to obtain a realistic statistical distribution of the mass-ratio q = Msec=Mprim. To this end a numerical simulation programme has been developed, which `generates' binary stars and `looks' at

  19. THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Shen, Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-02-10

    We employ a flexible Bayesian technique to estimate the black hole (BH) mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly selected data set of {approx}58, 000 quasars from the Sloan Digital Sky Survey (SDSS) DR7. We find that the SDSS becomes significantly incomplete at M {sub BH} {approx}< 3 Multiplication-Sign 10{sup 8} M {sub Sun} or L/L {sub Edd} {approx}< 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive and highest Eddington ratio BHs experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable universe to be L/L {sub Edd} {approx} 3. Consistent with our results in Shen and Kelly, we do not find statistical evidence for a so-called sub-Eddington boundary in the mass-luminosity plane of broad-line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate growth times for the BHs in Type 1 quasars and find that they are comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our BHs reside in what are locally early-type galaxies, and we interpret our results within the context of models of self-regulated BH growth.

  20. BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION

    International Nuclear Information System (INIS)

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-01-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters α Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M 2 /M 1 , from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq∝q β , with β = -0.50 ± 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a ∼1

  1. On watermass mixing ratios and regenerated silicon in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.P.; Sarma, V.V.; Rao, V.S.; Sudhakar, U.; Gupta, G.V.M.

    Regeneration of silicon on mixing in the Bay of Bengal have been computed from six water masses [Bay of Bengal low saline water (BBLS), Bay of Bengal subsurface water (BBSS), northern southeast high salinity water (NSEHS), north Indian intermediate...

  2. Predictions of the Higgs mass and the weak mixing angle in the 6D gauge-Higgs unification

    International Nuclear Information System (INIS)

    Hasegawa, Kouhei; Lim, Chong-Sa; Maru, Nobuhito

    2016-01-01

    In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is on the order of g 2 and the Higgs boson is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question on whether there exists a model of gauge-Higgs unification in six-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, using a useful formula, we give a general argument on the condition for obtaining a realistic prediction of the weak mixing angle sin 2 θ W = 1/4, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that, in the models with one Higgs doublet, the predicted Higgs mass is always the same: M H = 2M W . However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction M H ≤ 2M W at the leading order of the perturbation. Thus, it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where M H ≤ M Z at the classical level and the predicted Higgs mass cannot recover the observed value. (author)

  3. Neutrino masses and mixing

    International Nuclear Information System (INIS)

    Fogli, G.

    1998-01-01

    The paper presents an analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8 B neutrino scattering is discussed in detail and used to constrain the mass-mixing parameter space. Going to the atmospheric neutrino anomaly, the paper performs both a two- and three-flavor analysis of the most recent SuperKamiokande atmospheric neutrino data. The variations of the zenith distributions of ν events in the presence of flavor oscillations are investigated. It is seen that fits to the SK data, with and without the addition of the CHOOZ constrains, strongly limit the parameter space. Detailed bounds in triangle graphs are reported

  4. GALAXY MERGERS AND DARK MATTER HALO MERGERS IN ΛCDM: MASS, REDSHIFT, AND MASS-RATIO DEPENDENCE

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We employ a high-resolution ΛCDM N-body simulation to present merger rate predictions for dark matter (DM) halos and investigate how common merger-related observables for galaxies-such as close pair counts, starburst counts, and the morphologically disturbed fraction-likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We investigate both rate at which subhalos first enter the virial radius of a larger halo (the 'infall rate'), and the rate at which subhalos become destroyed, losing 90% of the mass they had at infall (the d estruction rate ) . For both merger rate definitions, we provide a simple 'universal' fitting formula that describes our derived merger rates for DM halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density matching to associate halos with galaxies. For example, we find that the instantaneous (destruction) merger rate of m/M > 0.3 mass-ratio events into typical L ∼> f L * galaxies follows the simple relation dN/dt ≅ 0.03(1 + f) Gyr -1 (1 + z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of >0.4 L * high-redshift galaxies (∼3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the previous 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman break galaxies (LBGs).

  5. Inter-annual and seasonal variations in transport to a measuring site in western Siberia, and their impact on the observed atmospheric CO2 mixing ratio

    International Nuclear Information System (INIS)

    Eneroth, Kristina

    2002-01-01

    Inter-annual and seasonal variations in atmospheric transport to a CO 2 measuring site in western Siberia were studied using three-dimensional trajectories. We identified large differences in transport between summer and winter, but also some differences between the years. Cluster analysis was applied to the trajectory data to determine to what degree different atmospheric flow patterns influence the variability of the atmospheric CO 2 mixing ratio. The observed CO 2 mixing ratio was also compared to observed CO 2 surface fluxes to study the impact of local sources and sinks. It was found that during July the correlation between atmospheric transport from distant source regions and CO 2 mixing ratios was poor. Furthermore the correlation was also weak between the CO 2 mixing ratio and the local eddy flux measurements. We conclude that the short-term variability in atmospheric CO 2 during summer probably is dominated by larger scale (tens up to one hundred kilometers) CO 2 surface fluxes and local meteorology. The weaker biogenic CO 2 fluxes during winter, resulted in CO 2 mixing ratios more clearly influenced by long-range transport Of CO 2 . However, the highest atmospheric CO 2 concentrations were not observed in connection with westerly winds representing transport of polluted air from Europe, but during periods with stagnant flow conditions. It was conjected that these high CO 2 mixing ratios were due to respired CO 2 trapped and accumulated in the lower parts of the planetary boundary layer. The mean duration for the identified flow patterns was in the order of two days, with a maximum duration of a week. This means that to have a chance to detect variations in CO 2 mixing ratio due to air mass changes the sampling frequency (e.g. flask samples and flight measurements) must be at least every other day. Our results show that the atmospheric transport varies with season, year and altitude. This, together with the heterogeneity of the source and sink regions are

  6. Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD

    DEFF Research Database (Denmark)

    Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina

    2017-01-01

    Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time...... transfer coefficients were in accordance with the experimental data. This work illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of changing the physical...

  7. Crystal Nucleation and Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles.

    Science.gov (United States)

    Ji, Zhi-Ru; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-10-19

    Secondary organic aerosols (SOA) can exist in a glassy or semisolid state under low relative humidity (RH) conditions, in which the particles show nonequilibrium kinetic characteristics with changing ambient RH. Here, we selected internally mixed sucrose/NaNO 3 droplets with organic to inorganic molar ratios (OIRs) of 1:8, 1:4, 1:2, and 1:1 as a proxy for multicomponent ambient aerosols to study crystal nucleation and growth processes and water transport under a highly viscous state with the combination of an RH-controlling system and a vacuum Fourier transform infrared (FTIR) spectrometer. The initial efflorescence RH (ERH) of NaNO 3 decreased from ∼45% for pure NaNO 3 droplets to ∼38.6 and ∼37.9% for the 1:8 and 1:4 sucrose/NaNO 3 droplets, respectively, while no crystallization of NaNO 3 occurred for the 1:2 and 1:1 droplets in the whole RH range. Thus, the addition of sucrose delayed the ERH and even completely inhibited nucleation of NaNO 3 in the mixed droplets. In addition, the crystal growth of NaNO 3 was suppressed in the 1:4 and 1:8 droplets most likely due to the slow diffusion of Na + and NO 3 - ions at low RH. Water uptake/release of sucrose/NaNO 3 particles quickly arrived at equilibrium at high RH, while the hygroscopic process was kinetically controlled under low RH. The half-time ratio between the liquid water content and the RH was used to describe the mass transfer behavior. For the 1:1 droplets, no mass limitation was observed with the ratio approaching to 1 when the RH was higher than 53%. The ratio increased 1 order of magnitude under an ultraviscous state with RH ranging from 53 to 15% and increased a further 1 order of magnitude at RH < 15% under a glassy state.

  8. Pitfalls with the use of enhancement ratios or normalized excess mixing ratios measured in plumes to characterize pollution sources and aging

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2013-08-01

    Full Text Available Normalized excess mixing ratios (NEMRs, also known as enhancement ratios, are a common way to characterize plumes of pollution in atmospheric research. As single-source pollutant plumes disperse in the atmosphere, they are diluted by mixing with the adjacent background air. Changes in the composition of this background air can cause large changes to the NEMR that is subsequently measured by remote-sensing, airborne, or ground-based instruments. This scenario is common when boundary layer plumes enter the free troposphere and could also impact long-range transport or plumes near the top of the troposphere. We provide a context for these issues and an example showing that neglect of this effect could lead to serious errors in data interpretation.

  9. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  10. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  11. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  12. Mixing and mass transfer in a pilot scale U-loop bioreactor

    DEFF Research Database (Denmark)

    Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay

    2017-01-01

    A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...

  13. Fourth SM family, breaking of mass democracy, and the CKM mixings

    International Nuclear Information System (INIS)

    Atag, S.; Celikel, A.; Ciftci, A.K.; Sultansoy, S.; Yilmaz, U.O.

    1996-01-01

    We consider the violation of the democratic mass matrix in the framework of the four-family standard model. Predictions of fourth-family fermion masses as well as quark and lepton CKM mixings are presented. Production and decay modes of new fermions are discussed. copyright 1996 The American Physical Society

  14. Higgs-boson masses and mixing matrices in the NMSSM

    DEFF Research Database (Denmark)

    Drechsel, P.; Gröber, R.; Heinemeyer, S.

    2017-01-01

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up...... to O(αtαs). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR ¯ evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM....

  15. Observing extreme-mass-ratio inspirals with eLISA/NGO

    OpenAIRE

    Gair, Jonathan R; Porter, Edward K

    2012-01-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detecting these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z < 0...

  16. Models of neutrino mass and mixing

    International Nuclear Information System (INIS)

    Ma, Ernest

    2000-01-01

    There are two basic theoretical approaches to obtaining neutrino mass and mixing. In the minimalist approach, one adds just enough new stuff to the Minimal Standard Model to get m ν ≠0 and U αi ≠1. In the holistic approach, one uses a general framework or principle to enlarge the Minimal Standard Model such that, among other things, m ν ≠0 and U αi ≠1. In both cases, there are important side effects besides neutrino oscillations. I discuss a number of examples, including the possibility of leptogenesis from R parity nonconservation in supersymmetry

  17. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    Science.gov (United States)

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  18. A new method for the determination of the mixing ratio hydrogen to helium in the giant planets.

    Science.gov (United States)

    Gautier, D.; Grossman, K.

    1972-01-01

    By using a numerical iterative method, it is demonstrated that the mixing ratio H2/He on the giant planets can be inferred from spectral measurements of the intensity emitted by these planets in the far infrared range. The method is successfully applied to synthetic spectra of Saturn computed from atmospheric thermal models. The effect of random and systematic measurement errors on the determination of the mixing ratio is also studied.

  19. A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars

    Science.gov (United States)

    Pascucci, Ilaria; Mulders, Gijs D.; Gould, Andrew; Fernandes, Rachel

    2018-04-01

    We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1–6 R ⊕ and periods law with a break at ∼3 × 10‑5 independent of host type for hosts below 1 M ⊙. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host common planet inside the snowline is ∼3–10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.

  20. Neutrino Mixing and Masses from a Minimum Principle

    CERN Document Server

    Alonso, R; Isidori, G; Maiani, L

    2013-01-01

    We analyze the structure of quark and lepton mass matrices under the hypothesis that they are determined from a minimum principle applied to a generic potential invariant under the $\\left[SU(3)\\right]^5\\otimes \\mathcal O(3)$ flavor symmetry, acting on Standard Model fermions and right-handed neutrinos. Unlike the quark case, we show that hierarchical masses for charged leptons are naturally accompanied by degenerate Majorana neutrinos with one mixing angle close to maximal, a second potentially large, a third one necessarily small, and one maximal relative Majorana phase. Adding small perturbations the predicted structure for the neutrino mass matrix is in excellent agreement with present observations and could be tested in the near future via neutrino-less double beta decay and cosmological measurements. The generalization of these results to arbitrary sew-saw models is also discussed.

  1. Mass spectrometric determination of magnesium isotopic ratios and its corrections for electron multiplier discrimination and mass fractionation

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1989-01-01

    The mass spectrometric determination of magnesium isotopic ratios by the use of uranyl nitrate added to magnesium samples to act as a binding agent is reported. Prebaking empty filaments and preheating filaments with deposited magnesium samples on its surface in a vacuum are employed to reduce the Na signal from the thenium-ribbon. Methods for correcting magnesium isotopic ratios for electron multiplier discrimination and mass fractionation are described in detail. The results of the determination of natural magnesium isotopic ratios are 25 Mg/ 24 Mg = 0.12660 (1±0.01%) and 26 Mg/ 24 Mg = 0.13938 (1±0.10%). The magnesium isotopic ratios of rich - 26 Mg-2 sample and rich- 25 Mg-1 sample are 24 Mg/ 26 Mg = 0.003463 (1±0.2%), 25 Mg/ 26 Mg = 0.001656 (±0.2%) and 24 Mg/ 25 Mg = 0.006716 (1±0.2%), 26 Mg/ 25 Mg = 0.007264 (1±0.2%) respectively

  2. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio

    Science.gov (United States)

    Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin

    2018-03-01

    In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.

  3. Parameterization of general Z-γ-Z' mixing in an electroweak chiral theory

    International Nuclear Information System (INIS)

    Zhang Ying; Wang Qing

    2012-01-01

    A new general parameterization with eight mixing parameters among Z, γ and an extra neutral gauge boson Z ' is proposed and subjected to phenomenological analysis. We show that in addition to the conventional Weinberg angle θ W , there are seven other phenomenological parameters, G ' , ξ, η, θ 1 , θ r , r and l, for the most general Z-γ-Z ' mixings, in which parameter G ' arises due to the presence of an extra Stueckelbergtype mass coupling. Combined with the conventional Z-Z ' mass mixing angle 0', the remaining six parameters, ξ, η, θ l -θ ' , θ r - θ ' , r and l, are caused by general kinetic mixing. In all eight phenomenological parameters, θ W , G ' , ξ, η, θ 1 , θ r , r and l, we can determine the Z-Z ' mass mixing angle θ ' and the mass ratio M Z /M Z ' . The Z-γ-Z ' mixing that we discuss are based on the model-independent description of the extended electroweak chiral Lagrangian (EWCL) previously proposed by us. In addition, we show that there are eight corresponding independent theoretical coefficients in our EWCL, which are fully fixed by our eight phenomenological mixing parameters. We further find that the experimental measurability of these eight parameters does not rely on the extended neutral current for Z ' , but depends on the Z-Z ' mass ratio. (authors)

  4. Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Herdoiza, Gregorio; UAM/CSIC Univ. Autonoma de Madrid

    2012-11-01

    We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.

  5. Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration

    2012-11-15

    We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.

  6. A model of radiative neutrino masses. Mixing and a possible fourth generation

    International Nuclear Information System (INIS)

    Babu, K.S.; Ma, E.; Pantaleone, J.

    1989-01-01

    We consider the phenomenological consequences of a recently proposed model with four lepton generations such that the three known neutrinos have radiatively induced Majorana masses. Mixing among generations in the presence of a heavy fourth neutrino necessitates a reevaluation of the usual experimental tests of the standard model. One interesting possibility is to have a τ lifetime longer than predicted by the standard three-generation model. Another is to have neutrino masses and mixing angles in the range needed for a natural explanation of the solar-neutrino puzzle in terms of the Mikheyev-Smirnov-Wolfenstein effect. (orig.)

  7. LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?

    CERN Document Server

    Schwetz, Thomas

    2008-01-01

    Standard active-sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as $1/E_\

  8. Differentiation of endogenous and exogenous steroids by gas chromatography-combustion-mass spectrometry isotope ratio

    International Nuclear Information System (INIS)

    Montes de Oca Porto, Rodny; Rosado Perez, Aristides; Correa Vidal, Margarita Teresa

    2007-01-01

    Urinary steroids profiles are used to control the misuse of endogenous steroids such as testosterone and dihydrotestosterone. The testosterone/epistestosterone ratio, measured by Gas Chromatography-Mass Spectrometry, is used to control testosterone administration. When T/E ratio is higher than 4, consumption of testosterone or its precursors is suspected. Recent researches have demonstrated the effectiveness of Carbon Isotope Ratio Mass Spectrometry to detect and confirm endogenous steroids administration. The ratio of the two stable carbon isotopes 1 3 C and 1 2 C allows the differentiation of natural and synthetic steroids because synthetic steroids have lower 1 3 C abundance. In fact, the carbon isotope ratios can be used to determine endogenous steroids administration even when testosterone/epistestosterone ratio is at its normal value. In the current work, some of the most important aspects related to differentiation of endogenous and exogenous steroids by means of Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry are discussed. Also, this article provides a review about the purification and sample preparation previous to the analysis, and diet effects on carbon isotope ratio of endogenous anabolics steroids is presented too

  9. Potential use of the non-random distribution of N2 and N2O mole masses in the atmosphere as a tool for tracing atmospheric mixing and isotope fractionation processes

    International Nuclear Information System (INIS)

    Well, R.; Langel, R.; Reineking, A.

    2002-01-01

    The variation in the natural abundance of 15 N in atmospheric gas species is often used to determine the mixing of trace gases from different sources. With conventional budget calculations one unknown quantity can be determined if the remaining quantities are known. From 15 N tracer studies in soils with highly enriched 15 N-nitrate a procedure is known to calculate the mixing of atmospheric and soil derived N 2 based on the measurement of the 30/28 and 29/28 ratios in gas samples collected from soil covers. Because of the non-random distribution of the mole masses 30 N 2 , 29 N 2 and 28 N 2 in the mixing gas it is possible to calculate two quantities simultaneously, i.e. the mixing ratio of atmospheric and soil derived N 2 , and the isotopic signature of the soil derived N 2 . Routine standard measurements of laboratory air had suggested a non-random distribution of N 2 -mole masses. The objective of this study was to investigate and explain the existence of non-random distributions of 15 N 15 N, 14 N 15 N and 14 N 14 N in N 2 and N 2 O in environmental samples. The calculation of theoretical isotope data resulting from hypothetical mixing of two sources differing in 15 N natural abundance demonstrated, that the deviation from an ideal random distribution of mole masses is not detectable with the current precision of mass spectrometry. 15 N-analysis of N 2 or N 2 O was conducted with randomised and non-randomised replicate samples of different origin. 15 N abundance as calculated from 29/28 ratios were generally higher in randomised samples. The differences between the treatments ranged between 0.05 and 0.17 δper mille 15 N. It was concluded that the observed randomisation effect is probably caused by 15 N 15 N fractionation during environmental processes. (author)

  10. Inter-annual and seasonal variations in transport to a measuring site in western Siberia, and their impact on the observed atmospheric CO{sub 2} mixing ratio

    Energy Technology Data Exchange (ETDEWEB)

    Eneroth, Kristina

    2002-05-01

    Inter-annual and seasonal variations in atmospheric transport to a CO{sub 2} measuring site in western Siberia were studied using three-dimensional trajectories. We identified large differences in transport between summer and winter, but also some differences between the years. Cluster analysis was applied to the trajectory data to determine to what degree different atmospheric flow patterns influence the variability of the atmospheric CO{sub 2} mixing ratio. The observed CO{sub 2} mixing ratio was also compared to observed CO{sub 2} surface fluxes to study the impact of local sources and sinks. It was found that during July the correlation between atmospheric transport from distant source regions and CO{sub 2} mixing ratios was poor. Furthermore the correlation was also weak between the CO{sub 2} mixing ratio and the local eddy flux measurements. We conclude that the short-term variability in atmospheric CO{sub 2} during summer probably is dominated by larger scale (tens up to one hundred kilometers) CO{sub 2} surface fluxes and local meteorology. The weaker biogenic CO{sub 2} fluxes during winter, resulted in CO{sub 2} mixing ratios more clearly influenced by long-range transport Of CO{sub 2}. However, the highest atmospheric CO{sub 2} concentrations were not observed in connection with westerly winds representing transport of polluted air from Europe, but during periods with stagnant flow conditions. It was conjected that these high CO{sub 2} mixing ratios were due to respired CO{sub 2} trapped and accumulated in the lower parts of the planetary boundary layer. The mean duration for the identified flow patterns was in the order of two days, with a maximum duration of a week. This means that to have a chance to detect variations in CO{sub 2} mixing ratio due to air mass changes the sampling frequency (e.g. flask samples and flight measurements) must be at least every other day. Our results show that the atmospheric transport varies with season, year and altitude

  11. Determining mass-to-light ratios in elliptical galaxies

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1988-01-01

    If the endstate of cooling hot gas in elliptical galaxies is a population of optically dark, low-mass stars near the galactic cores, the mass-to-light ratio could be expected to vary significantly with projected radius. No strong variation in M/L is observed. To investigate the sensitivity and reliability of observational mass-to-light determinations for a variety of galactic parameters, model galaxies having de Vaucouleurs profiles (but with central cores and outer cutoffs), variable velocity ellipsoid structure, and extended dark halos are constructed. Spurious radial variations in M/L can occur when none are present if the properties of the galactic models are processed similar to observational data. Conversely, when a population of diffuse dark stellar matter is added near the galactic cores, large gradients in M/L can escape detection. However, the magnitude of the central velocity dispersion and its variation with projected radius within the effective radius both suggest that a component of dark stars is unlikely to be more massive than about 30 times the core mass of luminous stars. This restriction is important in establishing the initial mass function of stars in elliptical galaxies and the history of winds and cooling inflows in the interstellar medium. 35 references

  12. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    International Nuclear Information System (INIS)

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  13. ORBITAL AND MASS RATIO EVOLUTION OF PROTOBINARIES DRIVEN BY MAGNETIC BRAKING

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Li, Zhi-Yun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-01-20

    The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not yet fully understood. In particular, how the magnetic field observed in star-forming cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using an MHD version of the ENZO AMR hydro code, that a magnetic field of the observed strength can drastically change two of the basic quantities that characterize a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar 'seeds' have already formed. We find that in dense cores magnetized to a realistic level, the angular momentum of the material accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing material of low specific angular momentum that accretes preferentially onto the more massive primary star rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found numerically for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio toward unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the traditional circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries

  14. The measurement of mass spectrometric peak height ratio of helium isotope in trace samples

    International Nuclear Information System (INIS)

    Sun Mingliang

    1989-01-01

    An experiment study on the measurement of mass spectrometric peak height ratio of helium isotope in the trace gaseous sample is discussed by using the gas purification line designed by the authors and model VG-5400 static-vacuum noble gas mass spectrometer imported and air helium as a standard. The results show that the amount of He and Ne in natural gas sample is 99% after purification. When the amount of He in Mass Spectrometer is more than 4 x 10 -7 cm 3 STP, it's sensitivity remains stable, about 10 -4 A/cm 3 STP He and the precision of 3 He/ 4 He ratio within the following 17 days is 1.32%. The 'ABA' pattern and experiment condition in the measurement of mass spectrometric peak height ratio of He isotope are presented

  15. Retrieval of water vapor mixing ratios from a laser-based sensor

    Science.gov (United States)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  16. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  17. Continuous flow isotope ratio mass spectrometer (CF-IRMS) and its applications in hydrocarbon research and exploration

    International Nuclear Information System (INIS)

    Kalpana, G.; Patil, D.J.; Kumar, B.

    2004-01-01

    Stable isotope ratio mass spectrometers have been widely used to determine the isotopic ratios of light elements such as hydrogen, carbon, nitrogen, oxygen and sulphur. Continuous Flow Isotope Ratio Mass Spectrometry (CFIRMS) provides reliable data on nanomole amount of sample gas without the need for cryogenic trapping using cold fingers as in dual inlet isotope ratio mass spectrometer. High sample throughput is achieved as the system is configured with automated sample preparation devices and auto samplers. This paper presents a brief description of CFIRMS exploration

  18. Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy); Smirnov, Alexei Yu. [Max-Planck-Institute for Nuclear Physics,Saupfercheckweg 1, D-69117 Heidelberg (Germany); International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy)

    2016-05-23

    We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U{sub PMNS}∼V{sub CKM}{sup †}U{sub 0}, where structure of U{sub 0} is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m{sub D}, the portal mass matrix M{sub D} and the mass matrix of singlets M{sub S} are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A{sub 4}×Z{sub 4} as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U{sub 0}∼U{sub TBM} or U{sub BM}. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.

  19. Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios.

    Science.gov (United States)

    Chidambarampadmavathy, Karthigeyan; Karthikeyan, Obulisamy Parthiba; Huerlimann, Roger; Maes, Gregory E; Heimann, Kirsten

    2017-07-15

    Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH 4 ) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH 4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu 2+ ) and iron (Fe 2+ ) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu 2+ and Fe 2+ (5:5, 5:25 and 5:50 μM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH 4 oxidation capacity, CH 4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo ® & Celligen ® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu 2+ /Fe 2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu 2+ /Fe 2+ ratios, while biomass growth was unaffected. In general, high Fe 2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu 2+ /Fe 2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe 2+ concentrations. Although methanotroph

  20. Large νμ-ντ mixing and the structure of right-handed Majorana mass matrix

    International Nuclear Information System (INIS)

    Matsuda, Masahisa

    1993-01-01

    Recent solar neutrino and atmospheric neutrino experiment suggest the existence of the large lepton mixing among 2nd and 3rd generation neutrino. This fact gives the important information on the structure of right-handed Majorana neutrino. It is shown that, if we assume that the neutrino Dirac mass matrix is similar to the mass matrix of the up-quark sector, the large lepton mixing among the 2nd and the 3rd generation requires the hierarchical structure of the Majorana mass matrix. This model-independent analyses serve the model-building of the mass matrices based on the quark-lepton unified theory. (author)

  1. Dental amalgam: effects of alloy/mercury mixing ratio, uses and waste management

    International Nuclear Information System (INIS)

    Kefi, I.; Maria, A.; Sana, J.; Afreen, J.; Adel, S.; Iftikhar, A.; Yawer, A.; Kaleem, M.

    2011-01-01

    Background: Silver dental amalgam is one of the oldest filling materials used in dentistry. The American Dental Association (ADA) has estimated that billions of amalgam restorations have been placed in patients in the last 150 years. Due to the presence of mercury and mishandling during the filling make it more controversial. The objective of this study was to conduct a survey of the use of different brands and to assess any deviations in practice from the hand mixing manual method of elemental mercury and alloy in a pestle/mortar and encapsulated form. Methods: A questionnaire was sent to 250 of randomly selected dental practitioner in various localities of Karachi. Data was analysed to record the specified brands used along with their powder/liquid (P/L) ratio and the different methods for disposing off mercury in this study. Results: The most commonly used form of dispensing method was hand mixing (57%) and only 30% of the dentists followed the manufacturer instruction for hand mixing ratio. Eighty-seven percent of dental amalgam restoration was performed and 13% removed by the dentist per month and the method of disposing the amalgam wastage that 55%, 25%, and 20% dentists were used the sink, bin and other methods respectively in their dental clinics. Conclusion: Amalgam restoration is still popular filling material in the posterior region of the mouth but we need to create awareness among the dentists who do not follow the ADA specifications. (author)

  2. Quantification of submarine groundwater discharge and its short-term dynamics by linking time-variant end-member mixing analysis and isotope mass balancing (222-Rn)

    Science.gov (United States)

    Petermann, Eric; Knöller, Kay; Stollberg, Reiner; Scholten, Jan; Rocha, Carlos; Weiß, Holger; Schubert, Michael

    2017-04-01

    Submarine groundwater discharge (SGD) plays a crucial role for the water quality of coastal waters due to associated fluxes of nutrients, organic compounds and/or heavy-metals. Thus, the quantification of SGD is essential for evaluating the vulnerability of coastal water bodies with regard to groundwater pollution as well as for understanding the matter cycles of the connected water bodies. Here, we present a scientific approach for quantifying discharge of fresh groundwater (GWf) and recirculated seawater (SWrec), including its short-term temporal dynamics, into the tide-affected Knysna estuary, South Africa. For a time-variant end-member mixing analysis we conducted time-series observations of radon (222Rn) and salinity within the estuary over two tidal cycles in combination with estimates of the related end-members for seawater, river water, GWf and SWrec. The mixing analysis was treated as constrained optimization problem for finding an end-member mixing ratio that simultaneously fits the observed data for radon and salinity best for every time-step. Uncertainty of each mixing ratio was quantified by Monte Carlo simulations of the optimization procedure considering uncertainty in end-member characterization. Results reveal the highest GWf and SWrec fraction in the estuary during peak low tide with averages of 0.8 % and 1.4 %, respectively. Further, we calculated a radon mass balance that revealed a daily radon flux of 4.8 * 108 Bq into the estuary equivalent to a GWf discharge of 29.000 m3/d (9.000-59.000 m3/d for 25th-75th percentile range) and a SWrec discharge of 80.000 m3/d (45.000-130.000 m3/d for 25th-75th percentile range). The uncertainty of SGD reflects the end-member uncertainty, i.e. the spatial heterogeneity of groundwater composition. The presented approach allows the calculation of mixing ratios of multiple uncertain end-members for time-series measurements of multiple parameters. Linking these results with a tracer mass balance allows conversion

  3. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  4. Universality in the mixed SU(2) lattice gauge theory. Nonperturbative approach to the ratio of Λ parameters

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Polikarpov, M.I.; Zhelonkin, A.V.

    1983-01-01

    The mixed SU(2) lattice gauge theory (LGT) is approximately represented as an effective SU(2) LGT with Wilson's action. This approach is applied to the nonperturbative calculation of the ratio of Λ-parameters in the mixed SU(2) LGT. It is shown that the formulas obtained fairly describe the Monte Carlo data so that universality holds in the mixed SU(2) LGT

  5. Nonabelian family symmetry and the origin of fermion masses and mixing angles

    International Nuclear Information System (INIS)

    Soldate, M.; Reno, M.H.; Hill, C.T.

    1986-01-01

    The origin of fermion masses and mixing angles is studied in a class of gauged family-symmetry models broken by elementary Higgs scalars at ≅10 3 TeV. It is found that large hierarchies among fermion masses can be produced more naturally in a model with four generations rather than three. (orig.)

  6. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    Science.gov (United States)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  7. Effect of Mixing Ratio between Pork Loin and Chicken Breast on Textural and Sensory Properties of Emulsion Sausages

    Science.gov (United States)

    2014-01-01

    This study is conducted to evaluate the effects of the mixing ratio between pork loin and chicken breast for textural and sensory properties of emulsion sausages. Meat homogenates are prepared by using five mixing ratios between pork loin and chicken breast (100:0, 70:30, 50:50, 30:70, and 0:100), and the emulsion sausages are also formulated with five mixing ratios. The additions of chicken breast increase the salt soluble protein solubility due to high pH levels of chicken breast, thereby resulting in the reduction of cooking losses. In addition, the apparent viscosity of meat homogenates increase with increasing amounts of chicken breast. In terms of emulsion sausages formulated with pork loin and chicken breast, the addition of chicken breast above 50% may contribute to a softer and more flexible texture of emulsion sausages. For sensory evaluations, an increase in the added amount of chicken breast contributes to a rich umami taste and deeper flavor within the emulsion sausages, resulting in the high overall acceptance score for the formulation of 0-30% pork loin and 70-100% chicken breast. Therefore, the optimal mixing ratios between pork loin and chicken breast are 0-30% and 70-100% for enhancing the textural and sensory properties of emulsion sausages. PMID:26760930

  8. Continued increase of CFC-113a (CCl3CF3) mixing ratios in the global atmosphere: emissions, occurrence and potential sources

    Science.gov (United States)

    Adcock, Karina E.; Reeves, Claire E.; Gooch, Lauren J.; Leedham Elvidge, Emma C.; Ashfold, Matthew J.; Brenninkmeijer, Carl A. M.; Chou, Charles; Fraser, Paul J.; Langenfelds, Ray L.; Hanif, Norfazrin Mohd; O'Doherty, Simon; Oram, David E.; Ou-Yang, Chang-Feng; Moi Phang, Siew; Abu Samah, Azizan; Röckmann, Thomas; Sturges, William T.; Laube, Johannes C.

    2018-04-01

    Atmospheric measurements of the ozone-depleting substance CFC-113a (CCl3CF3) are reported from ground-based stations in Australia, Taiwan, Malaysia and the United Kingdom, together with aircraft-based data for the upper troposphere and lower stratosphere. Building on previous work, we find that, since the gas first appeared in the atmosphere in the 1960s, global CFC-113a mixing ratios have been increasing monotonically to the present day. Mixing ratios of CFC-113a have increased by 40 % from 0.50 to 0.70 ppt in the Southern Hemisphere between the end of the previously published record in December 2012 and February 2017. We derive updated global emissions of 1.7 Gg yr-1 on average between 2012 and 2016 using a two-dimensional model. We compare the long-term trends and emissions of CFC-113a to those of its structural isomer, CFC-113 (CClF2CCl2F), which still has much higher mixing ratios than CFC-113a, despite its mixing ratios and emissions decreasing since the 1990s. The continued presence of northern hemispheric emissions of CFC-113a is confirmed by our measurements of a persistent interhemispheric gradient in its mixing ratios, with higher mixing ratios in the Northern Hemisphere. The sources of CFC-113a are still unclear, but we present evidence that indicates large emissions in East Asia, most likely due to its use as a chemical involved in the production of hydrofluorocarbons. Our aircraft data confirm the interhemispheric gradient as well as showing mixing ratios consistent with ground-based observations and the relatively long atmospheric lifetime of CFC-113a. CFC-113a is the only known CFC for which abundances are still increasing substantially in the atmosphere.

  9. Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio

    Science.gov (United States)

    Hoffman, Aaron; Wright, J. Douglas

    2017-11-01

    Consider an infinite chain of masses, each connected to its nearest neighbors by a (nonlinear) spring. This is a Fermi-Pasta-Ulam-Tsingou lattice. We prove the existence of traveling waves in the setting where the masses alternate in size. In particular we address the limit where the mass ratio tends to zero. The problem is inherently singular and we find that the traveling waves are not true solitary waves but rather ;nanopterons;, which is to say, waves which are asymptotic at spatial infinity to very small amplitude periodic waves. Moreover, we can only find solutions when the mass ratio lies in a certain open set. The difficulties in the problem all revolve around understanding Jost solutions of a nonlocal Schrödinger operator in its semi-classical limit.

  10. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  11. Radiative generation of quark masses and mixing angles in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Solaguren-Beascoa, Ana

    2014-01-01

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V ub |,|V cb |≪|V us |. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale

  12. A review on the determination of isotope ratios of boron with mass spectrometry.

    Science.gov (United States)

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  13. Stable isotope ratio mass spectrometry in forensic science and food adulteration research

    International Nuclear Information System (INIS)

    Kumar, B.

    2009-01-01

    Stable Isotope Ratio Mass Spectrometry (SIRMS) is an established technique for the determination of origin of geological, biological, chemical and physio-chemical samples/materials. With the development of highly precise mass spectrometers, the stable isotope ratio determination of hydrogen, carbon, nitrogen and oxygen have gained considerable interest in the fields of forensic science and food authentication. Natural variations in the isotopic composition of lighter elements occur due to fractionation effects, resulting in the finger printing of specific isotope ratio values that are characteristic of the origin, purity, and manufacturing processes of the products and their constituents. Forensic science uses scientific and technical methods to investigate traceable evidence of criminal acts. Stable isotope ratio mass spectrometry has been applied to numerous aspects of the forensic science. The analysis of explosives such as ammonium nitrate, gun powder and tri-nitro-toluene (TNT), cases of murder, armed robbery, drug smuggling, terrorism, arson and hit and run traffic accidents are a few of them. The main types of geological evidences in such cases are mud, soil, rocks, sand, gravel, dust particles, biological materials, organic particles and anthropogenic components. Stable isotopes are used as tools to corroborate and confirm the evidential leads in the investigation of such crimes. The variation in natural abundances of carbon and nitrogen and their isotopic ratios δ 13 C and δ 15 N can identify links between items found at crime scene with those of suspect. The paper discusses the applications of SIRMS in the field of forensic science and food adulteration research

  14. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    Science.gov (United States)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  15. Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2012-11-01

    Full Text Available N2O5 detection in the atmosphere has been accomplished using techniques which have been developed during the last decade. Most techniques use a heated inlet to thermally decompose N2O5 to NO3, which can be detected by either cavity based absorption at 662 nm or by laser-induced fluorescence. In summer 2007, a large set of instruments, which were capable of measuring NO3 mixing ratios, were simultaneously deployed in the atmosphere simulation chamber SAPHIR in Jülich, Germany. Some of these instruments measured N2O5 mixing ratios either simultaneously or alternatively. Experiments focused on the investigation of potential interferences from, e.g., water vapour or aerosol and on the investigation of the oxidation of biogenic volatile organic compounds by NO3. The comparison of N2O5 mixing ratios shows an excellent agreement between measurements of instruments applying different techniques (3 cavity ring-down (CRDS instruments, 2 laser-induced fluorescence (LIF instruments. Datasets are highly correlated as indicated by the square of the linear correlation coefficients, R2, which values were larger than 0.96 for the entire datasets. N2O5 mixing ratios well agree within the combined accuracy of measurements. Slopes of the linear regression range between 0.87 and 1.26 and intercepts are negligible. The most critical aspect of N2O5 measurements by cavity ring-down instruments is the determination of the inlet and filter transmission efficiency. Measurements here show that the N2O5 inlet transmission efficiency can decrease in the presence of high aerosol loads, and that frequent filter/inlet changing is necessary to quantitatively sample N2O5 in some environments. The analysis of data also demonstrates that a general correction for degrading filter transmission is not applicable for all conditions encountered during this campaign. Besides the effect of a gradual degradation of the inlet transmission efficiency aerosol exposure, no other interference

  16. Mixing of ν/sub e/ and ν/sub μ/ in SO(10) models

    International Nuclear Information System (INIS)

    Milton, K.; Nandi, S.; Tanaka, K.

    1982-01-01

    We found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx.10 15 GeV) but no left-handed Majorana mass, there is small ν/sub e/ mixing but ν/sub μ/-ν/sub tau/ mixing can be substantial. We reexamine this problem on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing, we obtain results consistent with the above; however, in the optimum case, ν/sub e/-ν/sub μ/ mixing can be of the order of the Cabbibo angle. In an extension of this model wherein the Witten mechanism generates the Majorana mass, we illustrate quantitatively how the parameter characterizing the Majorana sector must be tuned in order to achieve large ν/sub e/-ν/sub μ/ mixing

  17. Frozen up dilaton and the GUT/Planck mass ratio

    Science.gov (United States)

    Davidson, Aharon; Ygael, Tomer

    2017-09-01

    By treating modulus and phase on equal footing, as prescribed by Dirac, local scale invariance can consistently accompany any Brans-Dicke ω-theory. We show that in the presence of a soft scale symmetry breaking term, the classical solution, if it exists, cannot be anything else but general relativistic. The dilaton modulus gets frozen up by the Weyl-Proca vector field, thereby constituting a gravitational quasi-Higgs mechanism. Assigning all grand unified scalars as dilatons, they enjoy Weyl universality, and upon symmetry breaking, the Planck (mass)2 becomes the sum of all their individual (VEV)2s. The emerging GUT/Planck (mass)2 ratio is thus ∼ ωgGUT2 / 4 π.

  18. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  19. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    Science.gov (United States)

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  20. Neutrino masses and mixings: Big Bang and Supernova nucleosynthesis and neutrino dark matter

    International Nuclear Information System (INIS)

    Fuller, George M.

    1999-01-01

    The existence of small mixings between light active and sterile neutrino species could have implications for Big Bang and Supernova Heavy Element Nucleosynthesis. As well, such mixing would force us to abandon cherished constraints on light neutrino Dark Matter. Two proposed 4-neutrino mass and mixing schemes, for example, can both accomodate existing experimental results and lead to elegant solutions to the neutron-deficit problem for r-Process nucleosynthesis from neutrino-heated supernova ejecta. Each of these solutions is based on matter-enhanced (MSW) active-sterile neutrino transformation. In plausible extensions of these schemes to the early universe, Shi and Fuller have shown that relatively light mass (∼200 eV to ∼10 keV) sterile neutrinos produced via active-sterile MSW conversion can have a ''cold'' energy spectrum. Neutrinos produced in this way circumvent the principal problem of light neutrino dark matter and would be, essentially, Cold Dark Matter

  1. Spatial variability of mixing ratios of ammonia and tracer gases in a naturally ventilated dairy cow barn

    NARCIS (Netherlands)

    Mendes, Luciano B.; Edouard, Nadège; Ogink, Nico W.M.; Dooren, van Hendrik Jan C.; Fátima F. TinÔco, de Ilda; Mosquera Losada, Julio

    2015-01-01

    The use of the tracer gas ratio method to estimate emissions from naturally ventilated (NV) livestock barns excludes the need of monitoring ventilation rates. However, it requires accurate measurement of tracer release rate (QT) and a representative estimate of the mixing ratio between

  2. OGLE-2017-BLG-1434Lb: Eighth qTurnover in Planet Mass-Ratio Function

    Science.gov (United States)

    Udalski, A.; Ryu, Y.-H.; Sajadian, S.; Gould, A.; Mrǎłz, P.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; Albrow, M. D.; Chung, S.-J.; Han, C.; Hwang, K.-H.; Jung, Y., K.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Bozza, V.; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Burgdorf, M.; Campbell-White, J.; Ciceri, S.; Evans, D.; Figuera Jaimes, R.; Fujii, Y. I.; Haikala, L. K.; Henning, T.; Hinse, T. C.; Mancini, L.; Peixinho, N.; Rahvar, S.; Rabus, M.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; von Essen, C.

    2018-03-01

    We report the discovery of a cold Super-Earth planet (mp=4.4±0.5 M⊙) orbiting a low-mass (M=0.23±0.03) M⊙ dwarf at projected separation a⊥=1.18±0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, DL=0.86±0.09 kpc. Indeed, it was the large lens-source relative parallax πrel=1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, "microlens parallax" πE∝(πrel/M)1/2 that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio qturnover" in the mass function found by Suzuki et al. relative to the power law of opposite sign n=-0.93±0.13 at higher mass ratios q≳2×10-4. We combine our result with that of Suzuki et al. to obtain p=0.73+0.42-0.34.

  3. The relationship between vertical cup‑disc ratio and body mass ...

    African Journals Online (AJOL)

    Aim: To determine the relationship between vertical cup disc ratio (VCDR) and body mass index (BMI) in a population screened for glaucoma in Port Harcourt, Nigeria Materials and Method: This study was part of a one-day screening exercise for glaucoma at the University of Port Harcourt. Demographic data included age, ...

  4. THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Allanson, Steven P.; Hudson, Michael J.; Smith, Russell J.; Lucey, John R.

    2009-01-01

    This paper addresses the challenge of understanding the typical star formation histories of red-sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We first construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend, i.e., the stellar populations are younger, on average, for lower σ galaxies. We find, however, that this trend flattens or reverses at σ ∼ -1 . We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the fundamental plane (FP), or by the SAURON group. For galaxies with σ ∼ 70 km s -1 , models with a late 'frosting' of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The single stellar population (SSP) model is consistent with the FP, and requires a modest amount of dark matter (between 20% and 30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was 'quenched' at intermediate ages is also consistent with the observations, although in this case less dark matter is required for low mass galaxies. We also find that the contribution of stellar populations to the 'tilt' of the fundamental plane is highly dependent on the assumed star formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one-third is due to dark matter or non-homology.

  5. The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy

    Science.gov (United States)

    Armandroff, T. E.; Da Costa, G. S.

    1986-01-01

    The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.

  6. Experimental and analytical studies of iodine mass transfer from xenon-iodine mixed gas bubble to liquid sodium pool

    International Nuclear Information System (INIS)

    Miyahara, S.; Sagawa, N.; Shimoyama, K.

    1996-01-01

    In the fuel pin failure accident of a liquid metal fast reactor, volatile fission products play an important role in the assessment of radiological consequences. Especially the radioisotopes of elemental iodine are important because of their high volatility and of the low permissible dose to human thyroid. The released iodines are known to be retained in the coolant sodium as sodium iodide due to the chemical affinity between alkali metals and halogens. However, the xenon and krypton released with iodines into the sodium pool as bubbles may influence the reaction rate of iodine with sodium during the bubble rising. So far, the only few experimental results have been available concerning the decontamination factor (DF: the ratio of the initial iodine mass in the mixed gas bubble to the released mass into the cover gas) of iodine in this phenomenon. Therefore, experimental and analytical studies were carried out to study the mass transfer of iodine from a xenon-iodine mixed gas bubble to the liquid sodium pool. In the experiments, the bubble was generated in the sodium pool by cracking a quartz ball which contains the xenon-iodine mixed gas and then, the mixed gas released into the argon cover gas was collected to determine the transferred iodine mass into the pool. A rising velocity of the bubble was measured by Chen-type void sensors arranged vertically in the pool. From the measured rising velocity and another observation of bubble behavior in simulated water experiments, it is found that the generated bubble breaks up into several smaller bubbles of spherical cap type during the rising period. Transferred iodine mass per unit initial bubble volume from the bubble to the sodium pool shows increases with increasing time and the initial iodine concentration. A mass transfer rate obtained by differentiating the transferred iodine mass with respect to the time indicates a rapid decrease just after the bubble generation and a slow decrease for the successive period

  7. Diagnostic performance of sonoelastographic Tsukuba score and strain ratio in evaluation of breast masses

    Directory of Open Access Journals (Sweden)

    Mahmoud Abd Elaziz Dawood

    2018-03-01

    Full Text Available The aim of this prospective study was to evaluate the diagnostic performance of the use of strain index ratio by sonoelastography to differentiate between benign and malignant breast lesions. Patients & Methods: This prospective study including 40 females, complaining of breast masses which were suspicious to be malignant on clinical examination. All patients were submitted to B-mode Ultrasound and sonoelastography. Biopsy as a gold standard and pathological study were done for all breast lesions. Results: US examination of every mass was done and categorized according to BI-RADS categories according to ACR2013, according to US lexicon. Sonoelastography examination with Lesions classification was performed on the basis of a 5-point scoring method proposed by Tsukuba elasticity score. Then measurements of strain ratio were done. Statistical analysis of combination of the three methods was sensitivity of 96.7%, specificity of 100% when we use cut off value of 3–4 in elastography score and ≤3 cut off value of strain ratio. Conclusion: The combined use of strain ratio with Tsukuba score and BI-RADS categorization increased the diagnostic performance in differentiation between benign and malignant breast lesions. Keywords: Elastography, Breast masses, Strain ratio, Ultrasound, BI-RADS classification, Tsukuba score

  8. Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK

    Directory of Open Access Journals (Sweden)

    B. Langford

    2009-03-01

    Full Text Available Mixing ratios and fluxes of six selected volatile organic compounds (VOCs were measured above the city of Manchester (UK during the summer of 2006. A proton transfer reaction-mass spectrometer was used for the measurement of mixing ratios, and fluxes were calculated from these using both the disjunct and the virtual disjunct eddy covariance techniques. The two flux systems, which operated in alternate half hours, showed good agreement, with R2 values ranging between 0.74 and 0.9 for the individual analytes. On average, fluxes measured in the disjunct mode were approximately 20% lower than those measured in the virtual mode. This difference is due to both the dampening of the VOC signal by the disjunct flux sampler and carry over from one sample to the next. Correcting for these effects reduced the difference to less than 7%. Observed fluxes are thought to be largely controlled by anthropogenic sources, with vehicle emissions the major contributor. However, both evaporative and biogenic emissions may account for some of the VOCs present. Concentrations and fluxes of the oxygenated compounds were highest on average, ranging between 0.15 to 1 mg m−2 h−1; the fluxes of aromatic compounds were lower, between 0.12 to 0.28 mg m−2 h−1. The observed fluxes were up-scaled to give city wide emission estimates for each compound and the results compared to estimates made by the National Atmospheric Emission Inventory (NAEI for the same flux footprint. Fluxes of toluene and benzene compared most closely differing by approximately 50%, while in contrast the oxygenated fluxes were found to be between 3.6–6.3 times larger than the annual average predicted by the NAEI.

  9. Effect of different ratios of cow manure and corn straw on the mixed anaerobic fermentation rate

    Directory of Open Access Journals (Sweden)

    Zongshan JIANG

    2016-08-01

    Full Text Available In order to study the effect of the different ratios on the anaerobic fermentation rate is investigated, and the rate-limiting factors are preliminarily determined, at mesophilic (38±1℃ condition, with anaerobic granular sludge as inoculums, different ratios of cow manure and corn straw are used as substrate for mixed anaerobic fermentation. By measuring daily biogas production, the concentrations of CH4 and CO2 in the marsh gas, TC, the concentration of VFAs and pH value, The results show that under the mixture ratio of 2∶1, the hydrolysis rate constants, cumulative biogas yield and biodegradability CH4 reach their high limits, which are 0.043 7 d-1, 271.93 mL/g and 71.59%, respectively. Moreover, it is found that the concentration of acetic acid is proportional to the amount of cow manure at the beginning (the first day of mixed fermentation, and the concentration of propionicacid is proportional to the amount of corn straw in medium fermentation stage (the fifth day. In addition, rate-limiting step of biogas production is related to the ratio of cow manure and corn in fermentation material. With the increasing of corn straw proportion, on the 1st day, it tends to hydrolysis acidogenesis; from the 2th day to 15th day, it tends to hydrogen-production acetogenisis; and from the 16th day to 30th day, it is hydrolysis acidogenesis. The paper focuses on the relationship between the ratio of cow manure and corn straw and the rate-limiting step for biogas production, which could provide a theoretical and experimental support for improving the efficiency of biogas production in mixed fermentation.

  10. Investigation of Atwood ratio influence on turbulent mixing transition of a shock-driven variable density flow after reshock

    Science.gov (United States)

    Mohaghar, Mohammad; Carter, John; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    The current study experimentally investigates the influence of the initial Atwood ratio (At) on the evolution of Richtmyer-Meshkov instability at the Georgia Tech Shock Tube and Advanced Mixing Laboratory. Two Atwood numbers (At =0.22 and 0.67) are studied, which correspond to the gas combinations of nitrogen seeded with acetone vapor (light) over carbon dioxide (heavy) and same light gas over sulfur hexafluoride (heavy) respectively. A perturbed, multi-mode, inclined interface (with an amplitude to wavelength ratio of 0.088) is impulsively accelerated by the incident shock traveling vertically from light to heavy gas with a Mach number 1.55. The effect of Atwood ratio on turbulent mixing transition after reshock at the same non-dimensional times between the two cases is examined through ensemble-averaged turbulence statistics from simultaneous planar laser induced uorescence (PLIF) and particle image velocimetry (PIV) measurements. Preliminary studies over the smaller Atwood number indicates that turbulent mixing transition criteria can be satisfied after reshock. This work was supported by the National Science Foundation CAREER Award No. 1451994.

  11. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  12. Gateways and Water Mass Mixing in the Late Cretaceous North Atlantic

    Science.gov (United States)

    Asgharian Rostami, M.; Martin, E. E.; MacLeod, K. G.; Poulsen, C. J.; Vande Guchte, A.; Haynes, S.

    2017-12-01

    Regions of intermediate/deep water formation and water-mass mixing in the North Atlantic are poorly defined for the Late Cretaceous, a time of gateway evolution and cooler conditions following the Mid Cretaceous greenhouse. Improved proxy data combined with modeling efforts are required to effectively evaluate the relationship between CO2, paleogeography, and circulation during this cooler interval. We analyzed and compiled latest Cretaceous (79 - 66 Ma) ɛNd and δ13C records from seven bathyal (paleodepths 0.2 - 2 km) and eight abyssal (paleodepths > 2 km) sites in the North Atlantic. Data suggest local downwelling of Northern Component Water (NCW; ɛNd -9.5 and δ13C 1.7 ‰) is the primary source of intermediate/deep water masses in the basin. As this water flows southward and ages, δ13C values decrease and ɛNd values increase; however, additional chemical changes at several sites require mixing with contributions from several additional water masses. Lower ɛNd ( -10) and higher δ13C ( 1.9 ‰) values in the deep NW part of the basin indicate proximal contributions from a region draining old continental crust, potentially representing deep convection following opening of the Labrador Sea. In the deep NE Iberian Basin, higher ɛNd ( -7) and lower δ13C ( 0.8 ‰) during the Campanian suggest mixing with a Tethyan source (ɛNd -7 and δ13C 0.1 ‰) whose importance decreased with restriction of that gateway in the Maastrichtian. Data from bathyal sites suggest additional mixing. In the SE Cape Verde region, observed ɛNd variations from -10 in the Campanian to -13 and -12 in the early and late Maastrichtian, respectively, may record variations in output rates of Tethyan and/or NCW sources and Demerara Bottom Water (ɛNd -16), a proposed warm saline intermediate water mass formed in shallow, equatorial seas. Pacific inflow through the Caribbean gateway impacts intermediate sites at Blake Nose (ɛNd values -8), particularly the shallowest site during the late

  13. Weak mixing angles and heavy flavours

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1984-05-01

    The present status of the weak mixing angles, in the standard six quark model, is reviewed. The implications of the recent measurements of the beauty lifetime and branching ratios are discussed, in the framework of the Kobayashi-Maskawa and the Wolfenstein parametrizations. Expectations for B(sup)o - B(sup)-o mixing and consequences for the collider data are given. Other topics briefly reviewed are CP-violation, top quark mass and possible implications of the existence of a fourth family. (author)

  14. Ratiometric, single-dye, pH-sensitive inhibited laser-induced fluorescence for the characterization of mixing and mass transfer

    Science.gov (United States)

    Lacassagne, Tom; Simoëns, Serge; El Hajem, Mahmoud; Champagne, Jean-Yves

    2018-01-01

    Inhibited planar laser-induced fluorescence (I-PLIF) techniques are widely used for heat and mass transfer studies in fluid mechanics. They allow the visualization of instantaneous two-dimensional field of a passive or reactive scalar, providing that this scalar acts as an inhibitor to the fluorescence of a specific molecule, and that this molecule is homogeneously mixed in the fluid at a known concentration. Local scalar values are deduced from fluorescence recordings thanks to preliminary calibration procedure. When confronted with non-optically thin systems, however, the knowledge of the excitation intensity distribution in the region of interest is also required, and this information is most of the time hard to obtain. To overcome that problem, two-color ratiometric PLIF techniques ( {I}^ {r}-PLIF) have been developed. In these methods, the ratio of two different fluorescence wavelengths triggered by the same excitation is used as an indicator of the scalar value. Such techniques have been used for temperature measurements in several studies but never, to the author's knowledge, for pH tracking and acid-base mixing, despite the frequent use of the one-color version in mass transfer studies. In the present work, a ratiometric pH-sensitive-inhibited PLIF technique ( {I}_ {pH}^ {r}-PLIF) using fluorescein sodium as a single dye and applicable to complex geometries and flows is developed. Theoretical considerations show that the ratio of the two-color fluorescence intensities should only depend on the dye's spectral quantum yield, itself pH-dependent. A detailed spectrofluorimetric study of fluorescein reveals that this ratio strictly increases with the pH for two well-chosen spectral bands (fluorescence colors). A similar trend is found when using sCmos cameras equipped with optical filters to record fluorescence signals. The method is then experimented on a test flow, a turbulent acidic jet injected in an initially pH-neutral volume of fluid. The results obtained

  15. Determination of Mg/Ca ratio of stalagmite by laser multicollector inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    He Xuexian; Zhu Xiangkun; Tang Suohan; Yang Chun; Cai Junjun; Li Shizhen; Li Zhihong

    2005-01-01

    A method for determining Mg/Ca of stalagmite by LA-MC-ICPMS is studied. 24 Mg/ 44 Ca (Mass 22, intensity of 44C a 2+ , collected by ion counting and mass 24, intensity of 24 Mg + , collected by Faraday cup) ratios were measured in replace of Mg/Ca ratios. Both diameter of laser sampling spot and laser moving increment were 2- μm. The curve of Mg/Ca vs. distance directly was obtained. The result indicates that relative Mg/Ca ratios changed from 0.5 to 2.0 this stalagmite and it is enough to reflect environmental factors act. (authors)

  16. Higgs Mass Constraints on a Fourth Family: Upper and Lower Limits on CKM Mixing

    International Nuclear Information System (INIS)

    Chanowitz, Michael S.

    2010-01-01

    Theoretical and experimental limits on the Higgs boson mass restrict CKM mixing of a possible fourth family beyond the constraints previously obtained from precision electroweak data alone. Existing experimental and theoretical bounds on m H already significantly restrict the allowed parameter space. Zero CKM mixing is excluded and mixing of order θ Cabbibo is allowed. Upper and lower limits on 3-4 CKM mixing are exhibited as a function of m H . We use the default inputs of the Electroweak Working Group and also explore the sensitivity of both the three and four family fits to alternative inputs.

  17. On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Zhukov, A.V.

    1985-01-01

    One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements

  18. Determination of SB2 masses and age: introduction of the mass ratio in the Bayesian analysis

    Science.gov (United States)

    Giarrusso, M.; Leone, F.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.

    2018-04-01

    Stellar age assignment still represents a difficult task in Astrophysics. This unobservable fundamental parameter can be estimated only through indirect methods, as well as generally the mass. Bayesian analysis is a statistical approach largely used to derive stellar properties by taking into account the available information about the quantities we are looking for. In this paper we propose to apply the method to the double-lined spectroscopic binaries (SB2), for which the only available information about masses is the observed mass ratio of the two components. We validated the method on a synthetic sample of Pre-Main Sequence (PMS) SB2 systems showing the capability of the technique to recover the simulated age and masses. Then, we applied our procedure to the PMS eclipsing binaries Parenago 1802 and RX J0529.4+0041 A, whose masses of both components are known, by treating them as SB2 systems. The estimated masses are in agreement with those dynamically measured. We conclude that the method, if based on high resolution and high signal-to-noise spectroscopy, represents a robust way to infer the masses of the very numerous SB2 systems together with their age, allowing to date the hosting astrophysical environments.

  19. Determination of SB2 masses and age: introduction of the mass ratio in the Bayesian analysis

    Science.gov (United States)

    Giarrusso, M.; Leone, F.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.

    2018-07-01

    Stellar age assignment still represents a difficult task in Astrophysics. This unobservable fundamental parameter can be estimated only through indirect methods, as well as generally the mass. Bayesian analysis is a statistical approach largely used to derive stellar properties by taking into account the available information about the quantities we are looking for. In this paper, we propose to apply the method to the double-lined spectroscopic binaries (SB2), for which the only available information about masses is the observed mass ratio of the two components. We validated the method on a synthetic sample of pre-main-sequence (PMS) SB2 systems showing the capability of the technique to recover the simulated age and masses. Then, we applied our procedure to the PMS eclipsing binaries Parenago 1802 and RX J0529.4+0041 A, whose masses of both components are known, by treating them as SB2 systems. The estimated masses are in agreement with those dynamically measured. We conclude that the method, if based on high resolution and high signal-to-noise spectroscopy, represents a robust way to infer the masses of the very numerous SB2 systems together with their age, allowing to date the hosting astrophysical environments.

  20. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  1. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  2. Mass mixing, CP violation and left-right symmetry for heavy neutral mesons

    International Nuclear Information System (INIS)

    Ecker, G.; Grimus, W.

    1985-01-01

    We investigate M 0 - M-bar 0 mixing and CP violation in the minimal left-right symmetric gauge model with spontaneous P and CP violation. The dominant contributions to the mixing amplitude including QCD corrections are calculated explicitly for B 0 - B-bar 0 . While the amount of mixing is not much changed with respect to the standard model left-right symmetry can give rise to significantly larger CP violation in the B 0 sub(s) - B-bar 0 sub(s) system (up to two orders of magnitude for the dilepton charge asymmetry). Sizable CP violating effects require that the left-right contribution to the KsubLKsubS mass difference has the same sign as the standard model contribution. We also comment on D 0 - D-bar 0 mixing including a careful discussion of the standard model prediction. (Author)

  3. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  4. Origin of fermion masses and quark mixing without of fundamental scalars

    International Nuclear Information System (INIS)

    Dyatlov, I.T.

    1991-01-01

    Hierarchy of masses of fermion generation and the properties of the weak mixing matrix give evidence for the mechanism in which the fourth generation condensate and new vector boson are necessary elements. Rather large value of neutral transitions between heavy flavours could serve as a main experimental manifestation of the suggested mechanism

  5. Theory of quark mixing matrix and invariant functions of mass matrices

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1987-10-01

    The outline of this talk is as follows: The origin of the quark mixing matrix. Super elementary theory of flavour projection operators. Equivalences and invariances. The commutator formalism and CP violation. CP conditions for any number of families. The 'angle' between the quark mass matrices. Application to Fritzsch and Stech matrices. References. (author)

  6. UBVRc Ic ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    International Nuclear Information System (INIS)

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-01-01

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A v ∼ 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of ∼50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  7. GUT and flavor models for neutrino masses and mixing

    Science.gov (United States)

    Meloni, Davide

    2017-10-01

    In the recent years experiments have established the existence of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, no real illumination was sparked on the problem of flavor in the lepton sector. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.

  8. Effect of metal ratio and calcination temperature of chromium based mixed oxides catalyst on FAME density from palm fatty acid distillate

    Science.gov (United States)

    Wan, Z.; Fatimah, S.; Shahar, S.; Noor, A. C.

    2017-09-01

    Mixed oxides chromium based catalysts were synthesized via sol-gel method for the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). The reactions were conducted in a batch reactor at reaction temperature of 160 °C for 4 h and methanol to PFAD molar ratio of 3:1. The effects of catalyst preparation conditions which are the mixed metal ratio and calcination temperature were studied. The various metal ratio of Cr:Mn (1:0, 0:1, 1:1, 1:2 and 2:1) and Cr:Ti (0:1, 1:1, 1:2 and 2:1) resulted in FAME density ranges from 1.041 g/cm3 to 0.853 g/cm3 and 1.107 g/cm3 to 0.836 g/cm3, respectively. The best condition catalyst was found to be Cr:Ti metal ratio of 1:2 and Cr:Mn metal ratio of 1:1. The calcination temperature of the mixed oxides between 300 °C to 700°C shows effect on the FAME density obtained in the reaction. The calcination at 500°C gave the lowest FAME density of 0.836 g/cm3 and 0.853 g/cm3 for Cr:Ti and Cr:Mn mixed oxides, respectively. The density of FAME is within the value range of the biodiesel fuel property. Thus, mixed oxides of Cr-Ti and Cr-Mn have good potentials as heterogeneous catalyst for FAME synthesis from high acid value oils such as PFAD.

  9. Dark matter contraction and stellar-mass-to-light ratio gradients in massive early-type galaxies

    Science.gov (United States)

    Oldham, Lindsay J.; Auger, Matthew W.

    2018-05-01

    We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies. We combine pixel-based modelling of multiband Hubble Space Telescope imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a generalised NFW (gNFW) profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio ϒ⋆ for the baryonic mass, we infer distributions for ϒ⋆ consistent with initial mass functions (IMFs) that are heavier than the Milky Way's (with a global mean mismatch parameter relative to a Chabrier IMF μαc = 1.80 ± 0.14) and halo inner density slopes that span a large range but are generally cuspier than the dark-matter-only prediction (μ _{γ ^' }} = 2.01_{-0.22}^{+0.19}). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mass-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.

  10. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  11. Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance in a democratic approach

    International Nuclear Information System (INIS)

    Dermisek, Radovan

    2004-01-01

    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin θ 13 . If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m top 2 /M GUT )sin 2 θ 23 sin 2 θ 12 in the limit sin θ 13 ≅0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M 1 ,M 2 -4 M 3 , M 3 =M GUT

  12. Systematic study of the π-/π+ ratio in heavy-ion collisions with the same neutron/proton ratio but different masses

    International Nuclear Information System (INIS)

    Zhang Ming; Xiao Zhigang; Zhu Shengjiang; Li Baoan; Chen Liewen; Yong Gaochan

    2009-01-01

    A systematic study of the π - /π + ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the π - /π + ratio in head-on collisions of 48 Ca+ 48 Ca, 124 Sn+ 124 Sn, and 197 Au+ 197 Au at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the π - /π + ratio as well as their time evolution and spatial distributions demonstrates clearly that the π - /π + ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.

  13. Homologous Type of Malignant Mixed Mullerian Tumor of the Uterus Presenting as a Cervical Mass

    Directory of Open Access Journals (Sweden)

    Umur Kuyumcuoğlu

    2009-10-01

    Full Text Available Malignant mixed Mullerian tumors are composed of a mixture of sarcoma and carcinoma. The carcinomatous element is usually glandular, whereas the sarcomatous element may resemble normal endometrial stroma (homologous or so-called carcinosarcoma. Here, we present a homologous type of malignant mixed Mullerian tumor of the uterus that presented as a cervical mass. We describe a 55-year-old patient who had a cervical mass arising from the uterus. We performed total abdominal hysterectomy and bilateral salpingo-oophorectomy and surgical staging (including (peritoneal washings, suspicious areas or peritoneal surfaces sampled, infracolic omental sampling, pelvic and paraaortic lymph node sampling, and appendectomy. Carcinosarcomas of the uterine cervix are extremely rare, and when a post-menopausal woman with a cervical mass is admitted to the gynecology clinic, the physician should keep in mind that the mass might be a carcinosarcoma. [J Chin Med Assoc 2009;72(10:533–535

  14. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    Science.gov (United States)

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  15. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  16. Lepton masses and mixings in orbifold models with three Higgs families

    International Nuclear Information System (INIS)

    Escudero, N.; Munoz, C.; Teixeira, A.M.

    2007-01-01

    We analyse the phenomenological viability of heterotic Z 3 orbifolds with two Wilson lines, which naturally predict three supersymmetric families of matter and Higgs fields. Given that these models can accommodate realistic scenarios for the quark sector avoiding potentially dangerous flavour-changing neutral currents, we now address the leptonic sector, finding that viable orbifold configurations can in principle be obtained. In particular, it is possible to accomodate present data on charged lepton masses, while avoiding conflict with lepton flavour-violating decays. Concerning the generation of neutrino masses and mixings, we find that Z 3 orbifolds offer several interesting possibilities

  17. Source zone remediation by ZVI-clay soil-mixing: Reduction of tetrachloroethene mass and mass discharge at a Danish DNAPL site

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Lange, Ida Vedel; Binning, Philip John

    2012-01-01

    The presence of chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality. The remediation of Dense Non-Aqueous Phase Liquid (DNAPL) sites is especially challenging and the development of innovative remediation technologies is needed. Zero-valent iron (ZVI......) technologies have proven effective for remediation of chlorinated compounds. ZVI-Clay soil-mixing is a new remediation technology, which combines abiotic degradation (via ZVI addition) and immobilization (via soil-mixing and clay addition), whereby a great potential for reduction of both contaminant mass....... The concentrations of chlorinated ethenes were monitored via soil sampling at the source zone and groundwater sampling at a control plane with multilevel samplers covering the entire contaminated plume down-gradient (3 m) of the source zone. The results showed a significant mass depletion of PCE (2-3 orders...

  18. Applying rotary jet heads for mixing and mass transfer in a forced recirculation tank reactor system

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Grotkjær, Thomas; Hummer, J.S.

    2003-01-01

    or an external loop.In this study, we determine mixing times in water and CMC solutions and oxygen mass transfer coefficients in water for a tank reactor system where a small fraction of the total liquid volume is rapidly circulated through an external loop and injected through the nozzles of rotary jet heads....... The system has a very simple design with no internal baffles or heat exchange area, and between batches the rotary jet heads are used for cleaning in place.Mixing time decreases and mass transfer increases with increasing circulation flow rate. For nozzle diameters between 5.5 and 10 mm and with one or two...... rotary jet heads, it is shown that a remarkable saving in power input for a fixed mixing time or mass transfer coefficient can be obtained by using a large nozzle diameter and two rather than one rotary jet heads.At the experimental conditions of the study the system is scaleable by simple formulas...

  19. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  20. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples

    NARCIS (Netherlands)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-01-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid

  1. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  2. On the electron to proton mass ratio and the proton structure

    DEFF Research Database (Denmark)

    Trinhammer, Ole L.

    2013-01-01

    We derive an expression for the electron to nucleon mass ratio from a reinterpreted lattice gauge theory Hamiltonian to describe interior baryon dynamics. We use the classical electron radius as our fundamental length scale. Based on expansions on trigonometric Slater determinants for a neutral s...... and d valence quarks of the proton....

  3. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. Determination of the isotopic ratio 235U/238U in UF6 using quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Kusahara, Helena Sueco

    1979-01-01

    In this work measurements of isotope ratios 235 U / 23 '8U in uranium hexafluoride are carried out using a quadrupole mass spectrometer. The operational parameters, which affect the final precision of the results, are standardized. Optimized procedures for the preparation of uranium hexafluoride samples by fluorination of uranium oxides using cobalt trifluoride method are established. Careful attention is given to the process of purification of uranium hexafluoride samples by fractional distillation. Adequate statistical methods for analysing the results obtained for single ratio measurements as well as the ratio ' of isotopic ratios of sample and standard ar.e developed. A precision of about 10 -4 for single ratio measurements and accuracy of about 0,3% for the ratio of sample and standard ratios are obtained. These results agree with the values which have been obtained using magnetic mass spectrometers. The procedures and methods established in this work can be employed in the systematic uranium isotope analysis in UF 6 form. (author)

  5. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  6. Correlating oxygen vacancies and phase ratio/interface with efficient photocatalytic activity in mixed phase TiO2

    International Nuclear Information System (INIS)

    Verma, Ranjana; Samdarshi, S.K.

    2015-01-01

    Graphical abstract: The correlation of interfacial behavior and oxygen vacancies in mixed phase titania nanoparticles on their performance as photocatalyst has been investigated to explain the impact of photoactivity under UV and visible irradiation compared to pristine counterparts. The defects at the junction effectively reduce the band gap as well decrease the carrier recombination to enhance the photocatalytic activity. - Highlights: • Pristine and mixed phases (A/R ratio) TiO 2 synthesized by sol gel route. • Photoactivity variation has been correlated with the changes in the phase ratio. • Enhanced UV and visible activity attributable to oxygen vacancy present at the interface. • Role of A/R ratio and oxygen vacancy in the photoactivity of mixed TiO 2 depicted through a model. - Abstract: The photocatalytic activity is a result of the synergy of a succession of phenomena-photogeneration, separation, and participation of the charge carriers in redox reaction at the catalyst surface. While the extent of photogeneration is assessable in terms of absorption spectrum (band gap), the redox reaction can be correlated to specific surface area. However the respective change in the photocatalytic activity has not been rationally and consistently correlated with the above mentioned parameters. A satisfactory explanation of suppression of recombination based on separation of carriers due to differential mobility/diffusivity in the material phase(s) and/or intrinsic potential barrier exists but its correlation with common identifiable parameter/characteristics is still elusive. This paper attempts to address this issue by correlating the carrier separation with the phase ratio (phase interface) in mixed phase titania and generalizing it with the presence of oxygen vacancy at the phase interface. It essentially appears to complete the quest for identifiable parameters in the sequence of phenomena, which endow a photocatalyst with an efficient activity level. It has

  7. Black hole fusion in the extreme mass ratio limit

    Science.gov (United States)

    Emparan, Roberto; Martínez, Marina; Zilhão, Miguel

    2018-02-01

    We present a simple, general, and accurate construction of the event horizons for the fusion of two neutral, rotating black holes with arbitrary orientation and values of their spins, in the extreme mass ratio limit where one black hole is much larger than the other. We compute several parameters that characterize the fusion and investigate their dependence on the black hole spin and orientation axis. We also exhibit and study the appearance of transient toroidal topology of the horizon. An earlier conjecture about universal critical exponents before and after an axisymmetric pinch is proven.

  8. New narrow boson resonances and SU(4) symmetry: Selection rules, SU(4) mixing, and mass formulas

    International Nuclear Information System (INIS)

    Takasugi, E.; Oneda, S.

    1975-01-01

    General SU(4) sum rules are obtained for bosons in the theoretical framework of asymptotic SU(4), chiral SU(4) direct-product SU(4) charge algebra, and a simple mechanism of SU(4) and chiral SU(4) direct-product SU(4) breaking. The sum rules exhibit a remarkable interplay of the masses, SU(4) mixing angles, and axial-vector matrix elements of 16-plet boson multiplets. Under a particular circumstance (i.e., in the ''ideal'' limit) this interplay produces selection rules which may explain the remarkable stability of the newly found narrow boson resonances. General SU(4) mass formulas and inter-SU(4) -multiplet mass relations are derived and SU(4) mixing parameters are completely determined. Ground state 1 -- and 0 -+ 16-plets are especially discussed and the masses of charmed and uncharmed new members of these multiplets are predicted

  9. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  10. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function

    International Nuclear Information System (INIS)

    Gair, Jonathan R.; Tang, Christopher; Volonteri, Marta

    2010-01-01

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centers of galaxies--extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that is difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type--using multiple observations in combination to constrain a parametrized source population. Assuming that the scaling of the EMRI rate with the black-hole mass is known and taking a black-hole distribution given by a simple power law, dn/dlnM=A 0 (M/M * ) α 0 , we find that LISA could measure the parameters to a precision of Δ(lnA 0 )∼0.08, and Δ(α 0 )∼0.03 for a reference model that predicts ∼1000 events. Even with as few as 10 events, LISA should constrain the slope to a precision ∼0.3, which is the current level of observational uncertainty in the low-mass slope of the black-hole mass function. We also consider a model in which A 0 and α 0 evolve with redshift, but find that EMRI observations alone do not have much power to probe such an evolution.

  11. A comparison of men's and women's strength to body mass ratio and varus/valgus knee angle during jump landings.

    Science.gov (United States)

    Haines, Tracie L; McBride, Jeffrey M; Triplett, N Travis; Skinner, Jared W; Fairbrother, Kimberly R; Kirby, Tyler J

    2011-10-01

    The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.

  12. Sneutrino mixing

    International Nuclear Information System (INIS)

    Grossman, Y.

    1997-10-01

    In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed

  13. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  14. Romanian wines characterization with CF-IRMS (Continuous Flow Isotope Ratio Mass Spectrometry) isotopic analysis

    International Nuclear Information System (INIS)

    Costinel, Diana; Ionete, Roxana Elena; Vremera, Raluca; Stanciu, Vasile

    2007-01-01

    Wine growing has been known for centuries long in Romania. The country has been favored by its geographical position in south-eastern Europe, by its proximity to the Black Sea, as well as by the specificity of the local soil and climate. Alongside France, Italy, Spain, Germany, countries in this area like Romania could also be called 'a vine homeland' in Europe. High quality wines produced in this region were object of trade ever since ancient times. Under current EU research projects, it is necessary to develop new methods of evidencing wine adulteration and safety. The use of mass spectrometry (MS) to determine the ratios of stable isotopes in bio-molecules now provides the means to prove the botanical and geographical origin of a wide variety of foodstuffs - and therefore, to authenticate and eliminate fraud. Isotope analysis has been officially adopted by the EU as a means of controlling adulteration of wine. Adulteration of wine can happen in many ways, e.g. addition of non-grape ethanol, addition of non-grape sugar, water or other unauthorized substances, undeclared mixing of wines from different wards, geographical areas or countries, mislabelling of variety and age. The present paper emphasize the isotopic analysis for D/H, 18 O/ 16 O, 13 C/ 12 C from wines, using a new generation Isotope Ratio MS, Finnigan Delta V Plus, coupling with a three flexible continuous flow preparation device (GasBench II, TC Elemental Analyser and GC-C/TC). Therefore authentication of wines is an important problem to which isotopic analysis has made a significant contribution. (authors)

  15. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  16. A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio

    Directory of Open Access Journals (Sweden)

    Kon-Kee Liu Shuh-Ji Kao

    2007-01-01

    Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.

  17. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  18. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  19. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.

  20. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  1. FORMATION CONDITIONS OF ICY MATERIALS IN COMET C/2004 Q2 (MACHHOLZ). I. MIXING RATIOS OF ORGANIC VOLATILES

    International Nuclear Information System (INIS)

    Kobayashi, Hitomi; Kawakita, Hideyo

    2009-01-01

    We observed comet C/2004 Q2 (Machholz) with the Keck II telescope in late 2005 January and we obtained the spectra of C/2004 Q2 including many emission lines of volatile species such as H 2 O, HCN, C 2 H 2 , NH 3 , CH 4 , C 2 H 6 , CH 3 OH, and H 2 CO with high-signal-to-noise ratios. Based on our observations, we determined the mixing ratios of the molecules relative to H 2 O in C/2004 Q2. Since C/2004 Q2 is one of Oort Cloud comets, it is interesting to compare our results with other Oort Cloud comets. The mixing ratios of C 2 H 2 /H 2 O and C 2 H 6 /H 2 O in C/2004 Q2 are lower than typical Oort Cloud comets. Especially, C 2 H 2 /H 2 O ratio in C/2004 Q2 is as lower as Jupiter Family comets. However, mixing ratios of other molecules in C/2004 Q2 are similar to typical Oort Cloud comets. C/2004 Q2 might be the intermediate type between Oort Cloud and Jupiter Family comets. To investigate the formation conditions of such intermediate type comet, we focused on the (C 2 H 2 +C 2 H 6 )/H 2 O ratios and C 2 H 6 /(C 2 H 6 +C 2 H 2 ) ratios in comets from the viewpoint of conversion from C 2 H 2 to C 2 H 6 in the precometary ices. We found that (C 2 H 2 +C 2 H 6 )/H 2 O ratio in C/2004 Q2 is lower than the ratio in typical Oort Cloud comets while C 2 H 6 /(C 2 H 6 +C 2 H 2 ) ratio in C/2004 Q2 is consistent with the ratio of the typical Oort Cloud comets and Jupiter family comets. If we assume that the cometary volatiles such as H 2 O, CH 4 , and C 2 H 2 formed similar environment, the C 2 H 6 /(C 2 H 6 +C 2 H 2 ) ratio might not be sensitive in the temperature range where hydrogen-addition reactions occurred and cometesimals formed (∼30 K). We employed the dynamical-evolutional model and the chemical-evolutional model to determine the formation region of C/2004 Q2 more precisely. We found that comet C/2004 Q2 might have formed in relatively inner region of the solar nebula than the typical Oort Cloud comet (but slightly further than 5 AU from the proto-Sun).

  2. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  3. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijun

    2014-02-19

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  4. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Lijun

    2014-01-01

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  5. Field Sample Preparation Method Development for Isotope Ratio Mass Spectrometry

    International Nuclear Information System (INIS)

    Leibman, C.; Weisbrod, K.; Yoshida, T.

    2015-01-01

    Non-proliferation and International Security (NA-241) established a working group of researchers from Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to evaluate the utilization of in-field mass spectrometry for safeguards applications. The survey of commercial off-the-shelf (COTS) mass spectrometers (MS) revealed no instrumentation existed capable of meeting all the potential safeguards requirements for performance, portability, and ease of use. Additionally, fieldable instruments are unlikely to meet the International Target Values (ITVs) for accuracy and precision for isotope ratio measurements achieved with laboratory methods. The major gaps identified for in-field actinide isotope ratio analysis were in the areas of: 1. sample preparation and/or sample introduction, 2. size reduction of mass analyzers and ionization sources, 3. system automation, and 4. decreased system cost. Development work in 2 through 4, numerated above continues, in the private and public sector. LANL is focusing on developing sample preparation/sample introduction methods for use with the different sample types anticipated for safeguard applications. Addressing sample handling and sample preparation methods for MS analysis will enable use of new MS instrumentation as it becomes commercially available. As one example, we have developed a rapid, sample preparation method for dissolution of uranium and plutonium oxides using ammonium bifluoride (ABF). ABF is a significantly safer and faster alternative to digestion with boiling combinations of highly concentrated mineral acids. Actinides digested with ABF yield fluorides, which can then be analyzed directly or chemically converted and separated using established column chromatography techniques as needed prior to isotope analysis. The reagent volumes and the sample processing steps associated with ABF sample digestion lend themselves to automation and field

  6. Experimental and numerical analysis on the effect of inlet distortion on the performance of a centrifugal fan with a mixing chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liang; Wang, Tong; Yang, Bo; Gu, Chuangang [Shanghai Jiao Tong University, Shanghai (China)

    2013-02-15

    Inlet flow distortions, which are caused by fluid mixing, cause a significant deterioration in fan performance. An experimental test rig for an industrial fan with dual inlets and a mixing chamber was constructed. The flow fields in the mixing chamber of the fan were numerically investigated. Consequently, impact parameters, including the length of the mixing chamber (100, 200, and 300 mm) and the mass flow rate ratio (1 to 10), as well as their effects on fan performance, were discussed. A generalized formula considering the Reynolds number, hydraulic diameter, and mixing length was proposed to predict the pressure drop in dual inlets. Results show that the efficiency of and pressure in the fan decreased by 6.5% and 203 Pa, respectively, under mixing inlet condition. Optimum fan performance is achieved at a flow rate ratio of 5 under the same mass flow rate. The increase in the flow rate ratio kept the fan performance almost constant. At the design stage, fan performance and pressure decrease by an average of 2% and 70 Pa in increments of 100 mm mixing length, respectively. The results presented in this paper provide a basis in the design optimization of mixing structures.

  7. Experimental and numerical analysis on the effect of inlet distortion on the performance of a centrifugal fan with a mixing chamber

    International Nuclear Information System (INIS)

    Ding, Liang; Wang, Tong; Yang, Bo; Gu, Chuangang

    2013-01-01

    Inlet flow distortions, which are caused by fluid mixing, cause a significant deterioration in fan performance. An experimental test rig for an industrial fan with dual inlets and a mixing chamber was constructed. The flow fields in the mixing chamber of the fan were numerically investigated. Consequently, impact parameters, including the length of the mixing chamber (100, 200, and 300 mm) and the mass flow rate ratio (1 to 10), as well as their effects on fan performance, were discussed. A generalized formula considering the Reynolds number, hydraulic diameter, and mixing length was proposed to predict the pressure drop in dual inlets. Results show that the efficiency of and pressure in the fan decreased by 6.5% and 203 Pa, respectively, under mixing inlet condition. Optimum fan performance is achieved at a flow rate ratio of 5 under the same mass flow rate. The increase in the flow rate ratio kept the fan performance almost constant. At the design stage, fan performance and pressure decrease by an average of 2% and 70 Pa in increments of 100 mm mixing length, respectively. The results presented in this paper provide a basis in the design optimization of mixing structures.

  8. Some considerations about mixing, oscillation phenomena and CP violation of different mass eigenstates

    International Nuclear Information System (INIS)

    Malace, Simona; Lucaci-Timoce, Angela; Lazanu, I.

    2003-01-01

    In the last twenty years there have been made many experimental and theoretical efforts to measure and verify the prediction of the Standard Model, as well as to put in evidence small deviation from these values. In the present paper, we discuss some aspects of possible regularities of the formalism of mixing and oscillation phenomena of the mass eigenstates in particle physics and possible consequences of hidden proprieties of the systems. In the literature representations of lepton flavour mixing with different parametrisation are used for three generations of leptons and quarks. Although these are mathematically equivalent, only one of them are likely to describe the underlying physics in a more transparent way, and particularly convenient in the analysis of experimental data or is able to establish a concordance with these ones. Flavour permutational symmetry of the mixing matrix, 'maximal democracy' and maximal CP violation give a simple and efficient way to understand the essential characteristics of the phenomena, with a minimum number of parameters. The deviations of the experimental data of these predicted values represent a simple clue to study phenomenologically the breaking of symmetries. The interplay of gravitation and linear superposition of different mass eigenstates, and their consequences on the oscillation clocks, phases and the physical observability are also briefly discussed. (authors)

  9. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-07-01

    Full Text Available Introduction: Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples.Material/Methods: Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS analysis.Results: A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes.Conclusions: The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  10. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  11. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  12. Explanation for the temperature dependence of plasma frequencies in SrTiO3 using mixed-polaron theory

    International Nuclear Information System (INIS)

    Eagles, D.M.; Georgiev, M.; Petrova, P.C.

    1996-01-01

    A theory of mixed polarons is used to interpret the published experimental results of Gervais et al. on temperature-dependent plasma frequencies in Nb-doped SrTiO 3 . For given polaron masses before mixing, the appropriate average mixed-polaron mass at any temperature T depends on two quantities, δ and b, which are measures of the separation between the bottoms of large and nearly small polaron bands before mixing and of a mixing matrix element; δ and b are assumed to have arbitrary linear dependences on T, probably related to a T dependence of the bare mass, and a term quadratic in T is included in δ, determined from the T dependence of large-polaron binding energies. Including a constraint on the ratio δ/|b| at low T from known masses from specific-heat data, satisfactory agreement is obtained with masses determined from plasma frequencies. This gives further support for the theory of mixed polarons in SrTiO 3 in addition to that already published. copyright 1996 The American Physical Society

  13. Galaxy and mass assembly (GAMA): the consistency of GAMA and WISE derived mass-to-light ratios

    Science.gov (United States)

    Kettlety, T.; Hesling, J.; Phillipps, S.; Bremer, M. N.; Cluver, M. E.; Taylor, E. N.; Bland-Hawthorn, J.; Brough, S.; De Propris, R.; Driver, S. P.; Holwerda, B. W.; Kelvin, L. S.; Sutherland, W.; Wright, A. H.

    2018-01-01

    Recent work has suggested that mid-IR wavelengths are optimal for estimating the mass-to-light ratios of stellar populations and hence the stellar masses of galaxies. We compare stellar masses deduced from spectral energy distribution (SED) models, fitted to multiwavelength optical-NIR photometry, to luminosities derived from WISE photometry in the W1 and W2 bands at 3.6 and 4.5 μm for non-star forming galaxies. The SED-derived masses for a carefully selected sample of low-redshift (z ≤ 0.15) passive galaxies agree with the prediction from stellar population synthesis models such that M*/LW1 ≃ 0.6 for all such galaxies, independent of other stellar population parameters. The small scatter between masses predicted from the optical SED and from the WISE measurements implies that random errors (as opposed to systematic ones such as the use of different initial mass functions) are smaller than previous, deliberately conservative, estimates for the SED fits. This test is subtly different from simultaneously fitting at a wide range of optical and mid-IR wavelengths, which may just generate a compromised fit: we are directly checking that the best-fitting model to the optical data generates an SED whose M*/LW1 is also consistent with separate mid-IR data. We confirm that for passive low-redshift galaxies a fixed M*/LW1 = 0.65 can generate masses at least as accurate as those obtained from more complex methods. Going beyond the mean value, in agreement with expectations from the models, we see a modest change in M*/LW1 with SED fitted stellar population age but an insignificant one with metallicity.

  14. The ATLAS(3D) project - XX. Mass-size and mass-Sigma distributions of early-type galaxies : bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NARCIS (Netherlands)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-01-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)(JAM) approximate to (M/L)(r = R-e) within a sphere of radius r = R-e centred on the galaxy, as well as stellar (M/L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected

  15. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  16. Revised masses for the double-mode and bump Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Deupree, R.G.; King, D.S.; Hodson, S.W.

    1977-01-01

    We consider Population I Cepheids with two pulsation modes and those with a bump in the light and velocity curves. Model envelopes for these Cepheids have been altered in several ways in an attempt in remove the discrepancy between masses predicted from the evolution theory mass-luminosity relation an th masses predicted from pulsation theory. One of these ways, the inclusion of rotation, does not change the period ratio of the first overtone mode to the fundamental mode enough to resolve this mass discrepancy. Another way, the inclusion of a helium- (or metal-) rich layer mixed by convection and pulsation between the stellar surface and 70,000 K decreases this period ratio appreciably. The ratio of the second overtone period to the fundamental period is also reduced with this structure. The masses of the double-mode Cepheids U TrA and V367 Sct and the bump Cepheids U Sgr and β Dor are found to be much closer to the masses derived from stellar evolution theory

  17. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  18. Lepton mixing matrix element U13 and new assignments of universal texture for quark and lepton mass matrices

    International Nuclear Information System (INIS)

    Matsuda, Koichi; Nishiura, Hiroyuki

    2004-01-01

    We reanalyze the mass matrix model of quarks and leptons that gives a unified description of quark and lepton mass matrices with the same texture form. By investigating possible types of assignment for the texture components of the lepton mass matrix, we find that a different assignment for neutrinos than for charged leptons can also lead to consistent values of the Maki-Nakagawa-Sakata-Pontecorv (MNSP) lepton mixing matrix. We also find that the predicted value for the lepton mixing matrix element U 13 of the model depends on the assignment. A proper assignment will be discriminated by future experimental data for U 13

  19. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    Science.gov (United States)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  20. Effect of B/Ti mass ratio on grain refining of low-titanium aluminum produced by electrolysis

    International Nuclear Information System (INIS)

    Wang Mingxing; Wang Sanjun; Liu Zhiyong; Liu Zhongxia; Song Tianfu; Zuo Xiurong

    2006-01-01

    The effect of B/Ti mass ratio on grain refining of the low-titanium aluminum produced by electrolysis was investigated by adding AlB master alloy to the melt of the low-titanium aluminum. The results show that the addition of titanium by electrolysis is an effective way of grain refining of aluminum, and addition of boron to the melt of the low-titanium aluminum can further increase the grain refining efficiency. And the best grain refining efficiency is obtained when the B/Ti mass ratio is 1:10. However, when the B/Ti mass ratio is 1:2.22 (the stoichiometric value for TiB 2 ), the grain refining efficiency vanishes almost completely. It means that all of the solute titanium atoms in the melt of the low-titanium aluminum react with boron atoms that come from AlB master alloy to form TiB 2 particles, and TiB 2 particles have not grain refining ability. The grain refining efficiency seems to increase with addition of more boron to the melt after the B/Ti mass ratio exceeds 1:2.22. But the grain refining efficiency is very poor, and similar to that of pure Al refined by AlB master alloy. It further shows that TiB 2 particles do not participate in grain refining, and that the excess boron atoms in the melt also cannot turn TiB 2 particles into the effective nuclei for aluminum as the solute titanium atoms do

  1. Nuclear fuel technology - Determination of the O/M ratio in MOX pellets - Gravimetric method

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the oxygen-to-metal (O/M) ratio in mixed uranium-plutonium oxide pellets. The (U,Pu)O 2 x sample is submitted to controlled oxidation-reduction under thermodynamic conditions designed to change the O/M ratio to a value of 2,000. The initial stoichiometric deviation, X, is determined from the sample mass difference before and after heat treatment

  2. Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509.

    Science.gov (United States)

    Liu, Jia; Yuan, Ming; Liu, Jia-Nan; Huang, Xiang-Feng

    2017-10-01

    The oleaginous yeast Cryptococcus curvatus ATCC 20509 can use 5-40g/L of acetic, propionic, or butyric acid as sole carbon source to produce lipids. High concentrations (30g/L) of mixed volatile fatty acids (VFAs) were used to cultivate C. curvatus to explore the effects of different ratios of mixed VFAs on lipid production and composition. When mixed VFAs (VFA ratio was 15:5:10) were used as carbon sources, the highest cell mass and lipid concentration were 8.68g/L and 4.93g/L, respectively, which were significantly higher than those when 30g/L of acetic acid was used as sole carbon source. The highest content and yield of odd-numbered fatty acids were 45.1% (VFA ratio was 0:15:15) and 1.62g/L (VFA ratio was 5:15:10), respectively. These results indicate that adjusting the composition ratios of mixed VFAs effectively improves microbial lipid synthesis and the yield of odd-numbered fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F; Yunes, Nicolás

    2012-01-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesies. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesies, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.

  4. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    Science.gov (United States)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  5. A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Peters, W.; Schröter, J.; van Heerwaarden, C. C.; Krol, M. C.

    2012-01-01

    Interpretation of observed diurnal carbon dioxide (CO2) mixing ratios near the surface requires knowledge of the local dynamics of the planetary boundary layer. In this paper, we study the relationship between the boundary layer dynamics and the CO2 budget in convective conditions through a newly

  6. Determining Σ-Λ mixing

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics

    2014-12-15

    SU2 isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects. These mass differences are small. Between the Sigma and Lambda the mass splitting is much larger, but this is mostly due to their different wavefunctions. However there is now also mixing between these states. We determine the QCD mixing matrix and hence find the mixing angle and mass splitting.

  7. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter

    Science.gov (United States)

    Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling

    2018-05-01

    We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.

  8. Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?

    Science.gov (United States)

    Pechetti, Renuka; Seth, Anil; Cappellari, Michele; McDermid, Richard; den Brok, Mark; Mieske, Steffen; Strader, Jay

    2017-11-01

    We present dynamical measurements of the central mass-to-light ratio (M/L) of a sample of 27 low-mass early-type {{ATLAS}}3{{D}} galaxies. We consider all {{ATLAS}}3{{D}} galaxies with 9.7 text{}}M/L{{s}} are higher than dynamical {\\text{}}M/L{{s}} derived at larger radii and stellar population estimates of the galaxy centers in ˜80% of galaxies, with a median enhancement of ˜14% and a statistical significance of 3.3σ. We show that the enhancement in the central M/L is best described either by the presence of black holes in these galaxies or by radial initial mass function variations. Assuming a black hole model, we derive black hole masses for the sample of galaxies. In two galaxies, NGC 4458 and NGC 4660, the data suggest significantly overmassive black holes, while in most others only upper limits are obtained. We also show that the level of M/L enhancements we see in these early-type galaxy nuclei are consistent with the larger enhancements seen in ultracompact dwarf galaxies (UCDs), supporting the scenario where massive UCDs are created by stripping galaxies of these masses.

  9. Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

    OpenAIRE

    A. A. Okeola; T. I. Sijuade

    2016-01-01

    Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days...

  10. Constructing binary black hole initial data with high mass ratios and spins

    Science.gov (United States)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  11. CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Kenneth H. [National Optical Astronomy Observatory P.O. Box 26732, Tucson, AZ 85726 (United States); Lebzelter, Thomas [Department of Astrophysics, University of Vienna Türkenschanzstrasse 17, A-1180 Vienna (Austria); Straniero, Oscar, E-mail: khinkle@noao.edu, E-mail: thomas.lebzelter@univie.ac.at, E-mail: straniero@oa-teramo.inaf.it [INAF, Osservatorio Astronomico di Collurania I-64100 Teramo (Italy)

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μ m spectra were measured to derive isotopic ratios for {sup 12}C/{sup 13}C, {sup 16}O/{sup 17}O, and {sup 16}O/{sup 18}O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M {sub ⊙} and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of {sup 16}O/{sup 17}O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M {sub ⊙} stars after the first dredge-up. In contrast, the {sup 16}O/{sup 18}O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the {sup 16}O/{sup 18}O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O

  12. Sensor for mixing ratio of gasoline and alcohol or the like

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1992-01-14

    An improved sensor is disclosed which is capable of continuously measuring a ratio of alcohol and gasoline with high precision, irrespective of the ambient temperature, in order to obtain the most appropriate timing of ignition and injection when employed, for example, in an internal combustion engine. The sensor has a cylindrical enclosure having both inlet and outlet openings to act as a passage through which the liquid fuel mixture flows. A transparent column is concentrically disposed in the enclosure, an outer surface of which is at least in partial contact with the fuel mixture. A light emitting diode is placed at one end of the column so that light from the diode enters the column to reach a boundary between the column and the fuel mixture. A photo diode at the other end of the column receives light beams totally reflected back at the boundary to produce an output, the magnitude of which depends on the mixing ratio of the fuel mixture. A temperature compensation means is also provided in the form of a temperature compensation photo diode and an amplifier, in order to maintain a uniform intensity of light beams emitted from the light emitting diode irrespective of changes in ambient temperature. 8 figs.

  13. Creation of a predictive equation to estimate fat-free mass and the ratio of fat-free mass to skeletal size using morphometry in lean working farm dogs.

    Science.gov (United States)

    Leung, Y M; Cave, N J; Hodgson, B A S

    2018-06-27

    To develop an equation that accurately estimates fat-free mass (FFM) and the ratio of FFM to skeletal size or mass, using morphometric measurements in lean working farm dogs, and to examine the association between FFM derived from body condition score (BCS) and FFM measured using isotope dilution. Thirteen Huntaway and seven Heading working dogs from sheep and beef farms in the Waikato region of New Zealand were recruited based on BCS (BCS 4) using a nine-point scale. Bodyweight, BCS, and morphometric measurements (head length and circumference, body length, thoracic girth, and fore and hind limb length) were recorded for each dog, and body composition was measured using an isotopic dilution technique. A new variable using morphometric measurements, termed skeletal size, was created using principal component analysis. Models for predicting FFM, leanST (FFM minus skeletal mass) and ratios of FFM and leanST to skeletal size or mass were generated using multiple linear regression analysis. Mean FFM of the 20 dogs, measured by isotope dilution, was 22.1 (SD 4.4) kg and the percentage FFM of bodyweight was 87.0 (SD 5.0)%. Median BCS was 3.0 (min 1, max 6). Bodyweight, breed, age and skeletal size or mass were associated with measured FFM (pFFM and measured FFM (R 2 =0.96), and for the ratio of predicted FFM to skeletal size and measured values (R 2 =0.99). Correlation coefficients were higher for the ratio FFM and leanST to skeletal size than for ratios using skeletal mass. There was a positive correlation between BCS-derived fat mass as a percentage of bodyweight and fat mass percentage determined using isotope dilution (R 2 =0.65). As expected, the predictive equation was accurate in estimating FFM when tested on the same group of dogs used to develop the equation. The significance of breed, independent of skeletal size, in predicting FFM indicates that individual breed formulae may be required. Future studies that apply these equations on a greater population of

  14. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques

    NARCIS (Netherlands)

    Schierbeek, H.; Moerdijk-Poortvliet, T.C.W.; van den Akker, C.H.P.; te Braake, F.W.J.; Boschker, H.T.S.; van Goudoever, J.B.

    2009-01-01

    The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques

  15. The measurement of the isotope ratios and concentrations of zinc by thermal ionization mass spectrometry using double isotope dilution

    International Nuclear Information System (INIS)

    Deng Zhongguo

    1994-01-01

    The isotope ratios and concentrations of zinc are measured by silicagel-thermal ionization mass spectrometry using the double isotope spikers. The double isotope spikers ( 70 Zn and 67 Zn-enriched isotopes) are used to correct the isotope mass fractionation for the zinc isotope ratios, and to certify the zinc concentrations in the unknown samples. The zinc concentrations of these double isotope spikers are surveyed by a spiker made of pure (99.99%) natural zinc metal powder. The correcting factors (f a , f t and f n ) of the zinc isotope ratios in the spiked mixture, spike and unspiked samples for the isotope mass fractionation, and the spike-to-unspiked ratios (X r ) of the zinc isotope r in the spiked mixture samples can be obtained to solve the matrix equations by numerical approximation. The natural zinc isotope ratios are: 64 Zn/ 67 Zn = 11.8498, 66 Zn/ 67 Zn = 6.7977, 68 Zn/ 67 Zn = 4.5730 and 70 Zn/ 67 Zn = 0.1520. The uncertainties determined of the isotope ratios and concentrations of zinc are +- 0.16% and +-0.31%, respectively

  16. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mix ratio measurements of pozzolanic blends by Fourier transform infrared-attenuated total reflectance method

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.

    1992-07-01

    The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends

  18. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    Science.gov (United States)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  19. Neutrino masses and large mixings as a indirect signature of grand unified theory

    International Nuclear Information System (INIS)

    Maekawa, Nobuhiro

    2015-01-01

    Grand unified theory (GUT) unifies not only three forces (electromagnetic force, strong force and weak force) but also quarks and leptons. As an experimental support for the unification of forces, it is well-known that three gauge couplings meet at a scale (the GUT scale). However, it is not so well-known that there is an experimental support even for the unification of matters (quarks and leptons). We explain the indirect support in this document and show that the important key is what the neutrino experiments have revealed for 20 years. Concretely, for the unification of matters in SU(5) GUT, various observed hierarchies of quark and lepton masses and mixings can be understood only from one assumption that '10 dimensional fields of SU(5) induce stronger hierarchy for the Yukawa couplings than 5-bar fields'. For this explanation, the knowledges on neutrino masses and mixings are critical. In the end, we comment E 6 unification in which the above assumption in the SU(5) GUT can be induced. (author)

  20. Higgs-boson masses and mixing matrices in the NMSSM. Analysis of on-shell calculations

    Energy Technology Data Exchange (ETDEWEB)

    Drechsel, Peter; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Groeber, Ramona [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; INFN, Sezione di Roma Tre (Italy); Heinemeyer, Sven [Univ. Autonoma de Madrid (UAM/CSIC) (Spain). Inst. de Fisica Teorica; Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); UAM + CSIC Campus of International Excellence, Madrid (Spain); Muehlleitner, Milada [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Rzehak, H. [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins

    2016-12-22

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(α{sub t}α{sub s}). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM.

  1. Higgs-boson masses and mixing matrices in the NMSSM: analysis of on-shell calculations

    Energy Technology Data Exchange (ETDEWEB)

    Drechsel, P.; Weiglein, G. [DESY, Hamburg (Germany); Groeber, R. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); INFN, Sezione di Roma Tre, Rome (Italy); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Instituto de Fisica Teorica, (UAM/CSIC), Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Muehlleitner, M. [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Rzehak, H. [University of Southern Denmark, CP3-Origins, Odense M (Denmark)

    2017-06-15

    We analyze the Higgs-boson masses and mixing matrices in the NMSSM based on an on-shell (OS) renormalization of the gauge-boson and Higgs-boson masses and the parameters of the top/scalar top sector. We compare the implementation of the OS calculations in the codes NMSSMCALC and NMSSM-FeynHiggs up to O(α{sub t}α{sub s}). We identify the sources of discrepancies at the one- and at the two-loop level. Finally we compare the OS and DR evaluation as implemented in NMSSMCALC. The results are important ingredients for an estimate of the theoretical precision of Higgs-boson mass calculations in the NMSSM. (orig.)

  2. Evaluation of magnetization transfer ratio in ascites and pelvic cystic masses

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Susumu [Nippon Medical School, Inba, Chiba (Japan). Chiba-Hokuso Hospital; Kato, Tomoyasu; Yamashita, Takashi [and others

    1997-12-01

    To investigate the feasibility of magnetization transfer contrast (MTC) in characterization of pelvic cystic masses and ascites, in vitro studies were performed. Cystic fluids were taken from operative specimens of ten ovarian cystic masses (five mucinous cystadenomas, one cystadenocarcinoma, two serous cystadenocarcinomas, two clear cell carcinomas) and three non-ovarian pelvic cysts (one paraovarian cyst, one pseudomyxoma peritonei, one pelvic abscess). Samples of ascitic flied were drawn by peritoneal puncture in twenty patients (thirteen with peritonitis carcinomatosa, five with liver dysfunction, two with renal dysfunction). Total protein content in ascitic fluids was measured. Magnetization transfer ratio (MTR) was calculated by the signal intensities under the gradient echo sequence with and without the application of off-resonance pulses. The relative signal intensities (RSI) relative to water in T{sub 1} and T{sub 2} weighted images were obtained using spin echo sequence. There was no correlation between histological type of pelvic mass and MTR and RSI. Good correlation (R{sup 2}=0.761) was obtained between MTR and protein content in ascitic fluids, whereas no correlation was noted between RSI and protein content in ascitic fluids. These results suggest that MTC is not useful in the characterization of pelvic masses but is applicable in the differentiation between exudative ascites and transudative ascites. (author)

  3. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.; Imai, S.

    1997-01-01

    The behavior of positive ions in high aspect ratio structures, relevant to the reactive ion etching of deep trenches, has been studied by means of energy resolved mass spectrometry. High aspect ratio trenches are simulated by capillary plates with various aspect ratios. Angle resolved measurements

  4. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  5. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    Science.gov (United States)

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  6. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    Science.gov (United States)

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (Pbreast mass than that used alone.

  7. OGLE-2017-BLG-0173Lb: Low-mass-ratio Planet in a “Hollywood” Microlensing Event

    Science.gov (United States)

    Hwang, K.-H.; Udalski, A.; Shvartzvald, Y.; Ryu, Y.-H.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Skowron, J.; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Bryden, G.; Beichman, C.; Calchi Novati, S.; Gaudi, B. S.; Henderson, C. B.; Jacklin, S.; Penny, M. T.; UKIRT Microlensing Team

    2018-01-01

    We present microlensing planet OGLE-2017-BLG-0173Lb, with planet–host mass ratio of either q≃ 2.5× {10}-5 or q≃ 6.5× {10}-5, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, Δχ 2 ∼ 10000, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called “Hollywood” event. The factor ∼2.5 offset in q arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub “Cannae” and “von Schlieffen,” respectively. This degeneracy is “accidental” in that it arises from gaps in the data. Nevertheless, the fact that it appears in a Δχ 2 = 10000 planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of 3× {10}-6. This formalism also enables an analytic understanding of the factor ∼2.5 offset in q between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host mass, system distance, and planet–host projected separation are M={0.39}-0.24+0.40 {M}ȯ , {D}L={4.8}-1.8+1.5 {kpc}, and {a}\\perp =3.8+/- 1.6 {au}, respectively. The two estimates of the planet mass are {m}p={3.3}-2.1+3.8 {M}\\oplus and {m}p={8}-6+11 {M}\\oplus . The measured lens-source relative proper motion μ =6 {mas} {{yr}}-1 will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow one to measure the host mass but probably will not be able to resolve the planet–host mass-ratio degeneracy.

  8. Studies in the determination of lead isotope ratios by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Date, A.R.; Yuk Ying Cheung

    1987-01-01

    The application of ICP-MS to the determination of lead isotope ratios in geological materials is described. Data presented for a series of lead mineral concentrates are compared with reference values obtained by conventional solid source thermal ionisation mass spectrometry. The simultaneous determination of lead isotope ratios and trace elements is carried out in a rapid analysis mode. The application of an electrothermal vaporisation technique for small solution aliquots is described. Lead isotope ratio data for the United States Geological Survey standard reference silicate rock BCR-1, obtained without separation of lead from the matrix, are compared with previously published values obtained after separation. (author)

  9. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    Science.gov (United States)

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  10. Binary star statistics: the mass ratio distribution for very wide systems

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The distribution of mass ratios for a sample of common proper motion (CPM) binaries is determined and compared with that of 798 visual binaries (VB's) studied earlier, in hopes of answering the question: Can the member stars of these systems have been drawn at random from the normal initial mass function for single stars? The observed distributions peak strongly toward q = 1.0 for both kinds of systems, but less strongly for the CPM's than for the VB's. Due allowance having been made for assorted observational selection effects, it seems quite probable that the CPM's represent the observed part of a population drawn at random from the normal IMF, while the VB's are much more difficult to interpret that way and could, perhaps, result from a formation mechanism that somewhat favors sytems with roughly equal components. (author)

  11. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome.

    Science.gov (United States)

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-07-01

    Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and

  12. Measurements of charm mixing and $CP$ violation using $D^0 \\to K^\\pm \\pi^\\mp$ decays

    CERN Multimedia

    Davis, Adam

    2017-01-01

    Measurements of charm mixing and $CP$ violation parameters from the decay-time-dependent ratio of $ D^0 \\to K^+ \\pi^- $ to $ D^0 \\to K^- \\pi^+ $ decay rates and the charge-conjugate ratio are reported. The analysis uses $\\overline{B}\\to D^{*+} \\mu^- X$, and charge-conjugate decays, where $D^{*+}\\to D^0\\pi^+$, and $D^0\\to K^{\\mp} \\pi^{\\pm}$. The $pp$ collision data are recorded by the \\lhcb experiment at center-of-mass energies $\\sqrt{s}$ = 7 and 8 TeV corresponding to an integrated luminosity of 3~fb$^{-1}$ The data are analyzed under three hypotheses: (i) mixing assuming $CP$ symmetry, (ii) mixing assuming no direct $CP$ violation in the Cabibbo-favored or doubly Cabibbo-suppressed decay amplitudes, and (iii) mixing allowing either direct $CP$ violation and/or $CP$ violation in the superpositions of flavor eigenstates defining the mass eigenstates. The data are also combined with those from a previous LHCb study of $D^0\\to K \\pi$ decays from a disjoint set of $ D^{*+} $ candidates produced directly in $pp$ c...

  13. Detection strategies for extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Cornish, Neil J

    2011-01-01

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

  14. Ratio of muscle mass to fat mass assessed by bioelectrical impedance analysis is significantly correlated with liver fat accumulation in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Kurinami, Noboru; Sugiyama, Seigo; Morita, Ayami; Yoshida, Akira; Hieshima, Kunio; Miyamoto, Fumio; Kajiwara, Keizo; Jinnouch, Katsunori; Jinnouchi, Tomio; Jinnouchi, Hideaki

    2018-05-01

    Obesity and ectopic fat accumulation are important conditions of type 2 diabetes mellitus (T2DM). Our aim was to determine whether bioelectrical impedance body composition analysis combined with blood test results could estimate liver ectopic fat accumulation in patients with treatment-naïve T2DM. Subjects were 119 untreated T2DM patients. Computed tomography scans were performed to calculate the liver to spleen attenuation ratio (L/S ratio) as a measure of liver fat accumulation, with excess liver fat accumulation defined as an L/S ratio analysis using InBody770. The Nagelkerke R 2 test showed that the muscle mass/fat mass ratio (muscle/fat ratio) was the most suitable variable among anthropometric factors and body component indexes for estimating liver fat accumulation. The muscle/fat ratio was significantly correlated with the L/S ratio (ρ = 0.4386, P analysis showed that the muscle/fat ratio (odds ratio 0.40, 95% confidence interval 0.22-0.73, P ratio 1.06, 95% confidence interval 1.02-1.10, P analysis, the cutoff value of the muscle/fat ratio for excess liver fat accumulation was 2.34. In patients with treatment-naïve T2DM, the muscle/fat ratio and ALT are useful for estimating the presence of excess liver fat accumulation in daily clinical practice. Copyright © 2018. Published by Elsevier B.V.

  15. Joint test rig for tests and calibration of different methods of two-phase mass flow measurement

    International Nuclear Information System (INIS)

    John, H.; Erbacher, F.; Wanner, E.

    1975-01-01

    On behalf of the Federal Ministry of Research and Technology, the Institute of Reactor Components (IRB) has begun building a test rig which will be used for testing and calibrating the methods of measuring non-steady state two-phase mass flows developed by various research agencies. The test rig is designed for the generation of steam-water mixtures of any mixing ratio and a maximum pressure of 160 data. Depending on the mixing ratio, the mass flow will reach a maximum level of 10 to 20 t/h. The conceptual design phase of the test rig has largely been finished, the component ordering phase has begun. (orig.) [de

  16. Synthesis and characterization of Fe_3O_4 nanoparticles stabilized by polyvinylpyrrolidone / polyethylene glycol with variable mass ratios

    International Nuclear Information System (INIS)

    Silva, F.A.S. da; Campos, M.F. de; Rojas, E. E.G.

    2014-01-01

    Magnetic nanoparticles are devices able to optimize cancer treatments. In particular, magnetite nanoparticles are very effective in producing heat to cause lysis of tumor cells. However, in order that nanoparticles are internalized without causing damage to body they must be coated by biocompatible material. In this work, Fe_3O_4 nanoparticles were coated by a polymer blend: polyethylene glycol / polyvinylpyrrolidone. Some variations in mass ratio of polymer mixture were made. The effect of varying mass ratio in polymers was investigated. Samples were characterized by X-ray diffraction and Rietveld analysis. Moreover, hysteresis curves were analyzed. The results indicate good agreement between mass proportions used and physical and magnetic properties of nanocomposite. (author)

  17. Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing

    International Nuclear Information System (INIS)

    King, Stephen F.; Zhang, Jue; Zhou, Shun

    2016-01-01

    The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ_2_3=45"∘±1"∘, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.

  18. Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Zhang, Jue [Center for High Energy Physics, Peking University,Beijing 100871 (China); Zhou, Shun [Center for High Energy Physics, Peking University,Beijing 100871 (China); Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China)

    2016-12-06

    The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ{sub 23}=45{sup ∘}±1{sup ∘}, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.

  19. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source

    International Nuclear Information System (INIS)

    Walder, A.J.; Freedman, P.A.

    1992-01-01

    An inductively coupled plasma source was coupled to a magnetic sector mass analyser equipped with seven Faraday detectors. An electrostatic filter located between the plasma source and the magnetic sector was used to create a double focusing system. Isotopic ratio measurements of uranium and lead standards revealed levels of internal and external precision comparable to those obtained using thermal inonization mass spectrometry. An external precision of 0.014% was obtained from the 235 U: 238 U measurement of six samples of a National Bureau of Standards (NBS) Standard Reference Material (SRM) U-500, while an RSD of 0.022% was obtained from the 206 Pb: 204 Pb measurement of six samples of NBS SRM Pb-981. Measured isotopic ratios deviated from the NBS value by approximately 0.9% per atomic mass unit. This deviation approximates to a linear function of mass bias and can therefore be corrected for by the analysis of standards. The analysis of NBS SRM Sr-987 revealed superior levels of internal and external precision. The normalization of the 87 Sr: 86 Sr ratio to the 86 Sr: 88 Sr ratio reduced the RSD to approximately 0.008%. The measured ratio was within 0.01% of the NBS value and the day-to-day reproducibility was consistent within one standard deviation. (author)

  20. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    Science.gov (United States)

    Kroll, J. T.; Sowa, W. A.; Samuelsen, G. S.

    1996-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of the jet injection in combustors is largely based on practical experience. The emergence of NO(x) regulations for stationary gas turbines and the anticipation of aero-engine regulations requires an improved understanding of jet mixing as new combustor concepts are introduced. For example, the success of the staged combustor to reduce the emission of NO(x) is almost entirely dependent upon the rapid and complete dilution of the rich zone products within the mixing section. It is these mixing challenges to which the present study is directed. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of a conventional design. An experimental test matrix was designed around three variables: the number of orifices, the orifice length-to- width ratio, and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that the best mixing orifice geometry tested involves eight orifices with a long-to-short side aspect ratio of 3.5 at a twenty-three degree inclination from the center-line of the mixing section.

  1. Spectroscopic and physical parameters of Galactic O-type stars. III. Mass discrepancy and rotational mixing

    Science.gov (United States)

    Markova, N.; Puls, J.; Langer, N.

    2018-05-01

    Context. Massive stars play a key role in the evolution of galaxies and our Universe. Aims: Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. Methods: We used a sample of 53 objects of all luminosity classes and with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, including projected rotational rates accounting for macroturbulence, and He and N surface abundances, using optical spectroscopy and applying the model atmosphere code FASTWIND. For the remaining objects, similar data from the literature, based on analyses by means of the CMFGEN code, were used instead. The properties of our sample were then compared to published predictions based on two grids of single massive star evolution models that include rotationally induced mixing. Results: Any of the considered model grids face problem in simultaneously reproducing the stellar masses, equatorial gravities, surface abundances, and rotation rates of our sample stars. The spectroscopic masses derived for objects below 30 M⊙ tend to be smaller than the evolutionary ones, no matter which of the two grids have been used as a reference. While this result may indicate the need to improve the model atmosphere calculations (e.g. regarding the treatment of turbulent pressure), our analysis shows that the established mass problem cannot be fully explained in terms of inaccurate parameters obtained by quantitative spectroscopy or inadequate model values of Vrot on the zero age main sequence. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, we also find a correlation of the surface nitrogen and helium abundances. The large number of nitrogen-enriched stars above 30 M⊙ argues for rotationally

  2. Phenomenological approach to the modelling of elliptical galaxies: The problem of the mass-to-light ratio

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2007-01-01

    Full Text Available In this paper the problem of the phenomenological modelling of elliptical galaxies using various available observational data is presented. Recently, Tortora, Cardona and Piedipalumbo (2007 suggested a double power law expression for the global cumulative mass-to-light ratio of elliptical galaxies. We tested their expression on a sample of ellipticals for which we have the estimates of the mass-to-light ratio beyond ~ 3 effective radii, a region where dark matter is expected to play an important dynamical role. We found that, for all the galaxies in our sample, we have α + β > 0, but that this does not necessarily mean a high dark matter content. The galaxies with higher mass (and higher dark matter content also have higher value of α+β. It was also shown that there is an indication that the galaxies with higher value of the effective radius also have higher dark matter content. .

  3. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    Science.gov (United States)

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  4. Measurements of charm mixing and $C\\!P$ violation using $D^0 \\to K^\\pm \\pi^\\mp$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-03-23

    Measurements of charm mixing and $C\\!P$ violation parameters from the decay-time-dependent ratio of $ D^0 \\to K^+ \\pi^- $ to $ D^0 \\to K^- \\pi^+ $ decay rates and the charge-conjugate ratio are reported. The analysis uses $\\overline{B}\\to D^{*+} \\mu^- X$, and charge-conjugate decays, where $D^{*+}\\to D^0 \\pi^+$, and $D^0\\to K^{\\mp} \\pi^{\\pm}$. The $pp$ collision data are recorded by the LHCb experiment at center-of-mass energies $\\sqrt{s}$ = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$. The data are analyzed under three hypotheses: (i) mixing assuming $C\\!P$ symmetry, (ii) mixing assuming no direct $C\\!P$ violation in the Cabibbo-favored or doubly Cabibbo-suppressed decay amplitudes, and (iii) mixing allowing either direct $C\\!P$ violation and/or $C\\!P$ violation in the superpositions of flavor eigenstates defining the mass eigenstates. The data are also combined with those from a previous LHCb study of $D^0\\to K \\pi$ decays from a disjoint set of $ D^{*+} $ candidates produced direct...

  5. Fully constrained Majorana neutrino mass matrices using Σ(72 x 3)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.; Harrison, P.F. [Warwick Univ., Coventry (United Kingdom); Scott, W.G. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    2018-01-15

    In 2002, two neutrino mixing ansatze having trimaximally mixed middle (ν{sub 2}) columns, namely tri-chi-maximal mixing (TχM) and tri-phi-maximal mixing (TφM), were proposed. In 2012, it was shown that TχM with χ = ± (π)/(16) as well as TφM with φ = ± (π)/(16) leads to the solution, sin{sup 2} θ{sub 13} = (2)/(3) sin{sup 2} (π)/(16), consistent with the latest measurements of the reactor mixing angle, θ{sub 13}. To obtain TχM{sub (χ=±(π)/(16))} and TφM{sub (φ=±(π)/(16))}, the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m{sub 1}: m{sub 2}: m{sub 3} = ((2+√2))/(1+√(2(2+√2))): 1: ((2+√2))/(-1+√(2(2+√2))). In this paper we construct a flavour model based on the discrete group Σ(72 x 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3 x 3 matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of Σ(72 x 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices. (orig.)

  6. Stable Carbon Isotope Ratio (δ13C Measurement of Graphite Using EA-IRMS System

    Directory of Open Access Journals (Sweden)

    Andrius Garbaras

    2015-06-01

    Full Text Available δ13C values in non-irradiated natural graphite were measured. The measurements were carried out using an elemental analyzer combined with stable isotope ratio mass spectrometer (EA-IRMS. The samples were prepared with ground and non-ground graphite, the part of which was mixed with Mg (ClO42. The best combustion of graphite in the oxidation furnace of the elemental analyzer was achieved when the amount of pulverized graphite ranged from 200 to 490 µg and the mass ratio C:Mg(ClO42 was approximately 1:10. The method for the graphite burning avoiding the isotope fractionation is proposed.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6873

  7. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    International Nuclear Information System (INIS)

    Freeman, K.H.; Ricci, S.A.; Studley, A.; Hayes, J.M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values

  8. η→3π: Study of the Dalitz Plot and Extraction of the Quark Mass Ratio Q.

    Science.gov (United States)

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; Passemar, Emilie

    2017-01-13

    The η→3π amplitude is sensitive to the quark mass difference m_{u}-m_{d} and offers a unique way to determine the quark mass ratio Q^{2}≡(m_{s}^{2}-m_{ud}^{2})/(m_{d}^{2}-m_{u}^{2}) from experiment. We calculate the amplitude dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our representation of the transition amplitude implies Q=22.0±0.7.

  9. The effect of mixing ratio variation of sludge and organic solid waste on biodrying process

    Science.gov (United States)

    Nasution, A. C.; Kristanto, G. A.

    2018-01-01

    In this study, organic waste was co-biodried with sludge cake to determine which mixing ratio gave the best result. The organic waste was consisted of dried leaves and green leaves, while the sludge cake was obtained from a waste water treatment plant in Bekasi. The experiment was performed on 3 lab-scale reactors with same specifications. After 21 days of experiment, it was found that the reactor with the lowest mixing fraction of sludge (5:1) has the best temperature profile and highest moisture content depletion compared with others. Initial moisture content and initial volatile solid content of this reactor’s feedstock was 52.25% and 82.4% respectively. The airflow rate was 10 lpm. After biodrying was done, the final moisture content of the feedstock from Reactor C was 22.0% and the final volatile solid content was 75.9%.The final calorific value after biodrying process was 3179,28kcal/kg.

  10. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  11. Mass spectrometric measurement of urinary kynurenine-to-tryptophan ratio in children with and without urinary tract infection.

    Science.gov (United States)

    Yarbrough, Melanie L; Briden, Kelleigh E; Mitsios, John V; Weindel, Annette L; Terrill, Cindy M; Hunstad, David A; Dietzen, Dennis J

    2018-04-19

    Indoleamine-2,3-dioxygenase (IDO) catalyzes the first step of tryptophan (Trp) catabolism, yielding kynurenine (Kyn) metabolites. The kynurenine-to-tryptophan (K/T) ratio is used as a surrogate for biological IDO enzyme activity. IDO expression is increased during Escherichia coli urinary tract infection (UTI). Thus, our objective was to develop a method for measurement of Kyn/Trp ratio in human blood and urine and evaluate its use as a biomarker of UTI. A mass spectrometric method was developed to measure Trp and Kyn in serum and urine specimens. The method was applied to clinical urine specimens from symptomatic pediatric patients with laboratory-confirmed UTI or other acute conditions and from healthy controls. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was linear to 500 μmol/L for both Trp and Kyn. Imprecision ranged from 5 to 15% for Trp and 6-20% for Kyn. Analytical recoveries of Trp and Kyn ranged from 96 to 119% in serum and 90-97% in urine. No correlation was found between the K/T ratio and circulating IDO mass (r = 0.110) in serum. Urinary Kyn and Trp in the pediatric test cohort demonstrated elevations in the K/T ratio in symptomatic patients with UTI (median 13.08) and without UTI (median 14.38) compared to healthy controls (median 4.93; p < 0.001 for both comparisons). No significant difference in K/T ratio was noted between symptomatic patients with and without UTI (p = 0.84). Measurement of Trp and Kyn by LC-MS/MS is accurate and precise in serum and urine specimens. While urinary K/T ratio is not a specific biomarker for UTI, it may represent a general indicator of a systemic inflammatory process. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Influence of oxygen-metal ratio on mixed-oxide fuel performance

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Leggett, R.D.

    1979-04-01

    The fuel oxygen-to-metal ratio (O/M) is recognized as an important consideration for performance of uranium--plutonium oxide fuels. An overview of the effects of differing O/M's on the irradiation performance of reference design mixed-oxide fuel in the areas of chemical and mechanical behavior, thermal performance, and fission gas behavior is presented. The pellet fuel has a nominal composition of 75 wt% UO 2 + 25 wt% PuO 2 at a pellet density of approx. 90% TD. for nominal conditions this results in a smeared density of approx. 85%. The cladding in all cases is 20% CW type 316 stainless steel with an outer diameter of 5.84 to 6.35 mm. O/M has been found to significantly influence fuel pin chemistry, mainly FCCI and fission product and fuel migration. It has little effect on thermal performance and overall mechanical behavior or fission gas release. The effects of O/M (ranging from 1.938 to 1.984) in the areas of fuel pin chemistry, to date, have not resulted in any reduction in fuel pin performance capability to goal burnups of approx. 8 atom% or more

  13. Thermodynamic mixing effects of liquid ternary Au–Fe–Pd alloys by computer-aided Knudsen cell mass spectrometry

    International Nuclear Information System (INIS)

    Tomiska, Josef

    2012-01-01

    Highlights: ► Thermodynamic mixing behavior of liquid Au–Fe–Pd alloys over the whole range of composition. ► Experimental investigations by means of the computer-aided Knudsen cell mass spectrometry. ► Algebraic representation of the molar excess properties by TAP series concept. ► The corresponding TAP parameters are presented. ► The values of all molar excess functions, and thermodynamic activities at 1850 K are given. - Abstract: Thermodynamic investigations on liquid ternary Au–Fe–Pd alloys have been performed by means of the computer-aided Knudsen cell mass spectrometry. The “Digital Intensity-Ratio” (DIR) – method has been applied for the determination of the thermodynamic mixing behaviour. The ternary thermodynamically adapted power (TAP) series concept is used for the algebraic representation of the molar excess properties. The corresponding TAP parameters, and the values of the molar excess quantities Z E (Z = Gibbs energy G, heat of mixing H, and entropy S) as well as the thermodynamic activities of all three constituents at 1850 K are presented.

  14. Neutrino masses and flavor mixing in the extended double Seesaw model with two texture zeros

    International Nuclear Information System (INIS)

    Hu, Li-Jun; Dulat, Sayipjamal; Ablat, Abduleziz

    2011-01-01

    We study the light neutrino mass matrix in the extended double Seesaw model (EDSM), and as a result we get its general form. Also we demonstrate that conventional type-I and double seesaw mechanisms can be regarded as two special cases. We analyze the structure of the 9 x 9 neutrino mass matrix in this scenario, and surprisingly we find that EDSM will degenerate to a conventional type-I seesaw mechanism when M R = M S M μ -1 M S T holds exactly. Considering two simple ansaetze in two texture zeros for its 3 x 3 submatrices, we calculate the neutrino masses and flavor mixing angles, in which the θ 13 is a nonzero large angle. (orig.)

  15. Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results

    Science.gov (United States)

    Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.

    2003-07-01

    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.

  16. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  17. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  18. Cluster Correlation in Mixed Models

    Science.gov (United States)

    Gardini, A.; Bonometto, S. A.; Murante, G.; Yepes, G.

    2000-10-01

    We evaluate the dependence of the cluster correlation length, rc, on the mean intercluster separation, Dc, for three models with critical matter density, vanishing vacuum energy (Λ=0), and COBE normalization: a tilted cold dark matter (tCDM) model (n=0.8) and two blue mixed models with two light massive neutrinos, yielding Ωh=0.26 and 0.14 (MDM1 and MDM2, respectively). All models approach the observational value of σ8 (and hence the observed cluster abundance) and are consistent with the observed abundance of damped Lyα systems. Mixed models have a motivation in recent results of neutrino physics; they also agree with the observed value of the ratio σ8/σ25, yielding the spectral slope parameter Γ, and nicely fit Las Campanas Redshift Survey (LCRS) reconstructed spectra. We use parallel AP3M simulations, performed in a wide box (of side 360 h-1 Mpc) and with high mass and distance resolution, enabling us to build artificial samples of clusters, whose total number and mass range allow us to cover the same Dc interval inspected through Automatic Plate Measuring Facility (APM) and Abell cluster clustering data. We find that the tCDM model performs substantially better than n=1 critical density CDM models. Our main finding, however, is that mixed models provide a surprisingly good fit to cluster clustering data.

  19. Dynamics and control of high area-to-mass ratio spacecraft and its application to geomagnetic exploration

    Science.gov (United States)

    Luo, Tong; Xu, Ming; Colombo, Camilla

    2018-04-01

    This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.

  20. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography

    International Nuclear Information System (INIS)

    Chong, N.S.; Houk, R.S.

    1987-01-01

    A gas chromatograph (GC) with a packed column was interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to yield atomic mass spectra from volatile organic compounds. Atomization of injected compounds was nearly complete and independent of molecular structure, so that elemental ratios could be determined. Detection limits were in the range 0.001 to 400 ng s -1 , depending on the ionization energy of the element and its abundance in the background spectrum. The relative standard deviation of measured isotope ratios varied from 0.4% for Br (i.e., a ratio close to unity) to 18% for N (a very large ratio). Thus, GC-ICP-MS provides elemental and isotope ratio information that is complementary to the molecular information derived from GC-MS with conventional ionization methods

  1. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Huerta, E. A.; Gair, Jonathan R.

    2009-01-01

    We present an improved numerical kludge waveform model for circular, equatorial extreme-mass-ratio inspirals (EMRIs). The model is based on true Kerr geodesics, augmented by radiative self-force corrections derived from perturbative calculations, and in this paper for the first time we include conservative self-force corrections that we derive by comparison to post-Newtonian results. We present results of a Monte Carlo simulation of parameter estimation errors computed using the Fisher matrix and also assess the theoretical errors that would arise from omitting the conservative correction terms we include here. We present results for three different types of system, namely, the inspirals of black holes, neutron stars, or white dwarfs into a supermassive black hole (SMBH). The analysis shows that for a typical source (a 10M · compact object captured by a 10 6 M · SMBH at a signal to noise ratio of 30) we expect to determine the two masses to within a fractional error of ∼10 -4 , measure the spin parameter q to ∼10 -4.5 , and determine the location of the source on the sky and the spin orientation to within 10 -3 steradians. We show that, for this kludge model, omitting the conservative corrections leads to a small error over much of the parameter space, i.e., the ratio R of the theoretical model error to the Fisher matrix error is R<1 for all ten parameters in the model. For the few systems with larger errors typically R<3 and hence the conservative corrections can be marginally ignored. In addition, we use our model and first-order self-force results for Schwarzschild black holes to estimate the error that arises from omitting the second-order radiative piece of the self-force. This indicates that it may not be necessary to go beyond first order to recover accurate parameter estimates.

  2. Vector-like quarks at the origin of light quark masses and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Botella, Francisco J. [Universitat de Valencia-CSIC, Departament de Fisica Teorica and IFIC, Burjassot (Spain); Branco, G.C.; Nebot, Miguel; Rebelo, M.N.; Silva-Marcos, J.I. [Universidade de Lisboa, Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico (IST), Lisbon (Portugal)

    2017-06-15

    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a Z{sub 6} flavour symmetry, together with three Q = -1/3 quarks, three Q = 2/3 quarks, as well as a complex singlet scalar. The Z{sub 6} symmetry is extended to the additional fields and it is an exact symmetry of the Lagrangian, only softly broken in the scalar potential, in order to avoid the domain-wall problem. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on processes arising from flavour changing neutral currents. The vector-like quark decay channels are also described. (orig.)

  3. High-precision lead isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry

    International Nuclear Information System (INIS)

    Walder, A.J.; Furuta, Naoki.

    1993-01-01

    An inductively coupled plasma (ICP) ion source coupled to a magnetic sector mass analyser equipped with seven Faraday detectors has been used to measure the lead isotope ratios in solutions of Sanshiro Pond sediment collected at the University of Tokyo, airborne particulates collected at Shinjuku in Tokyo and Merck multielement standard product number 97279494. A thallium correction technique was utilized to allow a simultaneous correction for mass bias. This work followed an earlier interlaboratory comparison study of the above-mentioned solutions using ICP quadrupole mass spectrometry, and has demonstrated a considerable improvement in analytical precision. The following isotope ratio measurements were recorded. Pond sediment solution containing 82 ng ml -1 lead: 206 Pb/ 204 Pb=17.762±0.014; 206 Pb/ 207 Pb=1.1424±0.0009; 208 Pb/ 204 Pb=37.678±0.034. Airborne particulate solution containing 45 ng ml -1 lead: 206 Pb/ 204 Pb=17.969±0.006; 206 Pb/ 207 Pb=1.1528±0.0003; 208 Pb/ 204 Pb=37.915±0.021. Merck multielement standard solution containing 100 ng ml -1 lead: 206 Pb/ 204 Pb=19.255±0.015; 206 Pb/ 207 Pb=1.2238±0.0004; 208 Pb/ 204 Pb=38.476±0.021 (All errors are given as ±2 standard deviations). (author)

  4. Radiative decays involving f0(980) and a0(980) and mixing between low and high mass scalar mesons

    International Nuclear Information System (INIS)

    Teshima, T.; Kitamura, I.; Morisita, N.

    2005-01-01

    We analyze the experimental data for φ->f 0 (980)γ, φ->a 0 (980)γ, f 0 (980)->γγ and a 0 (980)->γγ decay widths in a framework where f 0 (980) and a 0 (980) are assumed to be mainly qqq-bar q-bar low mass scalar mesons and mixed with qq-bar high mass scalar mesons. Applied the vector meson dominance model (VDM), these decays amplitudes are expressed by coupling parameters B describing the S (qqq-bar q-bar scalar meson)-V (vector meson)-V (vector meson) coupling and B ' describing the S ' (qq-bar scalar meson)-V-V coupling. Adopting the magnitudes for B and B ' as 3∼2.8 GeV -1 and ∼12 GeV -1 , respectively, the mixing angle between a 0 (980) and a 0 (1450) as ∼9 o , and the mixing parameter λ 01 causing the mixing between I=0 qqq-bar q-bar state and qq-bar state as ∼0.24 GeV 2 , we can interpret these experimental data, consistently

  5. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  6. Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle.

    Science.gov (United States)

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; Prévost, Stéphanie; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-07-31

    Although the ability to differentiate between endogenous steroids and synthetic homologues on the basis of their (13)C/(12)C isotopic ratio has been known for over a decade, this technique has been scarcely implemented for food safety purposes. In this study, a method was developed using gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to demonstrate the abuse of 17β-estradiol in cattle, by comparison of the (13)C/(12)C ratios of the main metabolite 17α-estradiol and an endogenous reference compound (ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precisions were determined as 0.46 and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, respectively. This is, to the authors' knowledge, the first reported use of GC-MS/C/IRMS for the analysis of steroid compounds for food safety issues.

  7. Improved environmental and forensics measurements using multiple ion counters in isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Goldberg, S.A.; Richter, S.; Schwieters, H.

    2002-01-01

    Full text: A new detector system designed for isotope ratio mass spectrometers provides improved precision on measurements of samples with very low amounts ( -11 grams) of analyte. An array of continuous dynode electron multipliers has been installed on a new ThermoFinnigan MAT Triton thermal ionization mass spectrometer acquired by the New Brunswick Laboratory. These ion counters are modifications of miniaturized, commercially-available continuous dynode electron multipliers. They can be readily installed to replace individual Faraday cups in a multi-detector mass spectrometer or bundled together and located along the detector plane with a set of Faraday cups. On the New Brunswick Laboratory mass spectrometer, nine Faraday cups, one conventional discrete dynode electron multiplier, and seven miniaturized ion counters were installed. Six of the small ion counters were bundled together and positioned on the high mass side of the Low 4 Faraday cup. One additional ion counter was positioned on the low mass side of the Low 4 Faraday cup. This arrangement allows for the simultaneous measurement of all uranium (including 233 U) or plutonium (including 244 Pu) isotopes, and allows for the measurement of larger 238 U intensities on the Faraday cup if needed. Unit mass spacing of U, Pu, or other actinides is readily achieved by the use of a mass dispersion zoom lens. The advantage of multiple ion counting is the simultaneous collection of isotopes. It overcomes many of the problems such as transient signal variation in sample emission and ionization. For a given sample, multiple ion counting generates a greater number of counts for each isotope relative to single detector ion counting and provides improved counting statistics by a factor of two or more. Initial tests indicate that the multiple ion counters exhibit high counting efficiency, a dark noise of less than 10 counts per minute and typically less than 1 count per minute, and show linear response characteristics over

  8. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2.

    Science.gov (United States)

    Kaiser, Jan; Röckmann, Thomas

    2008-12-01

    Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as delta values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental delta values. Here, we present a reformulation of this data reduction procedure entirely in terms of delta values and the 'absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright 2008 John Wiley & Sons, Ltd.

  9. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    Science.gov (United States)

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    Science.gov (United States)

    Ciricosta, O.; Scott, H.; Durey, P.; Hammel, B. A.; Epstein, R.; Preston, T. R.; Regan, S. P.; Vinko, S. M.; Woolsey, N. C.; Wark, J. S.

    2017-11-01

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present here an improved 2D model for mix spectroscopy which can be used to retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. We show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.

  11. Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts

    Science.gov (United States)

    Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)

    2000-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be

  12. Mixed protocols: Multiple ratios of FSH and LH bioactivity using highly purified, human-derived FSH (BRAVELLE and highly purified hMG (MENOPUR are unaltered by mixing together in the same syringe

    Directory of Open Access Journals (Sweden)

    Raike Elizabeth

    2005-11-01

    Full Text Available Abstract Background The use of mixed or blended protocols, that utilize both FSH and hMG, for controlled ovarian hyperstimulation is increasing in use. To reduce the number of injections a patient must administer, many physicians instruct their patients to mix their FSH and hMG together to be given as a single injection. Therefore, the goal of this study was to definitively determine if the FSH and LH bioactivities of highly purified, human-derived FSH (Bravelle(R and highly purified hMG (Menopur(R were altered by reconstituting in 0.9% saline and mixing in the same syringe. Methods Bravelle(R and Menopur(R were reconstituted in 0.9% saline and mixed in a Becton Dickinson plastic syringe. The FSH and LH bioactivities of the products were determined after injecting female and male rats, respectively, with Bravelle(R, Menopur(R, or a mixture of Bravelle(R and Menopur(R. Ratios of FSH:LH activity tested were 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R. Results There were no statistically significant changes in either FSH or LH bioactivity that occurred after mixing Bravelle(R with Menopur(R in the same syringe. The theoretical vs. actual FSH bioactivity for Bravelle(R and Menopur(R were 75 vs. 76.58 IU/mL and 75 vs. 76.0 IU/mL, respectively. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R tested, the theoretical vs. actual FSH bioactivities were 150 vs. 156.86 IU/mL, 300 vs. 308.69 IU/mL and 300 vs. 306.58 IU/mL, respectively. The theoretical vs. actual LH bioactivity for Menopur(R in the above mentioned ratios tested were 75 vs. 77.50 IU/mL. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1

  13. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  14. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides ((U, Pu)O2)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides, (U, Pu)O2, powders and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Uranium in the Presence of Pu by Potentiometric Titration Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron (II) Nitrogen by Distillation Spectrophotometry Using Nessler Reagent 7 to 14 Carbon (Total) by Direct Combustion-Thermal Conductivity 15 to 26 Total Chlorine and Fluorine by Pyrohydrolysis 27 to 34 Sulfur by Distillation-Spectrophotometry 35 to 43 Moisture by the Coulometric, Electrolytic Moisture Analyzer 44 to 51 Isotopic Composition by Mass Spectrometry Rare Earths by Copper Spark Spectroscopy 52 to 59 Trace Impurities by Carrier Distillation Spectroscopy 60 to 69 Impurities by Spark-Source Mass Spectrography 70 to 76 Total Gas in Reactor-Grade Mixed Dioxide P...

  15. Study on the Spectral Mixing Model for Mineral Pigments Based on Derivative of Ratio Spectroscopy-Take Vermilion and Stone Yellow for Example

    Science.gov (United States)

    Zhao, H.; Hao, Y.; Liu, X.; Hou, M.; Zhao, X.

    2018-04-01

    Hyperspectral remote sensing is a completely non-invasive technology for measurement of cultural relics, and has been successfully applied in identification and analysis of pigments of Chinese historical paintings. Although the phenomenon of mixing pigments is very usual in Chinese historical paintings, the quantitative analysis of the mixing pigments in the ancient paintings is still unsolved. In this research, we took two typical mineral pigments, vermilion and stone yellow as example, made precisely mixed samples using these two kinds of pigments, and measured their spectra in the laboratory. For the mixing spectra, both fully constrained least square (FCLS) method and derivative of ratio spectroscopy (DRS) were performed. Experimental results showed that the mixing spectra of vermilion and stone yellow had strong nonlinear mixing characteristics, but at some bands linear unmixing could also achieve satisfactory results. DRS using strong linear bands can reach much higher accuracy than that of FCLS using full bands.

  16. Flavor symmetries and fermion masses

    International Nuclear Information System (INIS)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model

  17. Understanding neutrino masses and mixings

    Indian Academy of Sciences (India)

    various possible oscillation solutions to the solar neutrino puzzle. It seems .... A first hint of this new ingredient came from the observation of Weinberg that if ..... Using the discussion of the above paragraph, the Dirac mass of the neutrino as .... that contributes to charged fermion masses, one can write the quark and lepton.

  18. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    Science.gov (United States)

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  20. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  1. Ratio of dietary ω-3 and ω-6 fatty acids-independent determinants of muscle mass-in hemodialysis patients with diabetes.

    Science.gov (United States)

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Hsu, Yung-Ho; Yang, Shwu-Huey

    2016-09-01

    ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are essential nutrients in the human diet and possibly affect muscle mass. We evaluated the association between the dietary ratios of ω-3 and ω-6 PUFAs and muscle mass, indicated as skeletal muscle mass (SMM) and appendicular skeletal muscle mass (ASM), in patients with diabetes undergoing hemodialysis (HD). In this cross-sectional study, data on 69 patients with diabetes who underwent standard HD therapy were analyzed. For estimating muscle mass, anthropometric and bioelectrical impedance analyses were conducted following dialysis. In addition, routine laboratory and 3-d dietary data were obtained. The adequate intake (AI) cut-off for ω-3 PUFAs was 1.6 g/d and 1.1 g/d for male and female patients, respectively. The average age of the participants was 63.0 ± 10.4 y. The mean ratios of ω-3/ω-6 PUFA intake, ω-6/ω-3 PUFA intake, SMM, and ASM of the patients were 0.13 ± 0.07, 9.4 ± 6.4, 24.6 ± 5.4 kg, and 18.3 ± 4.6 kg, respectively. Patients who had AI of ω-3 PUFAs had significantly higher SMM and ASM than did their counterparts. Linear and stepwise multivariable adjustment analyses revealed that insulin resistance and the ω-6/ω-3 PUFA ratio were the independent deleterious determinants of ASM normalized to height in HD patients. Patients with AI of ω-3 PUFAs had total-body SMM and ASM that were more appropriate. A higher dietary ratio of ω-6/ω-3 PUFAs was associated with reduced muscle mass in HD patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    International Nuclear Information System (INIS)

    Peng Jinsong; Meng Chengju; Pan Jihuan; Yuan Tongquan; Zhou Lijuan; Ma Weixing

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass m s to up or down quark mass m u,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p 2 -plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio m s /m u,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD. (authors)

  3. Determination of isotope ratio of elements by mass distribution in molecules of varied chemical compounds

    International Nuclear Information System (INIS)

    Gladkikh, I.S.; Babichev, A.P.

    1999-01-01

    The procedure and program for calculation of isotope ratio of elements involving in the compound being studied using data of mass spectrometry were elaborated. The methods developed for the O 2 , SiH 4 , Cd(CH 3 ) 2 molecules were demonstrated for the illustration. The results of calculation provide support for the efficiency of the program and satisfactory reliability of the results during calculation of the isotope and complex compound concentrations. The program may be used for the estimation of the degree of nonequilibrium isotope distributions, it may indicate on the errors of the mass spectroscopy results [ru

  4. CKM parameter fits, the Bs0- anti Bs0 mixing ratio xs and CP-violating phases in B decays

    International Nuclear Information System (INIS)

    Ali, A.; London, D.

    1993-02-01

    We review and update constraints on the parameters of the flavour mixing matrix (V CKM ) in the Standard Model. In performing these fits, we use inputs from the measurements of parallel ε parallel , the CP-violating parameter in K decays, x d = (ΔM)/Γ, the mixing parameter in B 0 d -anti B 0 d mixing, and the present measurements of the matrix elements parallel V cb parallel and parallel V ub parallel . We take into account the next-to-leading order QCD results in our analysis, wherever available, and incorporate results stemming from the ongoing lattice calculations of the B-meson coupling constants, which predict a value f Bd = 200 ± 30 MeV, though for the sake of comparison we also show the CKM fits for smaller values of f Bd . We use the updated CKM matrix to predict the mixing ration x, relevant for B 0 s - anti B 0 s , mixing, and the phases in the CKM unitarity triangle, sin 2α, sin 2β and sin 2γ, which determine the CP-violating asymmetries on B-decays. The importance of measuring the ratio x, in restricting the allowed values of the CKM parameters is emphasized. (orig.)

  5. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    International Nuclear Information System (INIS)

    Bogdán, Ákos; Forman, William R.; Kraft, Ralph P.; Li, Zhiyuan; Vikhlinin, Alexey; Nulsen, Paul E. J.; Jones, Christine; Zhuravleva, Irina; Churazov, Eugene; Mihos, J. Christopher; Harding, Paul; Guo, Qi; Schindler, Sabine

    2012-01-01

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9 +3.8 –2.3 % and 1.9% ± 0.6%, respectively, which significantly exceed the typical observed ratio of ∼0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are ≈5.1σ and ≈3.4σ outliers from the M . -M bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which ∼> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.

  6. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  7. Features of neutrino mixing

    Science.gov (United States)

    Chiu, S. H.; Kuo, T. K.

    2018-03-01

    The elements (squared) of the neutrino mixing matrix are found to satisfy, as functions of the induced mass, a set of differential equations. They show clearly the dominance of pole terms when the neutrino masses "cross." Using the known vacuum mixing parameters as initial conditions, it is found that these equations have very good approximate solutions, for all values of the induced mass. The results are applicable to long baseline experiments.

  8. Major Mergers in CANDELS up to z=3: Calibrating the Close-Pair Method Using Semi-Analytic Models and Baryonic Mass Ratio Estimates

    Science.gov (United States)

    Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team

    2018-01-01

    Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR 10.3 galaxies spanning 01.5 in strong disagreement with theoretical merger rate predictions. On the other hand, if we compare to a simulation-tuned, evolving timescale prescription from Snyder et al., 2017, we find that the merger rate evolution agrees with theory out to z=3. These results highlight the need for robust calibrations on the complex and presumably redshift-dependent pair-to-merger-rate conversion factors to improve constraints of the empirical merger history. To address this, we use a unique compilation of mock datasets produced by three independent state-of-the-art Semi-Analytic Models (SAMs). We present preliminary calibrations of the close-pair observability timescale and outlier fraction as a function of redshift, stellar-mass, mass-ratio, and local over-density. Furthermore, to verify the hypothesis by previous empirical studies that SMR-selection of major pairs may be biased, we present a new analysis of the baryonic (gas+stars) mass ratios of a subset of close pairs in our sample. For the first time, our preliminary analysis highlights that a noticeable fraction of SMR-selected minor pairs (SMR>4) have major baryonic-mass ratios (BMR<4), which indicate that merger rates based on SMR selection may be under-estimated.

  9. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  10. Is the tribimaximal mixing accidental?

    International Nuclear Information System (INIS)

    Abbas, Mohammed; Smirnov, A. Yu.

    2010-01-01

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  11. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  12. Methane measurement by the Pioneer Venus large probe neutral mass spectrometer

    Science.gov (United States)

    Donahue, T. M.; Hodges, R. R., Jr.

    1992-12-01

    The Pioneer Venus Large Probe Mass Spectrometer detected a large quantity of methane as it descended below 20 km in the atmosphere of Venus. Terrestrial methane and Xe-136, both originating in the same container and flowing through the same plumbing, were deliberately released inside the mass spectrometer for instrumental reasons. However, the Xe-136 did not exhibit behavior similar to methane during Venus entry, nor did CH4 in laboratory simulations. The CH4 was deuterium poor compared to Venus water and hydrogen. While the inlet to the mass spectrometer was clogged with sulfuric acid droplets, significant deuteration of CH4 and its H2 progeny was observed. Since the only source of deuterium identifiable was water from sulfuric acid, we have concluded that we should correct the HDO/H2O ratio in Venus water from 3.2 x 10-2 to (5 plus or minus 0.7) x 10-2. When the probe was in the lower atmosphere, transfer of deuterium from Venus HDO and HD to CH4 can account quantitatively for the deficiencies recorded in HDO and HD below 10 km, and consequently, the mysterious gradients in water vapor and hydrogen mixing ratios we have reported. The revision in the D/H ratio reduces the mixing ratio of water vapor (and H2) reported previously by a factor of 3.2/5. We are not yet able to say whether the methane detected was atmospheric or an instrumental artifact. If it was atmospheric, its release must have been episodic and highly localized. Otherwise, the large D/H ratio in Venus water and hydrogen could not be maintained.

  13. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  14. Neutrino mixing in a grand unified theory

    International Nuclear Information System (INIS)

    Milton, K.; Tanaka, K.

    1980-01-01

    Neutrino mixing in a grand unified theory in which the neutrino mass matrix is determined by the Gell-Mann-Ramond-Slansky mechanism was investigated. With an arbitrary real right-handed Majorana mass matrix which incorporates three neutrino mass scales, the effects of the up-quark mass matrix are found to be dominant and as a result no significant mixing of ν/sub e/ occurs, while ν/sub μ/ - ν/sub γ/ mixing can be substantial

  15. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  16. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  17. Two-Phase Flow Modeling of Solid Dissolution in Liquid for Nutrient Mixing Improvement in Algal Raceway Ponds

    Directory of Open Access Journals (Sweden)

    Haider Ali

    2018-04-01

    Full Text Available Achieving optimal nutrient concentrations is essential to increasing the biomass productivity of algal raceway ponds. Nutrient mixing or distribution in raceway ponds is significantly affected by hydrodynamic and geometric properties. The nutrient mixing in algal raceway ponds under the influence of hydrodynamic and geometric properties of ponds is yet to be explored. Such a study is required to ensure optimal nutrient concentrations in algal raceway ponds. A novel computational fluid dynamics (CFD model based on the Euler–Euler numerical scheme was developed to investigate nutrient mixing in raceway ponds under the effects of hydrodynamic and geometric properties. Nutrient mixing was investigated by estimating the dissolution of nutrients in raceway pond water. Experimental and CFD results were compared and verified using solid–liquid mass transfer coefficient and nutrient concentrations. Solid–liquid mass transfer coefficient, solid holdup, and nutrient concentrations in algal pond were estimated with the effects of pond aspect ratios, water depths, paddle wheel speeds, and particle sizes of nutrients. From the results, it was found that the proposed CFD model effectively simulated nutrient mixing in raceway ponds. Nutrient mixing increased in narrow and shallow raceway ponds due to effective solid–liquid mass transfer. High paddle wheel speeds increased the dissolution rate of nutrients in raceway ponds.

  18. Bioremediation of storage tank bottom sludge by using a two-stage composting system: Effect of mixing ratio and nutrients addition.

    Science.gov (United States)

    Koolivand, Ali; Rajaei, Mohammad Sadegh; Ghanadzadeh, Mohammad Javad; Saeedi, Reza; Abtahi, Hamid; Godini, Kazem

    2017-07-01

    The effect of mixing ratio and nutrients addition on the efficiency of a two-stage composting system in removal of total petroleum hydrocarbons (TPH) from storage tank bottom sludge (STBS) was investigated. The system consisted of ten windrow piles as primary composting (PC) followed by four in-vessel reactors as secondary composting (SC). Various initial C/N/P and mixing ratios of STBS to immature compost (IC) were examined in the PC and SC for 12 and 6weeks, respectively. The removal rates of TPH in the two-stage system (93.72-95.24%) were higher than those in the single-stage one. Depending on the experiments, TPH biodegradation fitted to the first- and second-order kinetics with the rate constants of 0.051-0.334d -1 and 0.002-0.165gkg -1 d -1 , respectively. The bacteria identified were Pseudomonas sp., Bacillus sp., Klebsiella sp., Staphylococcus sp., and Proteus sp. The study verified that a two-stage composting system is effective in treating the STBS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Neutrino mass matrix and hierarchy

    International Nuclear Information System (INIS)

    Kaus, Peter; Meshkov, Sydney

    2003-01-01

    We build a model to describe neutrinos based on strict hierarchy, incorporating as much as possible, the latest known data, for Δsol and Δatm, and for the mixing angles determined from neutrino oscillation experiments, including that from KamLAND. Since the hierarchy assumption is a statement about mass ratios, it lets us obtain all three neutrino masses. We obtain a mass matrix, Mν and a mixing matrix, U, where both Mν and U are given in terms of powers of Λ, the analog of the Cabibbo angle λ in the Wolfenstein representation, and two parameters, ρ and κ, each of order one. The expansion parameter, Λ, is defined by Λ2 = m2/m3 = √(Δsol/Δatm) ≅ 0.16, and ρ expresses our ignorance of the lightest neutrino mass m1, (m1 ρΛ4m3), while κ scales s13 to the experimental upper limit, s13 = κΛ2 ≅ 0.16κ. These matrices are similar in structure to those for the quark and lepton families, but with Λ about 1.6 times larger than the λ for the quarks and charged leptons. The upper limit for the effective neutrino mass in double β-decay experiments is 4 x 10-3eV if s13 = 0 and 6 x 10-3eV if s13 is maximal. The model, which is fairly unique, given the hierarchy assumption and the data, is compared to supersymmetric extension and texture zero models of mass generation

  20. Water isotope composition as a tracer for study of mixing processes in rivers. Part II. Determination of mixing degrees in the tributary-main river systems

    International Nuclear Information System (INIS)

    Owczarczyk, A.; Wierzchnicki, R.; Zimnicki, R.; Ptaszek, S.; Palige, J.; Dobrowolski, A.

    2006-01-01

    Two river-tributary systems have been chosen for the investigation of mixing processes: the Narew River-the Bug River-Zegrzynski Reservoir and the Bugo-Narew River-the Vistula River. In both river systems, several profiles for the water sampling have been selected down to the tributary confluent line. Each sample position has been precisely determined by means of GPS. Then, the δDi have been measured in IRMS (isotope ratio mass spectroscopy). The δD distributions in selected profiles have been presented for both investigated river systems. Presented results will be applied for the verification of the mathematical model for transport and mixing in river systems

  1. Atmospheric carbon tetrachloride in rural background and industry surrounded urban areas in Northern Iberian Peninsula: Mixing ratios, trends, and potential sources

    International Nuclear Information System (INIS)

    Blas, Maite de; Uria-Tellaetxe, Iratxe; Gomez, Maria Carmen; Navazo, Marino; Alonso, Lucio; García, Jose Antonio; Durana, Nieves; Iza, Jon; Ramón, Jarol Derley

    2016-01-01

    Latest investigations on atmospheric carbon tetrachloride (CTC) are focused on its ozone depleting potential, adverse effects on the human health, and radiative efficiency and Global Warming Potential as a greenhouse gas. CTC mixing ratios have been thoroughly studied since its restriction under the Montreal Protocol, mostly in remote areas with the aim of reporting long-term trends after its banning. The observed decrease of the CTC background mixing ratio, however, was not as strong as expected. In order to explain this behavior CTC lifetime should be adjusted by estimating the relative significance of its sinks and by identifying ongoing potential sources. Looking for possible sources, CTC was measured with high-time resolution in two sites in Northern Spain, using auto-GC systems and specifically developed acquisition and processing methodologies. The first site, Bilbao, is an urban area influenced by the surrounding industry, where measurements were performed with GC–MSD for a one-year period (2007–2008). The second site, at Valderejo Natural Park (VNP), is a rural background area where measurements were carried out with GC-FID and covering CTC data a nonsuccessive five-year period (2003–2005, 2010–2011, and 2014–2015 years). Median yearly CTC mixing ratios were slightly higher in the urban area (120 pptv) than in VNP (80–100 pptv). CTC was reported to be well mixed in the atmosphere and no sources were noticed to impact the rural site. The observed long-term trend in VNP was in agreement with the estimated global CTC emissions. In the urban site, apart from industrial and commercial CTC sources, chlorine-bleach products used as cleaning agents were reported as promotors of indoor sources. - Highlights: • A methodology was developed to measure CTC using GC-MSD and GC-FID. • CTC ongoing sources were noticed in an industry surrounded urban area. • No noticeable nearby CTC sources impacted the rural site. • Long-term CTC trend in agreement

  2. Atmospheric carbon tetrachloride in rural background and industry surrounded urban areas in Northern Iberian Peninsula: Mixing ratios, trends, and potential sources

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Maite de, E-mail: maite.deblas@ehu.eus [School of Engineering of Bilbao, University of the Basque Country UPV/EHU (Spain); Uria-Tellaetxe, Iratxe; Gomez, Maria Carmen [School of Engineering of Bilbao, University of the Basque Country UPV/EHU (Spain); Navazo, Marino [University College of Engineering of Vitoria-Gasteiz, University of the Basque Country UPV/EHU (Spain); Alonso, Lucio; García, Jose Antonio; Durana, Nieves; Iza, Jon; Ramón, Jarol Derley [School of Engineering of Bilbao, University of the Basque Country UPV/EHU (Spain)

    2016-08-15

    Latest investigations on atmospheric carbon tetrachloride (CTC) are focused on its ozone depleting potential, adverse effects on the human health, and radiative efficiency and Global Warming Potential as a greenhouse gas. CTC mixing ratios have been thoroughly studied since its restriction under the Montreal Protocol, mostly in remote areas with the aim of reporting long-term trends after its banning. The observed decrease of the CTC background mixing ratio, however, was not as strong as expected. In order to explain this behavior CTC lifetime should be adjusted by estimating the relative significance of its sinks and by identifying ongoing potential sources. Looking for possible sources, CTC was measured with high-time resolution in two sites in Northern Spain, using auto-GC systems and specifically developed acquisition and processing methodologies. The first site, Bilbao, is an urban area influenced by the surrounding industry, where measurements were performed with GC–MSD for a one-year period (2007–2008). The second site, at Valderejo Natural Park (VNP), is a rural background area where measurements were carried out with GC-FID and covering CTC data a nonsuccessive five-year period (2003–2005, 2010–2011, and 2014–2015 years). Median yearly CTC mixing ratios were slightly higher in the urban area (120 pptv) than in VNP (80–100 pptv). CTC was reported to be well mixed in the atmosphere and no sources were noticed to impact the rural site. The observed long-term trend in VNP was in agreement with the estimated global CTC emissions. In the urban site, apart from industrial and commercial CTC sources, chlorine-bleach products used as cleaning agents were reported as promotors of indoor sources. - Highlights: • A methodology was developed to measure CTC using GC-MSD and GC-FID. • CTC ongoing sources were noticed in an industry surrounded urban area. • No noticeable nearby CTC sources impacted the rural site. • Long-term CTC trend in agreement

  3. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, Alkiviadis, E-mail: alkiviadis.gourgiotis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Ducasse, Thomas [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Barker, Evelyne [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Jollivet, Patrick; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Bassot, Sylvain; Cazala, Charlotte [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France)

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of {sup 29}Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O{sub 2} as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO{sup +} and SiO{sub 2}{sup +} ion species was performed, and we found that SiO{sup +} ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO{sub 3}). For SiO{sub 2}{sup +}, no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. {sup 28}Si{sup 16}O{sup 18}O{sup +}, {sup 30}Si{sup 16}O{sup 16}O{sup +}). The developed method was validated by measuring a series of reference solutions with different {sup 29}Si

  4. Measurement of D0-D̄0 mixing parameters and search for CP violation using D0→K+π- decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, P.R.; Andrews, J.E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M-O.; Van Beuzekom, Martin; Bien, A.; Bifani, S.; Bird, T.D.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; Van Den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch; Cenci, R.; Charles, M.; Charpentier, Ph; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca-Pelaz, A.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; David, P.; David, P. N Y; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; da-Silva, W.S.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dornan, P.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, Mark; Fontanelli, F.; Forty, R.; De Aguiar Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Carvalho-Gaspar, M.; Gauld, Rhorry; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gorbounov, P.; Head-Gordon, Teresa; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, G.E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, J.T.; Hussain, N.; Hutchcroft, D. E.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; Van Leerdam, J.; Lees, J. P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Di Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, S.C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli-Boneschi, F.; Martinez-Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B. T.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Molina Rodriguez, J.; Monteil, S.; Moran-Zenteno, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, Karl; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, R.P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, Y.W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M.; dos Reis, A. C.; Ricciardi, S.; Richards, Al.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, L.E.T.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, van Hapere; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; Van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, N.T.M.T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.J.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2013-01-01

    Measurements of charm mixing parameters from the decay-time-dependent ratio of D0→K+π- to D0→K -π+ rates and the charge-conjugate ratio are reported. The analysis uses data, corresponding to 3 fb-1 of integrated luminosity, from proton-proton collisions at 7 and 8 TeV center-of-mass energies

  5. Experimental Investigation of Biogas Production from Kitchen Waste Mixed with Chicken Manure

    Directory of Open Access Journals (Sweden)

    H. Mousa

    2016-12-01

    Full Text Available ogas produced from solid kitchen waste (KW mixed with chicken manure (M at different mass ratios was investigated. The effect of the ratio of the amount of water to the mixed solid waste on the amount of biogas produced was studied. The results showed that at a fixed ratio of water-to-solid waste, the amount of biogas increased as the amount of chicken M increased. At a fixed M-to-KW ratio, the amount of biogas produced increased as the solid content increased and then decreased, reaching its maximum value at a solid waste-to-water ratio of 1:1. The pH of the bioreactor containing the KW-M mixture dropped with time, resulting in a decrease in the amount of biogas produced. Controlling the pH value by titrating with NaOH solution improved the production of biogas. Investigating biogas produced from sludge showed that the pH of the reactor slightly decreased and then increased slightly. The results also showed that the amount of biogas produced from sludge containing 3% solid waste was larger than the amount produced from sludge containing 6% solid waste.

  6. Aviation NOx-induced CH4 effect: Fixed mixing ratio boundary conditions versus flux boundary conditions

    Science.gov (United States)

    Khodayari, Arezoo; Olsen, Seth C.; Wuebbles, Donald J.; Phoenix, Daniel B.

    2015-07-01

    Atmospheric chemistry-climate models are often used to calculate the effect of aviation NOx emissions on atmospheric ozone (O3) and methane (CH4). Due to the long (∼10 yr) atmospheric lifetime of methane, model simulations must be run for long time periods, typically for more than 40 simulation years, to reach steady-state if using CH4 emission fluxes. Because of the computational expense of such long runs, studies have traditionally used specified CH4 mixing ratio lower boundary conditions (BCs) and then applied a simple parameterization based on the change in CH4 lifetime between the control and NOx-perturbed simulations to estimate the change in CH4 concentration induced by NOx emissions. In this parameterization a feedback factor (typically a value of 1.4) is used to account for the feedback of CH4 concentrations on its lifetime. Modeling studies comparing simulations using CH4 surface fluxes and fixed mixing ratio BCs are used to examine the validity of this parameterization. The latest version of the Community Earth System Model (CESM), with the CAM5 atmospheric model, was used for this study. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions. Results show a 31.4 ppb change in CH4 concentration when estimated using the parameterization and a 1.4 feedback factor, and a 28.9 ppb change when the concentration was directly calculated in the CH4 flux simulations. The model calculated value for CH4 feedback on its own lifetime agrees well with the 1.4 feedback factor. Systematic comparisons between the separate runs indicated that the parameterization technique overestimates the CH4 concentration by 8.6%. Therefore, it is concluded that the estimation technique is good to within ∼10% and decreases the computational requirements in our simulations by nearly a factor of 8.

  7. A lattice determination of Sigma-Lambda mixing

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics; Collaboration: QCDSF-UKQCD Collaboration

    2014-11-15

    Isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects and lead to small mass splittings. Between the Sigma and Lambda this mass splitting is much larger, this being mostly due to their different wavefunctions. However when isospin is broken, there is a mixing between between these states. We describe the formalism necessary to determine the QCD mixing matrix and hence find the mixing angle and mass splitting between the Sigma and Lambda particles due to QCD effects.

  8. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Directory of Open Access Journals (Sweden)

    L. Xing

    2013-04-01

    Full Text Available We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13 and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18 was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07 than in southern cities (1.65 ± 0.15. This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011. We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  9. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  10. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    Science.gov (United States)

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be

  11. Study on effect of mixing mechanism by the transverse gaseous injection flow in scramjet engine with variable parameters

    Science.gov (United States)

    Yadav, Siddhita; Pandey, K. M.

    2018-04-01

    In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.

  12. η'-η-π0 mixing

    International Nuclear Information System (INIS)

    Bagchi, B.; Lahiri, A.; Niyogi, S.

    1990-01-01

    We have examined the saturation of anomalous Ward identities by the low-lying pseudoscalars π 0 , η, and η' to determine the sizes of η'-η, π 0 -η, and π 0 -η' mixing angles. The η'-η mixing angle turns out to be about -20 degree which is consistent with the recent findings. Our estimate for the π 0 -η mixing angle shows that it could be bigger than the older value obtained from the ρ-ω mixing, baryon mass splittings, and kaon mass difference

  13. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  14. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Tinker, Jeremy L.; Blanton, Michael R.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ 8 ) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w p (r p ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w p (r p ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w p (r p ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ 8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w p (r p ) and M/N alone, we find Ω 0.5 m σ 8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ 8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ 8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  15. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, Jeremy L.; Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10013 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Becker, Matthew R.; Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Zu, Ying; Weinberg, David H. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Zehavi, Idit [Department of Astronomy and CERCA, Case Western Reserve University, Cleveland, OH 44106 (United States); Busha, Michael T. [Institute for Theoretical Physics, Department of Physics, University of Zurich, CH-8057 Zurich (Switzerland); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 6037 (United States)

    2012-01-20

    We place constraints on the average density ({Omega}{sub m}) and clustering amplitude ({sigma}{sub 8}) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w{sub p} (r{sub p} ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w{sub p} (r{sub p} ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w{sub p} (r{sub p} ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when {Omega}{sub m} or {sigma}{sub 8} is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w{sub p} (r{sub p} ) and M/N alone, we find {Omega}{sup 0.5}{sub m}{sigma}{sub 8} = 0.465 {+-} 0.026, with individual constraints of {Omega}{sub m} = 0.29 {+-} 0.03 and {sigma}{sub 8} = 0.85 {+-} 0.06. Combined with current cosmic microwave background data, these constraints are {Omega}{sub m} = 0.290 {+-} 0.016 and {sigma}{sub 8} = 0.826 {+-} 0.020. All errors are 1{sigma}. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy

  16. Isotope ratio analysis by a combination of element analyzer and mass spectrometer

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1987-06-01

    The use of stable isotope ratios of carbon, nitrogen and sulfur as analytical tool in many fields of research is of growing interest. A method has therefore been developed, consisting in essential of coupling an Elemental Analyzer with an Isotope Mass Spectrometer, which enables the gas preparation of carbon dioxide, nitrogen and sulfur dioxide from any solid or liquid sample in a fast and easy way. Results of carbon isotope measurements in food analysis are presented, whereat it is possible to check origin and treatment of sugar, oils, fats, mineral waters, spirituous liquors etc. and to detect adulterations as well. Also applications in the field of environmental research are given. (Author)

  17. FY16 Safeguards Technology Cart-Portable Mass Spectrometer Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Cyril V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitten, William B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Oak Ridge National Laboratory project for the Next Generation Safeguards Initiative Safeguards Technology Development Subprogram has been involved in the development of a cart portable mass spectrometer based on a Thermo ITQ ion trap mass spectrometer (referred to simply as the ITQ) for the field analysis of 235U/238U ratios in UF6. A recent discovery of the project was that combining CO2 with UF6 and introducing the mixture to the mass spectrometer (MS) appeared to increase the ionization efficiency and, thus, reduce the amount of UF6 needed for an analysis while also reducing the corrosive effects of the sample. However, initial experimentation indicated that mixing parameters should be closely controlled to ensure reproducible results. To this end, a sample manifold (SM) that would ensure the precise mixing of UF6 and CO2 was designed and constructed. A number of experiments were outlined and conducted to determine optimum MS and SM conditions which would provide the most stable isotope ratio analysis. The principal objective of the project was to provide a retrofit ITQ mass spectrometer operating with a SM capable of achieving a variation in precision of less than 1% over 1 hour of sampling. This goal was achieved by project end with a variation in precision of 0.5 to 0.8% over 1 hour of sampling.

  18. Two Balls' Collision of Mass Ratio 3:1

    Science.gov (United States)

    Ogawara, Yasuo; Hull, Michael M.

    2018-04-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two balls of equal mass, if a ball hits another ball of three times the mass with equal speed, the results are also interesting, and, like the equal-mass demonstration, both kinetic energy and momentum are critical for understanding the motion.

  19. Fat mass to fat-free mass ratio reference values from NHANES III using bioelectrical impedance analysis.

    Science.gov (United States)

    Xiao, J; Purcell, S A; Prado, C M; Gonzalez, M C

    2017-10-06

    Low fat-free mass (FFM) or high fat mass (FM) are abnormal body composition phenotypes associated with morbidity. These conditions in combination lead to worse health outcomes, and can be identified by a high FM/FFM ratio. Here, we developed sex, age, and body mass index (BMI) stratified, population-based FM/FFM reference values using bioelectrical impedance analysis (BIA) measurements. White, non-Hispanic individuals aged 18-90 years old with data for weight, stature and BIA resistance measures from the third National Health and Nutrition Examination Survey (NHANES) III were included. Previously validated and sex-specific BIA prediction equations were used to calculate FM and FFM. FM/FFM values were generated at 5th, 50th and 95th percentiles for each sex, age (18-39.9, 40-59.9, 60-69.9 and 70-90 years), and BMI category (underweight, normal weight, overweight, class I/II and class III obesity). A total of 6372 individuals who had estimated FM and FFM values were identified (3366 females, 3006 males). Median values of FM/FFM were 0.24 and 0.40 for young (≤39.9 years) males and females with normal BMI, and 0.34 for males and 0.59 for females who were overweight. For elderly individuals aged >70 years, median FM/FFM for males and females were respectively 0.28 and 0.45 for those with normal BMI, and 0.37 and 0.61 for those in the overweight category. These FM/FFM reference values provide information on body composition characteristics that account for age, sex and BMI, which can be useful to identify individuals at risk for body composition abnormalities. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Bd0-bar Bd0 mixing and the prediction of the top-quark mass in an independent particle potential model

    International Nuclear Information System (INIS)

    Barik, N.; Das, P.; Panda, A.R.; Roy, K.C.

    1993-01-01

    Considering B d 0 -bar B d 0 mixing in a potential model of independent quarks by taking the effective interaction Hamiltonian of the standard Salam-Weinberg-Glashow model and subsequently diagonalizing the corresponding mass matrix with respect to B d 0 and bar B d 0 states, we obtain an expression for the mass difference ΔM Bd 0 in terms of the t-quark mass m t . Using the recent observation of the mixing parameter x d =0.72±0.15 by the ARGUS Collaboration, we predict the lower bound on the top-quark mass as m t ≥149 GeV. Further, a consideration of experimental mass difference ΔM Bd 0 =(4.0±0.8)x10 -13 GeV also leads to m t =167 -17 +16 GeV which is in agreement with the recent experimental bound as well as other theoretical predictions. However, such a prediction of m t that utilizes the experimental value of the CKM matrix element |V td | may not appear convincing in view of the large uncertainties in the measurement of |V td | so far reported. Therefore using the range of m t values within its bounds predicted from other independent works, we make a reasonable estimation of |V td |

  1. Subgrid models for mass and thermal diffusion in turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV

    2008-01-01

    We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without

  2. Ratios of regioisomers of minor acylglycerols less polar than triricinolein in castor oil estimated by mass spectrometry

    Science.gov (United States)

    We have recently reported the identification of forty new minor molecular species of acylglycerols containing hydroxy fatty acids less polar than triricinolein by electrospray ionization mass spectrometry of the lithium adducts. The ratios of regioisomers of triacylglycerols (ABC and AAB types) and ...

  3. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

    CERN Document Server

    Hori, Masaki; Barna, Daniel; Andreas Dax,; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Widmann, Eberhard; Horváth, Dezső; Venturelli, Luca; Zurlo, Nicola; 10.1038/nature10260

    2013-01-01

    Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\\bar{p}He^+$) is a three-body atom2 consisting of a normal helium nucleus, an electron in its ground state and an antiproton ($\\bar{p}$) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\\bar{p}^{3}He^{+}$ and $\\bar{p}^{4}He^{+}$ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-phot...

  4. Using GC-combustion isotope ratio mass spectrometry for confirming steroid administration from urinary metabolites in humans and animals

    International Nuclear Information System (INIS)

    Phillips, A.; Churchman, D.; Davis, S.

    2000-01-01

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was used to study the incorporation of exogenous testosterone enanthate into excreted urinary 5α- and 5β-androstane-3α, 17β-diols

  5. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  6. Neutrino mass models and CP violation

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2011-01-01

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  7. A Comparison of Vibroacoustic Response of Isotropic Plate with Attached Discrete Patches and Point Masses Having Different Thickness Variation with Different Taper Ratios

    Directory of Open Access Journals (Sweden)

    Bipin Kumar

    2016-01-01

    Full Text Available A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.

  8. Meson spectroscopy, quark mixing and quantum chromodynamics

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1979-01-01

    A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment

  9. Charge–mass ratio bound and optimization in the Parikh–Wilczek tunneling model of Hawking radiation

    International Nuclear Information System (INIS)

    Kim, Kyung Kiu; Wen, Wen-Yu

    2014-01-01

    In this Letter, we study the mutual information hidden in the Parikh–Wilczek tunneling model of Hawking radiation for Reissner–Nordström black holes. We argue that the condition of nonnegativity of mutual information suggests bound(s) for charge–mass ratio of emitted particles. We further view the radiation as an optimization process and discuss its effect on time evolution of a charged black hole.

  10. The interaction effect of body mass index and age on fat-free mass, waist-to-hip ratio, and soft lean mass

    Directory of Open Access Journals (Sweden)

    Alireza Shahab Jahanlou

    2017-01-01

    Full Text Available Background: Research has shown that body mass index (BMI does not take into consideration the gender and ethnicity. The primary purpose of this study was to examine the interaction effect of the BMI and age on fat-free mass (FFM, waist-to-hip ratio (WHR, and soft lean mass (SLM. The secondary purpose was to evaluate the practical significance of the findings by examining effect sizes. Materials and Methods: The study was comparative in nature and employed a factorial design. Due to nonexperimental nature of the investigation, no causal inferences were drawn. The nonprobability sample consisted of 19,356 adults. Analysis of the data included factorial analysis of variance, analysis of simple effects, calculation of mean difference effect sizes, and data transformation. The Statistical Package for the Social Sciences version 22 was employed for the purpose of data manipulation and analysis. Results: The BMI by age interaction effects on FFM, F (10, 19,338 = 28.26, P < 0.01, on WHR, F (10, 19,338 = 18.46, P < 0.01, and on SLM, F (10, 19,338 = 14.65, P < 0.01, was statistically significant and ordinal in nature. Analysis of the effect sizes, ranging from 0.30 to 1.20, showed that the BMI and age influenced the WHR but their interaction effects on FFM and SLM, ranging from 0.04 to 0.36 and 0.03 to 0.33, respectively, were mainly negligible. Conclusion: Based on the examination of the statistical and practical significance of the results, it is concluded that the BMI and age together can influence the WHR but their interaction effect on the FFM and SLM is questionable.

  11. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  12. Constraint on a Varying Proton-Electron Mass Ratio 1.5 Billion Years after the Big Bang

    NARCIS (Netherlands)

    Bagdonaite, J.; Ubachs, W.M.G.; Murphy, M.T.; Withmore, J.B.

    2015-01-01

    A molecular hydrogen absorber at a lookback time of 12.4 billion years, corresponding to 10% of the age of the Universe today, is analyzed to put a constraint on a varying proton-electron mass ratio, μ. A high resolution spectrum of the J1443+2724 quasar, which was observed with the Very Large

  13. Is the tri-bimaximal mixing accidental?

    CERN Document Server

    Abbas, Mohammed

    2010-01-01

    The Tri-bimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on structure of the neutrino mass matrix and on underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM mass relations. As a result, the mass matrix may have an "anarchical" structure with random values of elements or it may have some symmetry which differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain "flavor alignment" as well as hierarchical matrices with a two-component structure, where the dominant and sub-dominant contributions have different symmetries. This opens up new approaches to understand the lepton mixing.

  14. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    Science.gov (United States)

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALELiquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (C-13/C-12) in biological metabolites, at their natural abundance. However, until now this technique

  17. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    Alamelu, D.; Parab, A.R.; Sasi Bhushan, K.; Shah, Raju V.; Jagdish Kumar, S.; Rao, Radhika M.; Aggarwal, S.K.; Bhatia, R.K.; Yadav, V.K.; Sharma, Madhavi P.; Tulsyan, Puneet; Chavda, Pradip; Sriniwasan, P.

    2014-07-01

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235 U/ 238 U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235 U/ 238 U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235 U/ 238 U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  18. Massive graviton dark matter with environment dependent mass: A natural explanation of the dark matter-baryon ratio

    Science.gov (United States)

    Aoki, Katsuki; Mukohyama, Shinji

    2017-11-01

    We propose a scenario that can naturally explain the observed dark matter-baryon ratio in the context of bimetric theory with a chameleon field. We introduce two additional gravitational degrees of freedom, the massive graviton and the chameleon field, corresponding to dark matter and dark energy, respectively. The chameleon field is assumed to be nonminimally coupled to dark matter, i.e., the massive graviton, through the graviton mass terms. We find that the dark matter-baryon ratio is dynamically adjusted to the observed value due to the energy transfer by the chameleon field. As a result, the model can explain the observed dark matter-baryon ratio independently from the initial abundance of them.

  19. Mass discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Broeckman, A. [Rijksuniversiteit Utrecht (Netherlands)

    1978-12-15

    In thermal ionization mass spectrometry the phenomenon of mass discrimination has led to the use of a correction factor for isotope ratio-measurements. The correction factor is defined as the measured ratio divided by the true or accepted value of this ratio. In fact this factor corrects for systematic errors of the whole procedure; however mass discrimination is often associated just with the mass spectrometer.

  20. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  1. Oxygen-to-metal ratio control during fabrication of mixed oxide fast breeder reactor fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; Jentzen, W.R.; McCord, R.B.

    1979-05-01

    Oxygen-to-metal ratio (O/M) of mixed oxide fuel pellets can be controlled during fabrication by proper selection of binder (type and content) and sintering conditions. Sintering condition adjustments involved the passing of Ar--8% H 2 sintering gas across a cryostat ice bath controlled to temperatures ranging from -5 to -60 0 C to control as-sintered pellet O/M ratio. As-sintered fuel pellet O/M decreased with increasing Sterotex binder and PuO 2 concentrations, increasing sintering temperature, and decreasing sintering gas dew point. Approximate relationships between Sterotex binder level and O/M were established for PuO 2 --UO 2 and PuO 2 --ThO 2 fuels. O/M was relatively insensitive to Carbowax binder concentration. Several methods of increasing O/M using post-sintering pellet heat treatments were demonstrated, with the most reliable being a two-step process of first raising the O/M to 2.00 (stoichiometric) at 650 0 C in Ar--8% H 2 bubbled through H 2 O, followed by hydrogen reduction to specification O/M in oxygen-gettered Ar-8% H 2 at temperatures ranging from 1200 to 1690 0 C

  2. Numerical Investigations of Mixed Convection of Incompressible Viscous Fluid in LNG Storage with a Various Locations of Input and Output Mass

    Directory of Open Access Journals (Sweden)

    Sklyarenko Kristina A.

    2015-01-01

    Full Text Available The article shows the results of mathematical simulation of mixed convection in the low-temperature storage of liquefied natural gas with a regenerative cooling. The regimes of mixed convection in a closed area with the different arrangement of the input and output sections of the masses are investigated. Two-dimensional nonstationary problem in the model of the Navier-Stokes in dimensionless variables “vorticity - stream function - temperature” was examined. Are obtained distributions of the hydrodynamic parameters and temperatures, characteristic basic laws governing the processes being investigated. Detailed circulating currents and carried out analysis of the mechanism of vortices formation and the temperature distribution in the solution for mixed convection mode with low Reynolds and Grashof numbers (Gr = 106, 100 mass sections and input stream velocity on the structure of liquid flow and temperature in the low temperature LNG storage tanks.

  3. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Science.gov (United States)

    Conti, C. C.; Anjos, M. J.; Salgado, C. M.

    2014-09-01

    X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.

  4. Measurement of glass transition temperature, residual heat of reaction and mixing ratio of epoxy resins using near infrared spectroscopy: a preliminary study

    DEFF Research Database (Denmark)

    Houmøller, Lars Plejdrup; Laursen, Peter Clemen

    2003-01-01

    As a measure of the degree of curing of epoxy resins, the glass transition temperature, Tg, and the residual heat of reaction, DeltaHr, are often used. In this study, near infrared spectroscopy and multivariate calibration (partial least squares regression (PLSR)) have been used to monitor the two...... variables, using differential scanning calorimetry (DSC) as the reference method. The epoxy under study was a commercial system consisting of the resin, trimethylolpropanetriglycidylether, and the hardener, 3-aminomethyl-3,5,5,-trimethylcyclohexylamine. Using samples cured under different conditions......, calibrations resulted in root mean square errors of cross-validation (RMSECV) of 18 J/g for DeltaHr (range for Hr: 6.1-231.3 J/g) and 7.2ºC for Tg (range for Tg: 41.5-98.8ºC). Also, a PLSR model for mixing ratio of hardener and resin was obtained, resulting in a RMSECV of 0.0040 (range for mixing ratio: 0.180-0.380)...

  5. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  6. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Coetzee, Paul P. [University of Johannesburg, Department of Chemistry, Johannesburg (South Africa); Vanhaecke, Frank [Institute for Nuclear Sciences, Laboratory of Analytical Chemistry Ghent University, Ghent (Belgium)

    2005-11-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO{sub 3} was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the {sup 11}B/{sup 10}B ratios can be used to characterize wines from different geographical origins. Average {sup 11}B/{sup 10}B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  7. Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

    International Nuclear Information System (INIS)

    Coetzee, Paul P.; Vanhaecke, Frank

    2005-01-01

    The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO 3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11 B/ 10 B ratios can be used to characterize wines from different geographical origins. Average 11 B/ 10 B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%. (orig.)

  8. Effect of Cell-to-matrix Ratio in Polyvinyl Alcohol Immobilized Pure and Mixed Cultures on Atrazine Degradation

    International Nuclear Information System (INIS)

    Siripattanakul, Sumana; Wirojanagud, Wanpen; McEvoy, John; Khan, Eakalak

    2008-01-01

    Atrazine biodegradation by immobilized pure and mixed cultures was examined. A pure atrazine-degrading culture, Agrobacterium radiobacter J14a (J14a), and a mixed culture (MC), isolated from an atrazine-contaminated crop field, were immobilized using phosphorylated-polyvinyl alcohol (PPVA). An existing cell immobilization procedure was modified to enhance PPVA matrix stability. The results showed that the matrices remained mechanically and chemically stable after shaking with glass beads over 15 days under various salt solutions and pH values. The immobilization process had a slight effect on cell viability. With the aid of scanning electron microscopy, a suitable microstructure of PPVA matrices for cell entrapment was observed. There were two porous layers of spherical gel matrices, the outside having an encapsulation property and the inside containing numerous pores for bacteria to occupy. J14a and MC were immobilized at three cell-to-matrix ratios of 3.5, 6.7, and 20 mg dry cells/mL matrix. The atrazine biodegradation tests were conducted in an aerobic batch system, which was inoculated with cells at 2,000 mg/L. The tests were also conducted using free (non-immobilized) J14a and MC for comparative purpose. The cell-to-matrix ratio of 3.5 mg/mL provided the highest atrazine removal efficiency of 40-50% in 120 h for both J14a and MC. The free cell systems, for both cultures, presented much lower atrazine removal efficiencies compared to the immobilized cell systems at the same level of inoculation

  9. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting.

    Science.gov (United States)

    Zang, Bing; Li, Shuyan; Michel, Frederick; Li, Guoxue; Luo, Yuan; Zhang, Difang; Li, Yangyang

    2016-10-01

    Sulfur compounds in swine manure can cause odor emissions during composting if conditions are not conducive to their rapid oxidation and degradation. In this study, the effects of controllable composting process variables on sulfur odor emissions were investigated. These included pig manure to corn stalk mix ratio (0.7:1, 1.5:1 and 2.2:1dw basis), initial moisture content (60%, 65%, 70% and 75%) and aeration rate (1.0, 2.0, 3.0 and 4.0m(3)m(-3)h(-1)). The compounds measured were carbonyl sulfide, carbon disulfide, hydrogen sulfide, methyl mercaptan, ethyl mercaptan, diethyl sulfide, dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). The results showed that total sulfur losses ranged from 3.9% to 18.3% after 26days of composting. Me2S and Me2SS were the primary (>59.61%) sulfur compounds released during this period. After turning, emission rates of both Me2S and Me2SS increased. Emissions of the other six sulfur compounds were low and inconsistent during composting. Within the compost, feedstock mix ratio significantly influenced the concentration of Me2SS, while aeration rate significantly affected Me2S concentration (pMoisture content did not have a significant effect on the concentrations of either of these two compounds. Concentrations of sulfur odor compounds were the lowest at the highest aeration rate. Therefore, high aeration rates during the thermophilic phase, especially after turning, are recommended to minimize sulfur odors produced during swine manure composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Influence of atmospheric 14CO2 on determination of the ratio of biogenic carbon to fossil one in exhaust gases using accelerator mass spectrometry. Experimental evaluation for industrial flue gases

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Saito, Masaaki; Nagakawa, Yoshiyasu

    2012-01-01

    The influence of atmospheric 14 CO 2 was evaluated on the determination of biogenic carbon ratios in industrial flue gases using accelerated mass spectrometry(AMS). Bioethanol, n-hexane, and their mixtures were combusted with a four-stroke engine, and 14 CO 2 in exhaust gases was analyzed by AMS. The experimental biogenic carbon ratio determined by ASTM D6866 method was 1.2 times higher than the theoretical value of mixed fuel containing 3.18% biogenic carbons. In general, the influence of atmospheric 14 CO 2 taken in combustion gases is neglected. It seems that the error cannot be neglected under international trading of emission allowances, where a large amount of carbons in the fuel were evaluated. The experimental value became to be the theoretical value by subtracting the amount of atmospheric 14 C from that of the samples. As the contents of biofuel increased, the experimental biogenic carbon ratios reached the theoretical values and the influence of atmospheric 14 CO 2 decreased. We recommend that the influence of atmospheric 14 CO 2 should be corrected when fuel samples contain low amounts of 14 C. (author)

  11. Features of Red Sea Water Masses

    Science.gov (United States)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  12. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  13. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    Directory of Open Access Journals (Sweden)

    H. A. J. Meijer

    2009-09-01

    Full Text Available We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured with only one device, making it a very cost-efficient system. No time lags are introduced between the measured mixing ratios. The system is designed to operate fully autonomously which makes it ideal for measurements at remote and unmanned stations. Only a small amount of sample air is needed, which makes this system also highly suitable for flask air measurements. In principle, only two reference cylinders are needed for daily operation and only one calibration per year against international WMO standards is sufficient to obtain high measurement precision and accuracy. The system described in this paper is in use since May 2006 at our atmospheric measurement site Lutjewad near Groningen, The Netherlands at 6°21´ E, 53°24´N, 1 m a.s.l. Results show the long-term stability of the system. Observed measurement precisions at our remote research station Lutjewad were: ±0.04 ppm for CO2, ±0.8 ppb for CH4, ±0.8 ppb for CO, ±0.3 ppb for N2O, and ±0.1 ppt for SF6. The ambient mixing ratios of all measured species as observed at station Lutjewad for the period of May 2007 to August 2008 are presented as well.

  14. Can lifestyle factors explain why body mass index and waist-to-hip ratio increase with increasing tobacco consumption? The Inter99 study

    DEFF Research Database (Denmark)

    Pisinger, C; Toft, U; Jørgensen, Torben

    2009-01-01

    BACKGROUND: The relationship between smoking, lifestyle, and weight, body mass index (BMI) and waist-to-hip ratio (WH ratio) is complex, and not fully understood. METHODS: In total, 6784 subjects (2408 daily smokers) were included in a population-based study (the Inter99 study) in Denmark. Weight...... consumption, but these factors did largely explain the increasing WH ratio. The relationship between BMI and tobacco consumption is complex, and the public needs to be informed that smoking is not a 'diet'.......BACKGROUND: The relationship between smoking, lifestyle, and weight, body mass index (BMI) and waist-to-hip ratio (WH ratio) is complex, and not fully understood. METHODS: In total, 6784 subjects (2408 daily smokers) were included in a population-based study (the Inter99 study) in Denmark. Weight...... by sociodemographic factors, rather than lifestyle factors. However, neither sociodemographic nor lifestyle factors could fully explain the increased BMI associated with heavier smoking. CONCLUSIONS: Sociodemographic and lifestyle factors could not fully explain why BMI increased with increasing daily tobacco...

  15. Characterization of Organic Thin Film Solar Cells of PCDTBT : PC71BM Prepared by Different Mixing Ratio and Effect of Hole Transport Layer

    Directory of Open Access Journals (Sweden)

    Vijay Srinivasan Murugesan

    2015-01-01

    Full Text Available The organic thin film solar cells (OTFSCs have been successfully fabricated using PCDTBT : PC71BM with different mixing ratios (1 : 1 to 1 : 8 and the influence of hole transport layer thickness (PEDOT : PSS. The active layers with different mixing ratios of PCDTBT : PC71BM have been fabricated using o-dichlorobenzene (o-DCB. The surface morphology of the active layers and PEDOT : PSS layer with different thicknesses were characterized by AFM analysis. Here, we report that the OTFSCs with high performance have been optimized with 1 : 4 ratios of PCDTBT : PC71BM. The power conversion efficiency (PCE = 5.17% of the solar cells was significantly improved by changing thickness of PEDOT : PSS layer. The thickness of the PEDOT : PSS layer was found to be of significant importance; the thickness of the PEDOT : PSS layer at 45 nm (higher spin speed 5000 rpm shows higher short circuit current density (Jsc and lower series resistance (Rs and higher PCE.

  16. Real and imaginary elements of fermion mass matrices

    International Nuclear Information System (INIS)

    Masina, I.; Savoy, C.A.

    2006-01-01

    Prompted by the recent better determination of the angles of the unitarity triangle, we re-appraise the problem of finding simple fermion mass textures, possibly linked to some symmetry principle and compatible with grand unification. In particular, the indication that the angle α is close to rectangle turns out to be the crucial ingredient leading us to single out fermion mass textures whose elements are either real or purely imaginary. In terms of the five parameters ascribed to the quark sector, these textures reproduce the eight experimental data on quark mass ratios and mixings within 1σ. When embedded in an SU(5) framework, these textures suggest a common origin for quark and lepton CP violations, also linked to the spontaneous breaking of the gauge group

  17. Froggatt-Nielsen hierarchy and the neutrino mass matrix

    International Nuclear Information System (INIS)

    Kamikado, H.; Takasugi, E.

    2008-05-01

    We study the neutrino mass matrix derived from the seesaw mechanism in which the neutrino Yukawa couplings and the heavy Majorana neutrino mass matrix are controlled by the Froggatt-Nielsen mechanism. In order to obtain the large neutrino mixings, two Froggatt-Nielsen fields are introduced with a complex vacuum expectation values. As a by-product, CP violation is systematically induced even if the order one couplings of FN fields are real. We show several predictions of this model, such as θ 13 , the Dirac CP phase, two Majorana CP phases, the effective mass of the neutrinoless double beta decay and the leptogenesis. The prediction of the branching ratio of μ→eγ is also given in SUSY model. (orig.)

  18. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  19. Lepton mixing and cancellation of the Dirac mass hierarchy in SO(10) GUTs with flavor symmetries T7 and Σ(81)

    International Nuclear Information System (INIS)

    Hagedorn, Claudia; Schmidt, Michael A.; Smirnov, Alexei Yu.

    2009-01-01

    In SO(10) grand unified theories the hierarchy which is present in the Dirac mass term of the neutrinos is generically as strong as the one in the up-type quark mass term. We propose a mechanism to partially or completely cancel this hierarchy in the light neutrino mass matrix in the seesaw context. The two main ingredients of the cancellation mechanism are the existence of three fermionic gauge singlets and of a discrete flavor symmetry G f which is broken at a higher scale than SO(10). Two realizations of the cancellation mechanism are presented. The realization based on the Frobenius group T 7 ≅Z 7 xZ 3 leads to a partial cancellation of the hierarchy and relates maximal 2-3 lepton mixing with the geometric hierarchy of the up-quark masses. In the realization with the group Σ(81) the cancellation is complete and tribimaximal lepton mixing is reproduced at the lowest order. In both cases, to fully accommodate the leptonic data we take into account additional effects such as effects of higher-dimensional operators involving more than one flavon. The heavy neutral fermion mass spectra are considered. For both realizations we analyze the flavon potential at the renormalizable level as well as ways to generate the Cabibbo angle.

  20. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  1. Higgs mixing in the NMSSM and light higgsinos

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Shoji, Yutaro; Yamaguchi, Masahiro

    2014-12-01

    We explore the effects of Higgs mixing in the general next-to-minimal supersymmetric Standard Model (NMSSM). Extended to include a gauge singlet, the Higgs sector can naturally explain the observed Higgs boson mass in TeV scale supersymmetry without invoking large stop mixing. This is particularly the case when the singlet scalar is light so that singlet-doublet mixing increases the mass of the SM-like Higgs boson. In such a case the Higgs mixing has interesting implications following from the fact that the higgsino mass parameter and the singlet coupling to Higgs bilinear crucially depend on the Higgs boson masses and mixing angles. For the mixing compatible with the current LHC data on the Higgs signal rates, the higgsinos are required to be relatively light, around or below a few hundred GeV, as long as the heavy doublet Higgs boson has a mass smaller than about 250√(tanβ) GeV and the singlet-like Higgs boson is consistent with the LEP constraint. In addition, the Higgs coupling to photons can receive a sizable contribution of either sign from the charged-higgsino loops combined with singlet-doublet mixing.

  2. Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of $\\overline{p}He^{+}$

    CERN Document Server

    Hori, M; Eades, John; Gomikawa, K; Hayano, R S; Ono, N; Pirkl, Werner; Widmann, E; Torii, H A; Juhász, B; Barna, D; Horváth, D

    2006-01-01

    A femtosecond optical frequency comb and continuous-wave pulse- amplified laser were used to measure 12 transition frequencies of antiprotonic helium to fractional precisions of (9-16) 10/sup -9lifetimes hitherto unaccessible to our precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an antiproton-to-electron mass ratio of M/sub pmacron//m/sub e/=1836.152 674(5).

  3. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study.

    Science.gov (United States)

    Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen

    2017-12-01

    Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Precise determination of W anfd Z masses in UA2

    International Nuclear Information System (INIS)

    Lefebvre, M.

    1990-01-01

    The UA2 experiment has collected large samples of W and Z events during the 1988 and 1989 runs at the CERN antipp Collider at √s = 630 GeV. These samples have been used to perform precise measurements of the masses of the W and Z bosons. After a careful analysis of systematic errors, an improved result is obtained for the mass ratio M W /M Z . This provides a new value for the weak mixing parameter sin 2 θ W . Furthermore, it can be combined with recent measurements of the Z mass from e + e - colliders to give an absolute measurement of the W mass, leading to the result m W = 80.49 ± 0.43(stat) ± 0.24(syst) GeV

  5. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    Science.gov (United States)

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  6. Some major deviations for biomass determination by indirect method and estimation based on alkali consumption. [Ratio of cell mass produced and alkali consumed; diesel fuel culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Concone, B R.V.; Doin, P A; Pinto, A G

    1978-01-01

    Some factors like the variation of the liquid volume, the variation of cellular nitrogen content and the mass of cells taken with the samples during batch cultivation of microorganisms on diesel oil, were considered for the computation of the ratio between cell mass produced and the mass of alkali consumed to maintain constant the pH of the fermentation medium. The results obtained showed that if such ratios are computed with cell concentration instead of cell mass the deviations can be of the order of 27% caused by the variation of the liquid medium volume. Otherwise, the results showed also that those ratios are variable during batch cultivation on diesel oil probably because of the variations on the nitrogen content of microorganisms. The relative difference between the mass of cells measured and the mass of cells calculated from the alkali consumption curve can be of the order of 63%.

  7. Neutrino mass and mixing – status

    Indian Academy of Sciences (India)

    be specific, a Majorana mass term for neutrinos, together with the mass term for charged leptons: LM = −. 1 .... hierarchy, respectively (see refs [5,6] for details and references). Parameter ... In figure 3 we show the region in the sin2 θ13–δ plane indicated by T2K ..... and 40 m and the precise rate measurement from Bugey4.

  8. Determination of δ13C, δ15N, or δ34S by isotope-ratio-monitoring mass spectrometry using an elemental analyzer

    Science.gov (United States)

    Johnson, Craig A.; Stricker, Craig A.; Gulbransen, Cayce A.; Emmons, Matthew P.

    2018-02-14

    This report describes procedures used in the Geology, Geophysics, and Geochemistry Science Center of the U.S. Geological Survey in Denver, Colorado, to determine the stable-isotope ratios 13C/12C, 15N/14N, and 34S/32S in solid materials. The procedures use elemental analyzers connected directly to gas-source isotope-ratio mass spectrometers. A different elemental–analyzer–mass-spectrometer system is used for 13C/12C and 15N/14N than is used for 34S/32S to accommodate differences in reagents, catalysts, and instrument settings.

  9. Large lepton mixings from continuous symmetries

    International Nuclear Information System (INIS)

    Everett, Lisa; Ramond, Pierre

    2007-01-01

    Within the broad context of quark-lepton unification, we investigate the implications of broken continuous family symmetries which result from requiring that in the limit of exact symmetry, the Dirac mass matrices yield hierarchical masses for the quarks and charged leptons, but lead to degenerate light neutrino masses as a consequence of the seesaw mechanism, without requiring hierarchical right-handed neutrino mass terms. Quark mixing is then naturally small and proportional to the size of the perturbation, but lepton mixing is large as a result of degenerate perturbation theory, shifted from maximal mixing by the size of the perturbation. Within this approach, we study an illustrative two-family prototype model with an SO(2) family symmetry, and discuss extensions to three-family models

  10. Arctic Mixed Layer Dynamics

    National Research Council Canada - National Science Library

    Morison, James

    2003-01-01

    .... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...

  11. Preparation, Spectroscopic Investigation and Biological Activity of New Mixed Ligand Chelates

    International Nuclear Information System (INIS)

    Alassbaly, F.S.; Ajaily, M.M.E.

    2014-01-01

    Preparation and investigation of new Co(II), Ni(II), Zn(II) and Cr(III) chelates with mixed ligands including Schiff base (L1) formed from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol and anthranilic acid (L2) were studied. The obtained Schiff base and mixed ligand chelates were subjected to several physiochemical techniques, in terms of CHN elemental analyses, molar conductivity, magnetic moment measurements, infrared, proton nuclear magnetic resonance, electronic and mass spectra. The analytical data showed the formation of the Schiff base compound and the ratio of metal to ligands of the chelates are 1:1:1(M:L1:L2). The infrared spectral data exhibited that the used ligands behaving as bidentate ligands towards the metal ions. The proton nuclear magnetic resonance spectral data showed the signals of the active groups in the ligands which entered in chelation with Zn(II) metal ion. The electronic spectral results showed the existence of pie (phenyl ring) and n = pie (C=N) of the ligands and suggested the geometrical structures of the chelates. Meanwhile, the mass spectral data revealed the fragmentations of the Schiff base, anthranilic acid and their Ni(II) mixed ligand chelate has been preformed the only chelate conducted for justification. All the prepared mixed chelates were non-electrolyte in nature. The antibacterial activity of the Schiff base, anthranilic acid, metal salts and mixed ligand chelates were studied and found to be that mixed ligand chelates have the most biological activity in comparison to the free ligands and salts. (author)

  12. Detecting Non-Gaussian and Lognormal Characteristics of Temperature and Water Vapor Mixing Ratio

    Science.gov (United States)

    Kliewer, A.; Fletcher, S. J.; Jones, A. S.; Forsythe, J. M.

    2017-12-01

    Many operational data assimilation and retrieval systems assume that the errors and variables come from a Gaussian distribution. This study builds upon previous results that shows that positive definite variables, specifically water vapor mixing ratio and temperature, can follow a non-Gaussian distribution and moreover a lognormal distribution. Previously, statistical testing procedures which included the Jarque-Bera test, the Shapiro-Wilk test, the Chi-squared goodness-of-fit test, and a composite test which incorporated the results of the former tests were employed to determine locations and time spans where atmospheric variables assume a non-Gaussian distribution. These tests are now investigated in a "sliding window" fashion in order to extend the testing procedure to near real-time. The analyzed 1-degree resolution data comes from the National Oceanic and Atmospheric Administration (NOAA) Global Forecast System (GFS) six hour forecast from the 0Z analysis. These results indicate the necessity of a Data Assimilation (DA) system to be able to properly use the lognormally-distributed variables in an appropriate Bayesian analysis that does not assume the variables are Gaussian.

  13. Combined slope ratio analysis and linear-subtraction: An extension of the Pearce ratio method

    Science.gov (United States)

    De Waal, Sybrand A.

    1996-07-01

    A new technique, called combined slope ratio analysis, has been developed by extending the Pearce element ratio or conserved-denominator method (Pearce, 1968) to its logical conclusions. If two stoichiometric substances are mixed and certain chemical components are uniquely contained in either one of the two mixing substances, then by treating these unique components as conserved, the composition of the substance not containing the relevant component can be accurately calculated within the limits allowed by analytical and geological error. The calculated composition can then be subjected to rigorous statistical testing using the linear-subtraction method recently advanced by Woronow (1994). Application of combined slope ratio analysis to the rocks of the Uwekahuna Laccolith, Hawaii, USA, and the lavas of the 1959-summit eruption of Kilauea Volcano, Hawaii, USA, yields results that are consistent with field observations.

  14. Impact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ratios at the NE Coast of Bay of Bengal, India

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.K.; Biswas, H.; De, T.K.; Jana, T.K.; Sen, B.K.; Sen, S.

    2002-01-01

    Diurnal and seasonal variations in carbon dioxide and methane fluxes between Sundarban biosphere and atmosphere were measured using micrometeorological method during 1998-2000. Study of the diurnal variation of micrometeorological conditions in the atmosphere was found to be necessary to determine the duration of neutral stability when flux estimation was reliable. Neutral stability of the atmosphere occurred in the limited micrometeorological conditions, when friction velocity ranged between 0.360 and 0.383ms -1 . The value of drag coefficient (1.62-20.6) x 10 3 obtained at variable wind speed could be deemed specific for this particular surface. 58.2% drop of carbon dioxide and 63.4% drop of methane in the atmosphere at 1m height were observed during day time, between dawn and early evening. Diurnal variations in methane and carbon dioxide mixing ratios showed a positive correlation with Richardson's number (Ri). This environment acted as a net source for carbon dioxide and methane. The mixing ratios of methane were found to vary between 1.42 and 2.07ppmv, and that of carbon dioxide, between 324.3 and 528.7ppmv during the study period. The biosphere-atmosphere flux of carbon dioxide ranged between - 3.29 and 34.4mgm -2 s -1 , and that of methane, between - 4.53 and 8.88μgm -2 s -1 . The overall annual estimate of carbon dioxide and methane fluxes from this ecosystem to atmosphere were estimated to be 694Tgyr -1 and 184Ggyr -1 , respectively. Considerable variations in mixing ratios of carbon dioxide and methane at the NE coast of Bay of Bengal were observed due to the seasonal variations of their fluxes from the biosphere to the atmosphere. The composition was inferred by fitting model prediction to measurements. (Author)

  15. Limb/trunk lean mass ratio as a risk factor for mortality in peritoneal dialysis patients

    Directory of Open Access Journals (Sweden)

    Seok Hui Kang

    2012-06-01

    Full Text Available Protein energy wasting (PEW is a common problem in dialysis patients. There have been few reports on the effects of regional lean mass distribution for peritoneal dialysis (PD patients. We reviewed the medical records and identified all adults who received PD between May 2001 and May 2011. Five hundred thirty four patients were enrolled. The clinical and laboratory data were collected at 1 and 12 months. Regional lean masses were measured by dual-energy X-ray absorptiometry. The limb/trunk lean mass ratio (LTLM was defined as a value on dividing the sum of four limbs by the trunk lean mass. The mean age at the start of PD was 53.2±14.1 years. Diabetes mellitus (DM was most common underlying disease of end-stage renal disease (49.6%. In males, the low LTLM tertile was associated with low body mass index, creatinine, arm muscle circumference, and high C-reactive protein. In females, the low LTLM tertile was associated with low creatinine and normalized protein equivalent of nitrogen appearance. On both univariate and multivariate analysis adjusted for age, Davies risk index, and residual renal function, initial low LTLM tertile and maintenance of low LTLM were associated with mortality in PD patients. Distribution or change of regional lean mass may be more useful for predicting nutritional status. Initial low LTLM and maintenance of low LTLM were associated with mortality in PD patients. LTLM as a new marker would be useful for predicting the nutritional status and the mortality in patients on PD.

  16. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    NARCIS (Netherlands)

    van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Simpson, W.R.

    2009-01-01

    We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured

  17. The Effect of the Interannual Variability of the OH Sink on the Interannual Variability of the Atmospheric Methane Mixing Ratio and Carbon Stable Isotope Composition

    Science.gov (United States)

    Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin

    2013-04-01

    The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and

  18. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)

    2014-09-15

    Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)

  19. Mass matrices of weak interaction, quark flavour mixing and exponential form of Cabibbo-Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1995-01-01

    The quark mixing matrix is diagonalized. The use of the exponential parametrization leads to straightforward results, obtained in exact form, without simplifying assumptions. In this study, it is defined weak interaction eigenstates in the sense of Fritzch and Planckl. The relevant mass matrices are derived and are shown to belong to Barnhill canonical forms. It is proven that, at lowest order, these matrices exhibit a democratic structure. The mechanism of democracy breaking is finally discussed

  20. Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R.

    2004-01-01

    The behavior of the specific heat c p , effective mass M*, and the thermal expansion coefficient α of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c p ∝√T, M*∝1/√T, while the thermal expansion coefficient α∝√T. Thus, the Grueneisen ratio Γ(T)=α/c p does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as Γ(T)∝1/√T. In the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c p ∝√T, M * ∝1/T, and α=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as Γ(T)∝1/√T

  1. Predicting {theta}{sub 13} and the neutrino mass scale from quark lepton mass hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Schmitz, K.

    2011-11-15

    Flavour symmetries of Froggatt-Nielsen type can naturally reconcile the large quark and charged lepton mass hierarchies and the small quark mixing angles with the observed small neutrino mass hierarchies and their large mixing angles. We point out that such a flavour structure, together with the measured neutrino mass squared differences and mixing angles, strongly constrains yet undetermined parameters of the neutrino sector. Treating unknown O(1) parameters as random variables, we obtain surprisingly accurate predictions for the smallest mixing angle, sin{sup 2}2{theta}{sub 13}=0.07{sup +0.11}{sub -0.05}, the smallest neutrino mass, m{sub 1}=2.5{sup +1.7}{sub -1.6} x 10{sup -3} eV, and one Majorana phase, {alpha}{sub 21}/{pi}=1.0{sup +0.2}{sub -0.2}. (orig.)

  2. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio

    International Nuclear Information System (INIS)

    Keck, B.D.; Ognibene, T.; Vogel, J.S.

    2010-01-01

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of 14 C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of 14 C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the 14 C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with 14 C corresponds to 30 fg equivalents. AMS

  3. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  4. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination.

    Science.gov (United States)

    Sirisuk, Phunlap; Ra, Chae-Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-04-01

    Blue and red light-emitting diodes (LEDs) were used to study the effects of wavelength mixing ratios, photoperiod regimes, and green wavelength stress on Nannochloropsis salina, Isochrysis galbana, and Phaeodactylum tricornutum cell biomass and lipid production. The maximum specific growth rates of I. galbana and P. tricornutum were obtained under a 50:50 mixing ratio of blue and red wavelength LEDs; that of N. salina was obtained under red LED. Maximum cell biomass for N. salina and P. tricornutum was 0.75 and 1.07 g dcw/L, respectively, obtained under a 24:0 h light/dark cycle. However, the maximum I. galbana biomass was 0.89 g dcw/L under an 18:6 h light/dark cycle. The maximum lipid contents for N. salina, I. galbana, and P. tricornutum were 49.4, 63.3 and 62.0% (w/w), respectively, after exposure to green LED. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were obtained 1% in P. tricornutum and 2% in I. galbana. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Model for particle masses, flavor mixing, and CP violation, based on spontaneously broken discrete chiral symmetry as the origin of families

    International Nuclear Information System (INIS)

    Adler, S.L.

    1999-01-01

    We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z 6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S 3 cyclic permutation symmetry the three-Higgs-doublet model gives a open-quotes democraticclose quotes mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates CP, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. copyright 1998 The American Physical Society

  6. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  7. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  8. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Cha, Hyung Ki; Kim, Duk Hyeon; Min, Ki Hyun

    2004-01-01

    The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ∼1,500 for the ytterbium

  9. The effective recovery of praseodymium from mixed rare earths via a hollow fiber supported liquid membrane and its mass transfer related

    International Nuclear Information System (INIS)

    Wannachod, Pharannalak; Chaturabul, Srestha; Pancharoen, Ura; Lothongkum, Anchaleeporn W.; Patthaveekongka, Weerawat

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Maximum percentage of praseodymium extraction at 91.7% from 10% (v/v) bis (2,4,4-trimethylpentyl) phosphinic acid as extractant carrier in multi cycle operation through single HFLSM module. → Mass transfer mechanism of this system was investigated. → The rate-controlling step of this system was the diffusion of praseodymium ions through the film layer between the feed solution and the liquid membrane. → Model prediction of the dimensionless concentrations and separation factors showed promising agreement with the experimental data. - Abstract: The recovery of praseodymium from mixed rare earths via a hollow fiber supported liquid membrane (HFSLM) was examined. Bis(2,4,4-trimethylpentyl) phosphinic acid - known as Cyanex 272 - was used as an extractant carrier. The stripping solution was hydrochloric acid solution. The experiments examined in functions of the concentrations of the carrier in liquid membrane, the (initial) pH's of initial feed solution within the acidic-pH range, the concentrations of hydrochloric acid, the flow rates of feed and stripping solution, and the operation mode of runs through the hollow fiber module. In addition, the influence of circulation of the stripping solution at various numbers of runs through the HFSLM on the outlet concentration of praseodymium ions in the stripping solution was observed. Mass transfer mechanism in the system was investigated. Extraction equilibrium constant (K ex ), distribution ratio (D), permeability (P) and mass transfer coefficients were determined. The aqueous-phase mass-transfer coefficient (k i ) and organic-phase mass-transfer coefficient (k m ) were reported to 0.0103 and 0.788 cm s -1 , respectively, in which k m is much higher than the k i . Thus it suggests the rate-controlling step is the diffusion of praseodymium ions through the film layer between the feed solution and the liquid membrane. Model prediction of the dimensionless

  10. Novel method for measurement of glutathione kinetics in neonates using liquid chromatography coupled to isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schierbeek, Henk; te Braake, Frans; Godin, Jean-Philippe; Fay, Laurent-Bernard; van Goudoever, Johannes B.

    2007-01-01

    A novel analytical method using liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) was developed for measuring the fractional synthesis rate (FSR) of glutathione (GSH) in neonates after infusion of [1-(13)C]-glycine as a tracer. After transformation of GSH into GSSG, its

  11. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Te-Chih Wong

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM, appendicular skeletal muscle mass (ASM, and its determinants in patients receiving standard hemodialysis (HD treatment for the management of end stage renal disease.In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI for both n-3 PUFAs and alpha-linolenic acid (ALA was 1.6 g/day and 1.1 g/day for men and women, respectively.The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047. No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients.Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  12. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Science.gov (United States)

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  13. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  14. Acculturation and changes in body mass index, waist circumference, and waist-hip ratio among Filipino Americans with hypertension.

    Science.gov (United States)

    Serafica, Reimund; Angosta, Alona D

    2016-09-01

    The purpose of this research study was to examine whether level of acculturation is a predictor of body mass index, waist circumference, and waist-hip ratio in Filipino Americans with hypertension in the United States. The Filipino Americans (N = 108) were recruited from a primary care clinic in the United States. Two instruments were used to collect and operationalize the variables, specifically: (1) Socioeconomic/Demographic Questionnaire and (2) A Short Acculturation Scale for Filipino Americans. Descriptive statistics and partial least squares were used to calculate the results. The partial least square path model identified acculturation as a predictor of body mass index, wait circumference, and waist-hip ratio among Filipino Americans. The positive path coefficient (β = 0.384) was statistically significant (t = 5.92, P stress the importance of the degree of acculturation when developing culturally appropriate lifestyle and health promotion interventions among immigrant patients with hypertension. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  15. Combined Effect of Contraction Ratio and Chamber Pressure on the Performance of a Gaseous Hydrogen-Liquid-Oxygen Combustor for a Given Propellant Weight Flow and Oxidant-Fuel Ratio

    Science.gov (United States)

    Hersch, Martin

    1961-01-01

    The effect of contraction ratio and chamber pressure on the combustion performance of a gaseous-hydrogen-liquid-oxygen combustor was investigated analytically and experimentally. The experiment was conducted with a "two-dimensional" gaseous-hydrogen-liquid-oxygen engine of about 150-pound thrust. The contraction ratio was varied from 1.5 to 6 by changing the nozzle throat area. This variation resulted in a chamber pressure variation of about 25 to 120 pounds per square inch. The experimental results were corrected for heat transfer to the engine walls and momentum pressure losses. The experimental performance, as evaluated in terms of characteristic exhaust velocity, was 98 percent of theoretical at contraction ratios greater than 3 but decreased very rapidly at smaller contraction ratios. The heat-transfer rate increased with increasing contraction ratio and chamber pressure; it was about 1 Btu per square inch per second at a contraction ratio of 1.5 and increased to about 3 at a contraction ratio of 6. The combined effects of contraction-ratio and chamber-pressure changes on performance were investigated analytically with a mixing model and a vaporization model. The mixing model predicted very poor mixing at contraction ratios below 3 and almost perfect mixing at higher contraction ratios. The performance predicted by the vaporization model was very close to 100 percent for all contraction ratios. From these results, it was concluded that the performance was limited by poor mixing at low contraction ratios and chamber pressures.

  16. Mixing Ratios and Photostationary State of NO and NO2 Observed During the POPCORN Field Campaign at a Rural Site in Germany

    NARCIS (Netherlands)

    Rohrer, F.; Brüning, D.; Grobler, E.S.; Weber, M.; Ehhalt, D.H.; Neubert, R.; Schüßler, W.; Levin, I.

    1998-01-01

    Ambient mixing ratios of NO, NO2, and O3 were determined together with the photolysis frequency of NO2, JNO2, at a rural, agricultural site in Germany. The data were collected during the POPCORN-campaign from August 1 to August 24, 1994, in a maize field 6 m above ground. The medians of the NO, NO2,

  17. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  18. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    Science.gov (United States)

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

  19. Determination of 240Pu/239Pu isotope ratios in Kara Sea and Novaya Zemlya sediments using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Oughton, D.H.; Skipperud, L.; Salbu, B.; Fifield, L.K.; Cresswell, R.C.; Day, J.P.

    1999-01-01

    Accelerator mass spectrometry (AMS) has been used to determine Pu activity concentrations and 240 Pu/ 239 Pu isotope ratios in sediments from the Kara Sea and radioactive waste dumping sites at Novaya Zemlya. Measured 239,240 Pu activities ranged from 0.06 - 9.8 Bq/kg dry weight, 240 Pu/ 239 Pu atom ratios ranged from 0.13 to 0.28, and 238 Pu/ 239,240 Pu activity ratios from 0.02 to 0.6. Perturbations from global fallout isotope ratios were evident at three sites: the Yenisey Estuary and Abrosimov Fjords where 240 Pu/ 239 Pu ratios were lower (0.13-0.14); and Stepovogo Fjord sediments where ratios were higher (up to 0.28) than fallout ratios. Based on procedural blanks, detection limits for AMS were below 1 fg Pu and the method showed good precision for isotope ratio measurements, minimal matrix, interference and memory effects. For high level samples, comparison between alpha spectrometry and AMS gave good agreement for measurement of 239,240 Pu activity concentrations. (author)

  20. Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S{sub 3} flavor symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Martinez, R.; Ochoa, F. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia)

    2016-11-15

    We propose a 3-3-1 model where the SU(3){sub C} x SU(3){sub L} x U(1){sub X} symmetry is extended by S{sub 3} x Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} and the scalar spectrum is enlarged by extra SU(3){sub L} singlet scalar fields. The model successfully describes the observed SM fermion mass and mixing pattern. In this framework, the light active neutrino masses arise via an inverse seesaw mechanism and the observed charged fermion mass and quark mixing hierarchy is a consequence of the Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} symmetry breaking at very high energy. The obtained physical observables for both quark and lepton sectors are compatible with their experimental values. The model predicts the effective Majorana neutrino mass parameter of neutrinoless double beta decay to be m{sub ββ} = 4 and 48 meV for the normal and the inverted neutrino spectra, respectively. Furthermore, we found a leptonic Dirac CP-violating phase close to (π)/(2) and a Jarlskog invariant close to about 3 x 10{sup -2} for both normal and inverted neutrino mass hierarchy. (orig.)

  1. Transverse mixing of ellipsoidal particles in a rotating drum

    Directory of Open Access Journals (Sweden)

    He Siyuan

    2017-01-01

    Full Text Available Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  2. M1-E2 mixing ratios and B(E2) values for transitions in 131Xe

    International Nuclear Information System (INIS)

    Vijay Sai, K.; Deepa, S.; Ashish, T.; Venkataramaniah, K.; Madhusudan, K.

    2012-01-01

    The accuracies of M1-E2 mixing ratios calculated from the experimental conversion coefficients α i depend upon the accuracy with which the conversion coefficients are determined and also on the accuracy of the theoretical values. Recently a new calculation of ICCs by Band et al, BRICC has been published. The calculations are based on the relativistic DF method in which the exchange interactions between bound electrons and free electrons receding to infinity during the conversion process are treated exactly. Gerl et al showed that BRICC values are more closer to experimental values when compared to earlier theoretical values of Hager and Seltzer and Rosel. The availability of the BRICC values is expected to increase the accuracy with which the estimated quadrupole contents can be obtained

  3. Ratios of regioisomers of minor acylglycerols less polar than triricinolein in castor oil estimated by mass spectrometry (Abstract)

    Science.gov (United States)

    The ratios of regioisomers of triacylglycerols (TAG) have been estimated by mass spectrometry using the fact that the neutral loss of fatty acid (FA) from the sn-2 position is energetically less favored in comparison with that from sn-1,3 positions. However regioisomeric TAG standards were needed fo...

  4. Sneutrinos as mixed inflaton and curvaton

    Science.gov (United States)

    Haba, Naoyuki; Takahashi, Tomo; Yamada, Toshifumi

    2018-06-01

    We investigate a scenario where the supersymmetric partners of two right-handed neutrinos (sneutrinos) work as mixed inflaton and curvaton, motivated by the fact that the curvaton contribution to scalar perturbations can reduce the tensor-to-scalar ratio r so that chaotic inflation models with a quadratic potential are made consistent with the experimental bound on r. After confirming that the scenario evades the current bounds on r and the scalar perturbation spectral index ns, we make a prediction on the local non-Gaussianity in bispectrum, fNL, and one in trispectrum, τNL. Remarkably, since the sneutrino decay widths are determined by the neutrino Dirac Yukawa coupling, which can be estimated from the measured active neutrino mass differences in the seesaw model, our scenario has a strong predictive power about local non-Gaussianities, as they heavily depend on the inflaton and curvaton decay rates. Using this fact, we can constrain the sneutrino mass from the experimental bounds on ns, r and fNL.

  5. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. III. MASS-TO-LIGHT RATIOS

    International Nuclear Information System (INIS)

    Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; Blanton, Michael R.; McKay, Timothy A.; Scranton, Ryan; Wechsler, Risa H.; Koester, Benjamin P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James

    2009-01-01

    We present measurements of the excess mass-to-light ratio (M/L) measured around MaxBCG galaxy clusters observed in the Sloan Digital Sky Survey. This red-sequence cluster sample includes objects from small groups with M 200 ∼ 5 x 10 12 h -1 M sun to clusters with M 200 ∼ 10 15 h -1 M sun . Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean Δρ(r)=ρ(r)-ρ-bar for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density Δl(r)=l(r)-l-bar measured in the z = 0.25 i band. For both mass and light, we de-project the profiles to produce three-dimensional mass and light profiles over scales from 25 h -1 kpc to 22 h -1 Mpc. From these profiles we calculate the cumulative excess mass ΔM(r) and excess light ΔL(r) as a function of separation from the BCG. On small scales, where ρ(r)>>ρ-bar, the integrated mass-to-light profile (ΔM/ΔL)(r) may be interpreted as the cluster M/L. We find the (ΔM/ΔL) 200 , the M/L within r 200 , scales with cluster mass as a power law with index 0.33 ± 0.02. On large scales, where ρ(r)∼ρ-bar, the ΔM/ΔL approaches an asymptotic value independent of cluster richness. For small groups, the mean (ΔM/ΔL) 200 is much smaller than the asymptotic value, while for large clusters (ΔM/ΔL) 200 is consistent with the asymptotic value. This asymptotic value should be proportional to the mean M/L of the universe (M/L). We find (M/L)b -2 M/L = 362 ± 54h (statistical). There is additional uncertainty in the overall calibration at the ∼10% level. The parameter b 2 M/L is primarily a function of the bias of the L ∼ * galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find Ω m b -2 M/L = 0.20 ± 0.03, independent of the Hubble parameter.

  6. Long-term orbital period behaviour of low mass ratio contact binaries GR Vir and FP Boo

    Science.gov (United States)

    Ćetinkaya, Halil; Soydugan, Faruk

    2017-02-01

    In this study, we investigated orbital period variations of two low mass ratio contact binaries GR Vir and FP Boo based on published minima times. From the O-C analysis, it was found that FP Boo indicates orbital period decrease while the period of GR Vir is increasing. Mass transfer process was used to explain increase and decrease in the orbital periods. In the O-C diagrams of both systems periodic variations also exist. Cyclic changes can be explained as being the result of a light-travel time effect via a third component around the eclipsing binaries. In order to interpret of cyclic orbital period changes for GR Vir, which has late-type components, possible magnetic activity cycles of the components have been also considered.

  7. Quark-lepton universality and large leptonic mixing

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.; Smirnov, A.Yu.

    2006-01-01

    A unified description of fermionic mixing is proposed which assumes that in certain basis (i) a single complex unitary matrix V diagonalizes mass matrices of all fermions to the leading order (ii) the SU(5) relation M d =M l T exists between the mass matrices of the down quarks and the charged leptons, and (iii) M d - bar =M d . These assumptions automatically lead to different mixing patterns for quarks and leptons: Quarks remain unmixed to leading order (i.e. V CKM =1) while leptons have non-trivial mixing given by a symmetric unitary matrix V PMNS 0 =V T V. V depends on two physical mixing angles and for values of these angles ∼20 o -25 o it reproduces the observed mixing patterns rather well. We identify conditions under which the universal mixing V follows from the universal mass matrices of fermions. Relatively small perturbations to the leading order structure lead to the CKM mixing and corrections to V PMNS 0 . We find that if the correction matrix equals the CKM matrix, the resulting lepton mixing agrees well with data and predicts (V PMNS ) e3 >0.08

  8. Charm mixing at LHCb

    CERN Document Server

    Di Canto, Angelo

    2013-01-01

    We report a measurement of the time-dependent ratio of $D^0\\to K^+\\pi^-$ to $D^0\\to K^-\\pi^+$ decay rates in $D^{*+}$-tagged events using 1.0\\,fb$^{-1}$ of integrated luminosity recorded by the LHCb experiment. We measure the mixing parameters $x'^2=(-0.9\\pm1.3)\\times10^{-4}$, $y'=(7.2\\pm2.4)\\times10^{-3}$ and the ratio of doubly-Cabibbo-suppressed to Cabibbo-favored decay rates $R_D=(3.52\\pm0.15)\\times10^{-3}$. The result excludes the no-mixing hypothesis with a probability corresponding to 9.1 standard deviations and represents the first observation of charm mixing from a single measurement

  9. An aircraft-borne chemical ionization – ion trap mass spectrometer (CI-ITMS for fast PAN and PPN measurements

    Directory of Open Access Journals (Sweden)

    H. Schlager

    2011-02-01

    Full Text Available An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate and PPN (peroxypropionyl nitrate. The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2σ detection limit of 25 pmol mol−1. An isotopically labelled standard was used for a permanent on-line calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol−1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol−1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis. PPN, the second most abundant PAN homologue, was measured simultaneously. Observed PPN/PAN ratios range between ~0.03 and 0.3.

  10. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    International Nuclear Information System (INIS)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-01-01

    Three different internal mixing methods (Core–Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20–70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20–50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core–Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC–sulfate aerosol is about –3.18 W/m 2 for the external method and –6.91 W/m 2 for the internal methods at the surface, and –3.03/–1.56/–1.85 W/m 2 for the external/Core–Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause. - Highlights: • The aerosol optical properties with different mixing

  11. Australasian microtektites: Impactor identification using Cr, Co and Ni ratios

    Science.gov (United States)

    Folco, L.; Glass, B. P.; D'Orazio, M.; Rochette, P.

    2018-02-01

    Impactor identification is one of the challenges of large-scale impact cratering studies due to the dilution of meteoritic material in impactites (typically ratios in a Co/Ni vs Cr/Ni space (46 microtektites analyzed in this work by Laser Ablation-Inductively Coupled Plasma -Mass Spectrometry and 31 from literature by means of Neutron Activation Analyses with Cr, Co and Ni concentrations up to ∼370, 50 and 680 μg/g, respectively). Despite substantial overlap in Cr/Ni versus Co/Ni composition for several meteorite types with chondritic composition (chondrites and primitive achondrites), regression calculation based on ∼85% of the studied microtektites best fit a mixing line between crustal compositions and an LL chondrite. However, due to some scatter mainly in the Cr versus Ni ratios in the considered dataset, an LL chondrite may not be the best fit to the data amongst impactors of primitive compositions. Eight high Ni/Cr and five low Ni/Cr outlier microtektites (∼15% in total) deviate from the above mixing trend, perhaps resulting from incomplete homogenization of heterogeneous impactor and target precursor materials at the microtektite scale, respectively. Together with previous evidence from the ∼35 Myr old Popigai impact spherules and the ∼1 Myr old Ivory Coast microtektites, our finding suggests that at least three of the five known Cenozoic distal impact ejecta were generated by the impacts of large stony asteroids of chondritic composition, and possibly of ordinary chondritic composition. The impactor signature found in Australasian microtektites documents mixing of target and impactor melts upon impact cratering. This requires target-impactor mixing in both the two competing models in literature for the formation of the Australasian tektites/microtektites: the impact cratering and low-altitude airburst plume models.

  12. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    Science.gov (United States)

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  13. Consequences of a unified, anarchical model of fermion masses and mixings

    International Nuclear Information System (INIS)

    Calibbi, L.; Ferretti, L.; Romanino, A.; Ziegler, R.

    2009-01-01

    We show that most features of the mass and mixing pattern of the