WorldWideScience

Sample records for mass flow sensor

  1. Evaluation of Virtual Refrigerant Mass Flow Sensors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor ma...

  2. Micro Coriolis mass flow sensor with integrated resistive pressure sensors

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on novel resistive pressure sensors, integrated on-chip at the inlet- and outlet-channels of a micro Coriolis mass flow sensor. The pressure sensors can be used to measure the pressure drop over the Coriolis sensor which can be used to compensate pressure-dependent behaviour that might

  3. Resistive pressure sensors integrated with a Coriolis mass flow sensor

    NARCIS (Netherlands)

    Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on a novel resistive pressure sensor that is completely integrated with a Coriolis mass flow sensor on one chip, without the need for extra fabrication steps or different materials. Two pressure sensors are placed in-line with the Coriolis sensor without requiring any changes to the fluid

  4. SU-8 micro Coriolis mass flow sensor

    NARCIS (Netherlands)

    Monge, Rosa; Groenesteijn, Jarno; Alveringh, Dennis; Wiegerink, Remco J.; Lötters, Joost Conrad; Fernandez, Luis J.

    2017-01-01

    Abstract This work presents the modelling, design, fabrication and test of the first micro Coriolis mass flow sensor fully fabricated in SU-8 by photolithography processes. The sensor consists of a channel with rectangular cross-section with inner opening of 100 μm × 100 μm and is actuated at

  5. Port and EGR Mass Flow Sensors

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1998-01-01

    The note documents briefly work done on what is thought to be a new method of measurement of the pulsating flow in the intake port ot and SI engine and in the EGR returen line. The work reviewed has been carried out in close cooperation with Civ. Ing. Michael Føns, Civ. Ing. Christian Jepsen, the......, the author (IAU) and Spencer C. Sorenson (ET). The theory which decribes in detail the overall dynamic chracteristics of the sensor was developed at IAU and ET, DTU....

  6. Micro Coriolis mass flow sensor driven by external piezo ceramic

    NARCIS (Netherlands)

    Zeng, Yaxiang; Groenesteijn, Jarno; Alveringh, Dennis; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    We have realized a micro Coriolis mass flow meter driven with an external piezo ceramic. The piezoelec tric ceramic is glued on top of sensor chip with a inertial weight on top of the piezo ceramic. Its ability to measure mass flow is characterized by a laser Doppler vibrometer. Our measurement with

  7. MEMS-based Micro Coriolis mass flow sensor

    NARCIS (Netherlands)

    Haneveld, J.; Brouwer, Dannis Michel; Mehendale, A.; Zwikker, R.; Lammerink, Theodorus S.J.; de Boer, Meint J.; Wiegerink, Remco J.

    2008-01-01

    We have realized a micromachined micro Coriolis flow sensor consisting of a silicon nitride resonant tube of 40 μm diameter and 1.2 μm wall thickness. First measurements with both gas and liquid flows have demonstrated an unprecedented mass flow resolution in the order of 10 mg/hr at a full scale

  8. Parametric amplification in a micro Coriolis mass flow sensor

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Droogendijk, H.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Lötters, Joost Conrad; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    We report on the application of parametric amplification to a micro Coriolis mass flow sensor. We demonstrate that this mechanism allows for reduction of the system's power dissipation while retaining sensitivity to flow. By reducing this power dissipation, less heat will be transferred to the fluid

  9. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, Dannis Michel; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale

  10. Modelling of a micro Coriolis mass flow sensor for sensitivity improvement

    NARCIS (Netherlands)

    Groenesteijn, Jarno; van de Ridder, Bert; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    We have developed a multi-axis flexible body model with which we can investigate the behavior of (micro) Coriolis mass flow sensors with arbitrary channel geometry. The model has been verified by measurements on five different designs of micro Coriolis mass flow sensors. The model predicts the Eigen

  11. Integrated pressure sensing using capacitive Coriolis mass flow sensors

    NARCIS (Netherlands)

    Alveringh, Dennis; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    The cross-sectional shape of microchannels is, dependent on the fabrication method, never perfectly circular. Consequently, the channels deform with the pressure, which is a non-ideal effect in flow sensors, but may be used for pressure sensing. Multiple suspended channels with different lengths

  12. Fiber optic liquid mass flow sensor and method

    Science.gov (United States)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  13. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor

    International Nuclear Information System (INIS)

    Haneveld, J; Lammerink, T S J; De Boer, M J; Sanders, R G P; Mehendale, A; Lötters, J C; Dijkstra, M; Wiegerink, R J

    2010-01-01

    This paper discusses the modeling, design and realization of micromachined Coriolis mass flow sensors. A lumped element model is used to analyze and predict the sensor performance. The model is used to design a sensor for a flow range of 0–1.2 g h −1 with a maximum pressure drop of 1 bar. The sensor was realized using semi-circular channels just beneath the surface of a silicon wafer. The channels have thin silicon nitride walls to minimize the channel mass with respect to the mass of the moving fluid. Special comb-shaped electrodes are integrated on the channels for capacitive readout of the extremely small Coriolis displacements. The comb-shaped electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods. Furthermore, it prevents squeezed film damping due to a thin layer of air between the capacitor electrodes. As a result, the sensor operates at atmospheric pressure with a quality factor in the order of 40 and does not require vacuum packaging like other micro Coriolis flow sensors. Measurement results using water, ethanol, white gas and argon are presented, showing that the sensor measures true mass flow. The measurement error is currently in the order of 1% of the full scale of 1.2 g h −1

  14. Vibration isolation by compliant sensor mounting applied to a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes

    2014-01-01

    In this paper a vibration isolated design of the Coriolis Mass-Flow Meter (CMFM) is proposed, by introducing a compliant connection between the casing and the tube displacement sensors with the intention to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube

  15. Vibration Isolation by an Actively Compliantly Mounted Sensor Applied to a Coriolis Mass-Flow Meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries

    2016-01-01

    In this paper, a vibration isolated design of a Coriolis mass-flow meter (CMFM) is proposed by introducing a compliant connection between the casing and the tube displacement sensors, with the objective to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube

  16. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  17. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Directory of Open Access Journals (Sweden)

    Remco Wiegerink

    2013-03-01

    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  18. Compact mass flow meter based on a micro coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; van de Geest, Jan; Katerberg, Marcel; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Lötters, Joost Conrad

    2013-01-01

    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1

  19. Compact mass flow meter based on a micro Coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; Katerberg, M.R.; Lammerink, Theodorus S.J.; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2012-01-01

    In this paper we present a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 2 g/h (for water at a pressure drop of 2 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading. The temperature drift between 10 and 50 ºC is below 1 mg/h/ºC. The meter is robust,

  20. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    Science.gov (United States)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  1. Elbow mass flow meter

    Science.gov (United States)

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  2. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-01-01

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621

  3. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-11-13

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  4. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2015-11-01

    Full Text Available Soot sensors are required for on-board diagnostics (OBD of automotive diesel particulate filters (DPF to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  5. Experimental and numerical analysis of heat transfer phenomena in a sensor tube of a mass flow controller

    International Nuclear Information System (INIS)

    Jang, Seok Pil; Kim, Sung Jin; Choi, Do Hyung

    2000-01-01

    As a mass flow controller is widely used in many manufacturing processes for controlling a mass flow rate of gas with accuracy of 1%, several investigators have tried to describe the heat transfer phenomena in a sensor tube of an MFC. They suggested a few analytic solutions and numerical models based on simple assumptions, which are physically unrealistic. In the present work, the heat transfer phenomena in the sensor tube of the MFC are studied by using both experimental and numerical methods. The numerical model is introduced to estimate the temperature profile in the sensor tube as well as in the gas stream. In the numerical model, the conjugate heat transfer problem comprising the tube wall and the gas stream is analyzed to fully understand the heat transfer interaction between the sensor tube and the fluid stream using a single domain approach. This numerical model is further verified by experimental investigation. In order to describe the transport of heat energy in both the flow region and the sensor tube, the Nusselt number at the interface between the tube wall and the gas stream as well as heatlines is presented from the numerical solution

  6. Multiple breath washout with a sidestream ultrasonic flow sensor and mass spectrometry: a comparative study.

    Science.gov (United States)

    Fuchs, Susanne I; Buess, Christian; Lum, Sooky; Kozlowska, Wanda; Stocks, Janet; Gappa, Monika

    2006-12-01

    Over recent years, there has been renewed interest in the multiple breath wash-out (MBW) technique for assessing ventilation inhomogeneity (VI) as a measure of early lung disease in children. While currently considered the gold standard, use of mass spectrometry (MS) to measure MBW is not commercially available, thereby limiting widespread application of this technique. A mainstream ultrasonic flow sensor was marketed for MBW a few years ago, but its use was limited to infants. We have recently undertaken intensive modifications of both hardware and software for the ultrasonic system to extend its use for older children. The aim of the current in vivo study was to compare simultaneous measurements of end-tidal tracer gas concentrations and lung clearance index (LCI) from this modified ultrasonic device with those from a mass spectrometer. Paired measurements of three MBW, using 4% sulfur hexafluoride (SF(6)) as the tracer gas and the two systems in series, were obtained in nine healthy adult volunteers. End-tidal tracer gas concentrations (n = 675 paired values) demonstrated close agreement (95% CI of difference -0.23; -0.17%, r(2) = 1). FRC was slightly higher from the MS (95%CI 0.08;0.17 L), but there was no difference in LCI (95%CI -0.10; 0.3). We conclude, that this ultrasonic prototype system measures end-tidal tracer gas concentration accurately and may therefore be a valid tool for MBW beyond early childhood. This prototype system could be the basis for a commercial device allowing more widespread application of MBW in the near future.

  7. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  8. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  9. Microparticle Flow Sensor

    Science.gov (United States)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  10. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  11. Thermosensitive gas flow sensor

    International Nuclear Information System (INIS)

    Berlicki, T.; Osadnik, S.; Prociow, E.

    1997-01-01

    Results of investigations on thermal gas flow sensor have been presented. The sensor consists of three thin film resistors Si+Ta. The circuit was designed in the form of two bridges; one of them serves for measurement of the heater temperature, the second one for the measurement of temperature difference of peripheral resistors. The measurement of output voltage versus the rate of nitrogen flow at various power levels dissipated at the heater and various temperatures have been made. The measurements were carried out in three versions; (a) at constant temperature of the heater, (b) at constant power dissipated in the heater, controlled by the power of the heater, (c) at constant temperature of the heater controlled by the power dissipated in the peripheral resistors of the sensor. Due to measurement range it is advantageous to stabilize the temperature of the heater, especially by means of the power supplied to the peripheral resistors. In this case the wider measurement range can be obtained. (author)

  12. Micromachined pressure/flow-sensor

    NARCIS (Netherlands)

    Oosterbroek, R.E.; Lammerink, Theodorus S.J.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt; van den Berg, Albert

    1999-01-01

    The micromechanical equivalent of a differential pressure flow-sensor, well known in macro mechanics, is discussed. Two separate pressure sensors are used for the device, enabling to measure both, pressure as well as volume flow-rate. An integrated sensor with capacitive read-out as well as a

  13. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  14. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    Science.gov (United States)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  15. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  16. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.

    Science.gov (United States)

    Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar

    2016-01-01

    Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.

  17. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  18. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  19. Permanent downhole seismic sensors in flowing wells

    NARCIS (Netherlands)

    Jaques, P.; Ong, H.; Jupe, A.; Brown, I.; Jansenns, M.

    2003-01-01

    It is generally accepted that the 'Oilfield of the Future' will incorporate distributed permanent downhole seismic sensors in flowing wells. However the effectiveness of these sensors will be limited by the extent to which seismic signals can be discriminated, or de-coupled, from flow induced

  20. Biomimetic micromechanical adaptive flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Floris, J.; Dijkstra, Marcel; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities

  1. Thermal Flow Sensors for Harsh Environments.

    Science.gov (United States)

    Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung

    2017-09-08

    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  2. Thermal Flow Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Vivekananthan Balakrishnan

    2017-09-01

    Full Text Available Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI, and complementary metal-oxide semiconductor (CMOS have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.

  3. A screen-printed flexible flow sensor

    International Nuclear Information System (INIS)

    Moschos, A; Kaltsas, G; Syrovy, T; Syrova, L

    2017-01-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range. (paper)

  4. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  5. Cricket inspired flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Casas, J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on mechanoreceptive sensory hairs of crickets. These filiform hairs are highly perceptive to lowfrequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of

  6. Sensor Development for Active Flow Control

    Science.gov (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  7. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  8. Aluminum nanocantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nanocantilevers using a simple, one mask contact UV lithography technique with lateral and vertical dimensions under 500 and 100 nm, respectively. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Furthermore, it is shown ...

  9. Development of a micro-thermal flow sensor with thin-film thermocouples

    Science.gov (United States)

    Kim, Tae Hoon; Kim, Sung Jin

    2006-11-01

    A micro-thermal flow sensor is developed using thin-film thermocouples as temperature sensors. A micro-thermal flow sensor consists of a heater and thin-film thermocouples which are deposited on a quartz wafer using stainless steel masks. Thin-film thermocouples are made of standard K-type thermocouple materials. The mass flow rate is measured by detecting the temperature difference of the thin-film thermocouples located in the upstream and downstream sections relative to a heater. The performance of the micro-thermal flow sensor is experimentally evaluated. In addition, a numerical model is presented and verified by experimental results. The effects of mass flow rate, input power, and position of temperature sensors on the performance of the micro-thermal flow sensor are experimentally investigated. At low values, the mass flow rate varies linearly with the temperature difference. The linearity of the micro-thermal flow sensor is shown to be independent of the input power. Finally, the position of the temperature sensors is shown to affect both the sensitivity and the linearity of the micro-thermal flow sensor.

  10. Biomimetic micromechanical adaptive flow-sensor arrays

    Science.gov (United States)

    Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco

    2007-05-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.

  11. Integrated soft sensor model for flow control.

    Science.gov (United States)

    Aijälä, G; Lumley, D

    2006-01-01

    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  12. Flexible micro flow sensor for micro aerial vehicles

    Science.gov (United States)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-12-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  13. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, A.

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do

  14. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels

    NARCIS (Netherlands)

    Dijkstra, Marcel; de Boer, Meint J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2008-01-01

    A calorimetric miniaturized flow sensor was realized with a linear sensor response measured for water flow up to flow rates in the order of 300 nl min-1. A versatile technological concept is used to realize a sensor with a thermally isolated freely suspended silicon-rich silicon-nitride microchannel

  15. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    International Nuclear Information System (INIS)

    Wu, Hao; Dong, Feng

    2014-01-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model

  16. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap

  17. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    OpenAIRE

    Jang, Jaesung; Wereley, Steven

    2007-01-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both wal...

  18. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    International Nuclear Information System (INIS)

    Olczyk, Aleksander

    2009-01-01

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate φ m = ρv, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  19. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    Energy Technology Data Exchange (ETDEWEB)

    Olczyk, Aleksander [Institute of Turbomachinery, Technical University of Lodz, Wolczanska 219/223, 90-924 Lodz (Poland)], E-mail: aolczyk@p.lodz.pl

    2009-08-15

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate {phi}{sub m} = {rho}v, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  20. Mass transfer in counter current flows

    Energy Technology Data Exchange (ETDEWEB)

    Doichinova, Maria D.; Popova, Petya G.; Boyadjiev, Christo B. [Bulgarian Academy of Science, Institute of Chemical Engineering, Sofia (Bulgaria)

    2011-07-01

    A theoretical analysis of gas-liquid counter-current flow in laminar boundary layers with flat phase boundary based on similarity variables method has been done. The obtained numerical results for the energy dissipation, mass transfer rate and their ratio are compared with analogous results for concurrent flows. A diffusion type of model is proposed for modeling of the mass transfer with chemical reaction in the column apparatuses in the cases of circulation zones. The presence of rising and descending flows (the change of the velocity direction) leads to using three coordinate systems. An iterative algorithm for the concentration distribution calculation is proposed. The influence of the zones breadths on the mass transfer efficiency in the column is investigated. Key words: efficiency, mass transfer, velocity distribution, column apparatuses, circulation zones.

  1. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  2. Device for measurement of gas mass flow. Einrichtung zur Gasmassenstrommessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    The invention is concerned with a device for the measurement of gas mass flow, particularly measuring air mass flow for vehicles with internal combustion engines, with a measurement bridge, in one branch of which a gas flow resistance, particularly a hot film sensor, with gas flowing round it, is connected in series with a measurement resistance and in another branch of which a compensation resistance measuring the gas temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and a control parameter is produced from this, in order to control a transistor valve situated in the bridge supply path of a DC voltage source via its control electrode until the bridge is balanced, and where the voltage at the measurement resistance after the bridge is balanced is used as a measure of the gas mass flow. In order to obtain exact results of measurement in spite of relatively high interference noise from the cables, it is proposed that an increased supply DC voltage appreciably decreasing the occurring interference noise from the cables should be produced from a small DC voltage and that the output of the DC/DC voltage converter should be connected to the control electrode of the transistor valve, so that the control parameter for the control electrode is derived from the raised DC supply voltage through reducers depending on the gas flow.

  3. Development of an optical fiber flow velocity sensor.

    Science.gov (United States)

    Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki

    2009-01-01

    A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.

  4. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam

  5. Miniature Sensor for Aerosol Mass Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  6. A MEMS SOI-based piezoresistive fluid flow sensor

    Science.gov (United States)

    Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.

    2018-02-01

    In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.

  7. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  8. Mass Tracking with a MEMS-based Gravity Sensor

    Science.gov (United States)

    Pike, W. T.; Mukherjee, A.; Warren, T.; Charalambous, C.; Calcutt, S. B.; Standley, I.

    2017-12-01

    We achieve the first demonstration of the dynamic location of a moving mass using a MEMS sensor to detect gravity. The sensor is based on a microseismometer developed for planetary geophysics. In an updated version of the original Cavendish experiment the noise floor of the sensor, at 0.25 µgal/rtHz, allows the determination of the dynamic gravitational field from the motion of the mass of an oscillating pendulum. Using the determined noise floor we show that this performance should be sufficient for practical subsurface gravity surveying, in particular detection of 50-cm diameter pipes up to 10 m below the surface. Beyond this specific application, this sensor with a mass of less than 250 g per axis represents a new technology that opens up the possibility of drone deloyments for gravity mapping.

  9. Micromachined Sensors for Hypersonic Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Interdisciplinary Consulting Corporation proposes a sensor that offers the unique capability to make wall shear stress measurement and pressure measurements for time...

  10. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  11. Longitudinal bulk a coustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    Design, fabrication and characterization, in terms of mass sensitivity, is presented for a polycrystalline silicon longitudinal bulk acoustic cantilever. The device is operated in air at 51 MHz, resulting in a mass sensitivity of 100 HZ/fg (1 fg = 10{su−15 g). The initial characterization is cond...

  12. Reading drift in flow rate sensors caused by steady sound waves

    International Nuclear Information System (INIS)

    Maximiano, Celso; Nieble, Marcio D.; Migliavacca, Sylvana C.P.; Silva, Eduardo R.F.

    1995-01-01

    The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs

  13. Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kyu; Cho, Jong Yun; Jeon, Sang Min; Cha, Hyung Joon; Moon, Won Kyu [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lee, Yeol Ho [Samsung Advanced Institute of Technology, Yongin (Korea, Republic of)

    2011-10-15

    Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min.

  14. Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Cho, Jong Yun; Jeon, Sang Min; Cha, Hyung Joon; Moon, Won Kyu; Lee, Yeol Ho

    2011-01-01

    Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min

  15. Gaseous Nitrogen Orifice Mass Flow Calculator

    Science.gov (United States)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  16. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  17. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  18. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  19. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre

    2013-01-01

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  20. Developing the ultimate biomimetic flow-sensor array

    NARCIS (Netherlands)

    Bruinink, C.M.; Jaganatharaja, R.K.; de Boer, Meint J.; Berenschot, Johan W.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2009-01-01

    This contribution reports on the major developments and achievements in our group on fabricating highly sensitive biomimetic flow-sensor arrays. The mechanoreceptive sensory hairs of crickets are taken as a model system for their ability to perceive flow signals at thermal noise levels and,

  1. A pathway to eliminate the gas flow dependency of a hydrocarbon sensor for automotive exhaust applications

    Directory of Open Access Journals (Sweden)

    G. Hagen

    2018-02-01

    Full Text Available Gas sensors will play an essential role in future combustion-based mobility to effectively reduce emissions and monitor the exhausts reliably. In particular, an application in automotive exhausts is challenging due to the high gas temperatures that come along with highly dynamic flow rates. Recently, a thermoelectric hydrocarbon sensor was developed by using materials which are well known in the exhausts and therefore provide the required stability. As a sensing mechanism, the temperature difference that is generated between a catalytically activated area during the exothermic oxidation of said hydrocarbons and an inert area of the sensor is measured by a special screen-printed thermopile structure. As a matter of principle, this thermovoltage significantly depends on the mass flow rate of the exhausts under certain conditions. The present contribution helps to understand this cross effect and proposes a possible setup for its avoidance. By installing the sensor in the correct position of a bypass solution, the gas flow around the sensor is almost free of turbulence. Now, the signal depends only on the hydrocarbon concentration and not on the gas flow. Such a setup may open up new possibilities of applying novel sensors in automotive exhausts for on-board-measurement (OBM purposes.

  2. Wire-mesh sensors for two-phase flow investigations

    International Nuclear Information System (INIS)

    Prasser, H.M.

    1999-01-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  3. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-07-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  4. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-09-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  5. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  6. Through-flow cell of immersion sensor

    International Nuclear Information System (INIS)

    Svandelik, J.

    1986-01-01

    The cell consists of a jacket in shape of a triangular pyramid whose two opposite and skew edges are truncated. It is provided with inlet and outlet openings. The measuring immersion sensor is inserted through the outlet opening or through an opening provided in one of the jacket side walls. The immersion sensor cell is mainly used for in-service inspection of radioactivity of the ion exchanger at the output of the elution column in the manufacture of chemical concentrates of uranium from ores. (J.B.). 4 figs

  7. Monolithic integration of a micromachined piezoresistive flow sensor

    International Nuclear Information System (INIS)

    Li, Dan; Zhao, Tao; Yang, Zhenchuan; Zhang, Dacheng

    2010-01-01

    In this paper, a monolithic integrated piezoresistive flow sensor is presented, which was fabricated with an intermediate CMOS (complementary metal-oxide semiconductor) MEMS (micro electro mechanical system) process compatible with integrated pressure sensors. Four symmetrically arranged silicon diaphragms with piezoresistors on them were used to sense the drag force induced by the input gas flow. A signal conditioning CMOS circuit with a temperature compensation module was designed and fabricated simultaneously on the same chip with an increase of the total chip area by only 35%. An extra step of boron implantation and annealing was inserted into the standard CMOS process to form the piezoresistors. KOH anisotropic etching from the backside and deep reactive ion etching (DRIE) from the front side were combined to realize the silicon diaphragms. The integrated flow sensor was packaged and tested. The testing results indicated that the addition of piezoresistor formation and structure releasing did not significantly change any of the circuitry characteristics. The measured sensor output has a quadratic relation with the input flow rate of the fluid as predicted. The tested resolution of the sensor is less than 0.1 L min −1 with a measurement range of 0.1–5 L min −1 and the sensitivity is better than 40 mV per (L min −1 ) with a measurement range of 4–5 L min −1 . The measured noise floor of the sensor is 21.7 µV rtHz −1 .

  8. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A

    2016-01-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)

  9. Distributed thermal micro sensors for fluid flow

    NARCIS (Netherlands)

    van Baar, J.J.J.

    2002-01-01

    In this thesis thermal sensor-actuator structures are proposed for measuring the parameters pressure p, dynamic viscosity μ, thermal conductivity , specific heat c, density and the fluid velocity v. In this chapter examples will be given of the added value of many identical simple elements and the

  10. Biomimetic flow sensors for environmental awareness

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Dagamseh, A.M.K.

    Crickets possess hairy organs attached to their abdomen, the so-called cerci. These cerci contain highly flow-sensitive mechanosensors that enable the crickets to monitor the flow-field around them and react to specific stimuli form the environment, e.g. air-movements generated by hunting spiders.

  11. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco

    2017-12-25

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap and simple fabrication process. The temperature sensor is a negative temperature coefficient thermistor with non-linear response typical of semi-metals. The thermistor shows a 4% decrease of the resistance in a temperature range of 20–60 °C. The flow sensor exploits the piezoresistive properties of laser-induced graphene and can be used both in gaseous and liquid media thanks to a protective polydimethylsiloxane coating. Main characteristics are ultra-fast response and versatility in design offered by the laser technology.

  12. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further...

  13. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  14. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    Science.gov (United States)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  15. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  16. MEMS device for mass market gas and chemical sensors

    Science.gov (United States)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air

  17. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    Science.gov (United States)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  18. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  19. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  20. Micro-cantilever flow sensor for small aircraft

    KAUST Repository

    Ghommem, Mehdi; Calo, Victor M.; Claudel, Christian G.

    2013-01-01

    We extend the use of cantilever beams as flow sensors for small aircraft. As such, we propose a novel method to measure the airspeed and the angle of attack at which the air travels across a small flying vehicle. We measure beam deflections and extract information about the surrounding flow. Thus, we couple a nonlinear beam model with a potential flow simulator through a fluid-structure interaction scheme. We use this numerical approach to generate calibration curves that exhibit the trend for the variations of the limit cycle oscillations amplitudes of flexural and torsional vibrations with the air speed and the angle of attack, respectively. © The Author(s) 2013.

  1. Micro-cantilever flow sensor for small aircraft

    KAUST Repository

    Ghommem, Mehdi

    2013-10-01

    We extend the use of cantilever beams as flow sensors for small aircraft. As such, we propose a novel method to measure the airspeed and the angle of attack at which the air travels across a small flying vehicle. We measure beam deflections and extract information about the surrounding flow. Thus, we couple a nonlinear beam model with a potential flow simulator through a fluid-structure interaction scheme. We use this numerical approach to generate calibration curves that exhibit the trend for the variations of the limit cycle oscillations amplitudes of flexural and torsional vibrations with the air speed and the angle of attack, respectively. © The Author(s) 2013.

  2. Reading drift in flow rate sensors caused by steady sound waves; Desvios de leitura em sensores de vazao provocados por ondas sonoras estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Maximiano, Celso; Nieble, Marcio D. [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil); Migliavacca, Sylvana C.P.; Silva, Eduardo R.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs.

  3. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  4. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  5. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  6. Sensor for Boundary Shear Stress in Fluid Flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  7. Nanocantilever based mass sensor integrated with cmos circuitry

    DEFF Research Database (Denmark)

    Davis, Zachary James; Abadal, G.; Campabadal, F.

    2003-01-01

    We have demonstrated the successful integration of a cantilever based mass detector with standard CMOS circuitry. The purpose of the circuitry is to facilitate the readout of the cantilever's deflection in order to measure resonant frequency shifts of the cantilever. The principle and design...... of the mass detector are presented showing that miniaturization of such cantilever based resonant devices leads to highly sensitive mass sensors, which have the potential to detect single molecules. The design of the readout circuitry used for the first electrical characterization of an integrated cantilever...... with CMOS circuitry is demonstrated. The electrical characterization of the device shows that the resonant behavior of the cantilever depends on the applied voltages, which corresponds to theory....

  8. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    Science.gov (United States)

    Hübl, Johannes; McArdell, Brian W.; Walter, Fabian

    2018-01-01

    The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449

  9. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    Directory of Open Access Journals (Sweden)

    Andreas Schimmel

    2018-05-01

    Full Text Available The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz, several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio.

  10. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  11. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  12. Vibration isolation for Coriolis Mass-Flow meters

    NARCIS (Netherlands)

    van de Ridder, Bert

    2015-01-01

    A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force principle for direct mass-flow measurements, with high accuracy, range-ability and repeatability. The working principle of a CMFM is as follows: a fluid conveying tube is actuated to oscillate at a low amplitude. A

  13. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.; Nayfeh, Ali H.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  14. Mass and Position Determination in MEMS Resonant Mass Sensors: Theoretical and Experimental Investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-12-05

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  15. Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation

    KAUST Repository

    Bouchaala, Adam M.

    2016-08-31

    We present a method to determine accurately the position and mass of an entity attached to the surface of an electrostatically actuated clamped-clamped microbeam implemented as a mass sensor. In the theoretical investigation, the microbeam is modeled as a nonlinear Euler-Bernoulli beam and a perturbation technique is used to develop a closed-form expression for the frequency shift due to an added mass at a specific location on the microbeam surface. The experimental investigation was conducted on a microbeam made of Polyimide with a special lower electrode to excite both of the first and second modes of vibration. Using an ink-jet printer, we deposited droplets of polymers with a defined mass and position on the surface of the microbeam and we measured the shifts in its resonance frequencies. The theoretical predictions of the mass and position of the deposited droplets match well with the experimental measurements.

  16. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...... is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external...

  17. Inflow measurements from blade-mounted flow sensors: Flow analysis, application and aeroelastic response

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard

    -mounted flow sensor, BMFS, e.g. a five-hole pitot tube, which has been used in several research experiments over the last 30 years. The BMFS measured flow velocity is, however, located inside the induction zone and thereby influenced by the aerodynamic properties, the control strategy and the operational......The power and load performance of wind turbines are both crucial for the development and expansion of wind energy. The power and loads are highly dependent on the inflow conditions, which can be measured using different types of sensors mounted on nearby met masts, on the nacelle, at the spinner...... or at the blade. Each combination of sensor type and mounting position has advantages and shortcomings. To characterise the inflow that results in high and low fatigue loads, information about the temporal and spatial variations within the rotor area is required. This information can be obtained from a blade...

  18. Assessment for hydrodynamic masses of HANARO flow tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho

    2000-06-01

    The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes.

  19. Assessment for hydrodynamic masses of HANARO flow tubes

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Cho, Yeong Garp; Kim, Doo Kie; Woo, Jong Sug; Park, Jin Ho

    2000-06-01

    The effect of hydrodynamic masses is investigated in dynamic characteristics and seismic response analyses of the submerged HANARO hexagonal flow tubes. Consistent hydrodynamic masses of the surrounding water are evaluated by the prepared program using the finite element method, in which arbitrary cross-sections of submerged structures and boundary conditions of the surrounding fluid can be considered. Also lumped hydrodynamic masses are calculated using simple formula applied to hexagonal flow tubes in the infinite fluid. Modal analyses and seismic response spectrum analyses were performed using hydrodynamic masses obtained by the finite element method and the simple formula. The results of modal analysis were verified by comparing the results measured from modal tests. And the displacement results of the seismic response spectrum analysis were assessed by comparing the consistent and the lumped hydrodynamic masses obtained by various methods. Finally practical criteria based on parametric studies are proposed as the lumped hydrodynamic masses for HANARO flow tubes

  20. A flow-type amperometric sensor in immunoenzyme analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivnitskii, D.M.; Aronbaev, D.M.; Kashkin, A.P.; Meringova, L.F.; Yulaev, M.F.

    1986-06-01

    A portable flow-type amperometric sensor has been made for the immunoenzyme determination of L-asparaginase. The authors show it is possible to determine peroxidase (the marker enzyme) by this method over the concentration range 1.10/sup -11/-4.10/sup -10/ M. The limit of detection for L-asparaginase is 1.8.10/sup -10/ M, which corresponds to clinically significant enzyme concentrations. Various modifications of immunoenzyme analysis (IEA) are used in clinical and research laboratories, and have contributed to diagnosis as regards antigens and serum antibodies. The sensor used here uses the electrical reduction of the molecular ion at the surface of thr measurement electrode. The electrochemical reaction is preceded by a competing antigen-antibody reaction and by the peroxidase oxidation of the iodide in the depressions.

  1. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  2. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  3. Gas mass transfer for stratified flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Hughes, E.D.

    1995-01-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature

  4. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  5. Visualization of Concrete Slump Flow Using the Kinect Sensor.

    Science.gov (United States)

    Kim, Jung-Hoon; Park, Minbeom

    2018-03-03

    Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow.

  6. Mass transfer in horizontal flow channels with thermal gradients

    International Nuclear Information System (INIS)

    Bendrich, G.; Shemilt, L.W.

    1997-01-01

    Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)

  7. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  8. Guides for flow sensors selection; Guias para la seleccion de sensores de flujo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Garcia, Gustavo; Guzman Flores, Roberto; Rodriguez Martinez, Arnulfo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    In this paper a system is presented that allows the selection and calculation on instruments for flow measurement, based on practical experiences, standards an taking into consideration the process operational characteristics such as fluid type, maximum flow rate, piping diameter, etc. The system is composed of a knowledge base and a software for the selection, calculation and de adequate recommendation of flow sensing elements for the different services needed in the power plants. [Espanol] En este trabajo se presenta un sistema que permite realizar la seleccion y calculo de instrumentos para la medicion de flujo con base en experiencias practicas, normas y tomando en cuenta las caracteristicas de operacion del proceso como el tipo de fluido, flujo maximo, diametro de tuberia, etcetera. El sistema esta compuesto por una base de conocimiento y un software para la seleccion, calculo y la recomendacion adecuada de elementos sensores de flujo para los diferentes servicios que se tienen en centrales generadoras.

  9. Guides for flow sensors selection; Guias para la seleccion de sensores de flujo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Garcia, Gustavo; Guzman Flores, Roberto; Rodriguez Martinez, Arnulfo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    In this paper a system is presented that allows the selection and calculation on instruments for flow measurement, based on practical experiences, standards an taking into consideration the process operational characteristics such as fluid type, maximum flow rate, piping diameter, etc. The system is composed of a knowledge base and a software for the selection, calculation and de adequate recommendation of flow sensing elements for the different services needed in the power plants. [Espanol] En este trabajo se presenta un sistema que permite realizar la seleccion y calculo de instrumentos para la medicion de flujo con base en experiencias practicas, normas y tomando en cuenta las caracteristicas de operacion del proceso como el tipo de fluido, flujo maximo, diametro de tuberia, etcetera. El sistema esta compuesto por una base de conocimiento y un software para la seleccion, calculo y la recomendacion adecuada de elementos sensores de flujo para los diferentes servicios que se tienen en centrales generadoras.

  10. Mass flow discharge and total temperature characterisation of a pyrotechnic gas generator formulation for airbag systems

    Energy Technology Data Exchange (ETDEWEB)

    Neutz, Jochen; Koenig, Andreas [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany); Knauss, Helmut; Jordan, Sebastian; Roediger, Tim; Smorodsky, Boris [Universitaet Stuttgart (Germany). Institut fuer Aerodynamik und Gasdynamik; Bluemcke, Erich Walter [AUDI AG, Department I/EK-523, Ingolstadt (Germany)

    2009-06-15

    The mass flow characteristics of gas generators for airbag applications have to comply with a number of requirements for an optimal deployment of the airbag itself. Up to now, the mass flow was determined from pressure time histories of so-called can tests. This procedure suffers from the missing knowledge on the temperature of the generated gas entering the can. A new test setup described in this paper could overcome this problem by providing highly time resolved information on the gas's total temperature and the mass flow of the generator. The test setup consisted of a combustion chamber with a specially designed Laval nozzle in combination with a temperature sensor of high time resolution. The results showed a high time resolved temperature signal, which was disturbed by the formation of a slag layer on the sensor. Plausibility considerations with experimentally and thermodynamically determined combustion temperatures led to satisfying results for the overall temperature as characteristic parameter of airbag inflating gases flows from pyrotechnics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.

    Science.gov (United States)

    Bircher, Benjamin A; Duempelmann, Luc; Renggli, Kasper; Lang, Hans Peter; Gerber, Christoph; Bruns, Nico; Braun, Thomas

    2013-09-17

    A microcantilever based method for fluid viscosity and mass density measurements with high temporal resolution and microliter sample consumption is presented. Nanomechanical cantilever vibration is driven by photothermal excitation and detected by an optical beam deflection system using two laser beams of different wavelengths. The theoretical framework relating cantilever response to the viscosity and mass density of the surrounding fluid was extended to consider higher flexural modes vibrating at high Reynolds numbers. The performance of the developed sensor and extended theory was validated over a viscosity range of 1-20 mPa·s and a corresponding mass density range of 998-1176 kg/m(3) using reference fluids. Separating sample plugs from the carrier fluid by a two-phase configuration in combination with a microfluidic flow cell, allowed samples of 5 μL to be sequentially measured under continuous flow, opening the method to fast and reliable screening applications. To demonstrate the study of dynamic processes, the viscosity and mass density changes occurring during the free radical polymerization of acrylamide were monitored and compared to published data. Shear-thinning was observed in the viscosity data at higher flexural modes, which vibrate at elevated frequencies. Rheokinetic models allowed the monomer-to-polymer conversion to be tracked in spite of the shear-thinning behavior, and could be applied to study the kinetics of unknown processes.

  12. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  13. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  14. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.

    Science.gov (United States)

    Park, Yu Sun; Chang, Soon Heung

    2011-04-04

    A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  15. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  16. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  17. Methodology for interpretation of fissile mass flow measurements

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mattingly, J.K.; Mullens, J.A.

    1997-01-01

    This paper describes a non-intrusive measurement technique to monitor the mass flow rate of fissile material in gaseous or liquid streams. This fissile mass flow monitoring system determines the fissile mass flow rate by relying on two independent measurements: (1) a time delay along a given length of pipe, which is inversely proportional to the fissile material flow velocity, and (2) an amplitude measurement, which is proportional to the fissile concentration (e.g., grams of 235 U per length of pipe). The development of this flow monitor was first funded by DOE/NE in September 95, and initial experimental demonstration by ORNL was described in the 37th INMM meeting held in July 1996. This methodology was chosen by DOE/NE for implementation in November 1996; it has been implemented in hardware/software and is ready for installation. This paper describes the methodology used to interpret the data measured by the fissile mass flow monitoring system and the models used to simulate the transport of fission fragments from the source location to the detectors

  18. Virtual mass effects in two-phase flow. Topical report

    International Nuclear Information System (INIS)

    Cheng, L.Y.; Drew, D.A.; Lahey, R.T. Jr.

    1978-03-01

    The effect of virtual mass on phase separation during the acceleration of a two-phase mixture was studied. Virtual mass can be regarded as an induced inertia on the dispersed phase which is accelerating relative to the continuous phase, and it was found that the virtual mass acceleration is objective, implying an invariance with respect to reference frame. An objective form of the virtual acceleration was derived and required parameters were determined for limiting cases. Analyses determined that experiments on single bubble nozzle/diffuser flow cannot readily discriminate between various virtual mass acceleration models

  19. Free flow wind speed from a blade-mounted flow sensor

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben Juul; Aagaard Madsen, Helge

    2018-01-01

    This paper presents a method for obtaining the free-inflow velocities from a 3-D flow sensor mounted on the blade of a wind turbine. From its position on the rotating blade, e.g. one-third from the tip, a blade-mounted flow sensor (BMFS) is able to provide valuable information about the turbulent...... sheared inflow in different regions of the rotor. At the rotor, however, the inflow is affected by the wind turbine, and in most cases the wind of interest is the inflow that the wind turbine is exposed to, i.e. the free-inflow velocities. The current method applies a combination of aerodynamic models...... and procedures to estimate the induced velocities, i.e. the disturbance of the flow field caused by the wind turbine. These velocities are subtracted from the flow velocities measured by the BMFS to obtain the free-inflow velocities. Aeroelastic codes, like HAWC2, typically use a similar approach to calculate...

  20. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  1. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  2. Shape signature based on Ricci flow and optimal mass transportation

    Science.gov (United States)

    Luo, Wei; Su, Zengyu; Zhang, Min; Zeng, Wei; Dai, Junfei; Gu, Xianfeng

    2014-11-01

    A shape signature based on surface Ricci flow and optimal mass transportation is introduced for the purpose of surface comparison. First, the surface is conformally mapped onto plane by Ricci flow, which induces a measure on the planar domain. Second, the unique optimal mass transport map is computed that transports the new measure to the canonical measure on the plane. The map is obtained by a convex optimization process. This optimal transport map encodes all the information of the Riemannian metric on the surface. The shape signature consists of the optimal transport map, together with the mean curvature, which can fully recover the original surface. The discrete theories of surface Ricci flow and optimal mass transportation are explained thoroughly. The algorithms are given in detail. The signature is tested on human facial surfaces with different expressions accquired by structured light 3-D scanner based on phase-shifting method. The experimental results demonstrate the efficiency and efficacy of the method.

  3. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  4. Biomimetic flow-sensor arrays based on the filiform hairs on the cerci of crickets

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Floris, J.; Jaganatharaja, R.K.; Izadi, N.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    In this paper we report on the latest developments in biomimetic flow-sensors based on the flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound

  5. Heat and mass transfer and hydrodynamics in swirling flows (review)

    Science.gov (United States)

    Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.

    2017-02-01

    Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.

  6. Development of an Intelligent Capacitive Mass Sensor Based on Co-axial Cylindrical Capacitor

    Directory of Open Access Journals (Sweden)

    Amir ABU AL AISH

    2009-06-01

    Full Text Available The paper presents a linear, robust and intelligent capacitive mass sensor made of a co-axial cylindrical capacitor. It is designed such that the mass under measurement is directly proportional to the capacitance of the sensor. The average value of the output voltage of a capacitance to voltage converter is proportional to the capacitance of the sensor. The output of the converter is measured and displayed, as mass, with the help of microcontroller. The results are free from the effect of stray capacitances which cause errors at low values of capacitances. Developed sensor is linear, free from errors due to temperature and highly flexible in design. The proto-type of the mass sensor can weigh up to 4 kilogram only.

  7. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  8. Modelling of convective heat and mass transfer in rotating flows

    CERN Document Server

    Shevchuk, Igor V

    2016-01-01

     This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...

  9. Mass flow and evolution of UW Canis Majoris

    International Nuclear Information System (INIS)

    Kondo, Y.; Rahe, J.

    1979-01-01

    The far-UV spectrum of the eclipsing binary UW CMa (07f + 0-B) has earlier been utilized to derive a mass-loss rate of about 10 -6 to 10 -5 solar mass per year. The mass flow seems to be basically in the form of a stellar wing emanating from the 07f primary component, with radiation pressure as the controlling factor. The main characteristics that make UW CMa a possible progenitor of a Wolf-Rayet system are discussed. (Auth.)

  10. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we

  11. Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines

    OpenAIRE

    Thomasson, Andreas; Eriksson, Lars

    2015-01-01

    The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...

  12. Characterization of bio-inspired hair flow sensors for oscillatory airflows: techniques to measure the response for both flow and pressure

    NARCIS (Netherlands)

    Droogendijk, H.; Dagamseh, A.M.K.; Sanders, Remco G.P.; Yntema, Doekle Reinder; Krijnen, Gijsbertus J.M.

    2014-01-01

    Hair sensors for oscillatory airflow, operating in the regime of bulk flow, particle velocity or both, can be characterized by several methods. In this work, we discuss harmonic measurements on MEMS hair flow sensors. To characterize this type of flow sensor the use of three different types of

  13. Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

    Science.gov (United States)

    Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.

    2017-10-01

    Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.

  14. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  15. Mass transfer from smooth alabaster surfaces in turbulent flows

    Science.gov (United States)

    Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.

    1987-11-01

    The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.

  16. Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs

    International Nuclear Information System (INIS)

    Devaraj, Harish; Sharma, Rajnish; Aw, Kean C; Travas-Sejdic, Jadranka; Aydemir, Nihan; Williams, David; Haemmerle, Enrico

    2015-01-01

    This paper reports on the creation of a low-cost, disposable sensor for low flow velocities, constructed from extruded micro-sized ‘hair’ of conducting polymer PEDOT. These microstructures are inspired by hair strands found in many arthropods and chordates, which play a prime role in sensing air flows. The paper describes the fabrication techniques and the initial prototype testing results toward employing this sensing mechanism in applications requiring sensing of low flow rates such as a flow sensor in neonatal resuscitators. The fabricated 1000 μm long, 6 μm diameter micro-hairs mimic the bending movement of tactile hair strands to sense the velocity of air flow. The prototype sensor developed is a four-level direct digital-output sensor and is capable of detecting flow velocities of up to 0.97 m s −1 . (paper)

  17. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  18. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cebolla, Rafeal O [Joint Research Centre, Petten, the Netherlands; Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands

    2017-11-06

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of

  19. Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity

    International Nuclear Information System (INIS)

    + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Dagamseh, A M K; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Bruinink, C M; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Wiegerink, R J; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Lammerink, T S J; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Droogendijk, H; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Krijnen, G J M

    2013-01-01

    Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s –1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations. (paper)

  20. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    Science.gov (United States)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  1. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport.

    Science.gov (United States)

    Abadeh, Aryan; Lew, Roger R

    2013-11-01

    Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.

  2. Measurement of Young’s modulus and volumetric mass density/thickness of ultrathin films utilizing resonant based mass sensors

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Vokoun, David; Jeng, Y.-R.

    2014-01-01

    Roč. 104, č. 8 (2014), "083102-1"-"083102-4" ISSN 0003-6951 R&D Projects: GA ČR GAP107/12/0800 Institutional support: RVO:68378271 Keywords : functional films * mass sensor * resonant frequency Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.302, year: 2014 http://scitation.aip.org/content/aip/journal/apl/104/8/10.1063/1.4866417

  3. Pressure sensor to determine spatial pressure distributions on boundary layer flows

    Science.gov (United States)

    Sciammarella, Cesar A.; Piroozan, Parham; Corke, Thomas C.

    1997-03-01

    The determination of pressures along the surface of a wind tunnel proves difficult with methods that must introduce devices into the flow stream. This paper presents a sensor that is part of the wall. A special interferometric reflection moire technique is developed and used to produce signals that measures pressure both in static and dynamic settings. The sensor developed is an intelligent sensor that combines optics and electronics to analyze the pressure patterns. The sensor provides the input to a control system that is capable of modifying the shape of the wall and preserve the stability of the flow.

  4. Hardware implementation of the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    McEvers, J.; Sumner, J.; Jones, R.; Ferrell, R.; Martin, C.; Uckan, T.; March-Leuba, J.

    1998-01-01

    This paper provides an overall description of the implementation of the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor, which is part of a Blend Down Monitoring System (BDMS) developed by the US Department of Energy (DOE). The Fissile Mass Flow Monitor is designed to measure the mass flow of fissile material through a gaseous or liquid process stream. It consists of a source-modulator assembly, a detector assembly, and a cabinet that houses all control, data acquisition, and supporting electronics equipment. The development of this flow monitor was first funded by DOE/NE in September 95, and an initial demonstration by ORNL was described in previous INMM meetings. This methodology was chosen by DOE/NE for implementation in November 1996, and the hardware/software development is complete. Successful BDMS installation and operation of the complete BDMS has been demonstrated in the Paducah Gaseous Diffusion Plant (PGDP), which is operated by Lockheed Martin Utility Services, Inc. for the US Enrichment Corporation and regulated by the Nuclear Regulatory Commission. Equipment for two BDMS units has been shipped to the Russian Federation

  5. A novel sidestream ultrasonic flow sensor for multiple breath washout in children.

    Science.gov (United States)

    Fuchs, Susanne I; Sturz, J; Junge, S; Ballmann, M; Gappa, M

    2008-08-01

    Inert gas multiple breath washout (MBW) for measuring Lung Clearance Index using mass spectrometry and 4% sulfur hexafluoride (SF(6)) as the tracer gas has been shown to be sensitive for detecting early Cystic Fibrosis (CF) lung disease. However, mass spectrometry requires bulky equipment and is expensive to buy and maintain. A novel sidestream ultrasonic device may overcome this problem. The aims of this study were to assess the feasibility and clinical validity of measuring lung volume (functional residual capacity, FRC) and the LCI using the sidestream ultrasonic flow sensor in children and adolescents with CF in relation to spirometry and plain chest radiographs. MBW using the sidestream ultrasonic device and conventional spirometry were performed in 26 patients with CF and 22 healthy controls. In the controls (4.7-17.7 years) LCI was similar to that reported using mass spectrometry (mean (SD) 6.7 (0.5)). LCI was elevated in 77% of the CF children (6.8-18.9 years), whereas spirometry was abnormal in only 38.5%, 61.5%, and 26.9% for FEV(1), MEF(25), and FEV(1)/FVC, respectively. This was more marked in children ultrasonic MBW is a valid and simple alternative to mass spectrometry for assessing ventilation homogeneity in children. (c) 2008 Wiley-Liss, Inc.

  6. Center of mass detection via an active pixel sensor

    Science.gov (United States)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  7. Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors

    International Nuclear Information System (INIS)

    Xu, Wei; Gao, Bo; Xu, Kun; Lee, Yi-Kuen; Pan, Liang; Chiu, Yi

    2017-01-01

    We systematically study the effect of two packaging configurations for the CMOS thermoresistive micro calorimetric flow (TMCF) sensors: S-type with the sensor chip protrusion-mounted on the flow channel wall and E-type with the sensor chip flush-mounted on the flow channel wall. Although the experimental results indicated that the sensitivity of the S-type was increased by more than 30%; the corresponding flow range as compared to the E-type was dramatically reduced by 60% from 0–11 m s −1 to 0–4.5 m s −1 . Comprehensive 2D CFD simulation and in-house developed 3D numerical simulations based on the gas-kinetic scheme were applied to study the flow separation of these two packaging designs with the major parameters. Indeed, the S-type design with the large protrusion would change the local convective heat transfer of the TMCF sensor and dramatically decrease the sensors’ performance. In addition, parametric CFD simulations of the packaging designs provide inspiration to propose a novel general flow regime map (FRM), i.e. normalized protrusion d * versus reduced chip Reynolds number Re * , where the critical boundary curve for the flow separation of TMCF sensors was determined at different channel aspect ratios. The proposed FRM can be a useful guideline for the packaging design and manufacturing of different micro thermal flow sensors. (paper)

  8. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    Science.gov (United States)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  9. Mass conservative fluid flow visualization for CFD velocity fields

    International Nuclear Information System (INIS)

    Li, Zhenquan; Mallinson, Gordon D.

    2001-01-01

    Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al., 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD data and using the existing method

  10. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  11. Detector and front-end electronics of a fissile mass flow monitoring system

    International Nuclear Information System (INIS)

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-01-01

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described

  12. Analysis of Ketones by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Wang, T.; Španěl, Patrik

    2003-01-01

    Roč. 17, - (2003), s. 2655-2660 ISSN 0951-4198 R&D Projects: GA ČR GA202/03/0827; GA ČR GA203/02/0737 Institutional research plan: CEZ:AV0Z4040901 Keywords : mass spectrometry * selected ion flow tube * ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2003

  13. Noise reducing screen devices for in-flow pressure sensors

    Science.gov (United States)

    Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)

    1997-01-01

    An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.

  14. Mass Flow Data Comparison for Comprehensive Fuel Cycle Options

    International Nuclear Information System (INIS)

    Kim, T.K.; Taiwo, T.A.; Wigeland, R.A.; Dixon, B.W.; Gehin, J.C.; Todosow, M.

    2015-01-01

    One of the key objectives stated in the United States Department of Energy, Nuclear Energy R and D road-map is the development of sustainable nuclear fuel cycles that improve natural resource utilisation and provide adequate capability and capacity to manage wastes produced by the fuel cycle. In order to inform this objective, an evaluation and screening of nuclear fuel cycle options has been conducted. As part of that effort, the entire fuel cycle options space was represented by 40 Evaluation Groups (EGs), and mass flow information for each of the EGs was provided by using an Analysis Example (AE). In this paper, the mass flow data of the 40 AEs are compared to inform on trends in the natural resource utilisation and nuclear waste generation. For the AEs that need enriched uranium support, the natural uranium required is high and the natural resource utilisation is generally lower than 2% regardless of the fuel cycle strategy (i.e., once-through, limited recycle, or continuous recycle). However, the utilisation could be improved by avoiding enriched uranium fuel support. The natural resource utilisation increases to more than 80% by recycling the nuclear fuel continuously without enriched uranium support. The combined mass of spent nuclear fuel (SNF) and high-level waste (HLW), i.e., SNF+HLW mass, is lower by using a continuous recycle option compared to a once-through fuel cycle option, because SNF mass is converted to mass of recycled products and only fission products and other process losses need to be disposed. The combined disposed mass of depleted uranium (DU), recovered uranium (RU) and thorium (RTh), i.e. DU+RU+RTh mass, has a similar trend to the uranium utilisation. For the AEs that need enriched uranium fuel, the DU and RU are the major fraction by mass of the DU+RU+RTh, which are two orders of magnitude higher in mass compared to those for the AEs that do not need enriched uranium fuel. (authors)

  15. Performance of solid electrolyte type oxygen sensor in flowing lead bismuth

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Takahashi, Minoru

    2005-01-01

    A solid electrolyte type oxygen sensor for liquid 45%lead-55%bismuth (Pb-Bi) was developed. The performance of the oxygen sensor in the flowing lead-bismuth (Pb-Bi) was investigated. The initial performance of the sensor was not reliable, since the reference fluid of the oxygen saturated bismuth in the sensor cell was not compact initially. The electromotive force (EMF) obtained from the yttria stabilized zirconia (YSZ) cell was the same as that from the magnesia stabilized zirconia (MSZ) cell in the flowing Pb-Bi. The EMF of the sensor in the flowing Pb-Bi was lower than that in the stagnant Pb-Bi. However, the difference was small. The sensor showed repeatability after the long term interruption and the Pb-Bi drain/charge operation. After the performance tests, the corrosion of the sensor cells were investigated metallurgically. The YSZ cell was eroded around the free surface of the flowing Pb-Bi after 3500 hour-exposure in the flowing Pb-Bi. The MSZ cell showed smooth surface without the erosion. Although the YSZ cell worked more stably than the MSZ cell, the mechanical strength of the YSZ cell is weaker than that of the MSZ cell. (author)

  16. Flow Webs: Mechanism and Architecture for the Implementation of Sensor Webs

    Science.gov (United States)

    Gorlick, M. M.; Peng, G. S.; Gasster, S. D.; McAtee, M. D.

    2006-12-01

    The sensor web is a distributed, federated infrastructure much like its predecessors, the internet and the world wide web. It will be a federation of many sensor webs, large and small, under many distinct spans of control, that loosely cooperates and share information for many purposes. Realistically, it will grow piecemeal as distinct, individual systems are developed and deployed, some expressly built for a sensor web while many others were created for other purposes. Therefore, the architecture of the sensor web is of fundamental import and architectural strictures that inhibit innovation, experimentation, sharing or scaling may prove fatal. Drawing upon the architectural lessons of the world wide web, we offer a novel system architecture, the flow web, that elevates flows, sequences of messages over a domain of interest and constrained in both time and space, to a position of primacy as a dynamic, real-time, medium of information exchange for computational services. The flow web captures; in a single, uniform architectural style; the conflicting demands of the sensor web including dynamic adaptations to changing conditions, ease of experimentation, rapid recovery from the failures of sensors and models, automated command and control, incremental development and deployment, and integration at multiple levels—in many cases, at different times. Our conception of sensor webs—dynamic amalgamations of sensor webs each constructed within a flow web infrastructure—holds substantial promise for earth science missions in general, and of weather, air quality, and disaster management in particular. Flow webs, are by philosophy, design and implementation a dynamic infrastructure that permits massive adaptation in real-time. Flows may be attached to and detached from services at will, even while information is in transit through the flow. This concept, flow mobility, permits dynamic integration of earth science products and modeling resources in response to real

  17. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  18. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  19. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  20. New Polymer Coatings for Chemically Selective Mass Sensors

    Science.gov (United States)

    Sims, S. C.; Wright, Cassandra; Cobb, J.; McCalla, T.; Revelle, R.; Morris, V. R.; Pollack, S. K.

    1997-01-01

    There is a current need to develop sensitive and chemically specific sensors for the detection of nitric acid for in-situ measurements in the atmosphere. Polymer coatings have been synthesized and tested for their sensitivity and selectivity to nitric acid. A primary requirement for these polymers is detectability down to the parts per trillion range. The results of studies using these polymers as coatings for quartz crystal microbalances (QCM) and surface acoustic wave (SAW) devices will be presented.

  1. A novel air flow sensor from printed PEDOT micro-hairs

    International Nuclear Information System (INIS)

    Parcell, J; Devaraj, H; Aw, K C; Aydemir, N; Travas-Sejdic, J; Williams, D E

    2013-01-01

    We report the creation of a low flow rate sensor from PEDOT micro-hairs. The hairs are printed as pipette-defined depositions using a nanopositioning system. The printing technique was developed for fabricating structures in 2D and 3D. Here micro-hairs with diameters of 4.4 μm were repeatedly extruded with constant heights. These hairs were then applied to produce a prototype flow rate sensor, which was shown to detect flows of 3.5 l min −1 . Structural analysis was performed to demonstrate that the design can be modified to potentially observe flows as low as 0.5 l min −1 . The results are extended to propose a practical digital flow rate sensor. (fast track communication)

  2. PACTOLUS, Nuclear Power Plant Cost and Economics by Discounted Cash Flow Method. CLOTHO, Mass Flow Data Calculation for Program PACTOLUS

    International Nuclear Information System (INIS)

    Haffner, D.R.

    1976-01-01

    1 - Description of problem or function: PACTOLUS is a code for computing nuclear power costs using the discounted cash flow method. The cash flows are generated from input unit costs, time schedules and burnup data. CLOTHO calculates and communicates to PACTOLUS mass flow data to match a specified load factor history. 2 - Method of solution: Plant lifetime power costs are calculated using the discounted cash flow method. 3 - Restrictions on the complexity of the problem - Maxima of: 40 annual time periods into which all costs and mass flows are accumulated, 20 isotopic mass flows charged into and discharged from the reactor model

  3. Development of subchannel void measurement sensor and multidimensional two-phase flow dynamics in rod bundle

    International Nuclear Information System (INIS)

    Arai, T.; Furuya, M.; Kanai, T.; Shirakawa, K.

    2011-01-01

    An accurate subchannel database is crucial for modeling the multidimensional two-phase flow in a rod bundle and for validating subchannel analysis codes. Based on available reference, it can be said that a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10×10 rod bundle with an o.d. of 10 mm and 3110 mm length, a new sensor consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes was developed. Electric potential in the proximity region between two wires creates a void fraction in the center subchannel region, like a so-called wire mesh sensor. A unique aspect of the devised sensor is that the void fraction near the rod surface can be estimated from the electric potential in the proximity region between one wire and one rod. The additional 400 points of void fraction and phasic velocity in 10×10 bundle can therefore be acquired. The devised sensor exhibits the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures exhibit the complexity of two-phase flow dynamics, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (author)

  4. A Smart Soft Sensor Predicting Feedwater Flow Rate

    International Nuclear Information System (INIS)

    Yang, Heon Young; Na, Man Gyun

    2009-01-01

    Since we evaluate thermal nuclear reactor power with secondary system calorimetric calculations based on feedwater flow rate measurements, we need to measure the feedwater flow rate accurately. The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors (PWRs) measure the flow rate by developing a differential pressure across a physical flow restriction. The differential pressure is then multiplied by a calibration factor that depends on various flow conditions in order to calculate the feedwater flow rate. The calibration factor is determined by the feedwater temperature and pressure. However, Venturi meters cause a buildup of corrosion products near the orifice of the meter. This fouling increases the measured pressure drop across the meter, thereby causing an overestimation of the feedwater flow rate

  5. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  6. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    International Nuclear Information System (INIS)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan; Yan Yong

    2009-01-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  7. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  8. Position and mass determination of multiple particles using cantilever based mass sensors

    International Nuclear Information System (INIS)

    Dohn, Soeren; Schmid, Silvan; Boisen, Anja; Amiot, Fabien

    2010-01-01

    Resonant microcantilevers are highly sensitive to added masses and have the potential to be used as mass-spectrometers. However, making the detection of individual added masses quantitative requires the position determination for each added mass. We derive expressions relating the position and mass of several added particles to the resonant frequencies of a cantilever, and an identification procedure valid for particles with different masses is proposed. The identification procedure is tested by calculating positions and mass of multiple microparticles with similar mass positioned on individual microcantilevers. Excellent agreement is observed between calculated and measured positions and calculated and theoretical masses.

  9. Multiscale modeling of fluid flow and mass transport

    Science.gov (United States)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  10. Heat and mass transfer in porous cavity: Assisting flow

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.

  11. Open boundary condition, Wilson flow and the scalar glueball mass

    International Nuclear Information System (INIS)

    Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy

    2014-01-01

    A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.

  12. Development of a FBG vortex flow sensor for high-temperature applications

    NARCIS (Netherlands)

    Cheng, L.K.; Schiferli, W.; Nieuwland, R.A.; Franzen, A.; Boer, J.J. den; Jansen, T.H.

    2011-01-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300°C and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are

  13. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    International Nuclear Information System (INIS)

    Tao, Junliang; Yu, Xiong

    2012-01-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts. (topical review)

  14. Mathematical model for a novel cryogenic flow sensor using fibre Bragg gratings

    OpenAIRE

    Thekkethil, S.R.; Reby Roy, K.E.; Thomas, R.J.; Neumann, H.; Ramalingam, R.

    2016-01-01

    In this work, a mathematical model is presented for a newly developed cryogenic flow meter which is based on fibre Bragg grating (FBG) principle. The principle of operation is to use the viscous drag force induced by a flowing fluid on an optical fibre placed transverse to the flow. An optical fibre will have a 5 mm long grating element inscribed in it and will be placed so that the sensor is at the centre of the pipe. The fibre will act as the bluff body, while the FBG sensor will pick up th...

  15. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-02-01

    Full Text Available This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  16. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  17. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  18. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  19. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  20. Application of a Cantilevered SWCNT with Mass at the Tip as a Nanomechanical Sensor

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Domairry, G.

    2011-01-01

    In this paper, the continuum mechanics method and a bending model is applied to obtain the resonant frequency of the fixed-free SWCNT where the mass is rigidly attached to the tip. This method used the Euler–Bernoulli theory with cantilevered boundary conditions where the effect of attached mass ...... of resonant frequency are decreased. The validity and the accuracy of these formulas are examined with other sensor equations in the literatures. The results indicate that the new sensor equations can be used for CNT like CNT-based biosensors with reasonable accuracy....

  1. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  2. Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun

    2016-10-04

    Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passage conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.

  3. Mechanisms of flow and water mass variability in Denmark Strait

    Science.gov (United States)

    Moritz, Martin; Jochumsen, Kerstin; Quadfasel, Detlef; Mashayekh Poul, Hossein; Käse, Rolf H.

    2017-04-01

    The dense water export through Denmark Strait contributes significantly to the lower limb of the Atlantic Meridional Overturning Circulation. Overflow water is transported southwestward not only in the deep channel of the Strait, but also within a thin bottom layer on the Greenland shelf. The flow on the shelf is mainly weak and barotropic, exhibiting many recirculations, but may eventually contribute to the overflow layer in the Irminger Basin by spilling events in the northern Irminger Basin. Especially the circulation around Dohrn Bank and the Kangerdlussuaq Trough contribute to the shelf-basin exchange. Moored observations show the overflow in Denmark Strait to be stable during the last 20 years (1996-2016). Nevertheless, flow variability was noticed on time scales of eddies and beyond, i.e. on weekly and interannual scales. Here, we use a combination of mooring data and shipboard hydrographic and current data to address the dominant modes of variability in the overflow, which are (i) eddies, (ii) barotropic pulsations of the plume, (iii) lateral shifts of the plume core position, and (iv) variations in vertical extension, i.e. varying overflow thickness. A principle component analysis is carried out and related to variations in sea surface height and wind stress, derived from satellite measurements. Furthermore, a test for topographic waves is performed. Shelf contributions to the overflow core in the Irminger Basin are identified from measurements of temperature and salinity, as well as velocity, which were obtained during recent cruises in the region. The flow and water mass pattern obtained from the observational data is compared to simulations in a high resolution regional model (ROMS), where tracer release experiments and float deployments were carried out. The modelling results allow a separation between different atmospheric forcing modes (NAO+ vs NAO- situations), which impact the water mass distribution and alter the dense water pathways on the

  4. Physics design of fissile mass-flow monitoring system

    International Nuclear Information System (INIS)

    Mattingly, J.K.; March-Leuba, J.; Valentine, T.E.; Mihalczo, J.T.; Uckan, T.

    1997-01-01

    The system measures the flow rate and uranium-235 content in liquid or gas streams; it does not penetrate the process piping. A moderated fission neutron source is used to periodicially introduce a burst of thermal neutrons into the fluid stream to induce fission; delayed gamma emissions from the resulting fission fragments are detected by high-efficiency scintillators downstream of the neutron source. The fluid flow rate is measure from the time between initiation of the thermal neutron burst and detection of the fission product gamma emissions, and the U-235 content is inferred from the intensity of the gamma burst detected. Design of the fissile mass flow monitor requires satisfaction of several competing constraints. Efficient operation of the monitor requires that source-induced fission rate and detection efficiency be maximized while the source-induced background rate is simultaneoulsy minimized. Near optical nuclear design of the system was achieved using numerous Monte Carlo calculations and measurements. This paper addresses calculational aspects of the physics design for the system applied to UF 6 gas

  5. Device for accurately measuring mass flow of gases

    Science.gov (United States)

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  6. Investigation of technology for monitoring UF6 mass flow

    International Nuclear Information System (INIS)

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF 6 concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF 6 and H 2 , a mass flow measurement in conjunction with a measurement of the uranium (or UF 6 ) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF 6 streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF 6 concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs

  7. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    International Nuclear Information System (INIS)

    Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam

    2012-01-01

    Highlights: ► Mass transfer downstream of orifices was numerically and experimentally investigated. ► The surface wear pattern is measured and used to validate the present numerical results. ► The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. ► The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. ► The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO 4 ·½H 2 O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice. The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. The current study found to offer very

  8. Characterization of the fracturation of rock masses for determining flow

    International Nuclear Information System (INIS)

    Derlich, S.

    1984-02-01

    Flow in a rock mass is the consequence of the permeability of the rock, which can be roughly separated into matrix permeability and fissure permeability. In crystalline rocks fissure permeability is dominant, especially where the rocks are extensively fractured. It is thus essential, by means of studies either at the surface or underground, to characterize the volume fracturation in the mass considered. The purpose of this paper is to illustrate the methodology for analysing fracturation at a site by the studies performed on the granite mass of Auriat in the French Massif Central. A number of geology laboratories have participated in this study and a broad spectrum of observations has been made which can be used for determining the various stages of a study with a view to selection of a site, the advantages and limitations of each method or study plan and additional methods which need to be used for gaining as complete a picture as possible of the fracturation. A brief examination of the results obtained at Auriat enables the relative advantages of using these various methods at a particular site to be compared

  9. Nanoparticle embedded enzymes for improved lateral flow sensors

    DEFF Research Database (Denmark)

    Özalp, Veli Cengiz; Zeydanlı, Uğur S.; Lunding, Anita

    2013-01-01

    -entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution...

  10. Generalized Couette Poiseuille flow with boundary mass transfer

    Science.gov (United States)

    Marques, F.; Sanchez, J.; Weidman, P. D.

    1998-11-01

    A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.

  11. Sap flow is Underestimated by Thermal Dissipation Sensors due to Alterations of Wood Anatomy

    Science.gov (United States)

    Marañón-Jiménez, S.; Wiedemann, A.; van den Bulcke, J.; Cuntz, M.; Rebmann, C.; Steppe, K.

    2014-12-01

    The thermal dissipation technique (TD) is one of the most commonly adopted methods for sap flow measurements. However, underestimations of up to 60% of the tree transpiration have been reported with this technique, although the causes are not certainly known. The insertion of TD sensors within the stems causes damage of the wood tissue and subsequent healing reactions, changing wood anatomy and likely the sap flow path. However, the anatomical changes in response to the insertion of sap flow sensors and the effects on the measured flow have not been assessed yet. In this study, we investigate the alteration of vessel anatomy on wounds formed around TD sensors. Our main objectives were to elucidate the anatomical causes of sap flow underestimation for ring-porous and diffuse-porous species, and relate these changes to sap flow underestimations. Successive sets of TD probes were installed in early, mid and end of the growing season in Fagus sylvatica (diffuse-porous) and Quercus petraea (ring-porous) trees. They were logged after the growing season and additional sets of sensors were installed in the logged stems with presumably no healing reaction. The wood tissue surrounding each sensor was then excised and analysed by X-ray computed microtomography (X-ray micro CT). This technique allowed the quantification of vessel anatomical characteristics and the reconstruction of the 3-D internal microstructure of the xylem vessels so that extension and shape of the altered area could be determined. Gels and tyloses clogged the conductive vessels around the sensors in both beech and oak. The extension of the affected area was larger for beech although these anatomical changes led to similar sap flow underestimations in both species. The higher vessel size in oak may explain this result and, therefore, larger sap flow underestimation per area of affected conductive tissue. The wound healing reaction likely occurred within the first weeks after sensor installation, which

  12. A novel flow sensor based on resonant sensing with two-stage microleverage mechanism

    Science.gov (United States)

    Yang, B.; Guo, X.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-04-01

    The design, simulation, fabrication, and experiments of a novel flow sensor based on resonant sensing with a two-stage microleverage mechanism are presented in this paper. Different from the conventional detection methods for flow sensors, two differential resonators are adopted to implement air flow rate transformation through two-stage leverage magnification. The proposed flow sensor has a high sensitivity since the adopted two-stage microleverage mechanism possesses a higher amplification factor than a single-stage microleverage mechanism. The modal distribution and geometric dimension of the two-stage leverage mechanism and hair are analyzed and optimized by Ansys simulation. A digital closed-loop driving technique with a phase frequency detector-based coordinate rotation digital computer algorithm is implemented for the detection and locking of resonance frequency. The sensor fabricated by the standard deep dry silicon on a glass process has a device dimension of 5100 μm (length) × 5100 μm (width) × 100 μm (height) with a hair diameter of 1000 μm. The preliminary experimental results demonstrate that the maximal mechanical sensitivity of the flow sensor is approximately 7.41 Hz/(m/s)2 at a resonant frequency of 22 kHz for the hair height of 9 mm and increases by 2.42 times as hair height extends from 3 mm to 9 mm. Simultaneously, a detection-limit of 3.23 mm/s air flow amplitude at 60 Hz is confirmed. The proposed flow sensor has great application prospects in the micro-autonomous system and technology, self-stabilizing micro-air vehicles, and environmental monitoring.

  13. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  14. New Love wave liquid sensor operating at 2 GHz using an integrated micro-flow channel

    International Nuclear Information System (INIS)

    Assouar, M B; Kirsch, P; Alnot, P

    2009-01-01

    Surface acoustic wave (SAW) devices based on waveguide modes with shear-horizontal polarization (Love modes) are very promising for sensor applications, especially in liquid media. We present here the realization of a 2 GHz operating frequency sensor based on the SiO 2 /36YX LiTaO 3 structure with an integrated PDMS micro-flow channel and using electron beam lithography to realize the submicronic interdigital transducers. Using our developed sensor operating at 2 GHz, we carried out alternate cycles of nitrogen and water circulating in the PDMS micro-flow channel. We measured an absolute sensitivity of −19 001 Hz mm 2  ng −1 due to the interaction of the sensor with water. This sensitivity is higher than that of other devices operating at lower frequencies. The detection mechanism, including gravimetric and permittivity effects at high frequency, will be discussed

  15. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  16. Rugged miniaturized mass sensors for use in plutonium conversion processes

    International Nuclear Information System (INIS)

    Schweikert, E.A.; James, W.D.

    1999-05-01

    Ionization is produced either through Plasma Desorption, in the case of a solid, using fission fragments from a Cf-252 source; or in the case of a gas, via an electron avalanche from the impact on a microsphere detector of α particles from a radioactive source. The gaseous compound analysis yielded multiple peaks on parent ion and molecular fragments. In the solid compound analysis, the results indicated that solid-state mass spectrometry will provide important information about the degradation of materials by measured changes in molecular weight

  17. Rugged miniaturized mass sensors for use in plutonium conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Schweikert, E.A.; James, W.D. [Texas A and M Univ., College Station, TX (United States). Center for Chemical Characterization and Analysis

    1999-05-01

    Ionization is produced either through Plasma Desorption, in the case of a solid, using fission fragments from a Cf-252 source; or in the case of a gas, via an electron avalanche from the impact on a microsphere detector of {alpha} particles from a radioactive source. The gaseous compound analysis yielded multiple peaks on parent ion and molecular fragments. In the solid compound analysis, the results indicated that solid-state mass spectrometry will provide important information about the degradation of materials by measured changes in molecular weight.

  18. CNT Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing (Postscript)

    Science.gov (United States)

    2016-11-07

    SUPPLEMENTARY NOTES PA Case Number: 88ABW-2016-3588; Clearance Date: 22 July 2016. This document contains color . Journal article published in Advanced...ABSTRACT (Maximum 200 words) While numerous flow sensor architectures mimic the natural cilia of crickets, locusts, bats, and fish , the prediction...strain-based sensors can present additional difficulty in interpreting their response over long timescales or under varying conditions. Schemes may

  19. Experimental measurement of oil–water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    International Nuclear Information System (INIS)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-01-01

    Oil–water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil–water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates. (paper)

  20. A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2009-11-01

    Full Text Available In this paper, we present a novel micromachined hot-film flow sensor system realized by a technique using a film depositing processes and incorporating a standard printed circuit. Sensor electrodes and electronic circuits are preprinted on a flexible substrate of polyimide (PI, i.e., a flexible printed circuit board (FPCB. The sensing element, which is made of Cr/Ni/Pt with a temperature coefficient of resistance around 2,000 ppm/K, is fabricated on the FPCB by either magnetron sputtering technology or pulsed laser deposition (PLD. The sensor can be packed efficiently at high-density and integrated with signal processing circuits without additional pads. A simple fabrication process using mature technique and materials selection guarantees that the time and costs are greatly reduced. Both steady-state and transient characteristics of the sensors are experimentally tested, and the results presented to validate the effectiveness of the sensors.

  1. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  2. Continuous-flow accelerator mass spectrometry for radiocarbon analysis

    International Nuclear Information System (INIS)

    Wills, J.S.C.; Han, B.X.; Von Reden, K.F.; Schneider, R.J.; Roberts, M.L.

    2006-01-01

    Accelerator Mass Spectrometry (AMS) is a widely used technique for radiocarbon dating of archaeological or environmental samples that are very small or very old (up to 50,000 years before present). Because of the method's extreme sensitivity, AMS can also serve as an environmental tracer and supplements conventional nuclear counting techniques for monitoring 14 C emissions from operating nuclear power plants and waste repositories. The utility of present AMS systems is limited by the complex sample preparation process required. Carbon from combusted artefacts must be incorporated into a solid metallic target from which a negative ion beam is produced and accelerated to MeV energies by an accelerator for subsequent analysis. This paper will describe a novel technique being developed by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at the Woods Hole Oceanographic Institution for the production of negative carbon ion beams directly from a continuously flowing sample gas stream, eliminating the requirement for a solid target. A key component of the new technique is a microwave-driven, gaseous-feed ion source originally developed at Chalk River Laboratories for the very different requirements of a high current proton linear accelerator. A version of this ion source is now being adapted to serve as an injector for a dedicated AMS accelerator facility at NOSAMS. The paper begins with a review of the fundamentals of radiocarbon dating. Experiments carried out at NOSAMS with a prototype of the microwave ion source are described, including measurements of sample utilization efficiency and sample 'memory' effect. A new version of the microwave ion source, optimized for AMS, is also described. The report concludes with some predictions of new research opportunities that will become accessible to the technique of continuous-flow AMS. (author)

  3. Continuous-flow accelerator mass spectrometry for radiocarbon analysis

    International Nuclear Information System (INIS)

    Wills, J.S.C.; Han, B.X.; Von Reden, K.F.; Schneider, R.J.; Roberts, M.L.

    2006-05-01

    Accelerator Mass Spectrometry (AMS) is a widely used technique for radiocarbon dating of archaeological or environmental samples that are very small or very old (up to 50,000 years before present). Because of the method's extreme sensitivity, AMS can also serve as an environmental tracer and supplements conventional nuclear counting techniques for monitoring 14 C emissions from operating nuclear power plants and waste repositories. The utility of present AMS systems is limited by the complex sample preparation process required. Carbon from combusted artefacts must be incorporated into a solid metallic target from which a negative ion beam is produced and accelerated to MeV energies by an accelerator for subsequent analysis. This paper will describe a novel technique being developed by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at the Woods Hole Oceanographic Institution for the production of negative carbon ion beams directly from a continuously flowing sample gas stream, eliminating the requirement for a solid target. A key component of the new technique is a microwave-driven, gaseous-feed ion source originally developed at Chalk River Laboratories for the very different requirements of a high current proton linear accelerator. A version of this ion source is now being adapted to serve as an injector for a dedicated AMS accelerator facility at NOSAMS. The paper begins with a review of the fundamentals of radiocarbon dating. Experiments carried out at NOSAMS with a prototype of the microwave ion source are described, including measurements of sample utilization efficiency and sample 'memory' effect. A new version of the microwave ion source, optimized for AMS, is also described. The report concludes with some predictions of new research opportunities that will become accessible to the technique of continuous-flow AMS. (author)

  4. Thermodynamic Charge-to-Mass Sensor for Colloids, Proteins, and Polyelectrolytes

    NARCIS (Netherlands)

    van Rijssel, Jos; Costo, Rocio; Vrij, Agienus; Philipse, Albert P.; Erne, Ben H.

    2016-01-01

    A sensor is introduced that gauges the ratio of charge z to mass m of macro-ions in liquid media. The conductivity is measured in a small volume of salt solution, separated from the macro-ions by a semipermeable membrane. The mobile counterions released by the macro-ions increase the measured salt

  5. A film-based wall shear stress sensor for wall-bounded turbulent flows

    Science.gov (United States)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  6. Touch at a distance sensing: lateral-line inspired MEMS flow sensors

    International Nuclear Information System (INIS)

    Prakash Kottapalli, Ajay Giri; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2014-01-01

    Evolution bestowed the blind cavefish with a resourcefully designed lateral-line of sensors that play an essential role in many important tasks including object detection and avoidance, energy-efficient maneuvering, rheotaxis etc. Biologists identified the two types of vital sensors on the fish bodies called the superficial neuromasts and the canal neuromasts that are responsible for flow sensing and pressure-gradient sensing, respectively. In this work, we present the design, fabrication and experimental characterization of biomimetic polymer artificial superficial neuromast micro-sensor arrays. These biomimetic micro-sensors demonstrated a high sensitivity of 0.9 mV/(m s −1 ) and 0.022 V/(m s −1 ) and threshold velocity detection limits of 0.1 m s −1 and 0.015 m s −1 in determining air and water flows respectively. Experimental results demonstrate that the biological canal inspired polymer encapsulation on the array of artificial superficial neuromast sensors is capable of filtering steady-state flows that could otherwise significantly mask the relevant oscillatory flow signals of high importance. (paper)

  7. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  8. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  9. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  10. Detection of flow separation and stagnation points using artificial hair sensors

    International Nuclear Information System (INIS)

    Phillips, D M; Baur, J W; Ray, C W; Hagen, B J; Reich, G W; Su, W

    2015-01-01

    Recent interest in fly-by-feel approaches for aircraft control has motivated the development of novel sensors for use in aerial systems. Artificial hair sensors (AHSs) are one type of device that promise to fill a unique niche in the sensory suite for aerial systems. In this work, we investigate the capability of an AHS based on structural glass fibers to directly identify flow stagnation and separation points on a cylindrical domain in a steady flow. The glass fibers are functionalized with a radially aligned carbon nanotube (CNT) forest and elicit a piezoresistive response as the CNT forest impinges on electrodes in a micropore when the hair is deflected due to viscous drag forces. Particle image velocimetry is used to measure the flow field allowing for the resulting moment and force acting on the hair to be correlated with the electrical response. It is demonstrated that the AHS provides estimates for the locations of both the stagnation and separation in steady flow. From this, a simulation of a heading estimation is presented to demonstrate a potential application for hair sensors. These results motivate the construction of large arrays of hair sensors for imaging and resolving flow structures in real time. (paper)

  11. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...

  12. Correlation measurements of sodium flow rate with magnetic sensors

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Krasnoyarov, N.V.; Adamovskij, L.A.; Golushko, V.V.; Sroelov, V.S.

    1978-01-01

    The results of bench-mark experiments and those carried out at the BOR-60 reactor to measure the sodium coolant flow rate by a correlation method are presented. The method is based on detecting the eddy type flow hydraulic nonuniformities using magnetic flowmeters. The measurements were fulfilled in a broad range of flow rates (G=10-10 4 m 3 /h, Re=2x10 5 -2x10 7 ). The measured and calculated mutual correlation functions are presented with parallel and perpendicular orientations of the flowmeters magnetic fields. A good accord is stated. Prerequirements to the arrangement of the measuring systems are formulated. As an important advantage of the correlation method a possibility of the flowmeter calibration in situ is hydhlighted

  13. Mass and Force Sensing of an Adsorbate on a Beam Resonator Sensor

    Directory of Open Access Journals (Sweden)

    Yin Zhang

    2015-06-01

    Full Text Available The mass sensing superiority of a micro-/nano-mechanical resonator sensor over conventional mass spectrometry has been, or at least is being firmly established. Because the sensing mechanism of a mechanical resonator sensor is the shifts of resonant frequencies, how to link the shifts of resonant frequencies with the material properties of an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other factors, such as position and axial force, can also cause the shifts of resonant frequencies. The in situ measurement of the adsorbate position and axial force is extremely difficult if not impossible, especially when an adsorbate is as small as a molecule or an atom. Extra instruments are also required. In this study, an inverse problem of using three resonant frequencies to determine the mass, position and axial force is formulated and solved. The accuracy of the inverse problem solving method is demonstrated, and how the method can be used in the real application of a nanomechanical resonator is also discussed. Solving the inverse problem is helpful to the development and application of a mechanical resonator sensor for two reasons: reducing extra experimental equipment and achieving better mass sensing by considering more factors.

  14. Development of multidimensional two-phase flow measurement sensor in rod bundle

    International Nuclear Information System (INIS)

    Arai, Takahiro; Furuya, Masahiro; Shirakawa, Kenetsu; Kanai, Taizo

    2011-01-01

    In order to acquire multidimensional two-phase flow in 10x10 bundle, SubChannel Void Sensor (SCVC) consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes is developed. A conductance value in a proximity region of one wire and another gives void fraction in the center of subchannel region. A phasic velocity can be estimated by using two layers of wire meshes, like as so-called wire mesh sensor. 121 points (=11x11) of void fraction as well as those of phasic velocity are acquired. It is peculiarity of the devised sensor that void fraction near rod surface can be estimated by a conductance value in a proximity region of one wire and one rod. 400 additional points of void fraction in 10x10 bundle can be, therefore, acquired. The time resolution of measurement is up to 1250 frames (cross sections) per second. We capability in a 10x10 bundle with o.d. 10 mm and 3110 mm long is demonstrated. The devised sensor is installed in 8 height levels to acquire the two-phase flow dynamics along axial direction. A pair of sensor layers is mounted in each level and is placed by 30 mm apart with each other to estimate a phasic velocity distribution on the basis of cross-correlation function of the two layers. Air bubbles are injected through sintered metal nozzles from the bottom end of 10x10 rods. Air flow rate distribution can vary with a controlled valves connected to each nozzle. The devised sensor exhibited the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures explorer complexity of two-phase flow dynamics such as coalescence and breakup of bubbles in the transient phasic velocity distributions. (author)

  15. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2018-03-01

    Full Text Available In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.

  16. Measurement of water flow rate in unsaturated soil by thermistor type sensor

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1981-09-01

    As a part of radiological safety studies for ground disposal of radioactive wastes, a measuring apparatus of water flow rate with thermistor type sensor was made as preliminary one and the measurement of water flow rate in the soil was carried out, in order to evalute by comparison of the migration rate of water with that of radionuclide in an unsaturated soil. The water flow rate can be determined by measuring the change of the thermal conductivity (temperature) of soil around the several thermistor type sensors set in a soil. Particularly at the region of low water content in the soil, the water flow rate was able to measure successfully by this apparatus. (author)

  17. Mass flow rate correlation for two-phase flow of R218 through a capillary tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Vacek, V.

    2009-01-01

    Roč. 29, 14-15 (2009), s. 2816-2823 ISSN 1359-4311 Institutional research plan: CEZ:AV0Z20760514 Keywords : artificial neural network * capillary tube * mass flow rate correlation * R218 Subject RIV: BK - Fluid Dynamics Impact factor: 1.922, year: 2009 http://www.sciencedirect.com/science?_ob=PublicationURL&_cdi=5687&_pubType=J&_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=fc314a471a010545ee185394a6c8f5f7&jchunk=29#29

  18. In situ permeable flow sensor - OST reference No. 99. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1998-02-01

    This summary reports describes the In Situ Permeable Flow Sensor (ISPFS) developed to directly measure the direction and velocity of groundwater flow at a point in saturated soil sediments. The ISPFS provides information for locating, designing, and monitoring waste disposal sites, and for monitoring remediated waste sites. The design and performance are described and compared to alternative methods. Economic, regulatory, and policy issues are discussed. Applicability of the ISPFS to specific situations is also summarized. 8 refs., 7 figs., 3 tabs

  19. Capturing 2D transient surface data of granular flows against obstacles with an RGB-D sensor

    Science.gov (United States)

    Caviedes-Voullieme, Daniel; Juez, Carmelo; Murillo, Javier; Garcia-Navarro, Pilar

    2014-05-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field.

  20. Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop

    KAUST Repository

    Karimi, Muhammad Akram

    2017-03-31

    Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water-cut sensor based upon pipe conformable microwave T-resonator. A 10″ microwave stub based T-resonator has been implemented directly on the pipe surface whose resonance frequency changes in the frequency band of 90MHz–190MHz (111%) with changing water fraction in oil. The designed sensor is capable of detecting even small changes in WC with a resolution of 0.07% at low WC and 0.5% WC at high WC. The performance of the microwave WC sensor has been tested in an in-house flow loop. The proposed WC sensor has been characterized over full water-cut range (0%–100%) not only in vertical but also in horizontal orientation. The sensor has shown predictable response in both orientations with huge frequency shift. Moreover, flow rate effect has also been investigated on the proposed WC sensor’s performance and it has been found that the sensor’s repeatability is within 2.5% WC for variable flow rates.

  1. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    McCann, J.D.

    1980-01-01

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  2. Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Worosz, Ted [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Bernard, Matt [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States); Kong, Ran; Toptan, Aysenur [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Kim, Seungjin, E-mail: skim@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Hoxie, Chris [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2016-12-15

    Highlights: • Revised conductivity probe circuit to eliminate signal “ghosting” among sensors. • Higher sampling frequencies suggested for bubble number frequency and a{sub i} measurements. • Two-phase parameter sensitivity to measurement duration and bubble number investigated. • Sensors parallel to pipe wall recommended for symmetric bubble velocity measurements. • Sensor separation distance ratio (s/d) greater than four minimizes bubble velocity error. - Abstract: The objective of this study is to advance the local multi-sensor conductivity probe measurement technique through systematic investigation into several practical aspects of a conductivity probe measurement system. Firstly, signal “ghosting” among probe sensors is found to cause artificially high bubble velocity measurements and low interfacial area concentration (a{sub i}) measurements that depend on sampling frequency and sensor impedance. A revised electrical circuit is suggested to eliminate this artificial variability. Secondly, the sensitivity of the probe measurements to sampling frequency is investigated in 13 two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00–5.00 m/s and 0.17–2.0 m/s, respectively. With increasing gas flow rate, higher sampling frequencies, greater than 100 kHz in some cases, are required to adequately capture the bubble number frequency and a{sub i} measurements. This trend is due to the increase in gas velocity and the transition to the slug flow regime. Thirdly, the sensitivity of the probe measurements to the measurement duration as well as the sample number is investigated for the same flow conditions. Measurements of both group-I (spherical/distorted) and group-II (cap/slug/churn-turbulent) bubbles are found to be relatively insensitive to both the measurement duration and the number of bubbles, as long as the measurements are made for a duration long enough to capture a collection of samples characteristic to a

  3. Shear stress from hot-film sensors in unsteady gas flow

    International Nuclear Information System (INIS)

    Cole, K.D.

    1991-01-01

    In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data

  4. A flow-through amperometric sensor based on dialysis tubing and free enzyme reactors

    NARCIS (Netherlands)

    Bohm, S.; Pijanowska, D.G.; Pijanowska, D.; Olthuis, Wouter; Bergveld, Piet

    2001-01-01

    A generic flow-through amperometric microenzyme sensor is described, which is based on semi-permeable dialysis tubing carrying the sample to be analyzed. This tubing (300 μm OD) is led through a small cavity, containing the working and reference electrode. By filling this cavity with a few μl of an

  5. Design and construction of a novel Coriolis mass flow rate meter

    NARCIS (Netherlands)

    Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren

    2009-01-01

    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  6. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Norde, Willem; Sjollema, Jelmer

    2011-01-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition

  7. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  8. Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, Raul A.; Gismera, M.J.; Sevilla, M.T.; Procopio, Jesus R. [Facultad de Ciencias, Universidad Autonoma de Madrid, Departamento de Quimica Analitica y Analisis Instrumental, Madrid (Spain)

    2010-05-15

    A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite-epoxy composite. The optimal graphite-epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 {+-} 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO{sub 3} solution at pH 3 as the carrier, a flow rate of 2.5 mL.min{sup -1}, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 x 10{sup -7} M) and online analysis (9.4 x 10{sup -7} M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills. (orig.)

  9. The Significance of Witness Sensors for Mass Casualty Incidents and Epidemic Outbreaks.

    Science.gov (United States)

    Pan, Chih-Long; Lin, Chih-Hao; Lin, Yan-Ren; Wen, Hsin-Yu; Wen, Jet-Chau

    2018-02-02

    Due to the increasing number of natural and man-made disasters, mass casualty incidents occur more often than ever before. As a result, health care providers need to adapt in order to cope with the overwhelming patient surge. To ensure quality and safety in health care, accurate information in pandemic disease control, death reduction, and health quality promotion should be highlighted. However, obtaining precise information in real time is an enormous challenge to all researchers of the field. In this paper, innovative strategies are presented to develop a sound information network using the concept of "witness sensors." To overcome the reliability and quality limitations of information obtained through social media, researchers must focus on developing solutions that secure the authenticity of social media messages, especially for matters related to health. To address this challenge, we introduce a novel concept based on the two elements of "witness" and "sensor." Witness sensors can be key players designated to minimize limitations to quality of information and to distinguish fact from fiction during critical events. In order to enhance health communication practices and deliver valid information to end users, the education and management of witness sensors should be further investigated, especially for implementation during mass casualty incidents and epidemic outbreaks. ©Chih-Long Pan, Chih-Hao Lin, Yan-Ren Lin, Hsin-Yu Wen, Jet-Chau Wen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.02.2018.

  10. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.

    Science.gov (United States)

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-10-17

    This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms -1 ), a high velocity measurement limit (45ms -1 ) and a rapid response time (0.53 s).

  11. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    Directory of Open Access Journals (Sweden)

    Che-Ming Chiang

    2007-10-01

    Full Text Available This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms-1, a high velocity measurement limit (45ms-1 and a rapid response time (0.53 s.

  12. Distributed Multi-Commodity Network Flow Algorithm for Energy Optimal Routing in Wireless Sensor Networks.

    Directory of Open Access Journals (Sweden)

    J. Trdlicka

    2010-12-01

    Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.

  13. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  14. A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors

    Directory of Open Access Journals (Sweden)

    Anxing Shan

    2017-05-01

    Full Text Available Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs. Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.

  15. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    Science.gov (United States)

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  16. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  17. The wire-mesh sensor as a two-phase flow meter

    Science.gov (United States)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  18. Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticle mass

    Science.gov (United States)

    Wasisto, H. S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Kirsch, I.; Salthammer, T.; Peiner, E.

    2011-06-01

    A silicon cantilever with slender geometry based Micro Electro Mechanical System (MEMS) for nanoparticles mass detection is presented in this work. The cantilever is actuated using a piezoactuator at the bottom end of the cantilever supporting frame. The oscillation of the microcantilever is detected by a self-sensing method utilizing an integrated full Wheatstone bridge as a piezoresistive strain gauge for signal read out. Fabricated piezoresistive cantilevers of 1.5 mm long, 30 μm wide and 25 μm thick have been employed. This self-sensing cantilever is used due to its simplicity, portability, high-sensitivity and low-cost batch microfabrication. In order to investigate air pollution sampling, a nanoparticles collection test of the piezoresistive cantilever sensor is performed in a sealed glass chamber with a stable carbon aerosol inside. The function principle of cantilever sensor is based on detecting the resonance frequency shift that is directly induced by an additional carbon nanoparticles mass deposited on it. The deposition of particles is enhanced by an electrostatic field. The frequency measurement is performed off-line under normal atmospheric conditions, before and after carbon nanoparticles sampling. The calculated equivalent mass-induced resonance frequency shift of the experiment is measured to be 11.78 +/- 0.01 ng and a mass sensitivity of 8.33 Hz/ng is obtained. The proposed sensor exhibits an effective mass of 2.63 μg, a resonance frequency of 43.92 kHz, and a quality factor of 1230.68 +/- 78.67. These results and analysis indicate that the proposed self-sensing piezoresistive silicon cantilever can offer the necessary potential for a mobile nanoparticles monitor.

  19. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  20. Quantification of the transient mass flow rate in a simplex swirl injector

    International Nuclear Information System (INIS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-01-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results

  1. A mass conservative numerical solution of vertical water flow and mass transport equations in unsaturated porous media

    International Nuclear Information System (INIS)

    Lim, S.C.; Lee, K.J.

    1993-01-01

    The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)

  2. Effect of Retarding Force on Mass Flow Rates of Fluid at Different ...

    African Journals Online (AJOL)

    ... mathematical model and software visualization to view the effect of retarding forces on the mass flow rate in term of visualization. C-sharp (C#) is the chosen program and this enable compares and us to determine the mass flow rates patterns in relation to retarding force in form of graphical tables at different temperature.

  3. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    Science.gov (United States)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  4. The fabrication of plastic cages for suspension in mass air flow racks.

    Science.gov (United States)

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  5. CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media

    International Nuclear Information System (INIS)

    Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.

    1982-01-01

    1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium

  6. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.

    2013-01-01

    a predictable shape, which is a function of ice temperature, ice rheology, and surface mass-exchange rate. In addition, the time for surface-shape adjustment is shorter than the characteristic time for significant deformation or displacement of internal layers within a flowing ice mass; as a result, surface......On Earth and on Mars, ice masses experience changes in precipitation, temperature, and radiation. In a new climate state, flowing ice masses will adjust in length and in thickness, and this response toward a new steady state has a characteristic timescale. However, a flowing ice mass has...... topography is more diagnostic of flow than are internal-layer shapes. Because the shape of Gemina Lingula, North Polar Layered Deposits indicates that it flowed at some time in the past, we use its current topography to infer characteristics of those past ice conditions, or past climate conditions, in which...

  7. A new method for the measurement of two-phase mass flow rate using average bi-directional flow tube

    International Nuclear Information System (INIS)

    Yoon, B. J.; Uh, D. J.; Kang, K. H.; Song, C. H.; Paek, W. P.

    2004-01-01

    Average bi-directional flow tube was suggested to apply in the air/steam-water flow condition. Its working principle is similar with Pitot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of pitot tube when it is used in the depressurization condition. The suggested flow tube was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. In the test, the pressure drop across the average bi-directional flow tube, system pressure and average void fraction were measured on the measuring plane. In the test, fluid temperature and injected mass flow rates of air and water phases were also measured by a RTD and two coriolis flow meters, respectively. To calculate the phasic mass flow rates : from the measured differential pressure and void fraction, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within 10% error of measured data

  8. Heat-flow properties of systems with alternate masses or alternate on-site potentials

    Science.gov (United States)

    Pereira, Emmanuel; Santana, Leonardo M.; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  9. Mass flow rate measurements in two-phase mixtrues with stagnation probes

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.

    1979-01-01

    Applications of stagnation probes to the measurement of mass flow rate in two-phase flows are discussed. Descriptions of several stagnation devices, which have been evaluated at the Idaho National Engineering Laboratory, are presented along with modeling techniques and two-phase flow data

  10. Clean water billing monitoring system using flow liquid meter sensor and SMS gateway

    Science.gov (United States)

    Fahmi, F.; Hizriadi, A.; Khairani, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Public clean water company (PDAM) as a public service is designed and organized to meet the needs of the community. Currently, the number of PDAM subscribers is very big and will continue to grow, but the service and facilities to customers are still done conventionally by visiting the customer’s home to record the last position of the meter. One of the problems of PDAM is the lack of disclosure of PDAM customers’ invoice because it is only done monthly. This, of course, makes PDAM customers difficult to remember the date of payment of water account. Therefore it is difficult to maintain the efficiency. The purpose of this research is to facilitate customers of PDAM water users to know the details of water usage and the time of payment of water bills easily. It also facilitates customers in knowing information related to the form of water discharge data used, payment rates, and time grace payments using SMS Gateway. In this study, Flow Liquid Meter Sensor was used for data retrieval of water flowing in the piping system. Sensors used to require the help of Hall Effect sensor that serves to measure the speed of water discharge and placed on the pipe that has the same diameter size with the sensor diameter. The sensor will take the data from the rate of water discharge it passes; this data is the number of turns of the mill on the sensor. The results of the tests show that the built system works well in helping customers know in detail the amount of water usage in a month and the bill to be paid

  11. A microcontroller-based interface circuit for data acquisition and control of a micromechanical thermal flow sensor

    International Nuclear Information System (INIS)

    Asimakopoulos, P; Kaltsas, G; Nassiopoulou, A G

    2005-01-01

    In the present work, a special microcontroller-based data acquisition and control system was designed and fabricated, for fast and accurate flow measurements with programmable modes of operation. The system can apply predetermined power to the heater and simultaneously is able of monitoring both the thermopile signal and the heater current. An RS232 connection was also implemented for the communication with the outside world. The interface circuit was adapted to the micromechanical flow sensor for evaluation. Various sensor parameters were extracted in both laminar and turbulent flow conditions. The sensor responses with three operation modes (constant voltage, power and temperature) were also obtained

  12. A microcontroller-based interface circuit for data acquisition and control of a micromechanical thermal flow sensor

    Science.gov (United States)

    Asimakopoulos, P.; Kaltsas, G.; Nassiopoulou, A. G.

    2005-01-01

    In the present work, a special microcontroller-based data acquisition and control system was designed and fabricated, for fast and accurate flow measurements with programmable modes of operation. The system can apply predetermined power to the heater and simultaneously is able of monitoring both the thermopile signal and the heater current. An RS232 connection was also implemented for the communication with the outside world. The interface circuit was adapted to the micromechanical flow sensor for evaluation. Various sensor parameters were extracted in both laminar and turbulent flow conditions. The sensor responses with three operation modes (constant voltage, power and temperature) were also obtained.

  13. An improved electrical sensor for simultaneous measurement of the void fraction and two phase flow velocity in the inclined pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Koc, Min Seok; Kim, Sin

    2016-01-01

    The information for the flow pattern is also required to measure the void fraction. In order to solve this problems, Ko et al. proposed the void fraction measurement sensor according to the flow pattern using a three-electrode. The sensor system applied for a horizontal flow loop, and its measured performance for the void fraction was evaluated. In this study, a dual sensor was suggested to improve the measurement accuracy of the void fraction and the velocity. We applied the sensor to the inclined pipe simulating the PAFS heat exchanger. In order to verify the void fraction and velocity measurements, we used the wire-mesh sensor and the high-speed camera. In this study, an improved electrical conductance sensor for void fraction and velocity in inclined pipes has been designed. For minimizing between the sensor electrode interference, the numerical analysis has been performed. The loop experiments were conducted for several flow conditions and the experimental results for the void fractions and velocity measured by the proposed sensor were compared with those of a wiremesh sensor and high-speed camera.

  14. Mass flows and angular momentum density for px + ipy paired fermions in a harmonic trap

    International Nuclear Information System (INIS)

    Stone, Michael; Anduaga, Inaki

    2008-01-01

    We present a simple two-dimensional model of a p x + ip y superfluid in which the mass flow that gives rise to the intrinsic angular momentum is easily calculated by numerical diagonalization of the Bogoliubov-de Gennes operator. We find that, at zero temperature and for constant director l, the mass flow closely follows the Ishikawa-Mermin-Muzikar formula j mass =1/2 curl/(ρhl/2)

  15. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  16. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  17. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    Science.gov (United States)

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  18. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    Science.gov (United States)

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  20. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    Science.gov (United States)

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster.

  1. Recognition of flow in everyday life using sensor agent robot with laser range finder

    Science.gov (United States)

    Goshima, Misa; Mita, Akira

    2011-04-01

    In the present paper, we suggest an algorithm for a sensor agent robot with a laser range finder to recognize the flows of residents in the living spaces in order to achieve flow recognition in the living spaces, recognition of the number of people in spaces, and the classification of the flows. House reform is or will be demanded to prolong the lifetime of the home. Adaption for the individuals is needed for our aging society which is growing at a rapid pace. Home autonomous mobile robots will become popular in the future for aged people to assist them in various situations. Therefore we have to collect various type of information of human and living spaces. However, a penetration in personal privacy must be avoided. It is essential to recognize flows in everyday life in order to assist house reforms and aging societies in terms of adaption for the individuals. With background subtraction, extra noise removal, and the clustering based k-means method, we got an average accuracy of more than 90% from the behavior from 1 to 3 persons, and also confirmed the reliability of our system no matter the position of the sensor. Our system can take advantages from autonomous mobile robots and protect the personal privacy. It hints at a generalization of flow recognition methods in the living spaces.

  2. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  3. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.

    Science.gov (United States)

    Mönch, Ingolf; Makarov, Denys; Koseva, Radinka; Baraban, Larysa; Karnaushenko, Daniil; Kaiser, Claudia; Arndt, Karl-Friedrich; Schmidt, Oliver G

    2011-09-27

    Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept based on rolled-up nanotechnology for fabrication of multifunctional devices, which can be straightforwardly integrated into existing fluidic architectures. We apply strain engineering to roll-up a functional nanomembrane consisting of a magnetic sensor element based on [Py/Cu](30) multilayers, revealing giant magnetoresistance (GMR). The comparison of the sensor's characteristics before and after the roll-up process is found to be similar, allowing for a reliable and predictable method to fabricate high-quality ultracompact GMR devices. The performance of the rolled-up magnetic sensor was optimized to achieve high sensitivity to weak magnetic fields. We demonstrate that the rolled-up tube itself can be efficiently used as a fluidic channel, while the integrated magnetic sensor provides an important functionality to detect and respond to a magnetic field. The performance of the rolled-up magnetic sensor for the in-flow detection of ferromagnetic CrO(2) nanoparticles embedded in a biocompatible polymeric hydrogel shell is highlighted. © 2011 American Chemical Society

  4. Engineering analysis of mass flow rate for turbine system control and design

    International Nuclear Information System (INIS)

    Yoo, Yong H.; Suh, Kune Y.

    2011-01-01

    Highlights: → A computer code is written to predict the steam mass flow rate through valves. → A test device is built to study the steam flow characteristics in the control valve. → Mass flow based methodology eases the programming and experimental procedures. → The methodology helps express the characteristics of each device of a turbine system. → The results can commercially be used for design and operation of the turbine system. - Abstract: The mass flow rate is determined in the steam turbine system by the area formed between the stem disk and the seat of the control valve. For precise control the steam mass flow rate should be known given the stem lift. However, since the thermal hydraulic characteristics of steam coming from the generator or boiler are changed going through each device, it is hard to accurately predict the steam mass flow rate. Thus, to precisely determine the steam mass flow rate, a methodology and theory are developed in designing the turbine system manufactured for the nuclear and fossil power plants. From the steam generator or boiler to the first bunch of turbine blades, the steam passes by a stop valve, a control valve and the first nozzle, each of which is connected with piping. The corresponding steam mass flow rate can ultimately be computed if the thermal and hydraulic conditions are defined at the stop valve, control valve and pipes. The steam properties at the inlet of each device are changed at its outlet due to geometry. The Compressed Adiabatic Massflow Analysis (CAMA) computer code is written to predict the steam mass flow rate through valves. The Valve Engineered Layout Operation (VELO) test device is built to experimentally study the flow characteristics of steam flowing inside the control valve with the CAMA input data. The Widows' Creek type control valve was selected as reference. CAMA is expected to be commercially utilized to accurately design and operate the turbine system for fossil as well as nuclear power

  5. Flow immune photoacoustic sensor for real-time and fast sampling of trace gases

    Science.gov (United States)

    Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.

  6. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  7. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  8. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Kanhere, Elgar; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael S

    2017-07-28

    Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.

  9. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    Science.gov (United States)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  10. Dynamic On-Chip micro Temperature and Flow Sensor for miniaturized lab-on-a-chip instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to design, fabricate, and characterize a Dynamic On-Chip Flow and Temperature Sensor (DOCFlaTS) to mature and enable miniaturized...

  11. Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years

    Science.gov (United States)

    Georgianne W. Moore; Barbara J. Bond; Julia A. Jones; Frederick C. Meinzer

    2010-01-01

    Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods...

  12. Mass sensors with mechanical traps for weighing single cells in different fluids.

    Science.gov (United States)

    Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R

    2011-12-21

    We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.

  13. Mass transfer coefficient in disturbed flow due to orifice for flow accelerated corrosion in nuclear power plant

    International Nuclear Information System (INIS)

    Prasad, Mahendra; Gaikwad, Avinash J.; Sridharan, Arunkumar; Parida, Smrutiranjan

    2015-01-01

    The flow of fluid in pipes cause corrosion wherein the inner surface of pipe becomes progressively thinner and susceptible to failure. This form of corrosion dependent on flow dynamics is called Flow Accelerated Corrosion (FAC) and has been observed in Nuclear Power Plants (NPPs). Mass transfer coefficient (MTC) is related to extent of wall thinning and it changes from its value in a straight pipe (with same fluid parameters) for flow in orifices, bends, junctions etc. due to gross disturbance of the velocity profile. This paper presents two-dimensional computational fluid dynamics (CFD) simulations for an orifice configuration in a straight pipe. Turbulent model K- ω with shear stress transport and transition flow was the model used for simulation studies. The mass transfer boundary layer (MTBL) thickness δ mtbl is related to the Schmidt number (Sc) and hydrodynamic boundary layer thickness δ h , as δ mtbl ~ δh/(Sc 1/3 ). MTBL is significantly smaller than δ h and hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity profile was applied at the inlet. Post orifice fluid shows large recirculating flows on the upper and lower wall. At various locations after orifice, mass transfer coefficient is calculated and compared with the value in straight pipe with fully developed turbulent flow. The MTC due to the orifice increases and it is correlated with enhanced FAC in region after orifice. (author)

  14. Batch-processed carbon nanotube wall as pressure and flow sensor

    International Nuclear Information System (INIS)

    Choi, Jungwook; Kim, Jongbaeg

    2010-01-01

    A pressure and flow sensor based on the electrothermal-thermistor effect of a batch-processed carbon nanotube wall (CNT wall) is presented. The negative temperature coefficient of resistance (TCR) of CNTs and the temperature dependent tunneling rate through the CNT/silicon junction enable vacuum pressure and flow velocity sensing because the heat transfer rate between CNTs and the surrounding gas molecules differs depending on pressure and flow rate. The CNT walls are synthesized by thermal chemical vapor deposition (CVD) on an array of microelectrodes fabricated on a silicon-on-insulator (SOI) wafer. The CNTs are self-assembled between the microelectrodes and substrate across the thickness of a buried oxide layer during the synthesis process, and the simple batch fabrication results in high throughput and yield. A wide pressure range, down to 3 x 10 -3 from 10 5 Pa, and a nitrogen flow velocity range between 1 and 52.4 mm s -1 , are sensed. Further experimental characterizations of the bias voltage dependent response of the sensor as a vacuum pressure gauge are presented.

  15. An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow

    Science.gov (United States)

    Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.

    2013-12-01

    Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.

  16. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  17. Fast wire-mesh sensors for gas-liquid flows - Visualisation with up to 10 000 frames per second

    International Nuclear Information System (INIS)

    Prasser, H.M.; Zschau, J.; Peters, D.; Pietzsch, G.; Taubert, W.; Trepte, M.

    2002-01-01

    A wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section at a rate of up to 10 000 frames per second and a spatial resolution of about 2-3 mm. This sensor was applied to an upwards air-liquid flow in a vertical pipe of 51.2 mm diameter. After a brief introduction of the functioning of the sensor, the paper presents results obtained in a at vertical pipe operated with an air-water mixture. Two wire-mesh sensors with a measuring matrix of 24 x 24 points (resolution 2 mm) were placed in a small axial distance behind each other. They were used to study the flow structure in the transition region from bubble to slug flow at an imaging frequency of 2 500 Hz. The two available measuring planes allowed to obtain velocity profiles of the gaseous phase. A sensor with 16 x 16 points (resolution 3 mm) was applied to visualize the transition from bubbly via churn turbulent to annular flow with 10 000 frames per second. In the churn flow region, periodic plug-like structures were found. In the annular flow the sensor is able to resolve wispy structures. (authors)

  18. Study on the inside gas flow visualization of oxygen sensor cover; Kashika ni yoru O2 sensor cover nai no gas nagare hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hocho, S; Mitsuishi, Y; Inagaki, M [Nippon Soken, Inc., Tokyo (Japan); Hamaguchi, S; Mizusawa, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to make clear the difference of the response time between the oxygen sensors with different protection covers, we visualized gas flow inside of sensor covers by means of two experimental methods: One is `Smoke Suspension Method` using liquid paraffin vapor as the smoke. With smoke suspension method, we detected the streamlines inside of the covers. The other is `Color Reaction Method` using the reaction of phenolphthalein and NH3 gas. With color reaction method, we confirmed the streamline inside of the cover and furthermore detected the difference of the response time of each sensor. 3 refs., 7 figs., 1 tab.

  19. In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 2 results

    International Nuclear Information System (INIS)

    Ballard, S.

    1994-08-01

    A suite of In Situ Permeable Flow Sensors was deployed at the site of the Savannah River Integrated Demonstration to monitor the interaction between the groundwater flow regime and air injected into the saturated subsurface through a horizontal well. One of the goals of the experiment was to determine if a groundwater circulation system was induced by the air injection process. The data suggest that no such circulation system was established, perhaps due to the heterogeneous nature of the sediments through which the injected gas has to travel. The steady state and transient groundwater flow patterns observed suggest that the injected air followed high permeability pathways from the injection well to the water table. The preferential pathways through the essentially horizontal impermeable layers appear to have been created by drilling activities at the site

  20. Mass-transfer characterization in a parallel-plate electrochemical reactor with convergent flow

    International Nuclear Information System (INIS)

    Colli, A.N.; Bisang, J.M.

    2013-01-01

    Highlights: • A convergent laminar flow enhances and becomes more uniform the mass-transfer rate. • The mass-transfer rate is increased under convergent turbulent flow conditions. • The mass-transfer rate under convergent laminar flow can be theoretically predicted. • A convergent duct improves the reactor behaviour and the concept is easily applicable. -- Abstract: A continuous reduction in the cross-section area is analysed as a means of improving mass-transfer in a parallel-plate electrochemical reactor. Experimental local mass-transfer coefficients along the electrode length are reported for different values of the convergent ratio and Reynolds numbers, using the reduction of ferricyanide as a test reaction. The Reynolds numbers evaluated at the reactor inlet range from 85 to 4600 with interelectrode gaps of 2 and 4 mm. The convergent flow improves the mean mass-transfer coefficient by 10–60% and mass-transfer distribution under laminar flow conditions becomes more uniform. The experimental data under laminar flow conditions are compared with theoretical calculations obtained by a computational fluid dynamics software and also with an analytical simplified model. A suitable agreement is observed between both theoretical treatments and with the experimental results. The pressure drop across the reactor is reported and compared with theoretical predictions

  1. 3D CAPTURING PERFORMANCES OF LOW-COST RANGE SENSORS FOR MASS-MARKET APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Guidi

    2016-06-01

    Full Text Available Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010, several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution.

  2. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  3. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  4. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  5. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  6. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  7. Direct measurement of wall shear stress in a reattaching flow with a photonic sensor

    International Nuclear Information System (INIS)

    Ayaz, U K; Ioppolo, T; Ötügen, M V

    2013-01-01

    Wall shear stress measurements are carried out in a planar backward-facing step flow using a micro-optical sensor. The sensor is essentially a floating element system and measures the shear stress directly. The transduction method to measure the floating element deflection is based on the whispering gallery optical mode (WGM) shifts of a dielectric microsphere. This method is capable of measuring floating element displacements of the order of a nanometer. The floating element surface is circular with a diameter of ∼960 µm, which is part of a beam that is in contact with the dielectric microsphere. The sensor is calibrated for shear stress as well as pressure sensitivity yielding 7.3 pm Pa −1 and 0.0236 pm Pa −1 for shear stress and pressure sensitivity, respectively. Hence, the contribution by the wall pressure is less than two orders of magnitude smaller than that of shear stress. Measurements are made for a Reynolds number range of 2000–5000 extending to 18 step heights from the step face. The results are in good agreement with those of earlier reports. An analysis is also carried out to evaluate the performance of the WGM sensor including measurement sensitivity and bandwidth. (paper)

  8. Mass transfer effects in feeder flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2008-01-01

    Flow conditions play a dominant role in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, flow conditions determine the local distribution of wall thinning. Recent plant data of feeders and laboratory tests confirms that there is a close relationship between local flow conditions, expressed by mass transfer coefficient, and FAC rate in CANDU feeder bends. The knowledge of local effects can be useful for minimizing the number of inspected components, predicting the location of the highest FAC rate for a given piping component, and determining what components or feeders should be replaced. A similar evaluation applies also to FAC in heat transfer equipment such as heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local mass transfer parameters. For FAC where the flow is dominant, the FAC rate is proportional to mass flux of ferrous ions. The mass flux is the product of the mass transfer coefficient and the concentration difference, or degree of saturation. The mass transfer coefficient describes the intensity of the transport of corrosion products (ferrous ions) from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate in the mass-transfer controlled FAC. The degree of saturation reduces the mass flux, thus reducing the FAC rate. This effect can be significant in long piping, e.g., in outlet feeders. The paper presents plant and laboratory evidence for the relationship between local mass transfer conditions and the FAC rate. It shows correlations for mass transfer coefficient in components that are highly susceptible to FAC and most important flow parameters that affect mass transfer coefficient. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  9. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  10. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  11. The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-11-18

    The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  12. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2016-11-01

    Full Text Available The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

  13. The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708

  14. Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow

    Science.gov (United States)

    Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi

    2016-11-01

    The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.

  15. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2012-08-01

    Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  16. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  17. Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-12-01

    Full Text Available In this paper, a low cost optical flow sensor is combined with an external laser device to measure surface displacements and mechanical oscillations. The measurement system is based on applying coherent light to a diffuser surface and using an optical flow sensor to analyze the reflected and transferred light to estimate the displacement of the surface or the laser spot. This work is focused on the characterization of this measurement system, which can have the optical flow sensor placed at different angles and distances from the diffuser surface. The results have shown that the displacement of the diffuser surface is badly estimated when the optical mouse sensor is placed in front of the diffuser surface (angular orientation >150° while the highest sensitivity is obtained when the sensor is located behind the diffuser surface and on the axis of the laser source (angular orientation 0°. In this case, the coefficient of determination of the measured displacement, R2, was very high (>0.99 with a relative error of less than 1.29%. Increasing the distance between the surface and the sensor also increased the sensitivity which increases linearly, R2 = 0.99. Finally, this measurement setup was proposed to measure very low frequency mechanical oscillations applied to the laser device, up to 0.01 Hz in this work. The results have shown that increasing the distance between the surface and the optical flow sensor also increases the sensitivity and the measurement range.

  18. Reactor mass flow data base prepared for the nonproliferation alternative systems assessment program

    International Nuclear Information System (INIS)

    Primm III, R.T.C.

    1981-02-01

    This report presents charge and discharge mass flow data for reactors judged to have received sufficient technical development to enable them to be demonstrated or commercially available by the year 2000. Brief descriptions of the reactors and fuel cycles evaluated are presented. A discussion of the neutronics methods used to produce the mass flow data is provided. Detailed charge and discharge fuel isotopics are presented. U 3 O 8 , separative work, and fissile material requirements are computed and provided for each fuel cycle

  19. Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case.

  20. Post Analysis of Two Phase Natural Circulation Mass Flow Rate for CE-PECS

    International Nuclear Information System (INIS)

    Park, R. J.; Ha, K. S.; Rhee, B. W.; Kim, H. Y.

    2015-01-01

    The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is required that the coolant be circulated at a rate along the inclined cooling channel sufficient to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. In this study, post simulations of two phase natural circulation in the CEPECS have been performed to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. Post simulations of two phase natural circulation in the CE-PECS have been conducted to evaluate two phase flow characteristics and the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is approximately 8.7 kg/s in the base case

  1. Modeling of Potential Distribution of Electrical Capacitance Tomography Sensor for Multiphase Flow Image

    Directory of Open Access Journals (Sweden)

    S. Sathiyamoorthy

    2007-09-01

    Full Text Available Electrical Capacitance Tomography (ECT was used to develop image of various multi phase flow of gas-liquid-solid in a closed pipe. The principal difficulties to obtained real time image from ECT sensor are permittivity distribution across the plate and capacitance is nonlinear; the electric field is distorted by the material present and is also sensitive to measurement errors and noise. This work present a detailed description is given on method employed for image reconstruction from the capacitance measurements. The discretization and iterative algorithm is developed for improving the predictions with minimum error. The author analyzed eight electrodes square sensor ECT system with two-phase water-gas and solid-gas.

  2. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The mass of coal entering the boiler per unit time is an essential parameter for determinig the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  3. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling. Final report

    International Nuclear Information System (INIS)

    Gozani, T.; Elias, E.; Bevan, R.

    1980-04-01

    The mass of coal entering the boiler per unit time is an essential parameter for determining the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  4. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  5. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  6. MEMS Flow Sensors Based on Self-Heated aGe-Thermistors in a Wheatstone Bridge

    Directory of Open Access Journals (Sweden)

    Almir Talic

    2015-04-01

    Full Text Available A thermal flow transduction method combining the advantages of calorimetric and hot-film transduction principles is developed and analyzed by Finite Element Method (FEM simulations and confirmed experimentally. The analyses include electrothermal feedback effects of current driven NTC thermistors. Four thin-film germanium thermistors acting simultaneously as heat sources and as temperature sensors are embedded in a micromachined silicon-nitride membrane. These devices form a self-heated Wheatstone bridge that is unbalanced by convective cooling. The voltage across the bridge and the total dissipated power are exploited as output quantities. The used thin-film thermistors feature an extremely high temperature sensitivity. Combined with properly designed resistance values, a power demand in sub-1mW range enables efficient gas-flow transduction, as confirmed by measurements. Two sensor configurations with different arrangements of the membrane thermistors were examined experimentally. Moreover, we investigated the influence of different layouts on the rise time, the sensitivity, and the usable flow range by means of two-dimensional finite element simulations. The simulation results are in reasonable agreement with corresponding measurement data confirming the basic assumptions and modeling approach.

  7. Sensor for direct measurement of the boundary shear stress in fluid flow

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-04-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  8. Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing

    Science.gov (United States)

    Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-03-01

    Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.

  9. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G

    2016-01-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  10. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  11. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  12. Impact of Heat and Mass Transfer on MHD Oscillatory Flow of Jeffery ...

    African Journals Online (AJOL)

    The objective of this paper is to study Dufour, Soret and thermal conductivity on unsteady heat and mass transfer of magneto hydrodynamic (MHD) oscillatory flow of Jeffery fluid through a porous medium in a channel. The partial differential equations governing the flow have been solved numerically using semi-implicit ...

  13. In situ calibration of an interferometric velocity sensor for measuring small scale flow structures using a Talbot-pattern

    Science.gov (United States)

    König, Jörg; Czarske, Jürgen

    2017-10-01

    Small scale flow phenomena play an important role across engineering, biological and chemical sciences. To gain deeper understanding of the influence of those flow phenomena involved, measurement techniques with high spatial resolution are often required, presuming a calibration of very low uncertainty. To enable such measurements, a method for the in situ calibration of an interferometric flow velocity profile sensor is presented. This sensor, with demonstrated spatial resolution better than 1 μm, allows for spatially-resolving measurements with low velocity uncertainty in flows with high velocity gradients, on condition that the spatial behavior of the interference fringe systems is well-known by calibration with low uncertainty, especially challenging to obtain at applications with geometries difficult to access. The calibration method described herein uses three interfering beams to form the interference fringe systems of the sensor, yielding Doppler burst signals exhibiting two peaks in the frequency domain whose amplitude ratio varies periodically along the measurement volume major z-axis, giving a further independent value of the axial tracer particle position that can be used to determine the calibration functions of the sensor during the flow measurement. A flow measurement in a microchannel experimentally validates that the presented approach allows for simultaneously estimating the calibration functions and the velocity profile, providing flow measurements with very low systematic measurement errors of the particle position of less than 400 nm (confidence interval 95%). In that way, the interferometric flow velocity profile sensor utilizing the in situ self-calibration method promises valuable insights on small scale flow phenomena, such as those given in shear and boundary layer flows, by featuring reliable flow measurements due to minimum systematic and statistical measurement errors.

  14. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    Science.gov (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  15. Smooth Information Flow in Temperature Climate Network Reflects Mass Transport

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-01-01

    Roč. 27, č. 3 (2017), č. článku 035811. ISSN 1054-1500 R&D Projects: GA ČR GCP103/11/J068; GA MŠk LH14001 Institutional support: RVO:67985807 Keywords : directed network * causal network * Granger causality * climate network * information flow * temperature network Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.283, year: 2016

  16. UF6 fissile mass flow simulation at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.; Valentine, T.E.; Mattingly, J.K.; Uckan, T.; McEvers, J.A.

    1997-01-01

    Basis for measuring fissile mass flow in slurries, liquid, and gaseous streams is activation of a fissile stream by neutrons and then detection of delayed radiation from resulting fission products. This paper describes recent simulation measurements with the first prototype of the system for fissile mass flow measurements with HEU UF 6 gas for use in blenddown facilities. Theory was only 15% higher than actual measured; thus calibration factor would be 0.85. This simulation of HEU gas flow confirms well the understanding of the physical phenomena associated with this measurement system

  17. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  18. Vibration analysis of carbon nanotubes-based zeptogram masses sensors and taking into account their rotatory inertia

    Directory of Open Access Journals (Sweden)

    Azrar A.

    2018-01-01

    Full Text Available In this research work, the transverse vibration behaviour of single-walled carbon nanotubes (SCNT based mass sensors is studied using the Timoshenko beam and nonlocal elasticity theories. The nonlocal constitutive equations are used in the formulations and the CNT with different lengths, attached mass (viruses and bacteria and the general boundary conditions are considered. The dimensionless frequencies and associated modes are obtained for one and two attached masses and different boundary conditions. The effects of transverse shear deformation and rotatory inertia, nonlocal parameter, length of the carbon nanotubes, and attached mass and its location are investigated in detail for each considered problem. The relationship between the frequencies and mode shapes of the sensor and the attached zeptogramme masses are obtained. The sensing devices for biological objects including viruses and bacteria can be elaborated based on the developed sensitivity and frequency shift methodological approach.

  19. Blowdown mass flow measurements during the Power Burst Facility LOC-11C test

    International Nuclear Information System (INIS)

    Broughton, J.M.; MacDonald, P.E.

    1979-01-01

    An interpretation and evaluation of the two-phase coolant mass flow measurements obtained during Test LOC-11C performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL) are presented. Although a density gradient existed within the pipe between 1 and 6 s, the homogeneous flow model used to calculate the coolant mass flow from the measured mixture density, momentum flux, and volumetric flow was found to be generally satisfactory. A cross-sectional average density was determined by fitting a linear density gradient through the upper and lower chordal densities obtained from a three-beam gamma densitometer and then combining the result with the middle beam density. The integrated measured coolant mass flow was subsequently found to be within 5% if the initial mass inventory of the PBF loss-of-coolant accident (LOCA) system. The posttest calculations using the RELAP4/MOD6 computer code to determine coolant mass flow for Test LOC-11C also agreed well with the measured data

  20. Influence and applicability of wire-mesh sensor to acquire two phase flow dynamics

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    Wire-mesh sensors (WMS) are able to measure void distributions and velocity profile at high speed. Immersing the wire-mesh affects the structure of two-phase flow. Experiments were performed for single rising air bubble in a vertical pipe of i.d. 50 mm and 224 mm at water velocities ranging from 0.05 to 0.52 m/s and 0.42 to 0.83 m/s. Distortion of a relatively large bubble with the wire-mesh was small in the water velocity over 0.25 m/s and confirmed by cross-correlation analysis as well. Bubble rising velocity acquired by WMS is in good agreement with that estimated high-speed camera in the experimental range. WMS has applicability to acquire two phase flow dynamics in the water velocity over 0.25 m/s. (author)

  1. Rainfall measurement based on in-situ storm drainage flow sensors

    DEFF Research Database (Denmark)

    Ahm, Malte; Rasmussen, Michael Robdrup

    2017-01-01

    Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising these sen......Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising...... these sensors, it may be possible to improve the ground rainfall estimate, and thereby improve the quantitative precipitation estimation from weather radars for urban drainage applications. To test the hypothesis, this paper presents a rainfall measurement method based on flow rate measurements from well......-defined urban surfaces. This principle was used to design a runoff measurement system in a parking structure in Aalborg, Denmark, where it was evaluated against rain gauges. The measurements show that runoff measurements from well-defined urban surfaces perform just as well as rain gauges. This opens up...

  2. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.; Jones, Anthony M.; Ramuhalli, Pradeep; Roy, Surajit; Moran, Traci L.; Denslow, Kayte M.; Longoni, Gianluca

    2017-09-01

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using a surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.

  3. PDMAA Hydrogel Coated U-Bend Humidity Sensor Suited for Mass-Production

    Directory of Open Access Journals (Sweden)

    Christian Kelb

    2017-03-01

    Full Text Available We present a full-polymer respiratory monitoring device suited for application in environments with strong magnetic fields (e.g., during an MRI measurement. The sensor is based on the well-known evanescent field method and consists of a 1 mm plastic optical fiber with a bent region where the cladding is removed and the fiber is coated with poly-dimethylacrylamide (PDMAA. The combination of materials allows for a mass-production of the device by spray-coating and enables integration in disposable medical devices like oxygen masks, which we demonstrate here. We also present results of the application of an autocorrelation-based algorithm for respiratory frequency determination that is relevant for real applications of the device.

  4. Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Memiş Kemal

    2010-01-01

    Full Text Available Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: "Flow," "Dense" and "Congested". Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.

  5. Characteristics of low-mass-velocity vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji

    1995-01-01

    In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)

  6. A new sensor for stress measurement based on blood flow fluctuations

    Science.gov (United States)

    Fine, I.; Kaminsky, A. V.; Shenkman, L.

    2016-03-01

    It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.

  7. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2012-04-01

    Full Text Available This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen’s test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG’s length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

  8. Heat, mass and force flows in supersonic shockwave interaction

    Science.gov (United States)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  9. Assessment of a combined gas chromatography mass spectrometer sensor (GC-MSS) system for detecting biologically relevant volatile compounds (VCs).

    Science.gov (United States)

    Gould, Oliver; Wieczorek, Tomas; de Lacy Costello, Ben P J; Persad, Raj; Ratcliffe, Norman

    2017-09-26

    There have been a number of studies in which metal oxide sensors (MOS) have replaced conventional analytical detectors in gas chromatography systems. However, despite the use of these instruments in a range of applications including breath research the sensor responses (i.e. resistance changes w.r.t. concentration of VCs) remain largely unreported. This paper addresses that issue by comparing the response of a metal oxide sensor directly with a mass spectrometer (MS), whereby both detectors are interfaced to the same GC column using an s-swafer. It was demonstrated that the sensitivity of an in-house fabricated ZnO/ SnO2 thick film MOS was superior to a modern MS for the detection of a wide range of volatile compounds (VCs) of different functionalities and masses. Better techniques for detection and quantification of these VCs is valuable, as many of these compounds are commonly reported throughout the scientific literature. This is also the first published report of a combined GC-MS sensor system. These 2 different detector technologies when combined, should enhance discriminatory abilities to aid disease diagnoses using volatiles from e.g. breath, and bodily fluids. 29 chemical standards have been tested using solid phase micro-extraction; 25 of these compounds are found on human breath. In all but 2 instances the sensor exhibited the same or superior limit of detection compared to the MS. 12 stool samples from healthy participants were analysed, the sensor detected, on average 1.6 peaks more per sample than the MS. Similarly analysing the headspace of E. coli broth cultures the sensor detected 6.9 more peaks per sample versus the MS. This greater sensitivity is primarily a function of the superior limits of detection of the metal oxide sensor. This shows that systems based on the combination of chromatography systems with solid state sensors shows promise for a range of applications. © 2017 IOP Publishing Ltd.

  10. Design, Analysis, and Evaluation of a Compact Electromagnetic Energy Harvester from Water Flow for Remote Sensors

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2018-06-01

    Full Text Available This paper develops an electromagnetic energy harvester, which can generate small-scale electricity from non-directional water flow in oceans or rivers for remote sensors. The energy harvester integrates a Tesla disk turbine, a miniature axial-flux permanent magnet generator, and a ring cover with symmetrical grooves which are utilized to rectify flow direction. A compact structure is achieved by mounting the permanent magnets of the generator directly on the end surfaces of the turbine rotor. Theoretical analysis is implemented to illustrate the energy conversion process between flow kinetic form and electrical form. Additionally, a mathematical model is developed to investigate the magnetic field distribution produced by the cubical permanent magnets as well as parametric effect. Plastic prototypes with a diameter of 65 mm and a height of 46 mm are fabricated by using a 3D printing technique. The effect of the groove angle is experimentally investigated and compared under a no-load condition. The prototype with the optimal groove angle can operate at flow velocity down to 0.61 m/s and can induce peak-to-peak electromotive force of 2.64–11.92 V at flow velocity of 0.61–1.87 m/s. It can be observed from the results that the analytical and the measured curves are in good accordance. Loaded experiments show that the output electrical power is 23.1 mW at flow velocity of 1.87 m/s when the load resistance is approximately equal to the coil resistance. The advantages and disadvantages of the proposed energy harvester are presented through comparison with existing similar devices.

  11. Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima

    Science.gov (United States)

    Furch, Alexandra C. U.; Zimmermann, Matthias R.; Will, Torsten; Hafke, Jens B.; van Bel, Aart J. E.

    2010-01-01

    The relationships between damage-induced electropotential waves (EPWs), sieve tube occlusion, and stop of mass flow were investigated in intact Cucurbita maxima plants. After burning leaf tips, EPWs propagating along the phloem of the main vein were recorded by extra- and intracellular microelectrodes. The respective EPW profiles (a steep hyperpolarization/depolarization peak followed by a prolonged hyperpolarization/depolarization) probably reflect merged action and variation potentials. A few minutes after passage of the first EPW peak, sieve tubes gradually became occluded by callose, with maximum synthesis occurring ∼10 min after burning. Early stop of mass flow, well before completion of callose deposition, pointed to an occlusion mechanism preceding callose deposition. This obstruction of mass flow was inferred from the halt of carboxyfluorescein movement in sieve tubes and intensified secretion of aqueous saliva by feeding aphids. The early occlusion is probably due to proteins, as indicated by a dramatic drop in soluble sieve element proteins and a simultaneous coagulation of sieve element proteins shortly after the burning stimulus. Mass flow resumed 30–40 min after burning, as demonstrated by carboxyfluorescein movement and aphid activities. Stop of mass flow by Ca2+-dependent occlusion mechanisms is attributed to Ca2+ influx during EPW passage; the reversibility of the occlusion is explained by removal of Ca2+ ions. PMID:20584788

  12. Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima.

    Science.gov (United States)

    Furch, Alexandra C U; Zimmermann, Matthias R; Will, Torsten; Hafke, Jens B; van Bel, Aart J E

    2010-08-01

    The relationships between damage-induced electropotential waves (EPWs), sieve tube occlusion, and stop of mass flow were investigated in intact Cucurbita maxima plants. After burning leaf tips, EPWs propagating along the phloem of the main vein were recorded by extra- and intracellular microelectrodes. The respective EPW profiles (a steep hyperpolarization/depolarization peak followed by a prolonged hyperpolarization/depolarization) probably reflect merged action and variation potentials. A few minutes after passage of the first EPW peak, sieve tubes gradually became occluded by callose, with maximum synthesis occurring approximately 10 min after burning. Early stop of mass flow, well before completion of callose deposition, pointed to an occlusion mechanism preceding callose deposition. This obstruction of mass flow was inferred from the halt of carboxyfluorescein movement in sieve tubes and intensified secretion of aqueous saliva by feeding aphids. The early occlusion is probably due to proteins, as indicated by a dramatic drop in soluble sieve element proteins and a simultaneous coagulation of sieve element proteins shortly after the burning stimulus. Mass flow resumed 30-40 min after burning, as demonstrated by carboxyfluorescein movement and aphid activities. Stop of mass flow by Ca(2+)-dependent occlusion mechanisms is attributed to Ca(2+) influx during EPW passage; the reversibility of the occlusion is explained by removal of Ca(2+) ions.

  13. Anatomy and function relation in the coronary tree: from bifurcations to myocardial flow and mass.

    Science.gov (United States)

    Kassab, Ghassan S; Finet, Gerard

    2015-01-01

    The study of the structure-function relation of coronary bifurcations is necessary not only to understand the design of the vasculature but also to use this understanding to restore structure and hence function. The objective of this review is to provide quantitative relations between bifurcation anatomy or geometry, flow distribution in the bifurcation and degree of perfused myocardial mass in order to establish practical rules to guide optimal treatment of bifurcations including side branches (SB). We use the scaling law between flow and diameter, conservation of mass and the scaling law between myocardial mass and diameter to provide geometric relations between the segment diameters of a bifurcation, flow fraction distribution in the SB, and the percentage of myocardial mass perfused by the SB. We demonstrate that the assessment of the functional significance of an SB for intervention should not only be based on the diameter of the SB but also on the diameter of the mother vessel as well as the diameter of the proximal main artery, as these dictate the flow fraction distribution and perfused myocardial mass, respectively. The geometric and flow rules for a bifurcation are extended to a trifurcation to ensure optimal therapy scaling rules for any branching pattern.

  14. Further development of drag bodies for the measurement of mass flow rates during blowdown experiments

    International Nuclear Information System (INIS)

    Brockmann, E.; John, H.; Reimann, J.

    1983-01-01

    Drag bodies have already been used for sometime for the measurement of mass flow rates in blowdown experiments. Former research concerning the drag body behaviour in non-homogeneous two-phase flows frequently dealt with special effects by means of theoretical models only. For pipe flows most investigations were conducted for ratios of drag plate area to pipe cross section smaller 0.02. The present paper gives the results of experiments with drag bodies in a horizontal, non-homogeneous two-phase pipe flow with slip, which were carried through under the sponsorship of the German Ministry for Research and Technology (BMFT). Special interest was layed on the behaviour of the drag coefficient in stationary flows and at various cross sectional ratios. Both design and response of various drag bodies, which were developed at the Battelle-Institut, were tested in stationary and instationary two-phase flows. The influences of density and velocity profiles as well as the drag body position were studied. The results demonstrate, that the drag body is capable of measuring mass flow rates in connection with a gamma densitometer also in non-homogeneous two-phase flows. Satisfying results could be obtained, using simply the drag coefficient which was determined from single-phase flow calibrations

  15. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    International Nuclear Information System (INIS)

    Hamel, W.R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flow rate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flow rate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flow rate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flow rate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow

  16. A Mass Conservative Numerical Solution for Two-Phase Flow in Porous Media With Application to Unsaturated Flow

    DEFF Research Database (Denmark)

    Celia, Michael A.; Binning, Philip John

    1992-01-01

    that the algorithm produces solutions that are essentially mass conservative and oscillation free, even in the presence of steep infiltrating fronts. When the algorithm is applied to the case of air and water flow in unsaturated soils, numerical results confirm the conditions under which Richards's equation is valid....... Numerical results also demonstrate the potential importance of air phase advection when considering contaminant transport in unsaturated soils. Comparison to several other numerical algorithms shows that the modified Picard approach offers robust, mass conservative solutions to the general equations...

  17. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    Science.gov (United States)

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  18. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    Science.gov (United States)

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  19. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (2), flow dynamics calculations for determining mixing factors and mass transfer coefficients

    International Nuclear Information System (INIS)

    Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi

    2009-01-01

    In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)

  20. The respective roles of bulk friction and slip velocity during a granular mass flow

    Science.gov (United States)

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  1. In vitro and in vivo evaluation of a new large animal spirometry device using mainstream CO2 flow sensors.

    Science.gov (United States)

    Ambrisko, T D; Lammer, V; Schramel, J P; Moens, Y P S

    2014-07-01

    A spirometry device equipped with mainstream CO2 flow sensor is not available for large animal anaesthesia. To measure the resistance of a new large animal spirometry device and assess its agreement with reference methods for volume measurements. In vitro experiment and crossover study using anaesthetised horses. A flow partitioning device (FPD) equipped with 4 human CO2 flow sensors was tested. Pressure differences were measured across the whole FPD and across each sensor separately using air flows (range: 90-720 l/min). One sensor was connected to a spirometry monitor for in vitro volume (3, 5 and 7 l) measurements. These measurements were compared with a reference method. Five anaesthetised horses were used for tidal volume (VT) measurements using the FPD and a horse-lite sensor (reference method). Bland-Altman analysis, ANOVA and linear regression analysis were used for data analysis. Pressure differences across each sensor were similar suggesting equal flow partitioning. The resistance of the device increased with flow (range: 0.3-1.5 cmH2 O s/l) and was higher than that of the horse-lite. The limits of agreement for volume measurements were within -1 and 2% in vitro and -12 and 0% in vivo. Nine of 147 VT measurements in horses were outside of the ± 10% limits of acceptance but most of these erroneous measurements occurred with VTs lower than 4 l. The determined correction factor for volume measurements was 3.97 ± 0.03. The limits of agreement for volume measurements by the new device were within ± 10% using clinically relevant range of volumes. The new spirometry device can be recommended for measurement of VT in adult Warmblood horses. © 2013 EVJ Ltd.

  2. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  3. Change of neutron flow sensors effectiveness in the course of reactor experiments

    International Nuclear Information System (INIS)

    Kurpesheva, A.M.; Kotov, V.M.; Zhotabaev, Zh.R.

    2007-01-01

    Full text: IGR reactor is a reactor of thermal capacity type. During the operation, uranium-graphite core can be heated up to 1500 deg. C and reactivity can be changed considerably. Core dimensions are comparatively small. Amount of control rods, providing required reactivity, is not big as well. Increasing of core temperature leads to the rise of neutrons path length in its basic material - graphite. Change of temperature is not even. All this causes the non-conservation of neutron flows ratio in irradiated sample and in the place of reactor power sensors installation. Deviations in this ratio were registered during the number of reactor experiments. Empiric corrections can be introduced in order to decrease influence of change of neutron flow effectiveness upon provision of required parameters of investigated matters load. However, dependence of these corrections upon many factors can lead to the increasing of instability of process control. Previous experiment-calculated experiments showed inequality of neutron field in the place of sensors location (up to tens of percent), low effectiveness of experimental works, carried out without access to the individual reactor laying elements. Imperfection during the experiment was an idea of possibility to connect distribution of out of reactor neutron flow and control rods position. Subsequent analysis showed that for the development of representative phenomenon model it is necessary to take into account reactor operation dynamic subject to unevenness of heating of individual laying parts. Elemental calculations showed that temperature laying effects in the change of neutron outer field are great. Algorithm of calculations for the change of outer filed and field of investigated fabrication includes calculation of neutron-physic reactor characteristics interlacing with calculations of thermal-physic reactor characteristics, providing correlation of temperature fields for neutron-physic calculations. In the course of such

  4. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  5. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor.

    Science.gov (United States)

    Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A

    2010-12-15

    This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Generalized derivation of the added-mass and circulatory forces for viscous flows

    Science.gov (United States)

    Limacher, Eric; Morton, Chris; Wood, David

    2018-01-01

    The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.

  7. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  8. The nuclear flow and the mass number dependence of the balance point

    International Nuclear Information System (INIS)

    Sebille, F.; de la Mota, V.; Remaud, B.; Schuck, P.

    1990-01-01

    The nuclear flow is studied theoretically with the Landau Vlasov equation in the E/A = 50 to 150 MeV energy domain using the finite range Gogny force. For comparison also other equations of states based on velocity independent mean fields are used. In this paper the mass number dependence of the balance point is investigated. A sensitivity of the flow on the equation of state as a function of mass and energies around and above the balance point can tentatively be advanced

  9. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    International Nuclear Information System (INIS)

    Cochran, H.D. Jr.

    1978-01-01

    An improved method of monitoring the mass flow rate of a substance entering a coherent fluid stream is described. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance

  10. How fast can a black hole eat. [Equation stationary spherically symmetric solutions, Thompson scattering, mass flow

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, P; Meszaros, P [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany, F.R.)

    1976-11-01

    Stationary spherically symmetric solutions of the equations for accretion of large mass flows onto a black hole, including the interaction of matter and radiation due to Thomson scattering in diffusion approximation are constructed. The relevance of these solutions is discussed with respect to the question of whether the limitation of the luminosity (Eddington limit) also implies an upper bound to the possible rate of mass flow. The question remains open until all instabilities have been studied. At the moment a negative answer is favoured.

  11. One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1976-09-01

    A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment

  12. The effect of virtual mass on the prediction of critical flow

    International Nuclear Information System (INIS)

    Cheng, L.; Lahey, R.T.; Drew, D.A.

    1983-01-01

    By observing the results in Fig. 4 and Fig. 5 we can see that virtual mass effects are important in predicting critical flow. However, as seen in Fig. 7a, in which all three flows are predicted to be critical (Δ=0), it is difficult to distinguish one set of conditions from the other by just considering the pressure profile. Clearly more detailed data, such as the throat void fraction, is needed for discrimination between these calculations. Moreover, since the calculated critical flows have been found to be sensitive to initial mass flux, and void fraction, careful measurements of those parameters are needed before accurate virtual mass parameters can be determined from these data. It can be concluded that the existing Moby Dick data is inadequate to allow one to deduce accurate values of the virtual mass parameters C/sub VM/ and λ. Nevertheless, more careful experiments of this type are uniquely suited for the determination of these important parameters. It appears that the use of a nine equation model, such as that discussed herein, coupled with more detailed accurate critical flow data is an effective means of determining the parameters in interfacial momentum transfer models, such as virtual mass effects, which are only important during strong spatial accelerations. Indeed, there are few other methods available which can be used for such determinations

  13. Bayesian inference in mass flow simulations - from back calculation to prediction

    Science.gov (United States)

    Kofler, Andreas; Fischer, Jan-Thomas; Hellweger, Valentin; Huber, Andreas; Mergili, Martin; Pudasaini, Shiva; Fellin, Wolfgang; Oberguggenberger, Michael

    2017-04-01

    Mass flow simulations are an integral part of hazard assessment. Determining the hazard potential requires a multidisciplinary approach, including different scientific fields such as geomorphology, meteorology, physics, civil engineering and mathematics. An important task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The application of probabilistic methods allows one to develop a comprehensive simulation concept, ranging from back to forward calculation and finally to prediction of mass flow events. In this context optimized parameter sets for the used simulation model or intensities of the modeled mass flow process (e.g. runout distances) are represented by probability distributions. Existing deterministic flow models, in particular with respect to snow avalanche dynamics, contain several parameters (e.g. friction). Some of these parameters are more conceptual than physical and their direct measurement in the field is hardly possible. Hence, parameters have to be optimized by matching simulation results to field observations. This inverse problem can be solved by a Bayesian approach (Markov chain Monte Carlo). The optimization process yields parameter distributions, that can be utilized for probabilistic reconstruction and prediction of avalanche events. Arising challenges include the limited amount of observations, correlations appearing in model parameters or observed avalanche characteristics (e.g. velocity and runout) and the accurate handling of ensemble simulations, always taking into account the related uncertainties. Here we present an operational Bayesian simulation framework with r.avaflow, the open source GIS simulation model for granular avalanches and debris flows.

  14. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in

  15. Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow

    International Nuclear Information System (INIS)

    Kang, Chang Woo; Yang, Kyung Soo

    2014-01-01

    Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the

  16. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  17. A simple mass-conserved level set method for simulation of multiphase flows

    Science.gov (United States)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  18. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)

    2009-09-15

    Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)

  19. Flow-through Fourier transform infrared sensor for total hydrocarbons determination in water.

    Science.gov (United States)

    Pérez-Palacios, David; Armenta, Sergio; Lendl, Bernhard

    2009-09-01

    A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18 non-polar sorbent is placed inside the sensor and is able to retain hydrocarbons from water samples. The system does not require the use of chlorinated solvents, reducing the environmental impact, and the minimal sample handling stages serve to ensure sample integrity whilst reducing exposure of the analyst to any toxic hydrocarbons present within the samples. Fourier transform infrared (FT-IR) spectra were recorded by co-adding 32 scans at a resolution of 4 cm(-1) and the band located at 1462 cm(-1) due to the CH(2) bending was integrated from 1475 to 1450 cm(-1) using a baseline correction established between 1485 and 1440 cm(-1) using the areas as analytical signal. The technique, which provides a limit of detection (LOD) of 22 mg L(-1) and a precision expressed as relative standard deviation (RSD) lower than 5%, is considerably rapid and allows for a high level of automation.

  20. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    Science.gov (United States)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  1. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    International Nuclear Information System (INIS)

    Sharaf, S; Azzopardi, B; Da Silva, M; Hampel, U; Zippe, C; Beyer, M

    2011-01-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas–liquid and liquid–liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas–liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air–deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s −1 and 1.4 m s −1 at two liquid velocities of 0.2 and 0.7 m s −1 . The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe

  2. Flow and Mass Transfer Performance in Short Pin-Fin Channels with Different Fin Shapes

    OpenAIRE

    Goldstein, R. J.; Chen, S. B.

    1998-01-01

    The mass transfer (analogous to heat transfer) and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF) and two stepped-diameter circular fins (SDCF1 and SDCF2). Flow visualization using oil-lampblack reveals complex flow characteristics assoc...

  3. Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction

    Directory of Open Access Journals (Sweden)

    S. A. Shehzad

    2013-03-01

    Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.

  4. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  5. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-11-01

    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control

  6. Time resolved mass flow measurements for a fast gas delivery system

    International Nuclear Information System (INIS)

    Ruden, E.L.; Degnan, J.H.; Hussey, T.W.; Scott, M.C.; Graham, J.D.; Coffey, S.K.

    1992-01-01

    A technique is demonstrated whereby the delivered mass and flow rate vs. time of a short rise time gas delivery system may be accurately determined. The gas mass M which flows past a point in a gas delivery system by an arbitrary time t may be accurately measured if that point is sealed off within a time interval short compared to the mass flow time scale. If the ejected mass is allowed to equilibrate in a known volume after being cut off from its source, a conventional static pressure measurement before and after injection, and application of the ideal gas law suffices. Assuming reproducibility, a time history M(t) may be generated, allowing the flow rate vs. time dM(t)/dt to be determined. Mass flow measurements are presented for a fast delivery system in which the flow of argon through a 3.2 mm I.D., 0.76 mm thick copper tube is cut off by imploding (θ pinching) the tube using a single turn tungsten magnetic field coil. Pinch discharge parameters are 44 μf, 20 kV, 47 nH, 3.5 mΩ, 584 kA, and 8.63 ps current period. Optical measurements of the tube's internal area vs. time indicate that the tube is sealed 2 ps from the time the tube is still 90% open (7 μs from the start of pinch current). The pinch delay is varied from 500--1,500 ps from the valve trigger (0--1,000 ps from the start of gas flow). The mass injected into the test volume is ∼ 100 μg during this interval. The leak rate of the sealed tube results in a mass increase of only ∼ 0.1 μg by the time the pressure gauge stabilizes (6 s). Results are correlated with piezoelectric probe measurements of the gas flow and 2-D axisymmetric numerical simulations of the θ pinch process. Simulations of a θ pinch suitable for characterizing an annular supersonic nozzle typical of those used in gas puff z pinches are discussed

  7. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  8. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  9. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  10. Ideal stability of cylindrical plasma in the presence of mass flow

    International Nuclear Information System (INIS)

    Bondeson, A.; Iacono, R.

    1988-11-01

    The ideal stability of cylindrical plasma with mass flows is investigated using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic treatment of the parallel motion in GCP gives significantly different results than fluid models, where the pressures are obtained from equations of state. In particular, GCP removes the resonance with slow magnetoacoustic waves and the loss of stability that results in magnetohydrodynamics (MHD) for near-soni flows. Because of the strong kinetic damping of the sound waves in an isothermal plasma, the slow waves have little influence on plasma stability in GCP at low β. In the large aspect ratio, low-β tokamak ordering, Alfvenic flows are needed to change the ideal GCP stability significantly. At lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability of local modes depending on the profiles, but external kinks are always destilized by flow if the velocity vanishes at the edge. For high-β, reversed field pinch equilibria, numerical computations show that flow can be stabilizing for local modes, but external modes are destabilized by flow. It is shown that in three dimensions, the MHD equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic field, whereas in GCP the equilibrium remains elliptic for sub-Alfvenic flows. (author) 7 figs., 1 tab, 32 refs

  11. Modelling of the processes of heat and mass transfer in adiabatic steam and drop flows

    International Nuclear Information System (INIS)

    Andrizhievskij, A.A.; Mikhalevich, A.A.; Nesterenko, V.B.; Trifonov, A.G.

    1983-01-01

    The mathematical models for investigating the local and integral characteristics of heat and mass transfer processes during simultaneous motion of adiabatic steam and drop flow and a flux of impurity particles are given. The mathematical model is constrUcted on the basis of one-dimensional stationary eqUations of conservation of mass, thermal energy and momentum of liquid and vapor phases. Dispersion composition of condensed moisture is described by the Nukiyama-Tanasava distribution function formed taking into account the Veber number critical value. Equations of motion and mass balance conservation for impurity particles are included into the mathematical model. These equations are considered as additional inactive phase

  12. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor

    Science.gov (United States)

    Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.

    2018-03-01

    Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).

  13. Assessing the degree of plug flow in oxidation flow reactors (OFRs: a study on a potential aerosol mass (PAM reactor

    Directory of Open Access Journals (Sweden)

    D. Mitroo

    2018-03-01

    Full Text Available Oxidation flow reactors (OFRs have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate. While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs inside the Washington University Potential Aerosol Mass (WU-PAM reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study.

  14. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  15. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  16. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

  17. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference

  18. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  19. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  20. Analysis of Petrol and Diesel Vapor Using Selective Ion Flow Tube/Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Ping, CH.; Weijun, Z.; Yaman, CH.; Španěl, Patrik; Smith, D.

    2003-01-01

    Roč. 5, - (2003), s. 548-551 ISSN 0253-3820 Institutional research plan: CEZ:AV0Z4040901 Keywords : selected ion flow tube/mass spectrometry * fuel vapor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.224, year: 2003

  1. On the features, successes and challenges of selected ion flow tube mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    2013-01-01

    Roč. 19, č. 4 (2013), s. 225-246 ISSN 1469-0667 R&D Projects: GA ČR GA13-28882S Institutional support: RVO:61388955 Keywords : selected ion flow tube mass spectrometry * SIFT-MS * breath metabolies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.165, year: 2013

  2. Effect of virtual mass on the characteristics and the numerical stability in two-phase flows

    International Nuclear Information System (INIS)

    No, H.C.; Kazimi, M.S.

    1981-04-01

    It is known that the typical six equation two-fluid model of the two-phase flow possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit and constitutes an ill-posed initial value problem. Among the suggestions to overcome these difficulties, one model for the virtual mass force terms were studied here, because the virtual mass represents real physical effects to accomplish the dissipation for numerical stability. It was found that the virtual mass has a profound effect upon the mathematical characteristic and numerical stability. Here a quantitative bound on the coefficient of the virtual mass terms was suggested for mathematical hyperbolicity and numerical stability. It was concluded that the finite difference scheme with the virtual mass model is restricted only by the convective stability conditions with the above suggested value

  3. Effect of distributive mass of spring on power flow in engineering test

    Science.gov (United States)

    Sheng, Meiping; Wang, Ting; Wang, Minqing; Wang, Xiao; Zhao, Xuan

    2018-06-01

    Mass of spring is always neglected in theoretical and simulative analysis, while it may be a significance in practical engineering. This paper is concerned with the distributive mass of a steel spring which is used as an isolator to simulate isolation performance of a water pipe in a heating system. Theoretical derivation of distributive mass effect of steel spring on vibration is presented, and multiple eigenfrequencies are obtained, which manifest that distributive mass results in extra modes and complex impedance properties. Furthermore, numerical simulation visually shows several anti-resonances of the steel spring corresponding to impedance and power flow curves. When anti-resonances emerge, the spring collects large energy which may cause damage and unexpected consequences in practical engineering and needs to be avoided. Finally, experimental tests are conducted and results show consistency with that of the simulation of the spring with distributive mass.

  4. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor

    Directory of Open Access Journals (Sweden)

    Raffaele Caroselli

    2017-12-01

    Full Text Available Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU, which allowed us to directly detect refractive index variations in the 10−7 RIU range.

  5. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.

    Science.gov (United States)

    Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime

    2017-12-05

    Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.

  6. APPLICATION FEATURES OF SPATIAL CONDUCTOMETRY SENSORS IN MODELLING OF COOLANT FLOW MIXING IN NUCLEAR POWER UNIT EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. A. Barinov

    2016-01-01

    Full Text Available Coolant flow mixing processes with different temperatures and concentrations of diluted additives widely known in nuclear power units operation. In some cases these processes make essential impact on the resource and behavior of the nuclear unit during transient and emergency situations. The aim of the study was creation of measurement system and test facility to carry out basic tests and to embed spatial conductometry method in investigation practice of turbulent coolant flows. In the course of investigation measurement system with sensors and experimental facility was designed, several first tests were carried out. A special attention was dedicated to calibration and clarification of conductometry sensor application methodologies in studies of turbulent flow characteristics. Investigations involved method of electrically contrast tracer jet with concurrent flow in closed channel of round crosssection. The measurements include both averaged and unsteady realizations of measurement signal. Experimental data processing shows good agreement with other tests acquired from another measurement systems based on different physical principles. Calibration functions were acquired, methodical basis of spatial conductometry measurement system application was created. Gathered experience of spatial sensor application made it possible to formulate the principles of further investigation that involve large-scale models of nuclear unit equipment. Spatial wire-mesh sensors proved to be a perspective type of eddy resolving measurement devices.

  7. Piecewise mass flows within a solar prominence observed by the New Vacuum Solar Telescope

    Science.gov (United States)

    Li, Hongbo; Liu, Yu; Tam, Kuan Vai; Zhao, Mingyu; Zhang, Xuefei

    2018-06-01

    The material of solar prominences is often observed in a state of flowing. These mass flows (MF) are important and useful for us to understand the internal structure and dynamics of prominences. In this paper, we present a high resolution Hα observation of MFs within a quiescent solar prominence. From the observation, we find that the plasma primarily has a circular motion and a downward motion separately in the middle section and legs of the prominence, which creates a piecewise mass flow along the observed prominence. Moreover, the observation also shows a clear displacement of MF's velocity peaks in the middle section of the prominence. All of these provide us with a detailed record of MFs within a solar prominence and show a new approach to detecting the physical properties of prominence.

  8. DECSERVIS-2: A tool for natural decay series mass flow simulation

    International Nuclear Information System (INIS)

    Azzam, Saad; Suksi, Juhani; Ammann, Michael

    2009-01-01

    After the publication of 'DECSERVIS: a tool for radioactive decay series visualisation' we have further developed our DECSERVIS software. With the new tool DECSERVIS-2 one can simulate radioactive decay chains in open systems, i.e. when the concentrations of nuclides change also due to mass flows. Decay chains can be simulated under continuous and successive nuclide mass flow events into and out from the system and in freely determined time intervals. Simulation output for the entire decay chain (nuclide activity, mass, number of nuclides, nuclide ratios) can be presented as a function of time with various graphical presentations such as solid curve and column diagrams or animation. In this paper we introduce DECSERVIS-2 and demonstrate its use with simulation examples. DECSERVIS-2 is easy to use and has been designed with an eye on the demands of teaching.

  9. Time averaging procedure for calculating the mass and energy transfer rates in adiabatic two phase flow

    International Nuclear Information System (INIS)

    Boccaccini, L.V.

    1986-07-01

    To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de

  10. Mass spectrometric studies of bimolecular reactions in a selected ion flow tube (SIFT)

    International Nuclear Information System (INIS)

    Shul, R.J.; Upschulte, B.L.; Passarella, R.; Keesee, R.G.; Castleman, A.W.

    1985-01-01

    The rate coefficients for a number of thermal energy charge transfer reactions have been obtained with a selected ion flow tube (SIFT). The reactions studied involve Ar + and Ar 2 + with a variety of neutral molecules including: O 2 , CS 2 , CO 2 , SO 2 , H 2 S, NH 3 , and SF 6 . Such reactions have been of long-standing interest in the field of gas-phase ion-molecule chemistry from both a practical and fundamental point of view. Consideration of charge transfer reactions as possible sources of chemical lasers and their role in ionospheric and interstellar chemistry account for much of the interest. Fundamentally, the mechanism involved in these reactions has yet to be definitively established. The consumption deposition of energy into internal modes and translational degrees of freedom in such reactions has also been a topic of considerable debate. The apparatus consists of five main components: an ion source, SIFT quadrupole, ion injector, flow tube, and a mass spectrometer detection system. Ions formed in a high pressure source leak into a SIFT quadrupole where they are mass selected. The primary ion of interest is then injected into the flow tube where reactions are studied. Once in the flow tube the ions are carried downstream by an inert buffer gas, either argon, nitrogen, or helium in the present study. Neutral reactant gas is added through a reactant gas inlet (RGI) at an appropriate location downstream in the flow tube, and allowed to react with the injected ions. Ions on the flow tube axis are sampled through a 1 mm orifice where they are mass analyzed by a second quadrupole mass spectrometer and detected with a channeltron electron multiplier

  11. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    Science.gov (United States)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  12. Testbeam studies of silicon microstrip sensor architectures modified to facilitate detector module mass production

    CERN Document Server

    Poley, Anne-luise; The ATLAS collaboration

    2016-01-01

    For the High Luminosity Upgrade of the LHC, the Inner Detector of the ATLAS detector will be replaced by an all-silicon tracker, consisting of pixel and strip sensor detector modules. Silicon strip sensors are being developed to meet both the tracking requirements in a high particle density environment and constraints imposed by the construction process. Several thousand wire bonds per module, connecting sensor strips and readout channels, need to be produced with high reliability and speed, requiring wire bond pads of sufficient size on each sensor strip. These sensor bond pads change the local sensor architecture and the resulting electric field and thus alter the sensor performance. These sensor regions with bond pads, which account for up to 10 % of a silicon strip sensor, were studied using both an electron beam at DESY and a micro-focused X-ray beam at the Diamond Light Source. This contribution presents measurements of the effective strip width in sensor regions where the structure of standard parallel...

  13. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    Science.gov (United States)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  14. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

    International Nuclear Information System (INIS)

    Leigh, S J; Purssell, C P; Billson, D R; Hutchins, D A

    2014-01-01

    Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor. (paper)

  15. Heat and mass transfer of a fuel droplet evaporating in oscillatory flow

    International Nuclear Information System (INIS)

    Jangi, M.; Kobayashi, H.

    2009-01-01

    A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure. The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1-75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air. To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.

  16. Characterizing the correlations between local phase fractions of gas���liquid two-phase flow with wire-mesh sensor

    OpenAIRE

    Tan, C.; Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas���liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of t...

  17. Study on flow and mass transport through fractured soft sedimentary rocks (Contact research)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Maekawa, Keisuke

    2007-03-01

    It is important for safety assessment of HLW geological disposal to evaluate groundwater flow and mass transport in deep underground accurately. Though it is considered that the mass transport in sedimentary rock occurs in pores between grains mainly, fractures of sedimentary rock can be main paths. The objective of this study is to establish a conceptual model for flow and mass transport in fractured soft sedimentary rock. In previous study, a series of laboratory hydraulic and tracer tests and numerical analyses were carried out using sedimentary rock specimens obtained from Koetoi and Wakkanai formation. Single natural fractured cores and rock block specimen were used for the tests and analyses. The results indicated that the matrix diffusion played an important role for mass transport in the fractured soft sedimentary rocks. In this study, the following two tasks were carried out: (1) laboratory hydraulic and tracer experiments of rock cores of Koetoi and Wakkanai formation obtained at HDB-9, HDB-10 and HDB-11 boreholes and a rock block specimen, Wakkanai formation, obtained at an outcrop in the Horonobe area, (2) a numerical study on the conceptual model of flow and mass transport through fractured soft sedimentary rocks. Non-sorbing tracer experiments using naturally fractured cores and rock block specimens were carried out. Pottasium iodide was used as a tracer. The obtained breakthrough curves were interpreted and fitted by using a numerical simulator, and mass transport parameters, such as longitudinal dispersivity, matrix diffusion coefficient, transport aperture, were obtained. Mass transport simulations using a fracture network model, a continuum model and a double porosity model were performed to study the applicability of continuum model and double porosity model for transport in fractured sedimentary rock. (author)

  18. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  19. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  20. Source modulation-correlation measurement for fissile mass flow in gas or liquid fissile streams

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.A.; Valentine, T.E.; Abston, R.A.; Mattingly, J.K.; Mullens, J.A.

    1996-01-01

    The method of monitoring fissile mass flow on all three legs of a blending point, where the input is high-enriched uranium (HEU) and low-enriched uranium (LEU) and the product is PEU, can yield the fissile stream velocity and, with calibration, the [sup235]U content. The product of velocity and content integrated over the pipe gives the fissile mass flow in each leg. Also, the ratio of fissile contents in each pipe: HEU/LEU, HEU/PEU, and PEU/LEU, are obtained. By modulating the source on the input HEU pipe differently from that on the output pipe, the HEU gas can be tracked through the blend point. This method can be useful for monitoring flow velocity, fissile content, and fissile mass flow in HEU blenddown of UF[sub 6] if the pressures are high enough to contain some of the induced fission products. This method can also be used to monitor transfer of fissile liquids and other gases and liquids that emit radiation delayed from particle capture. These preliminary experiments with the Oak Ridge apparatus show that the method will work and the modeling is adequate

  1. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    International Nuclear Information System (INIS)

    Papell, S.S.; Nyland, T.W.; Saiyed, N.H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band. 3 refs

  2. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  3. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  4. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  5. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  6. Mass and energy flows between the Solar chromosphere, transition region, and corona

    Science.gov (United States)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  7. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  8. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2016-09-01

    Full Text Available The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  9. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206

  10. Discovering and understanding android sensor usage behaviors with data flow analysis

    KAUST Repository

    Liu, Xing

    2017-03-20

    Today’s Android-powered smartphones have various embedded sensors that measure the acceleration, orientation, light and other environmental conditions. Many functions in the third-party applications (apps) need to use these sensors. However, embedded sensors may lead to security issues, as the third-party apps can read data from these sensors without claiming any permissions. It has been proven that embedded sensors can be exploited by well designed malicious apps, resulting in leaking users’ privacy. In this work, we are motivated to provide an overview of sensor usage patterns in current apps by investigating what, why and how embedded sensors are used in the apps collected from both a Chinese app. market called “AppChina” and the official market called “Google Play”. To fulfill this goal, We develop a tool called “SDFDroid” to identify the used sensors’ types and to generate the sensor data propagation graphs in each app. We then cluster the apps to find out their sensor usage patterns based on their sensor data propagation graphs. We apply our method on 22,010 apps collected from AppChina and 7,601 apps from Google Play. Extensive experiments are conducted and the experimental results show that most apps implement their sensor related functions by using the third-party libraries. We further study the sensor usage behaviors in the third-party libraries. Our results show that the accelerometer is the most frequently used sensor. Though many third-party libraries use no more than four types of sensors, there are still some third-party libraries registering all the types of sensors recklessly. These results call for more attentions on better regulating the sensor usage in Android apps.

  11. Discovering and understanding android sensor usage behaviors with data flow analysis

    KAUST Repository

    Liu, Xing; Liu, Jiqiang; Wang, Wei; He, Yongzhong; Zhang, Xiangliang

    2017-01-01

    Today’s Android-powered smartphones have various embedded sensors that measure the acceleration, orientation, light and other environmental conditions. Many functions in the third-party applications (apps) need to use these sensors. However, embedded sensors may lead to security issues, as the third-party apps can read data from these sensors without claiming any permissions. It has been proven that embedded sensors can be exploited by well designed malicious apps, resulting in leaking users’ privacy. In this work, we are motivated to provide an overview of sensor usage patterns in current apps by investigating what, why and how embedded sensors are used in the apps collected from both a Chinese app. market called “AppChina” and the official market called “Google Play”. To fulfill this goal, We develop a tool called “SDFDroid” to identify the used sensors’ types and to generate the sensor data propagation graphs in each app. We then cluster the apps to find out their sensor usage patterns based on their sensor data propagation graphs. We apply our method on 22,010 apps collected from AppChina and 7,601 apps from Google Play. Extensive experiments are conducted and the experimental results show that most apps implement their sensor related functions by using the third-party libraries. We further study the sensor usage behaviors in the third-party libraries. Our results show that the accelerometer is the most frequently used sensor. Though many third-party libraries use no more than four types of sensors, there are still some third-party libraries registering all the types of sensors recklessly. These results call for more attentions on better regulating the sensor usage in Android apps.

  12. Application of Optical Flow Sensors for Dead Reckoning, Heading Reference, Obstacle Detection, and Obstacle Avoidance

    Science.gov (United States)

    2015-09-01

    motion tracking and one sensor for object detection in association with an Arduino microcontroller , we built an indoor ground robot capable of...one sensor for motion tracking and one sensor for object detection in association with an Arduino microcontroller , we built an indoor ground robot...the vehicle from the generated data delivered by the optical sensor to an Arduino microcontroller . The microcontroller controls the speed, heading

  13. Mass transfer during sulfuric acid concentration by evaporation into the air flow

    Directory of Open Access Journals (Sweden)

    V. K. Lukashov

    2016-12-01

    Full Text Available This article shows the results of the study of mass transfer under periodic concentration of sulfuric acid by evaporation inthe gas flow, neutral with respect to the components of acid.Used mathematical model for mass transferbases on the proposed simplified physical representations.This model has allowed to construct an algorithm for calculation the coefficient of mass transfer from the liquid phase into the gas flow. The algorithm uses the experimental data of change the amount of acid and concentration of the water taken from the laboratory tests. Time-based Nusselt diffusion criterion represent the results of the study at different modes of the evaporation process.It has been found that the character of the influence of temperature and initial acid concentration on Nusselt diffusion criterion depends on the variation range of the mass fraction of water in the acid.It is shown that these dependences are well approximated by an exponential function from the dimensionless parameters of the process. This allows usingthem for calculation the mass transfer coefficient into the gas phase in a batch process of concentrating in the range of investigated modes.

  14. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.

    Science.gov (United States)

    Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K

    2018-02-01

    Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce

  15. Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries

    OpenAIRE

    Choy, Jenny Susana; Kassab, Ghassan S.

    2008-01-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5±32.7) were used in this study. Various coronary sub-trees of the Left Anterior Descending (LAD), Right Coronary (RCA) and Left Circumflex (L...

  16. Computation of fluid flow in distending tunnels with mass, momentum and energy exchange with the walls

    Energy Technology Data Exchange (ETDEWEB)

    Maw, J R [AWRE, Aldermaston (United Kingdom)

    1970-05-01

    When calculating the effects of an underground explosion it may be useful to be able to calculate the flow of the very hot gaseous products along pipes or tunnels. For example it might be possible to treat a fault in the surrounding rock as an idealised pipe forced open by the high pressure generated by the explosion. Another possibility might be the use of a specially constructed tunnel to channel the energy released in some preferred direction. In such cases the gas flow is complicated by several phenomena. The cross section of the pipe may vary with axial distance and also distend with time. Heat will be lost to the walls of the pipe which may be ablated leading to entrainment of wall material into the gas flow. In addition wall friction will tend to retard the flow. This paper describes a simple computer program, HAT, which was written to calculate such flows. The flow is assumed to be quasi-one-dimensional in that flow quantities such as pressure density and axial velocity do not vary across the pipe. However the radius of the pipe may vary both with axial distance and with time. Sources, or sinks of mass, momentum and energy are included in the governing equations which allow simulation of the phenomena described above. The governing equations are derived in Eulerian form and approximated using an extension of the finite difference scheme of Lax. A brief outline of the computational procedure is given. To demonstrate the capabilities and assess the accuracy of the program two simple problems are calculated using HAT (i) The motion of a shock along a converging pipe. (ii) The effect of mass addition through the walls on the motion of a shock along a uniform pipe. In both cases results obtained using HAT are compared with theoretical analyses of the motion.

  17. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-01-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  18. Infrared Tomography: Data Distribution System for Real-time Mass Flow Rate Measurement

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-06-01

    Full Text Available The system developed in this research has the objective of measuring mass flow rate in an online mode. If a single computer is used as data processing unit, a longer time is needed to produce a measurement result. In the research carried out by previous researcher shows about 11.2 seconds is needed to obtain one mass flow rate result in the offline mode (using offline data. This insufficient real-time result will cause problems in a feedback control process when applying the system on industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.

  19. Biogenic materials in Switzerland - mass and energy flows; Biogene Gueter in der Schweiz: Massen- und Energiefluesse

    Energy Technology Data Exchange (ETDEWEB)

    Scheurer, K; Baier, U

    2001-07-01

    This study supplements a series of studies carried out under the 'Energy 2000' programme and its follow-up 'SwissEnergy' on the energy potential of biomass in Switzerland. This study compiles data from existing studies and statistics and presents them as detailed mass and energy flow diagrams. The findings of the study confirm that the most important biomass fluxes are generated by animal feed stuffs and manure and that these represent an important potential for use as a source of energy. The authors state that in the foodstuffs and wood/paper industries a high level of sustainability in resource usage has been attained and that the largest losses in mass and energy flows can be found in livestock breeding and human biomass consumption.

  20. Biogenic materials in Switzerland - mass and energy flows; Biogene Gueter in der Schweiz: Massen- und Energiefluesse

    Energy Technology Data Exchange (ETDEWEB)

    Scheurer, K.; Baier, U.

    2001-07-01

    This study supplements a series of studies carried out under the 'Energy 2000' programme and its follow-up 'SwissEnergy' on the energy potential of biomass in Switzerland. This study compiles data from existing studies and statistics and presents them as detailed mass and energy flow diagrams. The findings of the study confirm that the most important biomass fluxes are generated by animal feed stuffs and manure and that these represent an important potential for use as a source of energy. The authors state that in the foodstuffs and wood/paper industries a high level of sustainability in resource usage has been attained and that the largest losses in mass and energy flows can be found in livestock breeding and human biomass consumption.

  1. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  2. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  3. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  4. Flow-through nanohole array based sensor implemented on analogue smartphone components

    Science.gov (United States)

    Gomez-Cruz, Juan; Nair, Srijit; Ascanio, Gabriel; Escobedo, Carlos

    2017-08-01

    Mobile communications have massively populated the consumer electronics market over the past few years and it is now ubiquitous, providing a timeless opportunity for the development of smartphone-based technologies as point-of-care (POC) diagnosis tools1 . The expectation for a fully integrated smartphone-based sensor that enables applications such as environmental monitoring, explosive detection and biomedical analysis has increased among the scientific community in the past few years2,3. The commercialization forecast for smartphone-based sensing technologies is very promising, but reliable, miniature and cost-effective sensing platforms that can adapt to portable electronics in still under development. In this work, we present an integrated sensing platform based on flow-through metallic nanohole arrays. The nanohole arrays are 260 nm in diameter and 520 nm in pitch, fabricated using Focused Ion Beam (FIB) lithography. A white LED resembling a smartphone flash LED serves as light source to excite surface plasmons and the signal is recorded via a Complementary Metal-Oxide-Semiconductor (CMOS) module. The sensing abilities of the integrated sensing platform is demonstrated for the detection of (i) changes in bulk refractive index (RI), (ii) real-time monitoring of surface modification by receptor-analyte system of streptavidin-biotin.

  5. State of the art of numerical modeling of thermohydrologic flow in fractured rock mass

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.; Sterbentz, R.A.

    1983-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground-water hydrology, petroleum engineering, and other geologic fields. The general review is followed by separate summaries of the main characteristics of the governing equations, numerical solutions, computer codes, validations, and applications for each model

  6. On the dynamics of non-stationary binary stellar system with non-isotropic mass flow

    International Nuclear Information System (INIS)

    Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2006-01-01

    The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)

  7. The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Sterbentz, R.A.; Tsang, C.F.

    1982-01-01

    The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground water hydrology, petroleum engineering, and other geologic fields. The general review is followed by individual summaries of each model and the main characteristics of its governing equations, numerical solutions, computer codes, validations, and applications

  8. Taguchi Method for Development of Mass Flow Rate Correlation Using Hydrocarbon Refrigerant Mixture in Capillary Tube

    OpenAIRE

    Sulaimon, Shodiya; Nasution, Henry; Aziz, Azhar Abdul; Abdul-Rahman, Abdul-Halim; Darus, Amer N

    2014-01-01

    The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM). The Taguchi method, a statistical experimental design approach, was employed. This approach e...

  9. Electrochemical mass-flow control of hydrogen using a fullerene-based proton conductor

    International Nuclear Information System (INIS)

    Maruyama, Ryuichiro

    2002-01-01

    A membrane electrode assembly (MEA) was fabricated using proton conductive hydrogensulfated fullerenol (C 60 (OSO 3 H) n (OH) n ). Rate-controlled mass flow of hydrogen was performed by applying voltage to both electrodes of the MEA without humidification. The amount of the electrochemically transported hydrogen through the MEA increased as the applied current increased, obeying Faraday's law. Residual gas analysis of the transported hydrogen showed that the transported hydrogen contains trace amounts of water less than 1%

  10. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    International Nuclear Information System (INIS)

    1980-09-01

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed

  11. Modeling hazardous mass flows Geoflows09: Mathematical and computational aspects of modeling hazardous geophysical mass flows; Seattle, Washington, 9–11 March 2009

    Science.gov (United States)

    Iverson, Richard M.; LeVeque, Randall J.

    2009-01-01

    A recent workshop at the University of Washington focused on mathematical and computational aspects of modeling the dynamics of dense, gravity-driven mass movements such as rock avalanches and debris flows. About 30 participants came from seven countries and brought diverse backgrounds in geophysics; geology; physics; applied and computational mathematics; and civil, mechanical, and geotechnical engineering. The workshop was cosponsored by the U.S. Geological Survey Volcano Hazards Program, by the U.S. National Science Foundation through a Vertical Integration of Research and Education (VIGRE) in the Mathematical Sciences grant to the University of Washington, and by the Pacific Institute for the Mathematical Sciences. It began with a day of lectures open to the academic community at large and concluded with 2 days of focused discussions and collaborative work among the participants.

  12. Study on flow and mass transport through fractured sedimentary rocks (2)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Karasaki, Kenzi; Sato, Hisashi; Sawada, Atsushi

    2009-03-01

    It is important for safety assessment of HLW geological disposal to understand hydro-geological conditions at the investigation area, and to evaluate groundwater flow and mass transport model and parameters, at each investigation phase. Traditionally, for Neogene sedimentary rock, the grain spacing of sediments has been considered as the dominant migration path. However, fractures of sedimentary rock could act as dominant paths, although they were soft sedimentary rocks. In this study, as part of developing groundwater flow and mass transport evaluation methodologies of such a fractured sedimentary rock' distributed area, we conducted two different scale of studies; 1) core rock sample scale and 2) several kilometer scale. For the core rock sample scale, some of laboratory hydraulic and tracer experiments have conducted using the rock cores with tailored parallel fracture, obtained at pilot borehole drilled in the vicinity of ventilation shaft. From the test results, hydraulic conductivity, diffusion coefficient, transport aperture, dispersion length and etc. was evaluated. Based on these test results, the influence of these parameters onto mass transport behavior of fractures sedimentary rocks was examined. For larger scale, such as several kilometer scale, the regional scale groundwater flow was examined using temperature data observed along the boreholes at Horonobe site. The results show that the low permeable zone between the boreholes might be estimated. (author)

  13. Structural instability of atmospheric flows under perturbations of the mass balance and effect in transport calculations

    International Nuclear Information System (INIS)

    Núñez, M A; Mendoza, R

    2015-01-01

    Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation

  14. Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Udot, A.V.; Yakushev, A.P.

    1987-01-01

    An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction

  15. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis

    International Nuclear Information System (INIS)

    ToczyIowska, Renata; Pokrop, RafaI; Dybko, Artur; Wroblewski, Wojciech

    2005-01-01

    Back-side contact Au and Ag microelectrodes were used as transducers to construct planar all-solid-state electrodes suitable for flow-through analysis. The microsensors were based on plasticized PVC potassium-selective membranes containing ion-electron conducting polymer-polypyrrole doped with di(2-ethylhexyl) sulfosuccinate. The proposed technique allowed simple construction of microsensors in one step, by membrane solution casting directly on the surface of the planar metallic transducers. The performance of the microsensors based on Au and Ag transducers were determined and compared with planar sensors based on internal electrolyte immobilized in polyHEMA. The addition of the polypyrrole to the membrane composition did not influence on the selectivity, reproducibility and long-term stability of the microsensors but improved their standard potential stability in time in comparison with coated-wire type sensors. Moreover, all-solid-state microsensors based on Au transducers exhibited better signal stability than Ag based sensors

  16. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, Taner [ORNL; March-Leuba, Jose A [ORNL; Powell, Danny H [ORNL; Nelson, Dennis [Sandia National Laboratories (SNL); Radev, Radoslav [Lawrence Livermore National Laboratory (LLNL)

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  17. Molten Fuel Mass Assessment for Channel Flow Blockage Event in CANDU6

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Kim, Yong Bae; Choi, Hoon; Park, Dong Hwan

    2011-01-01

    In CANDU6, a fuel channel flow blockage causes a sudden reduction of flow through the blocked channel. Depending on the severity of the blockage, the reduced flow through the channel can result in severe heat up of the fuel, hence possibly leading to pressure tube and calandria tube failure. If the calandria tube does not fail the fuel and sheath would continue to heat up, and ultimately melting could occur. Eventually, molten material runs down onto the pressure tube. Even a thin layer of molten material in contact with the pressure tube causes the pressure tube and calandreia tube to heat up rapidly. The thermal transient is so rapid that failure temperatures are reached quickly. After channel failure, the contents of the channel, consisting of superheated coolant, fission products and possibly overheated of molten fuel, are rapidly discharged into the moderator. Fuel discharged into the moderator is quenched and cooled. The rapid discharge of hot fuel and coolant into the calandria causes the moderator pressure and temperature to increase, which may cause damage to some in-core components. Thus, the assessment results of molten fuel mass are inputs to the in-core damage analysis. In this paper, the analysis methodology and results of molten fuel mass assessment for the channel flow blockage event are presented

  18. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    International Nuclear Information System (INIS)

    Uckan, Taner; March-Leuba, Jose A.; Powell, Danny H.; Nelson, Dennis; Radev, Radoslav

    2007-01-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the 235 U fissile mass flow of UF 6 gas streams by using 252 Cf neutron sources for fission activation of the UF 6 gas and by measuring the fission products in the flow. The 252 Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life (∼ 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  19. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  20. Heat and mass transfer in turbulent chemically nonequilibrium flow in the tube with boundary second kind conditions. The section with the stabilized heat and mass transfer

    International Nuclear Information System (INIS)

    Kritsuk, E.L.; Mishina, L.V.; Shegidevich, L.N.

    1986-01-01

    The hydrodynamically stabilized chemically nonequilibrium turbulent flow in a tube with the inert impermeable surface and constant specific heat flow on the wall is considered. The reversible homogeneous reaction of nitrogen dioxide dissociation 2NO 2 ↔ 2NO+O 2 takes place in the flow. Chemically equilibrium flow with homogeneous profile of temperature and concentration arrives into the channel inlet. After application of simplifying assumptions, the expressions for characteristics of heat and mass transfer have been written down, which are valid in the whole range of the flow parameter variation from frozen up to chemically equilibrium flow. An integral transformation method is suggested for a radial coordinate which allows a wall region to be extended, thereby essentially extending the step of integration. A solution in quadratures has been obtained for the heat and mass transfer problem in an inert fluid flow for the developed process section. The elimination method has been employed to solve the boundary-value second-kind problem for the function governing heat and mass transfer in a chemically nonequilibrium turbulent flow over the developed heat and mass transfer section. The results of calculations are presented

  1. Where is The Dark Matter: The Flow-field From 2MASS

    Science.gov (United States)

    Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.

    2009-01-01

    We present a map of the flow-field constructed from groups of galaxies in the 2MASS Redshift Survey. Previous efforts have suffered because the underlying surveys either did not penetrate to low galactic latitudes or were not sensitive to elliptical galaxies, thereby missing a significant fraction of the mass. The 2MASS Redshift Survey provides a uniform all-sky magnitude-limited sample in the J, H and Ks bands, 97% complete to Ks10°, sensitive to both ellipticals and spirals. We demonstrate how utilizing the properties of galaxy groups leads to improved predictions of peculiar velocities in the nearby Universe, and use dynamical mass estimates to construct a reliable flow-field to 12,000 km/s. We demonstrate its effectiveness in providing distance estimates, and discuss the advantages of this model over earlier work. With independent knowledge of the peculiar velocity of the Local Group, we discuss the implications for the matter density parameter and bias. This work is supported by a Whiteman Fellowship and NSF grant AST-0406906.

  2. Study on heat and mass transfer characteristics of humid air-flow in a fin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)

    2010-11-15

    This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)

  3. Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor

    Directory of Open Access Journals (Sweden)

    Bodo eRückauer

    2016-04-01

    Full Text Available In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS. For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240x180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS. This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera.

  4. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  5. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  6. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Directory of Open Access Journals (Sweden)

    Lam Ghai Lim

    2016-07-01

    Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  7. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach.

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon

    2016-07-04

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  8. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils

    Directory of Open Access Journals (Sweden)

    Jon Mabe

    2017-03-01

    Full Text Available The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

  9. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  10. Single-point relative process using Laser-Doppler velocimetry for calibration of flow sensors at temperatures above 100 C

    International Nuclear Information System (INIS)

    March, J.F.

    1996-01-01

    Due to technical difficulties, the calibration of flow sensors of heat meters above 100 C cannot be performed by the gravimetric standard method. A novel method using a laser Doppler velocimeter (LDV) was therefore developed, based on the gravimetric method below 100 C and on Reynolds' similarity law. This method allows a turbine meter to be calibrated as a secondary flowrate standard with a relative uncertainty below 0,2% for temperatures of up to 180 C. (orig.) [de

  11. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  12. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, Hans; Peters, Ruud J.B.; Bemmel, van Greet; Herrera Rivera, Zahira; Wagner, Stephan; Kammer, von der Frank; Tromp, Peter C.; Hofmann, Thilo; Weigel, Stefan

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass

  13. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry

  14. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  15. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    Science.gov (United States)

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Analysis of Cattaneo-Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity

    Directory of Open Access Journals (Sweden)

    M. Farooq

    Full Text Available This research article investigates the squeezing flow of Newtonian fluid with variable viscosity over a stretchable sheet inserted in Darcy porous medium. Cattaneo-Christov double diffusion models are implemented to scrutinize the characteristics of heat and mass transfer via variable thermal conductivity and variable mass diffusivity. These models are the modification of conventional laws of Fourier’s and Fick’s via thermal and solutal relaxation times respectively. The homotopy analysis Method (HAM is being utilized to provide the solution of highly nonlinear system of coupled partial differential equations after converted into dimensionless governing equations. The behavior of flow parameters on velocity, concentration, and temperature distributions are sketched and analyzed physically. The result indicates that both concentration and temperature distributions decay for higher solutal and thermal relaxation parameters respectively. Keywords: Squeezing flow, Porous medium, Variable viscosity, Cattaneo-Christov heat and mass flux models, Variable thermal conductivity, Variable mass diffusivity

  17. Conventional-Flow Liquid Chromatography-Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses.

    Science.gov (United States)

    Lenčo, Juraj; Vajrychová, Marie; Pimková, Kristýna; Prokšová, Magdaléna; Benková, Markéta; Klimentová, Jana; Tambor, Vojtěch; Soukup, Ondřej

    2018-04-17

    Due to its sensitivity and productivity, bottom-up proteomics based on liquid chromatography-mass spectrometry (LC-MS) has become the core approach in the field. The de facto standard LC-MS platform for proteomics operates at sub-μL/min flow rates, and nanospray is required for efficiently introducing peptides into a mass spectrometer. Although this is almost a "dogma", this view is being reconsidered in light of developments in highly efficient chromatographic columns, and especially with the introduction of exceptionally sensitive MS instruments. Although conventional-flow LC-MS platforms have recently penetrated targeted proteomics successfully, their possibilities in discovery-oriented proteomics have not yet been thoroughly explored. Our objective was to determine what are the extra costs and what optimization and adjustments to a conventional-flow LC-MS system must be undertaken to identify a comparable number of proteins as can be identified on a nanoLC-MS system. We demonstrate that the amount of a complex tryptic digest needed for comparable proteome coverage can be roughly 5-fold greater, providing the column dimensions are properly chosen, extra-column peak dispersion is minimized, column temperature and flow rate are set to levels appropriate for peptide separation, and the composition of mobile phases is fine-tuned. Indeed, we identified 2 835 proteins from 2 μg of HeLa cells tryptic digest separated during a 60 min gradient at 68 μL/min on a 1.0 mm × 250 mm column held at 55 °C and using an aqua-acetonitrile mobile phases containing 0.1% formic acid, 0.4% acetic acid, and 3% dimethyl sulfoxide. Our results document that conventional-flow LC-MS is an attractive alternative for bottom-up exploratory proteomics.

  18. The Practical Application of Aqueous Geochemistry in Mapping Groundwater Flow Systems in Fractured Rock Masses

    Science.gov (United States)

    Bursey, G.; Seok, E.; Gale, J. E.

    2017-12-01

    Flow to underground mines and open pits takes place through an interconnected network of regular joints/fractures and intermediate to large scale structural features such as faults and fracture zones. Large scale features can serve either as high permeability pathways or as barriers to flow, depending on the internal characteristics of the structure. Predicting long term water quality in barrier-well systems and long-term mine water inflows over a mine life, as a mine expands, requires the use of a 3D numerical flow and transport code. The code is used to integrate the physical geometry of the fractured-rock mass with porosity, permeability, hydraulic heads, storativity and recharge data and construct a model of the flow system. Once that model has been calibrated using hydraulic head and permeability/inflow data, aqueous geochemical and isotopic data provide useful tools for validating flow-system properties, when one is able to recognize and account for the non-ideal or imperfect aspects of the sampling methods used in different mining environments. If groundwater samples are collected from discrete depths within open boreholes, water in those boreholes have the opportunity to move up or down in response to the forces that drive groundwater flow, whether they be hydraulic gradients, gas pressures, or density differences associated with variations in salinity. The use of Br/Cl ratios, for example, can be used to determine if there is active flow into, or out of, the boreholes through open discontinuities in the rock mass (i.e., short-circuiting). Natural groundwater quality can also be affected to varying degrees by mixing with drilling fluids. The combined use of inorganic chemistry and stable isotopes can be used effectively to identify dilution signals and map the dilution patterns through a range of fresh, brackish and saline water types. The stable isotopes of oxygen and hydrogen are nearly ideal natural tracers of water, but situations occur when deep

  19. Model to calculate mass flow rate and other quantities of two-phase flow in a pipe with a densitometer, a drag disk, and a turbine meter

    International Nuclear Information System (INIS)

    Aya, I.

    1975-11-01

    The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model

  20. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    International Nuclear Information System (INIS)

    Schivo, Michael; Kenyon, Nicholas J; Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E

    2011-01-01

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  1. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Schivo, Michael; Kenyon, Nicholas J [Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616 (United States); Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E, E-mail: cedavis@ucdavis.edu [Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, CA 95616 (United States)

    2011-10-29

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  2. Flow cytometric chemosensitivity assay using JC‑1, a sensor of mitochondrial transmembrane potential, in acute leukemia.

    Science.gov (United States)

    Yokosuka, Tomoko; Goto, Hiroaki; Fujii, Hisaki; Naruto, Takuya; Takeuchi, Masanobu; Tanoshima, Reo; Kato, Hiromi; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Yokota, Shumpei

    2013-12-01

    The purpose of the study is to establish a simple and relatively inexpensive flow cytometric chemosensitivity assay (FCCA) for leukemia to distinguish leukemic blasts from normal leukocytes in clinical samples. We first examined whether the FCCA with the mitochondrial membrane depolarization sensor, 5, 50, 6, 60-tetrachloro-1, 10, 3, 30 tetraethyl benzimidazolo carbocyanine iodide (JC-1), could detect drug-induced apoptosis as the conventional FCCA by annexin V/7-AAD detection did and whether it was applicable in the clinical samples. Second, we compared the results of the FCCA for prednisolone (PSL) with clinical PSL response in 18 acute lymphoblastic leukemia (ALL) patients to evaluate the reliability of the JC-1 FCCA. Finally, we performed the JC-1 FCCA for bortezomib (Bor) in 25 ALL or 11 acute myeloid leukemia (AML) samples as the example of the clinical application of the FCCA. In ALL cells, the results of the JC-1 FCCA for nine anticancer drugs were well correlated with those of the conventional FCCA using anti-annexin V antibody (P < 0.001). In the clinical samples from 18 children with ALL, the results of the JC-1 FCCA for PSL were significantly correlated with the clinical PSL response (P = 0.005). In ALL samples, the sensitivity for Bor was found to be significantly correlated with the sensitivity for PSL (P = 0.005). In AML samples, the Bor sensitivity was strongly correlated with the cytarabine sensitivity (P = 0.0003). This study showed the reliability of a relatively simple and the FCCA using JC-1, and the possibility for the further clinical application.

  3. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

    Directory of Open Access Journals (Sweden)

    Suad Mustafa Al-Araji

    2011-01-01

    Full Text Available Plasticised poly(vinyl chloride-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD, dibenzo-18-crown-6 (DB18C6 and dibenzo-30-crown-10 (DB30C10 were evaluated for their potentiometric response towards promethazine (PM in a flow injection analysis (FIA set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl borate (KTPB was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl adipate (BEHA and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 x 10−5 to 1 x 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 x 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose. FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream were also studied when the best sensor was used (based on β-CD. The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules.

  4. FIX-II/2032, BWR Pump Trip Experiment 2032, Simulation Mass Flow and Power Transients

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of test facility: In the FIX-II pump trip experiments, mass flow and power transients were simulated subsequent to a total loss of power to the recirculation pumps in an internal pump boiling water reactor. The aim was to determine the initial power limit to give dryout in the fuel bundle for the specified transient. In addition, the peak cladding temperature was measured and the rewetting was studied. 2 - Description of test: Pump trip experiment 2032 was a part of test group 2, i.e. the mass flow transient was to simulate the pump coast down with a pump inertia of 11.3 kg.m -2 . The initial power in the 36-rod bundle was 4.44 MW which gave dryout after 1.4 s from the start of the flow transient. A maximum rod cladding temperature of 457 degrees C was measured. Rewetting was obtained after 7.6 s. 3 - Experimental limitations or shortcomings: No ECCS injection systems

  5. Non-basal dislocations should be accounted for in simulating ice mass flow

    Science.gov (United States)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or Burgers vectors. These [ c ] or dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  6. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  7. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    International Nuclear Information System (INIS)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-01-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends

  8. Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B.I.; Pershukov, V.A.; Ris, V.V. [Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)] [and others

    1995-09-01

    In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.

  9. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    Energy Technology Data Exchange (ETDEWEB)

    Waluga, Christian, E-mail: waluga@ma.tum.de [Institute for Numerical Mathematics (M2), Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München (Germany); Wohlmuth, Barbara [Institute for Numerical Mathematics (M2), Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München (Germany); Rüde, Ulrich [Department of Computer Science 10, University Erlangen–Nuremberg, Cauerstr. 11, D-91058 Erlangen (Germany)

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilized linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.

  10. Barrow real-time sea ice mass balance data: ingestion, processing, dissemination and archival of multi-sensor data

    Science.gov (United States)

    Grimes, J.; Mahoney, A. R.; Heinrichs, T. A.; Eicken, H.

    2012-12-01

    Sensor data can be highly variable in nature and also varied depending on the physical quantity being observed, sensor hardware and sampling parameters. The sea ice mass balance site (MBS) operated in Barrow by the University of Alaska Fairbanks (http://seaice.alaska.edu/gi/observatories/barrow_sealevel) is a multisensor platform consisting of a thermistor string, air and water temperature sensors, acoustic altimeters above and below the ice and a humidity sensor. Each sensor has a unique specification and configuration. The data from multiple sensors are combined to generate sea ice data products. For example, ice thickness is calculated from the positions of the upper and lower ice surfaces, which are determined using data from downward-looking and upward-looking acoustic altimeters above and below the ice, respectively. As a data clearinghouse, the Geographic Information Network of Alaska (GINA) processes real time data from many sources, including the Barrow MBS. Doing so requires a system that is easy to use, yet also offers the flexibility to handle data from multisensor observing platforms. In the case of the Barrow MBS, the metadata system needs to accommodate the addition of new and retirement of old sensors from year to year as well as instrument configuration changes caused by, for example, spring melt or inquisitive polar bears. We also require ease of use for both administrators and end users. Here we present the data and processing steps of using sensor data system powered by the NoSQL storage engine, MongoDB. The system has been developed to ingest, process, disseminate and archive data from the Barrow MBS. Storing sensor data in a generalized format, from many different sources, is a challenging task, especially for traditional SQL databases with a set schema. MongoDB is a NoSQL (not only SQL) database that does not require a fixed schema. There are several advantages using this model over the traditional relational database management system (RDBMS

  11. Regional blood flows in the established stage of reduced renal mass (RRM) hypertension in rats

    International Nuclear Information System (INIS)

    Smits, G.J.; Lombard, J.H.

    1986-01-01

    Regional blood flows were measured with 15 μm 153 Gd-labelled microspheres in 21 anesthetized (pentobarbital-50 mg/kg, i.p.) male Sprague Dawley rats 5-6 weeks after a 75% reduction in renal mass and in 6 sham operated controls (SOC). RRM rats were maintained on either a high salt (HS-RRM) diet, i.e., choice of 1% NaCl or tap water (n = 11), or on a salt-restricted (SR-RRM) diet (n = 10). Mean arterial blood pressure was significantly elevated (mean +/- SE) in the HS-RRM (168 +/- 5 mmHg) vs. either the SR-RRM (147 +/- 6 mmHg) or the SOC (138 +/- 4 mmHg). Although blood flow to the skin and femur were elevated in HS-RRM and SR-RRM relative to SOC, there were no significant differences in blood flow to skeletal muscle, spleen, liver, small intestine, stomach or testes between any of the groups. Absolute renal blood flow and renal blood flow/gm of tissue were significantly lower in HS-RRM (7.2 +/- 0.7 ml/min or 3.4 +/- 0.5 ml/min/gm) and SR-RRM (6.3 +/- 0.6 ml/min or 3.2 +/- 0.3 ml/min/gm) than in SOC (15.1 +/- 0.97 ml/min or 5.5 +/- 0.2 ml/min/gm). The present results suggest that regional blood flow is unchanged in most vascular beds during the established stage of RRM hypertension in rats

  12. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  13. Mass flows and removal of antibiotics in two municipal wastewater treatment plants.

    Science.gov (United States)

    Li, Bing; Zhang, Tong

    2011-05-01

    The mass flows and removal of 20 antibiotics of seven classes in two wastewater treatment plants (WWTPs) of Hong Kong were investigated in different seasons of a whole year, using bihourly 24h flow proportional composite samples. Antibiotics were detected at concentrations of 3.2-1718, 1.3-1176 and 1.1-233ngL(-1) in influents, secondary and disinfection effluents. Total daily discharges of all the detected antibiotics from effluents of Shatin and Stanley WWTPs were 470-710 and 3.0-5.2gd(-1), respectively. Ampicillin, cefalexin, sulfamethoxazole, sulfadiazine, sulfamethazine, chlortetracycline and vancomycin were effectively (52-100%) eliminated by activated sludge process while ampicillin and cefalexin were effectively (91-99%) eliminated by disinfection. Bihourly variation analysis showed that concentrations of the major antibiotics in influents varied more significantly in Stanley WWTP which served small communities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Leg blood flow is impaired during small muscle mass exercise in patients with COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggests that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1.......Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with COPD. We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee...... the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response...

  15. Simulation of incompressible flows with heat and mass transfer using parallel finite element method

    Directory of Open Access Journals (Sweden)

    Jalal Abedi

    2003-02-01

    Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.

  16. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    Science.gov (United States)

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  17. Heat and mass transfer from the mantle: heat flow and He-isotope constraints

    Directory of Open Access Journals (Sweden)

    B. G. Polyak

    2005-06-01

    Full Text Available Terrestrial heat flow density, q, is inversely correlated with the age, t, of tectono-magmatic activity in the Earth's crust (Polyak and Smirnov, 1966; etc.. «Heat flow-age dependence» indicates unknown temporal heat sources in the interior considered a priori as the mantle-derived diapirs. The validity of this hypothesis is demonstrated by studying the helium isotope ratio, 3He/4He = R, in subsurface fluids. This study discovered the positive correlation between the regionally averaged (background estimations of R- and q-values (Polyak et al., 1979a. Such a correlation manifests itself in both pan-regional scales (Norhtern Eurasia and separate regions, e.g., Japan (Sano et al., 1982, Eger Graben (Polyak et al., 1985 Eastern China rifts (Du, 1992, Southern Italy (Italiano et al., 2000, and elsewhere. The R-q relation indicates a coupled heat and mass transfer from the mantle into the crust. From considerations of heat-mass budget this transfer can be provided by the flux consisting of silicate matter rather than He or other volatiles. This conclusion is confirmed by the correlation between 3He/ 4He and 87Sr/86Sr ratios in the products of the volcanic and hydrothermal activity in Italy (Polyak et al., 1979b; Parello et al., 2000 and other places. Migration of any substance through geotemperature field transports thermal energy accumulated within this substance, i.e. represents heat and mass transfer. Therefore, only the coupled analysis of both material and energy aspects of this transfer makes it possible to characterise the process adequately and to decipher an origin of terrestrial heat flow observed in upper parts of the earth crust. An attempt of such kind is made in this paper.

  18. Tribocorrosion in pressurized high temperature water: a mass flow model based on the third body approach

    Energy Technology Data Exchange (ETDEWEB)

    Guadalupe Maldonado, S.

    2014-07-01

    Pressurized water reactors (PWR) used for power generation are operated at elevated temperatures (280-300 °C) and under higher pressure (120-150 bar). In addition to these harsh environmental conditions some components of the PWR assemblies are subject to mechanical loading (sliding, vibration and impacts) leading to undesirable and hardly controllable material degradation phenomena. In such situations wear is determined by the complex interplay (tribocorrosion) between mechanical, material and physical-chemical phenomena. Tribocorrosion in PWR conditions is at present little understood and models need to be developed in order to predict component lifetime over several decades. The goal of this project, carried out in collaboration with the French company AREVA NP, is to develop a predictive model based on the mechanistic understanding of tribocorrosion of specific PWR components (stainless steel control assemblies, stellite grippers). The approach taken here is to describe degradation in terms of electro-chemical and mechanical material flows (third body concept of tribology) from the metal into the friction film (i.e. the oxidized film forming during rubbing on the metal surface) and from the friction film into the environment instead of simple mass loss considerations. The project involves the establishment of mechanistic models for describing the single flows based on ad-hoc tribocorrosion measurements operating at low temperature. The overall behaviour at high temperature and pressure in investigated using a dedicated tribometer (Aurore) including electrochemical control of the contact during rubbing. Physical laws describing the individual flows according to defined mechanisms and as a function of defined physical parameters were identified based on the obtained experimental results and from literature data. The physical laws were converted into mass flow rates and solved as differential equation system by considering the mass balance in compartments

  19. Device for determining element contents of lignite mass flows by activation analysis

    International Nuclear Information System (INIS)

    Goeldner, R.; Maul, E.; Rose, W.; Wagner, D.

    1987-01-01

    A simple device is presented, apt for continuous operation, to determine the element contents of bulk goods of flowable materials with a suitable granularity, in particular of lignite mass flows to assess the coal quality. Several kilograms of samples can be reproducibly dosed and homogeneously activated by a device consisting of a shielding container with activation chamber and radiation source, a measuring unit with detectors, and a source container, and characterized by a blade wheel in the activation chamber which causes the dosing and homogeneous activation of the sample

  20. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques

    International Nuclear Information System (INIS)

    Lemaitre, P.; Porcheron, E.

    2008-01-01

    During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)