WorldWideScience

Sample records for mass error model

  1. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  2. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Lars J., E-mail: Lars.grimm@duke.edu; Ghate, Sujata V.; Yoon, Sora C.; Kim, Connie [Department of Radiology, Duke University Medical Center, Box 3808, Durham, North Carolina 27710 (United States); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina School of Medicine, 2006 Old Clinic, CB No. 7510, Chapel Hill, North Carolina 27599 (United States); Mazurowski, Maciej A. [Duke University Medical Center, Box 2731 Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Methods: Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Results: Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502–0.739, 95% Confidence Interval: 0.543–0.680,p < 0.002). Conclusions: Patterns in detection errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees.

  3. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features.

    Science.gov (United States)

    Grimm, Lars J; Ghate, Sujata V; Yoon, Sora C; Kuzmiak, Cherie M; Kim, Connie; Mazurowski, Maciej A

    2014-03-01

    The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502-0.739, 95% Confidence Interval: 0.543-0.680,p errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees.

  4. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features

    International Nuclear Information System (INIS)

    Grimm, Lars J.; Ghate, Sujata V.; Yoon, Sora C.; Kim, Connie; Kuzmiak, Cherie M.; Mazurowski, Maciej A.

    2014-01-01

    Purpose: The purpose of this study is to explore Breast Imaging-Reporting and Data System (BI-RADS) features as predictors of individual errors made by trainees when detecting masses in mammograms. Methods: Ten radiology trainees and three expert breast imagers reviewed 100 mammograms comprised of bilateral medial lateral oblique and craniocaudal views on a research workstation. The cases consisted of normal and biopsy proven benign and malignant masses. For cases with actionable abnormalities, the experts recorded breast (density and axillary lymph nodes) and mass (shape, margin, and density) features according to the BI-RADS lexicon, as well as the abnormality location (depth and clock face). For each trainee, a user-specific multivariate model was constructed to predict the trainee's likelihood of error based on BI-RADS features. The performance of the models was assessed using area under the receive operating characteristic curves (AUC). Results: Despite the variability in errors between different trainees, the individual models were able to predict the likelihood of error for the trainees with a mean AUC of 0.611 (range: 0.502–0.739, 95% Confidence Interval: 0.543–0.680,p < 0.002). Conclusions: Patterns in detection errors for mammographic masses made by radiology trainees can be modeled using BI-RADS features. These findings may have potential implications for the development of future educational materials that are personalized to individual trainees

  5. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  6. The Impact of Atmospheric Modeling Errors on GRACE Estimates of Mass Loss in Greenland and Antarctica

    Science.gov (United States)

    Hardy, Ryan A.; Nerem, R. Steven; Wiese, David N.

    2017-12-01

    Systematic errors in Gravity Recovery and Climate Experiment (GRACE) monthly mass estimates over the Greenland and Antarctic ice sheets can originate from low-frequency biases in the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis model, the atmospheric component of the Atmospheric and Ocean Dealising Level-1B (AOD1B) product used to forward model atmospheric and ocean gravity signals in GRACE processing. These biases are revealed in differences in surface pressure between the ECMWF Operational Analysis model, state-of-the-art reanalyses, and in situ surface pressure measurements. While some of these errors are attributable to well-understood discrete model changes and have published corrections, we examine errors these corrections do not address. We compare multiple models and in situ data in Antarctica and Greenland to determine which models have the most skill relative to monthly averages of the dealiasing model. We also evaluate linear combinations of these models and synthetic pressure fields generated from direct interpolation of pressure observations. These models consistently reveal drifts in the dealiasing model that cause the acceleration of Antarctica's mass loss between April 2002 and August 2016 to be underestimated by approximately 4 Gt yr-2. We find similar results after attempting to solve the inverse problem, recovering pressure biases directly from the GRACE Jet Propulsion Laboratory RL05.1 M mascon solutions. Over Greenland, we find a 2 Gt yr-1 bias in mass trend. While our analysis focuses on errors in Release 05 of AOD1B, we also evaluate the new AOD1B RL06 product. We find that this new product mitigates some of the aforementioned biases.

  7. The DiskMass Survey. II. Error Budget

    Science.gov (United States)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  8. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: jing.zhang2@duke.edu; Ghate, Sujata V.; Yoon, Sora C. [Department of Radiology, Duke University School of Medicine, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology, Duke University School of Medicine, Durham, North Carolina 27705 (United States); Duke Cancer Institute, Durham, North Carolina 27710 (United States); Departments of Biomedical Engineering and Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599 (United States); Mazurowski, Maciej A. [Department of Radiology, Duke University School of Medicine, Durham, North Carolina 27705 (United States); Duke Cancer Institute, Durham, North Carolina 27710 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different

  9. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents

    International Nuclear Information System (INIS)

    Zhang, Jing; Ghate, Sujata V.; Yoon, Sora C.; Lo, Joseph Y.; Kuzmiak, Cherie M.; Mazurowski, Maciej A.

    2014-01-01

    Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different

  10. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents.

    Science.gov (United States)

    Zhang, Jing; Lo, Joseph Y; Kuzmiak, Cherie M; Ghate, Sujata V; Yoon, Sora C; Mazurowski, Maciej A

    2014-09-01

    Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. The authors' algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different from 0.5 (perror

  11. On systematic and statistic errors in radionuclide mass activity estimation procedure

    International Nuclear Information System (INIS)

    Smelcerovic, M.; Djuric, G.; Popovic, D.

    1989-01-01

    One of the most important requirements during nuclear accidents is the fast estimation of the mass activity of the radionuclides that suddenly and without control reach the environment. The paper points to systematic errors in the procedures of sampling, sample preparation and measurement itself, that in high degree contribute to total mass activity evaluation error. Statistic errors in gamma spectrometry as well as in total mass alpha and beta activity evaluation are also discussed. Beside, some of the possible sources of errors in the partial mass activity evaluation for some of the radionuclides are presented. The contribution of the errors in the total mass activity evaluation error is estimated and procedures that could possibly reduce it are discussed (author)

  12. Mass measurement errors of Fourier-transform mass spectrometry (FTMS): distribution, recalibration, and application.

    Science.gov (United States)

    Zhang, Jiyang; Ma, Jie; Dou, Lei; Wu, Songfeng; Qian, Xiaohong; Xie, Hongwei; Zhu, Yunping; He, Fuchu

    2009-02-01

    The hybrid linear trap quadrupole Fourier-transform (LTQ-FT) ion cyclotron resonance mass spectrometer, an instrument with high accuracy and resolution, is widely used in the identification and quantification of peptides and proteins. However, time-dependent errors in the system may lead to deterioration of the accuracy of these instruments, negatively influencing the determination of the mass error tolerance (MET) in database searches. Here, a comprehensive discussion of LTQ/FT precursor ion mass error is provided. On the basis of an investigation of the mass error distribution, we propose an improved recalibration formula and introduce a new tool, FTDR (Fourier-transform data recalibration), that employs a graphic user interface (GUI) for automatic calibration. It was found that the calibration could adjust the mass error distribution to more closely approximate a normal distribution and reduce the standard deviation (SD). Consequently, we present a new strategy, LDSF (Large MET database search and small MET filtration), for database search MET specification and validation of database search results. As the name implies, a large-MET database search is conducted and the search results are then filtered using the statistical MET estimated from high-confidence results. By applying this strategy to a standard protein data set and a complex data set, we demonstrate the LDSF can significantly improve the sensitivity of the result validation procedure.

  13. Evaluation of errors for mass-spectrometric analysis with surface-ionization type mass-spectrometer (statistical evaluation of mass-discrimination effect)

    International Nuclear Information System (INIS)

    Wada, Y.

    1981-01-01

    The surface-ionization type mass-spectrometer is widely used as an apparatus for quality assurance, accountability and safeguarding of nuclear materials, and for this analysis it has become an important factor to statistically evaluate an analytical error which consists of a random error and a systematic error. The major factor of this systematic error was the mass-discrimination effect. In this paper, various assays for evaluating the factor of variation on the mass-discrimination effect were studied and the data obtained were statistically evaluated. As a result of these analyses, it was proved that the factor of variation on the mass-discrimination effect was not attributed to the acid concentration of sample, sample size on the filament and supplied voltage for a multiplier, but mainly to the filament temperature during the mass-spectrometric analysis. The mass-discrimination effect values β which were usually calculated from the measured data of uranium, plutonium or boron isotopic standard sample were not so significant dependently of the difference of U-235, Pu-239 or B-10 isotopic abundance. Furthermore, in the case of U and Pu, measurement conditions and the mass range of these isotopes were almost similar, and these values β were not statistically significant between U and Pu. On the other hand, the value β for boron was about a third of the value β for U or Pu, but compared with the coefficient of the correction on the mass-discrimination effect for the difference of mass-number, ΔM, these coefficient values were almost the same among U, Pu, and B.As for the isotopic analysis error of U, Pu, Nd and B, it was proved that the isotopic abundance of these elements and the isotopic analysis error were in a relationship of quadratic curves on a logarithmic-logarithmic scale

  14. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  15. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    Science.gov (United States)

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-07

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  16. A Post-Harvest Prediction Mass Loss Model for Tomato Fruit Using A Numerical Methodology Centered on Approximation Error Minimization

    Directory of Open Access Journals (Sweden)

    Francisco Javier Bucio

    2017-10-01

    Full Text Available Due to its nutritional and economic value, the tomato is considered one of the main vegetables in terms of production and consumption in the world. For this reason, an important case study is the fruit maturation parametrized by its mass loss in this study. This process develops in the fruit mainly after harvest. Since that parameter affects the economic value of the crop, the scientific community has been progressively approaching the issue. However, there is no a state-of-the-art practical model allowing the prediction of the tomato fruit mass loss yet. This study proposes a prediction model for tomato mass loss in a continuous and definite time-frame using regression methods. The model is based on a combination of adjustment methods such as least squares polynomial regression leading to error estimation, and cross validation techniques. Experimental results from a 50 fruit of tomato sample studied over a 54 days period were compared to results from the model using a second-order polynomial approach found to provide optimal data fit with a resulting efficiency of ~97%. The model also allows the design of precise logistic strategies centered on post-harvest tomato mass loss prediction usable by producers, distributors, and consumers.

  17. Measurement error models with interactions

    Science.gov (United States)

    Midthune, Douglas; Carroll, Raymond J.; Freedman, Laurence S.; Kipnis, Victor

    2016-01-01

    \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document} given \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document} and use it to extend the method of regression calibration to this class of measurement error models. We apply the model to dietary data and test whether self-reported dietary intake includes an interaction between true intake and body mass index. We also perform simulations to compare the model to simpler approximate calibration models. PMID:26530858

  18. Testing the predictive power of nuclear mass models

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.

    2008-01-01

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool

  19. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    Directory of Open Access Journals (Sweden)

    Huiliang Cao

    2016-01-01

    Full Text Available This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC, Quadrature Force Correction (QFC and Coupling Stiffness Correction (CSC methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  20. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    Science.gov (United States)

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-01

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455

  1. Some error estimates for the lumped mass finite element method for a parabolic problem

    KAUST Repository

    Chatzipantelidis, P.

    2012-01-01

    We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods. © 2011 American Mathematical Society.

  2. Theory of error for target factor analysis with applications to mass spectrometry and nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Malinowski, E.R.

    1978-01-01

    Based on the theory of error for abstract factor analysis described earlier, a theory of error for target factor analysis is developed. The theory shows how the error in the data matrix mixes with the error in the target test vector. The apparent error in a target test is found to be a vector sum of the real error in the target vector and the real error in the predicted vector. The theory predicts the magnitudes of these errors without requiring any a priori knowledge of the error in the data matrix or the target vector. A reliability function and a spoil function are developed for the purpose of assessing the validity and the worthiness of a target vector. Examples from model data, mass spectrometry and nuclear magnetic resonance spectrometry are presented. (Auth.)

  3. Schwinger Model Mass Anomalous Dimension

    CERN Document Server

    Keegan, Liam

    2016-06-20

    The mass anomalous dimension for several gauge theories with an infrared fixed point has recently been determined using the mode number of the Dirac operator. In order to better understand the sources of systematic error in this method, we apply it to a simpler model, the massive Schwinger model with two flavours of fermions, where analytical results are available for comparison with the lattice data.

  4. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  5. ERM model analysis for adaptation to hydrological model errors

    Science.gov (United States)

    Baymani-Nezhad, M.; Han, D.

    2018-05-01

    Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.

  6. An improved estimator for the hydration of fat-free mass from in vivo measurements subject to additive technical errors

    International Nuclear Information System (INIS)

    Kinnamon, Daniel D; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L; Lipsitz, Stuart R

    2010-01-01

    The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not

  7. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

    CERN Document Server

    Audren, Benjamin; Bird, Simeon; Haehnelt, Martin G.; Viel, Matteo

    2013-01-01

    We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fourier space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservat...

  8. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    Directory of Open Access Journals (Sweden)

    Yun Shi

    2014-01-01

    Full Text Available Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM.

  9. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  10. Error Modeling and Design Optimization of Parallel Manipulators

    DEFF Research Database (Denmark)

    Wu, Guanglei

    /backlash, manufacturing and assembly errors and joint clearances. From the error prediction model, the distributions of the pose errors due to joint clearances are mapped within its constant-orientation workspace and the correctness of the developed model is validated experimentally. ix Additionally, using the screw......, dynamic modeling etc. Next, the rst-order dierential equation of the kinematic closure equation of planar parallel manipulator is obtained to develop its error model both in Polar and Cartesian coordinate systems. The established error model contains the error sources of actuation error...

  11. Model-independent X-ray Mass Determinations for Clusters of Galaxies

    Science.gov (United States)

    Nulsen, Paul

    2005-09-01

    We propose to use high quality X-ray data from the Chandra archive to determine the mass distributions of about 60 clusters of galaxies over the largest possible range of radii. By avoiding unwarranted assumptions, model-independent methods make best use of high quality data. We will employ two model-independent methods. That used by Nulsen & Boehringer (1995) to determine the mass of the Virgo Cluster and a new method, that will be developed as part of the project. The new method will fit a general mass model directly to the X-ray spectra, making best possible use of the fitting errors to constrain mass profiles.

  12. Error modeling for surrogates of dynamical systems using machine learning: Machine-learning-based error model for surrogates of dynamical systems

    International Nuclear Information System (INIS)

    Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.

    2017-01-01

    A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed by simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well

  13. Error analysis of isotope dilution mass spectrometry method with internal standard

    International Nuclear Information System (INIS)

    Rizhinskii, M.W.; Vitinskii, M.Y.

    1989-02-01

    The computation algorithms of the normalized isotopic ratios and element concentration by isotope dilution mass spectrometry with internal standard are presented. A procedure based on the Monte-Carlo calculation is proposed for predicting the magnitude of the errors to be expected. The estimation of systematic and random errors is carried out in the case of the certification of uranium and plutonium reference materials as well as for the use of those reference materials in the analysis of irradiated nuclear fuels. 4 refs, 11 figs, 2 tabs

  14. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    Science.gov (United States)

    Gao, J.

    2014-12-01

    Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a

  16. Wave Propagation in Finite Element and Mass-Spring-Dashpot Lattice Models

    National Research Council Canada - National Science Library

    Holt-Phoenix, Marianne S

    2006-01-01

    ...), and a mass-spring-dashpot lattice model (MSDLM) are investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's ratio and angle of incidence is evaluated in each model of an isotropic elastic solid...

  17. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    Science.gov (United States)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  18. Evolutionary modeling-based approach for model errors correction

    Directory of Open Access Journals (Sweden)

    S. Q. Wan

    2012-08-01

    Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."

    On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  19. Observations on discretization errors in twisted-mass lattice QCD

    International Nuclear Information System (INIS)

    Sharpe, Stephen R.

    2005-01-01

    I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the partially conserved axial current quark mass vanishes in the untwisted-mass-twisted-mass plane makes an angle to the twisted-mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular, an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the 'Aoki regime' (where m q ∼a 2 Λ QCD 3 ) to next-to-leading order in chiral perturbation theory I show how the phase-transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into nonsingular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime

  20. Results and Error Estimates from GRACE Forward Modeling over Antarctica

    Science.gov (United States)

    Bonin, Jennifer; Chambers, Don

    2013-04-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.

  1. On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H. -Y.; Xie, S.; Klein, S. A.; Williams, K. D.; Boyle, J. S.; Bony, S.; Douville, H.; Fermepin, S.; Medeiros, B.; Tyteca, S.; Watanabe, M.; Williamson, D.

    2014-02-01

    The present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach. The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitudes comparable to the climate errors, and the impacts of initial conditions on the simulated ensemble mean errors are relatively small. This robust bias correspondence suggests that these systematic errors across different models likely are initiated by model parameterizations since the atmospheric large-scale states remain close to observations in the first 2–3 days. However, biases associated with model physics can have impacts on the large-scale states by day 5, such as zonal winds, 2-m temperature, and sea level pressure, and the analysis further indicates a good correspondence between short- and long-term biases for these large-scale states. Therefore, improving individual model parameterizations in the hindcast mode could lead to the improvement of most climate models in simulating their climate mean state and potentially their future projections.

  2. Assessment of errors and uncertainty patterns in GIA modeling

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Spada, G.

    2012-01-01

    During the last decade many efforts have been devoted to the assessment of global sea level rise and to the determination of the mass balance of continental ice sheets. In this context, the important role of glacial-isostatic adjustment (GIA) has been clearly recognized. Yet, in many cases only one......, such as time-evolving shorelines and paleo-coastlines. In this study we quantify these uncertainties and their propagation in GIA response using a Monte Carlo approach to obtain spatio-temporal patterns of GIA errors. A direct application is the error estimates in ice mass balance in Antarctica and Greenland...

  3. Measurement error models with uncertainty about the error variance

    NARCIS (Netherlands)

    Oberski, D.L.; Satorra, A.

    2013-01-01

    It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the structural equation model, allowing

  4. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies.

    Science.gov (United States)

    Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E

    2011-06-22

    Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling

  5. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    International Nuclear Information System (INIS)

    Berry, Tyrus; Harlim, John

    2016-01-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consists of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.

  6. Results and Error Estimates from GRACE Forward Modeling over Greenland, Canada, and Alaska

    Science.gov (United States)

    Bonin, J. A.; Chambers, D. P.

    2012-12-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Greenland and Antarctica. However, the accuracy of the forward model technique has not been determined, nor is it known how the distribution of the local basins affects the results. We use a "truth" model composed of hydrology and ice-melt slopes as an example case, to estimate the uncertainties of this forward modeling method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We then apply these optimal parameters in a forward model estimate created from RL05 GRACE data. We compare the resulting mass slopes with the expected systematic errors from the simulation, as well as GIA and basic trend-fitting uncertainties. We also consider whether specific regions (such as Ellesmere Island and Baffin Island) can be estimated reliably using our optimal basin layout.

  7. Empirical study of the GARCH model with rational errors

    International Nuclear Information System (INIS)

    Chen, Ting Ting; Takaishi, Tetsuya

    2013-01-01

    We use the GARCH model with a fat-tailed error distribution described by a rational function and apply it to stock price data on the Tokyo Stock Exchange. To determine the model parameters we perform Bayesian inference to the model. Bayesian inference is implemented by the Metropolis-Hastings algorithm with an adaptive multi-dimensional Student's t-proposal density. In order to compare our model with the GARCH model with the standard normal errors, we calculate the information criteria AIC and DIC, and find that both criteria favor the GARCH model with a rational error distribution. We also calculate the accuracy of the volatility by using the realized volatility and find that a good accuracy is obtained for the GARCH model with a rational error distribution. Thus we conclude that the GARCH model with a rational error distribution is superior to the GARCH model with the normal errors and it can be used as an alternative GARCH model to those with other fat-tailed distributions

  8. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  9. Modeling error distributions of growth curve models through Bayesian methods.

    Science.gov (United States)

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.

  10. SEMI-EMPIRICAL WHITE DWARF INITIAL-FINAL MASS RELATIONSHIPS: A THOROUGH ANALYSIS OF SYSTEMATIC UNCERTAINTIES DUE TO STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Salaris, Maurizio; Serenelli, Aldo; Weiss, Achim; Miller Bertolami, Marcelo

    2009-01-01

    Using the most recent results about white dwarfs (WDs) in ten open clusters, we revisit semiempirical estimates of the initial-final mass relation (IFMR) in star clusters, with emphasis on the use of stellar evolution models. We discuss the influence of these models on each step of the derivation. One intention of our work is to use consistent sets of calculations both for the isochrones and the WD cooling tracks. The second one is to derive the range of systematic errors arising from stellar evolution theory. This is achieved by using different sources for the stellar models and by varying physical assumptions and input data. We find that systematic errors, including the determination of the cluster age, are dominating the initial mass values, while observational uncertainties influence the final mass primarily. After having determined the systematic errors, the initial-final mass relation allows us finally to draw conclusions about the physics of the stellar models, in particular about convective overshooting.

  11. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  12. Evaluation of statistical models for forecast errors from the HBV model

    Science.gov (United States)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  13. The impact of global nuclear mass model uncertainties on r-process abundance predictions

    Directory of Open Access Journals (Sweden)

    Mumpower M.

    2015-01-01

    Full Text Available Rapid neutron capture or ‘r-process’ nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of r-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on r-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms errors of current mass models are large so that current r-process predictions are insufficient in predicting features found in solar residuals and in r-process enhanced metal poor stars. We conclude that the reduction of global rms errors below 100 keV will allow for more robust r-process predictions.

  14. Modelling vertical error in LiDAR-derived digital elevation models

    Science.gov (United States)

    Aguilar, Fernando J.; Mills, Jon P.; Delgado, Jorge; Aguilar, Manuel A.; Negreiros, J. G.; Pérez, José L.

    2010-01-01

    A hybrid theoretical-empirical model has been developed for modelling the error in LiDAR-derived digital elevation models (DEMs) of non-open terrain. The theoretical component seeks to model the propagation of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of ground sampled points in open terrain, towards interpolated points. The interpolation methods used for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case, interpolation is performed using an inverse distance weighting (IDW) method with the local support of the five closest neighbours, although it would be possible to utilize other interpolation methods. The empirical component refers to what is known as "information loss". This is the error purely due to modelling the continuous terrain surface from only a discrete number of points plus the error arising from the interpolation process. The SDE must be previously calculated from a suitable number of check points located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the gridding error. For model calibration, data for 29 study sites, 200×200 m in size, belonging to different areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric methods. The developed methodology was validated against two different LiDAR datasets. The first dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK. The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both terrain slope and sampling density were incorporated in the empirical component through the calibration phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856 ; p reasonably good fit to the predicted errors. Even better results were achieved in the more rugged morphology of the Gador mountain range dataset. The findings

  15. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  16. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    Goldman, A.S.; De Ridder, P.; Laszlo, G.

    1991-01-01

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  17. Incorporating measurement error in n = 1 psychological autoregressive modeling

    Science.gov (United States)

    Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.

    2015-01-01

    Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988

  18. Clock error models for simulation and estimation

    International Nuclear Information System (INIS)

    Meditch, J.S.

    1981-10-01

    Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction

  19. Error Resilient Video Compression Using Behavior Models

    Directory of Open Access Journals (Sweden)

    Jacco R. Taal

    2004-03-01

    Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.

  20. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...

  1. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  2. A Model of Self-Monitoring Blood Glucose Measurement Error.

    Science.gov (United States)

    Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2017-07-01

    A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

  3. Error modeling for surrogates of dynamical systems using machine learning

    Science.gov (United States)

    Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.

    2017-12-01

    A machine-learning-based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (e.g., random forests, LASSO) to map a large set of inexpensively computed `error indicators' (i.e., features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed by simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering), and subsequently constructs a `local' regression model to predict the time-instantaneous error within each identified region of feature space. We consider two uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance, and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (e.g., time-integrated errors). We apply the proposed framework to model errors in reduced-order models of nonlinear oil--water subsurface flow simulations. The reduced-order models used in this work entail application of trajectory piecewise linearization with proper orthogonal decomposition. When the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.

  4. Nonlinear method for including the mass uncertainty of standards and the system measurement errors in the fitting of calibration curves

    International Nuclear Information System (INIS)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-01-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s. 5 figures

  5. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  6. Drought Persistence Errors in Global Climate Models

    Science.gov (United States)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  7. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections.

    Science.gov (United States)

    Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D

    2018-01-01

    Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not

  8. Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models.

    Science.gov (United States)

    Garcia, Tanya P; Ma, Yanyuan

    2017-10-01

    We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.

  9. Error analysis in predictive modelling demonstrated on mould data.

    Science.gov (United States)

    Baranyi, József; Csernus, Olívia; Beczner, Judit

    2014-01-17

    The purpose of this paper was to develop a predictive model for the effect of temperature and water activity on the growth rate of Aspergillus niger and to determine the sources of the error when the model is used for prediction. Parallel mould growth curves, derived from the same spore batch, were generated and fitted to determine their growth rate. The variances of replicate ln(growth-rate) estimates were used to quantify the experimental variability, inherent to the method of determining the growth rate. The environmental variability was quantified by the variance of the respective means of replicates. The idea is analogous to the "within group" and "between groups" variability concepts of ANOVA procedures. A (secondary) model, with temperature and water activity as explanatory variables, was fitted to the natural logarithm of the growth rates determined by the primary model. The model error and the experimental and environmental errors were ranked according to their contribution to the total error of prediction. Our method can readily be applied to analysing the error structure of predictive models of bacterial growth models, too. © 2013.

  10. Bayesian approach to errors-in-variables in regression models

    Science.gov (United States)

    Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad

    2017-05-01

    In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.

  11. Errors and parameter estimation in precipitation-runoff modeling: 1. Theory

    Science.gov (United States)

    Troutman, Brent M.

    1985-01-01

    Errors in complex conceptual precipitation-runoff models may be analyzed by placing them into a statistical framework. This amounts to treating the errors as random variables and defining the probabilistic structure of the errors. By using such a framework, a large array of techniques, many of which have been presented in the statistical literature, becomes available to the modeler for quantifying and analyzing the various sources of error. A number of these techniques are reviewed in this paper, with special attention to the peculiarities of hydrologic models. Known methodologies for parameter estimation (calibration) are particularly applicable for obtaining physically meaningful estimates and for explaining how bias in runoff prediction caused by model error and input error may contribute to bias in parameter estimation.

  12. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  13. Quasi-eccentricity error modeling and compensation in vision metrology

    Science.gov (United States)

    Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin

    2018-04-01

    Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.

  14. Bayesian modeling of the mass and density of asteroids

    Science.gov (United States)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  15. Dual Numbers Approach in Multiaxis Machines Error Modeling

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrdina

    2014-01-01

    Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

  16. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  17. Prediction error, ketamine and psychosis: An updated model.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Fletcher, Paul C

    2016-11-01

    In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis. © The Author(s) 2016.

  18. Prediction-error variance in Bayesian model updating: a comparative study

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model

  19. Cumulative error models for the tank calibration problem

    International Nuclear Information System (INIS)

    Goldman, A.; Anderson, L.G.; Weber, J.

    1983-01-01

    The purpose of a tank calibration equation is to obtain an estimate of the liquid volume that corresponds to a liquid level measurement. Calibration experimental errors occur in both liquid level and liquid volume measurements. If one of the errors is relatively small, the calibration equation can be determined from wellknown regression and calibration methods. If both variables are assumed to be in error, then for linear cases a prototype model should be considered. Many investigators are not familiar with this model or do not have computing facilities capable of obtaining numerical solutions. This paper discusses and compares three linear models that approximate the prototype model and have the advantage of much simpler computations. Comparisons among the four models and recommendations of suitability are made from simulations and from analyses of six sets of experimental data

  20. Measurement Model Specification Error in LISREL Structural Equation Models.

    Science.gov (United States)

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  1. Validation of simplified centre of mass models during gait in individuals with chronic stroke.

    Science.gov (United States)

    Huntley, Andrew H; Schinkel-Ivy, Alison; Aqui, Anthony; Mansfield, Avril

    2017-10-01

    The feasibility of using a multiple segment (full-body) kinematic model in clinical gait assessment is difficult when considering obstacles such as time and cost constraints. While simplified gait models have been explored in healthy individuals, no such work to date has been conducted in a stroke population. The aim of this study was to quantify the errors of simplified kinematic models for chronic stroke gait assessment. Sixteen individuals with chronic stroke (>6months), outfitted with full body kinematic markers, performed a series of gait trials. Three centre of mass models were computed: (i) 13-segment whole-body model, (ii) 3 segment head-trunk-pelvis model, and (iii) 1 segment pelvis model. Root mean squared error differences were compared between models, along with correlations to measures of stroke severity. Error differences revealed that, while both models were similar in the mediolateral direction, the head-trunk-pelvis model had less error in the anteroposterior direction and the pelvis model had less error in the vertical direction. There was some evidence that the head-trunk-pelvis model error is influenced in the mediolateral direction for individuals with more severe strokes, as a few significant correlations were observed between the head-trunk-pelvis model and measures of stroke severity. These findings demonstrate the utility and robustness of the pelvis model for clinical gait assessment in individuals with chronic stroke. Low error in the mediolateral and vertical directions is especially important when considering potential stability analyses during gait for this population, as lateral stability has been previously linked to fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modelling and mitigation of soft-errors in CMOS processors

    NARCIS (Netherlands)

    Rohani, A.

    2014-01-01

    The topic of this thesis is about soft-errors in digital systems. Different aspects of soft-errors have been addressed here, including an accurate simulation model to emulate soft-errors in a gate-level net list, a simulation framework to study the impact of soft-errors in a VHDL design and an

  3. The Sensitivity of Evapotranspiration Models to Errors in Model ...

    African Journals Online (AJOL)

    Five evapotranspiration (Et) model-the penman, Blaney - Criddel, Thornthwaite, the Blaney –Morin-Nigeria, and the Jensen and Haise models – were analyzed for parameter sensitivity under Nigerian Climatic conditions. The sensitivity of each model to errors in any of its measured parameters (variables) was based on the ...

  4. Soft error mechanisms, modeling and mitigation

    CERN Document Server

    Sayil, Selahattin

    2016-01-01

    This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption an...

  5. Model-observer similarity, error modeling and social learning in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Elisabetta Monfardini

    Full Text Available Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.

  6. Nonuniversal gaugino masses from nonsinglet F-terms in nonminimal unified models

    International Nuclear Information System (INIS)

    Martin, Stephen P.

    2009-01-01

    In phenomenological studies of low-energy supersymmetry, running gaugino masses are often taken to be equal near the scale of apparent gauge coupling unification. However, many known mechanisms can avoid this universality, even in models with unified gauge interactions. One example is an F-term vacuum expectation value that is a singlet under the standard model gauge group but transforms nontrivially in the symmetric product of two adjoint representations of a group that contains the standard model gauge group. Here, I compute the ratios of gaugino masses that follow from F-terms in nonsinglet representations of SO(10) and E 6 and their subgroups, extending well-known results for SU(5). The SO(10) results correct some long-standing errors in the literature.

  7. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  8. Learning (from) the errors of a systems biology model.

    Science.gov (United States)

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-02-11

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

  9. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  10. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  11. Standard error propagation in R-matrix model fitting for light elements

    International Nuclear Information System (INIS)

    Chen Zhenpeng; Zhang Rui; Sun Yeying; Liu Tingjin

    2003-01-01

    The error propagation features with R-matrix model fitting 7 Li, 11 B and 17 O systems were researched systematically. Some laws of error propagation were revealed, an empirical formula P j = U j c / U j d = K j · S-bar · √m / √N for describing standard error propagation was established, the most likely error ranges for standard cross sections of 6 Li(n,t), 10 B(n,α0) and 10 B(n,α1) were estimated. The problem that the standard error of light nuclei standard cross sections may be too small results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting is the most reliable evaluation method for such data. The error propagation features of R-matrix model fitting for compound nucleus system of 7 Li, 11 B and 17 O has been studied systematically, some laws of error propagation are revealed, and these findings are important in solving the problem mentioned above. Furthermore, these conclusions are suitable for similar model fitting in other scientific fields. (author)

  12. Thermospheric mass density model error variance as a function of time scale

    Science.gov (United States)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  13. Repeat-aware modeling and correction of short read errors.

    Science.gov (United States)

    Yang, Xiao; Aluru, Srinivas; Dorman, Karin S

    2011-02-15

    High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors

  14. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  15. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  16. Model error assessment of burst capacity models for energy pipelines containing surface cracks

    International Nuclear Information System (INIS)

    Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing

    2014-01-01

    This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines

  17. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  18. The error model and experiment of measuring angular position error based on laser collimation

    Science.gov (United States)

    Cai, Yangyang; Yang, Jing; Li, Jiakun; Feng, Qibo

    2018-01-01

    Rotary axis is the reference component of rotation motion. Angular position error is the most critical factor which impair the machining precision among the six degree-of-freedom (DOF) geometric errors of rotary axis. In this paper, the measuring method of angular position error of rotary axis based on laser collimation is thoroughly researched, the error model is established and 360 ° full range measurement is realized by using the high precision servo turntable. The change of space attitude of each moving part is described accurately by the 3×3 transformation matrices and the influences of various factors on the measurement results is analyzed in detail. Experiments results show that the measurement method can achieve high measurement accuracy and large measurement range.

  19. Predicting chick body mass by artificial intelligence-based models

    Directory of Open Access Journals (Sweden)

    Patricia Ferreira Ponciano Ferraz

    2014-07-01

    Full Text Available The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks - with the variables dry-bulb air temperature, duration of thermal stress (days, chick age (days, and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs and neuro-fuzzy networks (NFNs. The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

  20. Varying coefficients model with measurement error.

    Science.gov (United States)

    Li, Liang; Greene, Tom

    2008-06-01

    We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.

  1. Making the error-controlling algorithm of observable operator models constructive.

    Science.gov (United States)

    Zhao, Ming-Jie; Jaeger, Herbert; Thon, Michael

    2009-12-01

    Observable operator models (OOMs) are a class of models for stochastic processes that properly subsumes the class that can be modeled by finite-dimensional hidden Markov models (HMMs). One of the main advantages of OOMs over HMMs is that they admit asymptotically correct learning algorithms. A series of learning algorithms has been developed, with increasing computational and statistical efficiency, whose recent culmination was the error-controlling (EC) algorithm developed by the first author. The EC algorithm is an iterative, asymptotically correct algorithm that yields (and minimizes) an assured upper bound on the modeling error. The run time is faster by at least one order of magnitude than EM-based HMM learning algorithms and yields significantly more accurate models than the latter. Here we present a significant improvement of the EC algorithm: the constructive error-controlling (CEC) algorithm. CEC inherits from EC the main idea of minimizing an upper bound on the modeling error but is constructive where EC needs iterations. As a consequence, we obtain further gains in learning speed without loss in modeling accuracy.

  2. Accounting for model error due to unresolved scales within ensemble Kalman filtering

    OpenAIRE

    Mitchell, Lewis; Carrassi, Alberto

    2014-01-01

    We propose a method to account for model error due to unresolved scales in the context of the ensemble transform Kalman filter (ETKF). The approach extends to this class of algorithms the deterministic model error formulation recently explored for variational schemes and extended Kalman filter. The model error statistic required in the analysis update is estimated using historical reanalysis increments and a suitable model error evolution law. Two different versions of the method are describe...

  3. Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics

    Directory of Open Access Journals (Sweden)

    Smith Thomas A

    2008-01-01

    Full Text Available Abstract Background Quantifying heterogeneity in malaria transmission is a prerequisite for accurate predictive mathematical models, but the variance in field measurements of exposure overestimates true micro-heterogeneity because it is inflated to an uncertain extent by sampling variation. Descriptions of field data also suggest that the rate of Plasmodium falciparum infection is not proportional to the intensity of challenge by infectious vectors. This appears to violate the principle of mass action that is implied by malaria biology. Micro-heterogeneity may be the reason for this anomaly. It is proposed that the level of micro-heterogeneity can be estimated from statistical models that estimate the amount of variation in transmission most compatible with a mass-action model for the relationship of infection to exposure. Methods The relationship between the entomological inoculation rate (EIR for falciparum malaria and infection risk was reanalysed using published data for cohorts of children in Saradidi (western Kenya. Infection risk was treated as binomially distributed, and measurement-error (Poisson and negative binomial models were considered for the EIR. Models were fitted using Bayesian Markov chain Monte Carlo algorithms and model fit compared for models that assume either mass-action kinetics, facilitation, competition or saturation of the infection process with increasing EIR. Results The proportion of inocula that resulted in infection in Saradidi was inversely related to the measured intensity of challenge. Models of facilitation showed, therefore, a poor fit to the data. When sampling error in the EIR was neglected, either competition or saturation needed to be incorporated in the model in order to give a good fit. Negative binomial models for the error in exposure could achieve a comparable fit while incorporating the more parsimonious and biologically plausible mass action assumption. Models that assume negative binomial micro

  4. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    Science.gov (United States)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  5. Nonclassical measurements errors in nonlinear models

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir

    Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... that contains very detailed information about incomes. This gives a unique opportunity to learn about the magnitude and nature of the measurement error in income reported by the respondents in the Danish NTS compared to income from the administrative register (correct measure). We find that the classical...

  6. Direct cointegration testing in error-correction models

    NARCIS (Netherlands)

    F.R. Kleibergen (Frank); H.K. van Dijk (Herman)

    1994-01-01

    textabstractAbstract An error correction model is specified having only exact identified parameters, some of which reflect a possible departure from a cointegration model. Wald, likelihood ratio, and Lagrange multiplier statistics are derived to test for the significance of these parameters. The

  7. A critique of recent models for human error rate assessment

    International Nuclear Information System (INIS)

    Apostolakis, G.E.

    1988-01-01

    This paper critically reviews two groups of models for assessing human error rates under accident conditions. The first group, which includes the US Nuclear Regulatory Commission (NRC) handbook model and the human cognitive reliability (HCR) model, considers as fundamental the time that is available to the operators to act. The second group, which is represented by the success likelihood index methodology multiattribute utility decomposition (SLIM-MAUD) model, relies on ratings of the human actions with respect to certain qualitative factors and the subsequent derivation of error rates. These models are evaluated with respect to two criteria: the treatment of uncertainties and the internal coherence of the models. In other words, this evaluation focuses primarily on normative aspects of these models. The principal findings are as follows: (1) Both of the time-related models provide human error rates as a function of the available time for action and the prevailing conditions. However, the HCR model ignores the important issue of state-of-knowledge uncertainties, dealing exclusively with stochastic uncertainty, whereas the model presented in the NRC handbook handles both types of uncertainty. (2) SLIM-MAUD provides a highly structured approach for the derivation of human error rates under given conditions. However, the treatment of the weights and ratings in this model is internally inconsistent. (author)

  8. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Laura Ruotsalainen

    2018-02-01

    Full Text Available The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU, sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF, which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is

  9. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.

    Science.gov (United States)

    Faber, Felix A; Hutchison, Luke; Huang, Bing; Gilmer, Justin; Schoenholz, Samuel S; Dahl, George E; Vinyals, Oriol; Kearnes, Steven; Riley, Patrick F; von Lilienfeld, O Anatole

    2017-11-14

    We investigate the impact of choosing regressors and molecular representations for the construction of fast machine learning (ML) models of 13 electronic ground-state properties of organic molecules. The performance of each regressor/representation/property combination is assessed using learning curves which report out-of-sample errors as a function of training set size with up to ∼118k distinct molecules. Molecular structures and properties at the hybrid density functional theory (DFT) level of theory come from the QM9 database [ Ramakrishnan et al. Sci. Data 2014 , 1 , 140022 ] and include enthalpies and free energies of atomization, HOMO/LUMO energies and gap, dipole moment, polarizability, zero point vibrational energy, heat capacity, and the highest fundamental vibrational frequency. Various molecular representations have been studied (Coulomb matrix, bag of bonds, BAML and ECFP4, molecular graphs (MG)), as well as newly developed distribution based variants including histograms of distances (HD), angles (HDA/MARAD), and dihedrals (HDAD). Regressors include linear models (Bayesian ridge regression (BR) and linear regression with elastic net regularization (EN)), random forest (RF), kernel ridge regression (KRR), and two types of neural networks, graph convolutions (GC) and gated graph networks (GG). Out-of sample errors are strongly dependent on the choice of representation and regressor and molecular property. Electronic properties are typically best accounted for by MG and GC, while energetic properties are better described by HDAD and KRR. The specific combinations with the lowest out-of-sample errors in the ∼118k training set size limit are (free) energies and enthalpies of atomization (HDAD/KRR), HOMO/LUMO eigenvalue and gap (MG/GC), dipole moment (MG/GC), static polarizability (MG/GG), zero point vibrational energy (HDAD/KRR), heat capacity at room temperature (HDAD/KRR), and highest fundamental vibrational frequency (BAML/RF). We present numerical

  10. Error propagation of partial least squares for parameters optimization in NIR modeling

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  11. Error propagation of partial least squares for parameters optimization in NIR modeling.

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  12. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  13. MODELING OF MANUFACTURING ERRORS FOR PIN-GEAR ELEMENTS OF PLANETARY GEARBOX

    Directory of Open Access Journals (Sweden)

    Ivan M. Egorov

    2014-11-01

    Full Text Available Theoretical background for calculation of k-h-v type cycloid reducers was developed relatively long ago. However, recently the matters of cycloid reducer design again attracted heightened attention. The reason for that is that such devices are used in many complex engineering systems, particularly, in mechatronic and robotics systems. The development of advanced technological capabilities for manufacturing of such reducers today gives the possibility for implementation of essential features of such devices: high efficiency, high gear ratio, kinematic accuracy and smooth motion. The presence of an adequate mathematical model gives the possibility for adjusting kinematic accuracy of the reducer by rational selection of manufacturing tolerances for its parts. This makes it possible to automate the design process for cycloid reducers with account of various factors including technological ones. A mathematical model and mathematical technique have been developed giving the possibility for modeling the kinematic error of the reducer with account of multiple factors, including manufacturing errors. The errors are considered in the way convenient for prediction of kinematic accuracy early at the manufacturing stage according to the results of reducer parts measurement on coordinate measuring machines. During the modeling, the wheel manufacturing errors are determined by the eccentricity and radius deviation of the pin tooth centers circle, and the deviation between the pin tooth axes positions and the centers circle. The satellite manufacturing errors are determined by the satellite eccentricity deviation and the satellite rim eccentricity. Due to the collinearity, the pin tooth and pin tooth hole diameter errors and the satellite tooth profile errors for a designated contact point are integrated into one deviation. Software implementation of the model makes it possible to estimate the pointed errors influence on satellite rotation angle error and

  14. Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, H.; Moon, Y.

    2011-12-01

    Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).

  15. Guidelines for system modeling: pre-accident human errors, rev.0

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors.

  16. Guidelines for system modeling: pre-accident human errors, rev.0

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E.

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors

  17. Kalman filtering and smoothing for linear wave equations with model error

    International Nuclear Information System (INIS)

    Lee, Wonjung; McDougall, D; Stuart, A M

    2011-01-01

    Filtering is a widely used methodology for the incorporation of observed data into time-evolving systems. It provides an online approach to state estimation inverse problems when data are acquired sequentially. The Kalman filter plays a central role in many applications because it is exact for linear systems subject to Gaussian noise, and because it forms the basis for many approximate filters which are used in high-dimensional systems. The aim of this paper is to study the effect of model error on the Kalman filter, in the context of linear wave propagation problems. A consistency result is proved when no model error is present, showing recovery of the true signal in the large data limit. This result, however, is not robust: it is also proved that arbitrarily small model error can lead to inconsistent recovery of the signal in the large data limit. If the model error is in the form of a constant shift to the velocity, the filtering and smoothing distributions only recover a partial Fourier expansion, a phenomenon related to aliasing. On the other hand, for a class of wave velocity model errors which are time dependent, it is possible to recover the filtering distribution exactly, but not the smoothing distribution. Numerical results are presented which corroborate the theory, and also propose a computational approach which overcomes the inconsistency in the presence of model error, by relaxing the model

  18. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  19. Electrostatic micromanipulation of a conductive particle by a single probe with consideration of an error in the evaluated mass

    International Nuclear Information System (INIS)

    Sawai, Kenji; Saito, Shigeki

    2010-01-01

    Recently, micromanipulation techniques for handling a conductive microparticle have been in demand. Electrostatic micromanipulation with a single probe is a promising technique for such manipulation. While the feasibility of the technique has been proved experimentally, the success rate of manipulation was 25%, and further improvements are required. To enhance the success rate and realize highly reliable electrostatic micromanipulation, this paper proposes an improved design of a voltage sequence which is applied to deposit a microparticle onto a substrate plate. It was found through investigation that the error in the evaluated mass of a microparticle must be considered in order to improve the success rate of the manipulation. Behavior of a microparticle during the electrostatic micromanipulation is calculated by a boundary element method, and the influence of error is discussed. An improved design of the applied voltage sequence that can tolerate an error in the evaluated mass is described. Moreover, the effectiveness of the newly designed voltage sequence in the electrostatic micromanipulation is experimentally shown.

  20. Estimation of error components in a multi-error linear regression model, with an application to track fitting

    International Nuclear Information System (INIS)

    Fruehwirth, R.

    1993-01-01

    We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)

  1. THE DISKMASS SURVEY. II. ERROR BUDGET

    International Nuclear Information System (INIS)

    Bershady, Matthew A.; Westfall, Kyle B.; Verheijen, Marc A. W.; Martinsson, Thomas; Andersen, David R.; Swaters, Rob A.

    2010-01-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ * ), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25 0 -35 0 is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction (F bar ) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σ dyn ), disk stellar mass-to-light ratio (Υ disk * ), and disk maximality (F *,max disk ≡V disk *,max / V c ). Random and systematic errors in these quantities for individual galaxies will be ∼25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  2. Where did I go wrong? : explaining errors in business process models

    NARCIS (Netherlands)

    Lohmann, N.; Fahland, D.; Sadiq, S.; Soffer, P.; Völzer, H.

    2014-01-01

    Business process modeling is still a challenging task — especially since more and more aspects are added to the models, such as data lifecycles, security constraints, or compliance rules. At the same time, formal methods allow for a detection of errors in the early modeling phase. Detected errors

  3. Measurement system and model for simultaneously measuring 6DOF geometric errors.

    Science.gov (United States)

    Zhao, Yuqiong; Zhang, Bin; Feng, Qibo

    2017-09-04

    A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.

  4. Comparing Mass Balance and Adjoint-Based 4D-VAR Methods for Inverse Modeling of Nitrogen Dioxide Columns for Nitrogen Oxide Emissions

    Science.gov (United States)

    Cooper, M.; Martin, R.; Henze, D. K.

    2016-12-01

    Nitrogen oxide (NOx ≡ NO + NO2) emission inventories can be improved through top-down constraints provided by inverse modeling of observed nitrogen dioxide (NO2) columns. Here we compare two methods of inverse modeling for emissions of NOx from synthetic NO2 columns generated from known emissions using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-VAR approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We find that the standard mass balance algorithm can be improved by using an iterative process and using finite difference to calculate the local sensitivity of a change in NO2 columns to a change in emissions, resulting in a factor of two reduction in inversion error. In a simplified case study to recover local emission perturbations, horizontal smearing effects due to NOx transport were better resolved by the adjoint-based approach than by mass balance. For more complex emission changes that reflect real world scenarios, the iterative finite difference mass balance and adjoint methods produce similar top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of data sets that simulate satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint-based 4D-VAR method, it offers the ability to efficiently estimate top-down emissions using models that do not have an adjoint.

  5. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    Directory of Open Access Journals (Sweden)

    E. Solazzo

    2017-09-01

    Full Text Available The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3 by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study, allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL dynamics is pivotal to both models. In particular, (i the fluctuations slower than ∼ 1.5 days account for 70–85 % of the mean square error of the full (undecomposed ozone time series; (ii a recursive, systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total error; (iii errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network

  6. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    Science.gov (United States)

    Solazzo, Efisio; Hogrefe, Christian; Colette, Augustin; Garcia-Vivanco, Marta; Galmarini, Stefano

    2017-09-01

    The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL) dynamics is pivotal to both models. In particular, (i) the fluctuations slower than ˜ 1.5 days account for 70-85 % of the mean square error of the full (undecomposed) ozone time series; (ii) a recursive, systematic error with daily periodicity is detected, responsible for 10-20 % of the quadratic total error; (iii) errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in

  7. Bayesian modeling of measurement error in predictor variables

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; Glas, Cornelis A.W.

    2003-01-01

    It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between

  8. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys

    Science.gov (United States)

    Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew

    2017-11-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  9. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    Science.gov (United States)

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  10. Application of the mass-based UNIQUAC model to membrane systems: A critical revision

    International Nuclear Information System (INIS)

    Chovau, S.; Van der Bruggen, B.; Luis, P.

    2012-01-01

    Highlights: ► UNIQUAC model in mass-based terms is considered for the description of sorption equilibria in membrane systems. ► Model validation of molar and mass-based model is performed on simple (vapor + liquid) equilibrium. ► Discrepancy is found between molar and mass-based model, which is attributed to an incorrect conversion. ► Novel model based on correct thermodynamics is provided for future research. - Abstract: The UNIQUAC model is very suitable in describing (liquid + liquid) as well as (vapor + liquid) equilibrium for a wide range of systems. It can be extended to (solvent + polymer) systems for describing sorption equilibria. The original model is expressed in molar-based terms, but requires knowledge of structural parameters and molar masses of all components. Since these cannot always be easily determined for membranes, a conversion to mass-based terms is often performed, which eliminates this issue. Many studies use this model to calculate sorption equilibria in (solvent + polymer) systems. Nevertheless, in this work the conversion from molar to mass-based parameters is postulated to be erroneous. This even leads to an incorrect description of simple (vapor + liquid) equilibrium of pure liquid mixtures and hence it is advised not to use this model for further modeling of sorption equilibrium in (solvent + polymer) systems. In this paper, the errors in the conversion are pinpointed, and the effects it can have on the description of (vapor + liquid) equilibrium, if used improvident, are demonstrated. Furthermore, it is shown that in fact a simple and straightforward conversion can be performed. Finally, in the case when polymers are involved, an adaption and simplification to the model was successfully applied.

  11. The regression-calibration method for fitting generalized linear models with additive measurement error

    OpenAIRE

    James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll

    2003-01-01

    This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...

  12. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  13. Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling

    Science.gov (United States)

    Meika, I.; Suryadi, D.; Darhim

    2018-01-01

    This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.

  14. The error in total error reduction.

    Science.gov (United States)

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Bayesian network models for error detection in radiotherapy plans

    International Nuclear Information System (INIS)

    Kalet, Alan M; Ford, Eric C; Phillips, Mark H; Gennari, John H

    2015-01-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures. (paper)

  16. Local and omnibus goodness-of-fit tests in classical measurement error models

    KAUST Repository

    Ma, Yanyuan

    2010-09-14

    We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.

  17. Model-independent determination of the WIMP mass from direct dark matter detection data

    International Nuclear Information System (INIS)

    Drees, Manuel; Shan, Chung-Lin

    2008-01-01

    Weakly interacting massive particles (WIMPs) are one of the leading candidates for dark matter. We develop a model-independent method for determining the mass m χ of the WIMP by using data (i.e. measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP–nucleus cross section. However, it requires positive signals from at least two detectors with different target nuclei. In a background-free environment, m χ ∼50 GeV could in principle be determined with an error of ∼35% with only 2 × 50 events; in practice, upper and lower limits on the recoil energy of signal events, imposed to reduce backgrounds, can increase the error. The method also loses precision if m χ significantly exceeds the mass of the heaviest target nucleus used

  18. On Inertial Body Tracking in the Presence of Model Calibration Errors.

    Science.gov (United States)

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-07-22

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments-the IMU-to-segment calibrations, subsequently called I2S calibrations-to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and

  19. OOK power model based dynamic error testing for smart electricity meter

    International Nuclear Information System (INIS)

    Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu

    2017-01-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)

  20. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  1. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  2. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu [University of Michigan, Department of Astronomy, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States)

    2016-11-20

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.

  3. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Errors in Neonatology

    OpenAIRE

    Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano

    2013-01-01

    Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...

  5. Measurement Rounding Errors in an Assessment Model of Project Led Engineering Education

    Directory of Open Access Journals (Sweden)

    Francisco Moreira

    2009-11-01

    Full Text Available This paper analyzes the rounding errors that occur in the assessment of an interdisciplinary Project-Led Education (PLE process implemented in the Integrated Master degree on Industrial Management and Engineering (IME at University of Minho. PLE is an innovative educational methodology which makes use of active learning, promoting higher levels of motivation and students’ autonomy. The assessment model is based on multiple evaluation components with different weights. Each component can be evaluated by several teachers involved in different Project Supporting Courses (PSC. This model can be affected by different types of errors, namely: (1 rounding errors, and (2 non-uniform criteria of rounding the grades. A rigorous analysis of the assessment model was made and the rounding errors involved on each project component were characterized and measured. This resulted in a global maximum error of 0.308 on the individual student project grade, in a 0 to 100 scale. This analysis intended to improve not only the reliability of the assessment results, but also teachers’ awareness of this problem. Recommendations are also made in order to improve the assessment model and reduce the rounding errors as much as possible.

  6. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    Science.gov (United States)

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  7. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor

    International Nuclear Information System (INIS)

    Haneveld, J; Lammerink, T S J; De Boer, M J; Sanders, R G P; Mehendale, A; Lötters, J C; Dijkstra, M; Wiegerink, R J

    2010-01-01

    This paper discusses the modeling, design and realization of micromachined Coriolis mass flow sensors. A lumped element model is used to analyze and predict the sensor performance. The model is used to design a sensor for a flow range of 0–1.2 g h −1 with a maximum pressure drop of 1 bar. The sensor was realized using semi-circular channels just beneath the surface of a silicon wafer. The channels have thin silicon nitride walls to minimize the channel mass with respect to the mass of the moving fluid. Special comb-shaped electrodes are integrated on the channels for capacitive readout of the extremely small Coriolis displacements. The comb-shaped electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods. Furthermore, it prevents squeezed film damping due to a thin layer of air between the capacitor electrodes. As a result, the sensor operates at atmospheric pressure with a quality factor in the order of 40 and does not require vacuum packaging like other micro Coriolis flow sensors. Measurement results using water, ethanol, white gas and argon are presented, showing that the sensor measures true mass flow. The measurement error is currently in the order of 1% of the full scale of 1.2 g h −1

  8. Predicting Error Bars for QSAR Models

    International Nuclear Information System (INIS)

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Mueller, Klaus-Robert

    2007-01-01

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D 7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches

  9. Understanding error generation in fused deposition modeling

    International Nuclear Information System (INIS)

    Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David

    2015-01-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)

  10. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    Science.gov (United States)

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  11. Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor.

    Science.gov (United States)

    Biagi, Lyvia; Ramkissoon, Charrise M; Facchinetti, Andrea; Leal, Yenny; Vehi, Josep

    2017-06-12

    Continuous glucose monitors (CGMs) are prone to inaccuracy due to time lags, sensor drift, calibration errors, and measurement noise. The aim of this study is to derive the model of the error of the second generation Medtronic Paradigm Veo Enlite (ENL) sensor and compare it with the Dexcom SEVEN PLUS (7P), G4 PLATINUM (G4P), and advanced G4 for Artificial Pancreas studies (G4AP) systems. An enhanced methodology to a previously employed technique was utilized to dissect the sensor error into several components. The dataset used included 37 inpatient sessions in 10 subjects with type 1 diabetes (T1D), in which CGMs were worn in parallel and blood glucose (BG) samples were analyzed every 15 ± 5 min Calibration error and sensor drift of the ENL sensor was best described by a linear relationship related to the gain and offset. The mean time lag estimated by the model is 9.4 ± 6.5 min. The overall average mean absolute relative difference (MARD) of the ENL sensor was 11.68 ± 5.07% Calibration error had the highest contribution to total error in the ENL sensor. This was also reported in the 7P, G4P, and G4AP. The model of the ENL sensor error will be useful to test the in silico performance of CGM-based applications, i.e., the artificial pancreas, employing this kind of sensor.

  12. Local and omnibus goodness-of-fit tests in classical measurement error models

    KAUST Repository

    Ma, Yanyuan; Hart, Jeffrey D.; Janicki, Ryan; Carroll, Raymond J.

    2010-01-01

    We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal

  13. Improved ensemble-mean forecast skills of ENSO events by a zero-mean stochastic model-error model of an intermediate coupled model

    Science.gov (United States)

    Zheng, F.; Zhu, J.

    2015-12-01

    To perform an ensemble-based ENSO probabilistic forecast, the crucial issue is to design a reliable ensemble prediction strategy that should include the major uncertainties of a forecast system. In this study, we developed a new general ensemble perturbation technique to improve the ensemble-mean predictive skill of forecasting ENSO using an intermediate coupled model (ICM). The model uncertainties are first estimated and analyzed from EnKF analysis results through assimilating observed SST. Then, based on the pre-analyzed properties of the model errors, a zero-mean stochastic model-error model is developed to mainly represent the model uncertainties induced by some important physical processes missed in the coupled model (i.e., stochastic atmospheric forcing/MJO, extra-tropical cooling and warming, Indian Ocean Dipole mode, etc.). Each member of an ensemble forecast is perturbed by the stochastic model-error model at each step during the 12-month forecast process, and the stochastical perturbations are added into the modeled physical fields to mimic the presence of these high-frequency stochastic noises and model biases and their effect on the predictability of the coupled system. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr retrospective forecast experiments. The two forecast schemes are differentiated by whether they considered the model stochastic perturbations, with both initialized by the ensemble-mean analysis states from EnKF. The comparison results suggest that the stochastic model-error perturbations have significant and positive impacts on improving the ensemble-mean prediction skills during the entire 12-month forecast process. Because the nonlinear feature of the coupled model can induce the nonlinear growth of the added stochastic model errors with model integration, especially through the nonlinear heating mechanism with the vertical advection term of the model, the

  14. Identification and estimation of nonlinear models using two samples with nonclassical measurement errors

    KAUST Repository

    Carroll, Raymond J.

    2010-05-01

    This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest - the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates - is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and a data application are presented to show the power of the approach.

  15. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Kareem; Quataert, Eliot [Department of Astronomy, University of California, Berkeley, CA (United States); Wetzel, Andrew R.; Hopkins, Philip F. [TAPIR, California Institute of Technology, Pasadena, CA (United States); Geha, Marla [Department of Astronomy, Yale University, New Haven, CT (United States); Kereš, Dusan; Chan, T. K. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla (United States); Faucher-Giguère, Claude-André, E-mail: kelbadry@berkeley.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL (United States)

    2017-02-01

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.

  16. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    International Nuclear Information System (INIS)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.; Hopkins, Philip F.; Geha, Marla; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2017-01-01

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.

  17. Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models

    Science.gov (United States)

    Mu, He-Qing; Xu, Rong-Rong; Yuen, Ka-Veng

    2014-03-01

    Peak ground acceleration (PGA) estimation is an important task in earthquake engineering practice. One of the most well-known models is the Boore-Joyner-Fumal formula, which estimates the PGA using the moment magnitude, the site-to-fault distance and the site foundation properties. In the present study, the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an efficiency-robustness balanced formula is proposed. For this purpose, a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship. In this approach, each model class (a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data. The one with the highest plausibility is robust since it possesses the optimal balance between the data fitting capability and the sensitivity to noise. A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis. The optimal predictive formula is proposed based on this database. It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore, Joyner and Fumal (1993).

  18. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  19. Determination of fission products and actinides by inductively coupled plasma-mass spectrometry using isotope dilution analysis. A study of random and systematic errors

    International Nuclear Information System (INIS)

    Ignacio Garcia Alonso, Jose

    1995-01-01

    The theory of the propagation of errors (random and systematic) for isotope dilution analysis (IDA) has been applied to the analysis of fission products and actinide elements by inductively coupled plasma-mass spectrometry (ICP-MS). Systematic errors in ID-ICP-MS arising from mass-discrimination (mass bias), detector non-linearity and isobaric interferences in the measured isotopes have to be corrected for in order to achieve accurate results. The mass bias factor and the detector dead-time can be determined by using natural elements with well-defined isotope abundances. A combined method for the simultaneous determination of both factors is proposed. On the other hand, isobaric interferences for some fission products and actinides cannot be eliminated using mathematical corrections (due to the unknown isotope abundances in the sample) and a chemical separation is necessary. The theory for random error propagation in IDA has been applied to the determination of non-natural elements by ICP-MS taking into account all possible sources of uncertainty with pulse counting detection. For the analysis of fission products, the selection of the right spike isotope composition and spike to sample ratio can be performed by applying conventional random propagation theory. However, it has been observed that, in the experimental determination of the isotope abundances of the fission product elements to be determined, the correction for mass-discrimination and the correction for detector dead-time losses contribute to the total random uncertainty. For the instrument used in the experimental part of this study, it was found that the random uncertainty on the measured isotope ratios followed Poisson statistics for low counting rates whereas, for high counting rates, source instability was the main source of error

  20. Estimation of error fields from ferromagnetic parts in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A. Bonito [Fusion for Energy (Spain); Chiariello, A.G.; Formisano, A.; Martone, R. [Ass. EURATOM/ENEA/CREATE, Dip. di Ing. Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, I-81031 Napoli (Italy); Portone, A., E-mail: alfredo.portone@f4e.europa.eu [Fusion for Energy (Spain); Testoni, P. [Fusion for Energy (Spain)

    2013-10-15

    Highlights: ► The paper deals with error fields generated in ITER by magnetic masses. ► Magnetization state is computed from simplified FEM models. ► Closed form expressions adopted for the flux density of magnetized parts are given. ► Such expressions allow to simplify the estimation of the effect of iron pieces (or lack of) on error field. -- Abstract: Error fields in tokamaks are small departures from the exact axisymmetry of the ideal magnetic field configuration. Their reduction below a threshold value by the error field correction coils is essential since sufficiently large static error fields lead to discharge disruption. The error fields are originated not only by magnets fabrication and installation tolerances, by the joints and by the busbars, but also by the presence of ferromagnetic elements. It was shown that superconducting joints, feeders and busbars play a secondary effect; however in order to estimate of the importance of each possible error field source, rough evaluations can be very useful because it can provide an order of magnitude of the correspondent effect and, therefore, a ranking in the request for in depth analysis. The paper proposes a two steps procedure. The first step aims to get the approximate magnetization state of ferromagnetic parts; the second aims to estimate the full 3D error field over the whole volume using equivalent sources for magnetic masses and taking advantage from well assessed approximate closed form expressions, well suited for the far distance effects.

  1. Using surrogate biomarkers to improve measurement error models in nutritional epidemiology

    Science.gov (United States)

    Keogh, Ruth H; White, Ian R; Rodwell, Sheila A

    2013-01-01

    Nutritional epidemiology relies largely on self-reported measures of dietary intake, errors in which give biased estimated diet–disease associations. Self-reported measurements come from questionnaires and food records. Unbiased biomarkers are scarce; however, surrogate biomarkers, which are correlated with intake but not unbiased, can also be useful. It is important to quantify and correct for the effects of measurement error on diet–disease associations. Challenges arise because there is no gold standard, and errors in self-reported measurements are correlated with true intake and each other. We describe an extended model for error in questionnaire, food record, and surrogate biomarker measurements. The focus is on estimating the degree of bias in estimated diet–disease associations due to measurement error. In particular, we propose using sensitivity analyses to assess the impact of changes in values of model parameters which are usually assumed fixed. The methods are motivated by and applied to measures of fruit and vegetable intake from questionnaires, 7-day diet diaries, and surrogate biomarker (plasma vitamin C) from over 25000 participants in the Norfolk cohort of the European Prospective Investigation into Cancer and Nutrition. Our results show that the estimated effects of error in self-reported measurements are highly sensitive to model assumptions, resulting in anything from a large attenuation to a small amplification in the diet–disease association. Commonly made assumptions could result in a large overcorrection for the effects of measurement error. Increased understanding of relationships between potential surrogate biomarkers and true dietary intake is essential for obtaining good estimates of the effects of measurement error in self-reported measurements on observed diet–disease associations. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23553407

  2. Probabilistic error bounds for reduced order modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, M.G.; Wang, C.; Abdel-Khalik, H.S., E-mail: abdo@purdue.edu, E-mail: wang1730@purdue.edu, E-mail: abdelkhalik@purdue.edu [Purdue Univ., School of Nuclear Engineering, West Lafayette, IN (United States)

    2015-07-01

    Reduced order modeling has proven to be an effective tool when repeated execution of reactor analysis codes is required. ROM operates on the assumption that the intrinsic dimensionality of the associated reactor physics models is sufficiently small when compared to the nominal dimensionality of the input and output data streams. By employing a truncation technique with roots in linear algebra matrix decomposition theory, ROM effectively discards all components of the input and output data that have negligible impact on reactor attributes of interest. This manuscript introduces a mathematical approach to quantify the errors resulting from the discarded ROM components. As supported by numerical experiments, the introduced analysis proves that the contribution of the discarded components could be upper-bounded with an overwhelmingly high probability. The reverse of this statement implies that the ROM algorithm can self-adapt to determine the level of the reduction needed such that the maximum resulting reduction error is below a given tolerance limit that is set by the user. (author)

  3. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis; Tandeo, P.; Pulido, M.; Ait-El-Fquih, Boujemaa; Chonavel, T.; Hoteit, Ibrahim

    2017-01-01

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended

  4. First photoelectron timing error evaluation of a new scintillation detector model

    International Nuclear Information System (INIS)

    Petrick, N.; Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III

    1991-01-01

    In this paper, a general timing system model for a scintillation detector developed is experimentally evaluated. The detector consists of a scintillator and a photodetector such as a photomultiplier tube or an avalanche photodiode. The model uses a Poisson point process to characterize the light output from the scintillator. This timing model was used to simulate a BGO scintillator with a Burle 8575 PMT using first photoelectron timing detection. Evaluation of the model consisted of comparing the RMS error from the simulations with the error from the actual detector system. The authors find that the general model compares well with the actual error results for the BGO/8575 PMT detector. In addition, the optimal threshold is found to be dependent upon the energy of the scintillation. In the low energy part of the spectrum, the authors find a low threshold is optimal while for higher energy pulses the optimal threshold increases

  5. First photoelectron timing error evaluation of a new scintillation detector model

    International Nuclear Information System (INIS)

    Petrick, N.; Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III

    1990-01-01

    In this paper, a general timing system model for a scintillation detector that was developed, is experimentally evaluated. The detector consists of a scintillator and a photodetector such as a photomultiplier tube or an avalanche photodiode. The model uses a Poisson point process to characterize the light output from the scintillator. This timing model was used to simulated a BGO scintillator with a Burle 8575 PMT using first photoelectron timing detection. Evaluation of the model consisted of comparing the RMS error from the simulations with the error from the actual detector system. We find that the general model compares well with the actual error results for the BGO/8575 PMT detector. In addition, the optimal threshold is found to be dependent upon the energy of the scintillation. In the low energy part of the spectrum, we find a low threshold is optimal while for higher energy pulses the optimal threshold increases

  6. Soft error modeling and analysis of the Neutron Intercepting Silicon Chip (NISC)

    International Nuclear Information System (INIS)

    Celik, Cihangir; Unlue, Kenan; Narayanan, Vijaykrishnan; Irwin, Mary J.

    2011-01-01

    Soft errors are transient errors caused due to excess charge carriers induced primarily by external radiations in the semiconductor devices. Soft error phenomena could be used to detect thermal neutrons with a neutron monitoring/detection system by enhancing soft error occurrences in the memory devices. This way, one can convert all semiconductor memory devices into neutron detection systems. Such a device is being developed at The Pennsylvania State University and named Neutron Intercepting Silicon Chip (NISC). The NISC is envisioning a miniature, power efficient, and active/passive operation neutron sensor/detector system. NISC aims to achieve this goal by introducing 10 B-enriched Borophosphosilicate Glass (BPSG) insulation layers in the semiconductor memories. In order to model and analyze the NISC, an analysis tool using Geant4 as the transport and tracking engine is developed for the simulation of the charged particle interactions in the semiconductor memory model, named NISC Soft Error Analysis Tool (NISCSAT). A simple model with 10 B-enriched layer on top of the lumped silicon region is developed in order to represent the semiconductor memory node. Soft error probability calculations were performed via the NISCSAT with both single node and array configurations to investigate device scaling by using different node dimensions in the model. Mono-energetic, mono-directional thermal and fast neutrons are used as the neutron sources. Soft error contribution due to the BPSG layer is also investigated with different 10 B contents and the results are presented in this paper.

  7. Error analysis of short term wind power prediction models

    International Nuclear Information System (INIS)

    De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco

    2011-01-01

    The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)

  8. Error analysis of short term wind power prediction models

    Energy Technology Data Exchange (ETDEWEB)

    De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via per Monteroni, 73100 Lecce (Italy)

    2011-04-15

    The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)

  9. Influence of model errors in optimal sensor placement

    Science.gov (United States)

    Vincenzi, Loris; Simonini, Laura

    2017-02-01

    The paper investigates the role of model errors and parametric uncertainties in optimal or near optimal sensor placements for structural health monitoring (SHM) and modal testing. The near optimal set of measurement locations is obtained by the Information Entropy theory; the results of placement process considerably depend on the so-called covariance matrix of prediction error as well as on the definition of the correlation function. A constant and an exponential correlation function depending on the distance between sensors are firstly assumed; then a proposal depending on both distance and modal vectors is presented. With reference to a simple case-study, the effect of model uncertainties on results is described and the reliability and the robustness of the proposed correlation function in the case of model errors are tested with reference to 2D and 3D benchmark case studies. A measure of the quality of the obtained sensor configuration is considered through the use of independent assessment criteria. In conclusion, the results obtained by applying the proposed procedure on a real 5-spans steel footbridge are described. The proposed method also allows to better estimate higher modes when the number of sensors is greater than the number of modes of interest. In addition, the results show a smaller variation in the sensor position when uncertainties occur.

  10. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction considered. A simulation study shows that the fi…nite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  11. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  12. Validation of the measurement model concept for error structure identification

    International Nuclear Information System (INIS)

    Shukla, Pavan K.; Orazem, Mark E.; Crisalle, Oscar D.

    2004-01-01

    The development of different forms of measurement models for impedance has allowed examination of key assumptions on which the use of such models to assess error structure are based. The stochastic error structures obtained using the transfer-function and Voigt measurement models were identical, even when non-stationary phenomena caused some of the data to be inconsistent with the Kramers-Kronig relations. The suitability of the measurement model for assessment of consistency with the Kramers-Kronig relations, however, was found to be more sensitive to the confidence interval for the parameter estimates than to the number of parameters in the model. A tighter confidence interval was obtained for Voigt measurement model, which made the Voigt measurement model a more sensitive tool for identification of inconsistencies with the Kramers-Kronig relations

  13. Bayesian modeling of measurement error in predictor variables using item response theory

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; Glas, Cornelis A.W.

    2000-01-01

    This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved

  14. Effect of GPS errors on Emission model

    DEFF Research Database (Denmark)

    Lehmann, Anders; Gross, Allan

    n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...... in this paper indicates that the location error from using smartphones is within the accuracy needed to use the location data in air quality modelling. The nature of smartphone location data enables more accurate and near real time air quality modelling and monitoring. The location data is harvested from user...

  15. Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors

    Science.gov (United States)

    Marti, Alejandro; Folch, Arnau

    2018-03-01

    Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally

  16. Topological quantum error correction in the Kitaev honeycomb model

    Science.gov (United States)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  17. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  18. Bayesian analysis of data and model error in rainfall-runoff hydrological models

    Science.gov (United States)

    Kavetski, D.; Franks, S. W.; Kuczera, G.

    2004-12-01

    A major unresolved issue in the identification and use of conceptual hydrologic models is realistic description of uncertainty in the data and model structure. In particular, hydrologic parameters often cannot be measured directly and must be inferred (calibrated) from observed forcing/response data (typically, rainfall and runoff). However, rainfall varies significantly in space and time, yet is often estimated from sparse gauge networks. Recent work showed that current calibration methods (e.g., standard least squares, multi-objective calibration, generalized likelihood uncertainty estimation) ignore forcing uncertainty and assume that the rainfall is known exactly. Consequently, they can yield strongly biased and misleading parameter estimates. This deficiency confounds attempts to reliably test model hypotheses, to generalize results across catchments (the regionalization problem) and to quantify predictive uncertainty when the hydrologic model is extrapolated. This paper continues the development of a Bayesian total error analysis (BATEA) methodology for the calibration and identification of hydrologic models, which explicitly incorporates the uncertainty in both the forcing and response data, and allows systematic model comparison based on residual model errors and formal Bayesian hypothesis testing (e.g., using Bayes factors). BATEA is based on explicit stochastic models for both forcing and response uncertainty, whereas current techniques focus solely on response errors. Hence, unlike existing methods, the BATEA parameter equations directly reflect the modeler's confidence in all the data. We compare several approaches to approximating the parameter distributions: a) full Markov Chain Monte Carlo methods and b) simplified approaches based on linear approximations. Studies using synthetic and real data from the US and Australia show that BATEA systematically reduces the parameter bias, leads to more meaningful model fits and allows model comparison taking

  19. Correcting electrode modelling errors in EIT on realistic 3D head models.

    Science.gov (United States)

    Jehl, Markus; Avery, James; Malone, Emma; Holder, David; Betcke, Timo

    2015-12-01

    Electrical impedance tomography (EIT) is a promising medical imaging technique which could aid differentiation of haemorrhagic from ischaemic stroke in an ambulance. One challenge in EIT is the ill-posed nature of the image reconstruction, i.e., that small measurement or modelling errors can result in large image artefacts. It is therefore important that reconstruction algorithms are improved with regard to stability to modelling errors. We identify that wrongly modelled electrode positions constitute one of the biggest sources of image artefacts in head EIT. Therefore, the use of the Fréchet derivative on the electrode boundaries in a realistic three-dimensional head model is investigated, in order to reconstruct electrode movements simultaneously to conductivity changes. We show a fast implementation and analyse the performance of electrode position reconstructions in time-difference and absolute imaging for simulated and experimental voltages. Reconstructing the electrode positions and conductivities simultaneously increased the image quality significantly in the presence of electrode movement.

  20. Evaluating and improving the representation of heteroscedastic errors in hydrological models

    Science.gov (United States)

    McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.

    2013-12-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.

  1. Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported.

    Science.gov (United States)

    Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D

    2018-05-18

    Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.

  2. Critical assessment of nuclear mass models

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1992-01-01

    Some of the physical assumptions underlying various nuclear mass models are discussed. The ability of different mass models to predict new masses that were not taken into account when the models were formulated and their parameters determined is analyzed. The models are also compared with respect to their ability to describe nuclear-structure properties in general. The analysis suggests future directions for mass-model development

  3. What Makes Hydrologic Models Differ? Using SUMMA to Systematically Explore Model Uncertainty and Error

    Science.gov (United States)

    Bennett, A.; Nijssen, B.; Chegwidden, O.; Wood, A.; Clark, M. P.

    2017-12-01

    Model intercomparison experiments have been conducted to quantify the variability introduced during the model development process, but have had limited success in identifying the sources of this model variability. The Structure for Unifying Multiple Modeling Alternatives (SUMMA) has been developed as a framework which defines a general set of conservation equations for mass and energy as well as a common core of numerical solvers along with the ability to set options for choosing between different spatial discretizations and flux parameterizations. SUMMA can be thought of as a framework for implementing meta-models which allows for the investigation of the impacts of decisions made during the model development process. Through this flexibility we develop a hierarchy of definitions which allows for models to be compared to one another. This vocabulary allows us to define the notion of weak equivalence between model instantiations. Through this weak equivalence we develop the concept of model mimicry, which can be used to investigate the introduction of uncertainty and error during the modeling process as well as provide a framework for identifying modeling decisions which may complement or negate one another. We instantiate SUMMA instances that mimic the behaviors of the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS) by choosing modeling decisions which are implemented in each model. We compare runs from these models and their corresponding mimics across the Columbia River Basin located in the Pacific Northwest of the United States and Canada. From these comparisons, we are able to determine the extent to which model implementation has an effect on the results, as well as determine the changes in sensitivity of parameters due to these implementation differences. By examining these changes in results and sensitivities we can attempt to postulate changes in the modeling decisions which may provide better estimation of

  4. Eigen's Error Threshold and Mutational Meltdown in a Quasispecies Model

    OpenAIRE

    Bagnoli, F.; Bezzi, M.

    1998-01-01

    We introduce a toy model for interacting populations connected by mutations and limited by a shared resource. We study the presence of Eigen's error threshold and mutational meltdown. The phase diagram of the system shows that the extinction of the whole population due to mutational meltdown can occur well before an eventual error threshold transition.

  5. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  6. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    International Nuclear Information System (INIS)

    Aljneibi, Hanan Salah Ali; Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun

    2015-01-01

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation

  7. Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks.

    Science.gov (United States)

    Jarama, Ángel J; López-Araquistain, Jaime; Miguel, Gonzalo de; Besada, Juan A

    2017-09-21

    In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation.

  8. How to Avoid Errors in Error Propagation: Prediction Intervals and Confidence Intervals in Forest Biomass

    Science.gov (United States)

    Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.

    2016-12-01

    Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.

  9. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  10. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  11. Tests for detecting overdispersion in models with measurement error in covariates.

    Science.gov (United States)

    Yang, Yingsi; Wong, Man Yu

    2015-11-30

    Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.

  12. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  13. Optimal Filtering in Mass Transport Modeling From Satellite Gravimetry Data

    Science.gov (United States)

    Ditmar, P.; Hashemi Farahani, H.; Klees, R.

    2011-12-01

    Monitoring natural mass transport in the Earth's system, which has marked a new era in Earth observation, is largely based on the data collected by the GRACE satellite mission. Unfortunately, this mission is not free from certain limitations, two of which are especially critical. Firstly, its sensitivity is strongly anisotropic: it senses the north-south component of the mass re-distribution gradient much better than the east-west component. Secondly, it suffers from a trade-off between temporal and spatial resolution: a high (e.g., daily) temporal resolution is only possible if the spatial resolution is sacrificed. To make things even worse, the GRACE satellites enter occasionally a phase when their orbit is characterized by a short repeat period, which makes it impossible to reach a high spatial resolution at all. A way to mitigate limitations of GRACE measurements is to design optimal data processing procedures, so that all available information is fully exploited when modeling mass transport. This implies, in particular, that an unconstrained model directly derived from satellite gravimetry data needs to be optimally filtered. In principle, this can be realized with a Wiener filter, which is built on the basis of covariance matrices of noise and signal. In practice, however, a compilation of both matrices (and, therefore, of the filter itself) is not a trivial task. To build the covariance matrix of noise in a mass transport model, it is necessary to start from a realistic model of noise in the level-1B data. Furthermore, a routine satellite gravimetry data processing includes, in particular, the subtraction of nuisance signals (for instance, associated with atmosphere and ocean), for which appropriate background models are used. Such models are not error-free, which has to be taken into account when the noise covariance matrix is constructed. In addition, both signal and noise covariance matrices depend on the type of mass transport processes under

  14. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    J. Prakash Maran

    2013-09-01

    Full Text Available In this study, a comparative approach was made between artificial neural network (ANN and response surface methodology (RSM to predict the mass transfer parameters of osmotic dehydration of papaya. The effects of process variables such as temperature, osmotic solution concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic dehydration were investigated using a three-level three-factor Box-Behnken experimental design. Same design was utilized to train a feed-forward multilayered perceptron (MLP ANN with back-propagation algorithm. The predictive capabilities of the two methodologies were compared in terms of root mean square error (RMSE, mean absolute error (MAE, standard error of prediction (SEP, model predictive error (MPE, chi square statistic (χ2, and coefficient of determination (R2 based on the validation data set. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.

  15. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  16. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  17. Multiple imputation to account for measurement error in marginal structural models

    Science.gov (United States)

    Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.

    2015-01-01

    Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338

  18. Multiple Imputation to Account for Measurement Error in Marginal Structural Models.

    Science.gov (United States)

    Edwards, Jessie K; Cole, Stephen R; Westreich, Daniel; Crane, Heidi; Eron, Joseph J; Mathews, W Christopher; Moore, Richard; Boswell, Stephen L; Lesko, Catherine R; Mugavero, Michael J

    2015-09-01

    Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and nondifferential measurement error in a marginal structural model. We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3,686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality (hazard ratio [HR]: 1.2 [95% confidence interval [CI] = 0.6, 2.3]). The HR for current smoking and therapy [0.4 (95% CI = 0.2, 0.7)] was similar to the HR for no smoking and therapy (0.4; 95% CI = 0.2, 0.6). Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies.

  19. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    Science.gov (United States)

    Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario

    2016-01-01

    The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052

  20. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    Directory of Open Access Journals (Sweden)

    Roque Calvo

    2016-09-01

    Full Text Available The development of an error compensation model for coordinate measuring machines (CMMs and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included.

  1. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    Directory of Open Access Journals (Sweden)

    Nazelie Kassabian

    2014-06-01

    Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  2. Towards New Empirical Versions of Financial and Accounting Models Corrected for Measurement Errors

    OpenAIRE

    Francois-Éric Racicot; Raymond Théoret; Alain Coen

    2006-01-01

    In this paper, we propose a new empirical version of the Fama and French Model based on the Hausman (1978) specification test and aimed at discarding measurement errors in the variables. The proposed empirical framework is general enough to be used for correcting other financial and accounting models of measurement errors. Removing measurement errors is important at many levels as information disclosure, corporate governance and protection of investors.

  3. Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow

    International Nuclear Information System (INIS)

    Shadday, Martin A. Jr.

    1997-01-01

    The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated

  4. A stochastic dynamic model for human error analysis in nuclear power plants

    Science.gov (United States)

    Delgado-Loperena, Dharma

    Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.

  5. Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO

    Science.gov (United States)

    Marks, K. M.; Smith, W. H. F.; Sandwell, D. T.

    2010-09-01

    We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as "ground truth" to compare against model versions 7.2 through 12.1, defining vertical differences as "errors." Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15-160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.

  6. A novel multitemporal insar model for joint estimation of deformation rates and orbital errors

    KAUST Repository

    Zhang, Lei

    2014-06-01

    Orbital errors, characterized typically as longwavelength artifacts, commonly exist in interferometric synthetic aperture radar (InSAR) imagery as a result of inaccurate determination of the sensor state vector. Orbital errors degrade the precision of multitemporal InSAR products (i.e., ground deformation). Although research on orbital error reduction has been ongoing for nearly two decades and several algorithms for reducing the effect of the errors are already in existence, the errors cannot always be corrected efficiently and reliably. We propose a novel model that is able to jointly estimate deformation rates and orbital errors based on the different spatialoral characteristics of the two types of signals. The proposed model is able to isolate a long-wavelength ground motion signal from the orbital error even when the two types of signals exhibit similar spatial patterns. The proposed algorithm is efficient and requires no ground control points. In addition, the method is built upon wrapped phases of interferograms, eliminating the need of phase unwrapping. The performance of the proposed model is validated using both simulated and real data sets. The demo codes of the proposed model are also provided for reference. © 2013 IEEE.

  7. Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks

    Directory of Open Access Journals (Sweden)

    Ángel J. Jarama

    2017-09-01

    Full Text Available In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature. It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation.

  8. Two-component model application for error calculus in the environmental monitoring data analysis

    International Nuclear Information System (INIS)

    Carvalho, Maria Angelica G.; Hiromoto, Goro

    2002-01-01

    Analysis and interpretation of results of an environmental monitoring program is often based on the evaluation of the mean value of a particular set of data, which is strongly affected by the analytical errors associated with each measurement. A model proposed by Rocke and Lorenzato assumes two error components, one additive and one multiplicative, to deal with lower and higher concentration values in a single model. In this communication, an application of this method for re-evaluation of the errors reported in a large set of results of total alpha measurements in a environmental sample is presented. The results show that the mean values calculated taking into account the new errors is higher than as obtained with the original errors, being an indicative that the analytical errors reported before were underestimated in the region of lower concentrations. (author)

  9. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  10. A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model

    Science.gov (United States)

    Yamaguchi, Masahiro; Yin, Wen

    2018-02-01

    Discarding the prejudice about fine tuning, we propose a novel and efficient approach to identify relevant regions of fundamental parameter space in supersymmetric models with some amount of fine tuning. The essential idea is the mapping of experimental constraints at a low-energy scale, rather than the parameter sets, to those of the fundamental parameter space. Applying this method to the non-universal Higgs mass model, we identify a new interesting superparticle mass pattern where some of the first two generation squarks are light whilst the stops are kept heavy as 6 TeV. Furthermore, as another application of this method, we show that the discrepancy of the muon anomalous magnetic dipole moment can be filled by a supersymmetric contribution within the 1{σ} level of the experimental and theoretical errors, which was overlooked by previous studies due to the extremely fine tuning required.

  11. Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.

    Science.gov (United States)

    Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao

    2017-06-30

    Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.

  12. Reconsideration of mass-distribution models

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2014-01-01

    Full Text Available The mass-distribution model proposed by Kuzmin and Veltmann (1973 is revisited. It is subdivided into two models which have a common case. Only one of them is subject of the present study. The study is focused on the relation between the density ratio (the central one to that corresponding to the core radius and the total-mass fraction within the core radius. The latter one is an increasing function of the former one, but it cannot exceed one quarter, which takes place when the density ratio tends to infinity. Therefore, the model is extended by representing the density as a sum of two components. The extension results into possibility of having a correspondence between the infinite density ratio and 100% total-mass fraction. The number of parameters in the extended model exceeds that of the original model. Due to this, in the extended model, the correspondence between the density ratio and total-mass fraction is no longer one-to-one; several values of the total-mass fraction can correspond to the same value for the density ratio. In this way, the extended model could explain the contingency of having two, or more, groups of real stellar systems (subsystems in the diagram total-mass fraction versus density ratio. [Projekat Ministarstva nauke Republike Srbije, br. 176011: Dynamics and Kinematics of Celestial Bodies and Systems

  13. Challenge and Error: Critical Events and Attention-Related Errors

    Science.gov (United States)

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  14. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    Science.gov (United States)

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  15. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    International Nuclear Information System (INIS)

    Malinowski, Kathleen T.; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D'Souza, Warren D.

    2012-01-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  16. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Kathleen T. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); McAvoy, Thomas J. [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Department of Chemical and Biomolecular Engineering and Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Dieterich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); D' Souza, Warren D., E-mail: wdsou001@umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States)

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  17. Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version)

    International Nuclear Information System (INIS)

    Ahlstrom, S.W.; Foote, H.P.; Arnett, R.C.; Cole, C.R.; Serne, R.J.

    1977-05-01

    The Multicomponent Mass Transfer (MMT) Model is a generic computer code, currently in its third generation, that was developed to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. This model was designed to use the water movement patterns produced by the unsaturated and saturated flow models coupled with dispersion and soil-waste reaction submodels to predict contaminant transport. This report documents the theorical foundation and the numerical solution procedure of the current (third) generation of the MMT Model. The present model simulates mass transport processes using an analog referred to as the Discrete-Parcel-Random-Walk (DPRW) algorithm. The basic concepts of this solution technique are described and the advantages and disadvantages of the DPRW scheme are discussed in relation to more conventional numerical techniques such as the finite-difference and finite-element methods. Verification of the numerical algorithm is demonstrated by comparing model results with known closed-form solutions. A brief error and sensitivity analysis of the algorithm with respect to numerical parameters is also presented. A simulation of the tritium plume beneath the Hanford Site is included to illustrate the use of the model in a typical application. 32 figs

  18. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    Science.gov (United States)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  19. 3D CMM Strain-Gauge Triggering Probe Error Characteristics Modeling

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, Adam; Fan, Zhun

    2008-01-01

    FKBs based on two optimization paradigms are used for the reconstruction of the directiondependent probe error w. The angles β and γ are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...

  20. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  1. Modeling Conflict and Error in the Medial Frontal Cortex

    Science.gov (United States)

    Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.

    2014-01-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411

  2. Modeling conflict and error in the medial frontal cortex.

    Science.gov (United States)

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  3. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    Science.gov (United States)

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.

  4. Accounting for covariate measurement error in a Cox model analysis of recurrence of depression.

    Science.gov (United States)

    Liu, K; Mazumdar, S; Stone, R A; Dew, M A; Houck, P R; Reynolds, C F

    2001-01-01

    When a covariate measured with error is used as a predictor in a survival analysis using the Cox model, the parameter estimate is usually biased. In clinical research, covariates measured without error such as treatment procedure or sex are often used in conjunction with a covariate measured with error. In a randomized clinical trial of two types of treatments, we account for the measurement error in the covariate, log-transformed total rapid eye movement (REM) activity counts, in a Cox model analysis of the time to recurrence of major depression in an elderly population. Regression calibration and two variants of a likelihood-based approach are used to account for measurement error. The likelihood-based approach is extended to account for the correlation between replicate measures of the covariate. Using the replicate data decreases the standard error of the parameter estimate for log(total REM) counts while maintaining the bias reduction of the estimate. We conclude that covariate measurement error and the correlation between replicates can affect results in a Cox model analysis and should be accounted for. In the depression data, these methods render comparable results that have less bias than the results when measurement error is ignored.

  5. Notes on power of normality tests of error terms in regression models

    International Nuclear Information System (INIS)

    Střelec, Luboš

    2015-01-01

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models

  6. Notes on power of normality tests of error terms in regression models

    Energy Technology Data Exchange (ETDEWEB)

    Střelec, Luboš [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, Brno, 61300 (Czech Republic)

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.

  7. On the asymptotic ergodic capacity of FSO links with generalized pointing error model

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-09-11

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantize the effect of these two factors on FSO system performance, we need an effective mathematical model for them. Scintillations are typically modeled by the log-normal and Gamma-Gamma distributions for weak and strong turbulence conditions, respectively. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive the asymptotic ergodic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. © 2015 IEEE.

  8. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  9. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    International Nuclear Information System (INIS)

    Archer, B.R.; Bushong, S.C.

    1985-01-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)

  10. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  11. BEATBOX v1.0: Background Error Analysis Testbed with Box Models

    Science.gov (United States)

    Knote, Christoph; Barré, Jérôme; Eckl, Max

    2018-02-01

    The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.

  12. BEATBOX v1.0: Background Error Analysis Testbed with Box Models

    Directory of Open Access Journals (Sweden)

    C. Knote

    2018-02-01

    Full Text Available The Background Error Analysis Testbed (BEATBOX is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX to the Kinetic Pre-Processor (KPP, this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.

  13. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  14. Error modelling and experimental validation of a planar 3-PPR parallel manipulator with joint clearances

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2012-01-01

    This paper deals with the error modelling and analysis of a 3-PPR planar parallel manipulator with joint clearances. The kinematics and the Cartesian workspace of the manipulator are analyzed. An error model is established with considerations of both configuration errors and joint clearances. Using...

  15. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    Science.gov (United States)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  16. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu; Pourahmadi, Mohsen; Maadooliat, Mehdi

    2014-01-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both

  17. Modeling gene expression measurement error: a quasi-likelihood approach

    Directory of Open Access Journals (Sweden)

    Strimmer Korbinian

    2003-03-01

    Full Text Available Abstract Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale. Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood. Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic variance structure of the data. As the quasi-likelihood behaves (almost like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also

  18. Modeling of Camembert-type cheese mass loss in a ripening chamber: main biological and physical phenomena.

    Science.gov (United States)

    Hélias, A; Mirade, P-S; Corrieu, G

    2007-11-01

    A model of the mass loss of Camembert-type cheese was established with data obtained from 2 experimental ripening trials carried out in 2 pilot ripening chambers. During these experiments, a cheese was continuously weighed and the relative humidity, temperature, oxygen, and carbon dioxide concentrations in the ripening chamber were recorded online. The aim was to establish a simple but accurate model that would predict cheese mass changes according to available online measurements. The main hypotheses were that 1) the cheese water activity was constant during ripening, 2) the respiratory activity of the microflora played a major role by inducing heat production, combined with important water evaporation, 3) the temperature gradient existing inside the cheese was negligible, and the limiting phenomenon was the convective transfer. The water activity and the specific heat of the cheeses were assessed by offline measurements. The others parameters in the model were obtained from the literature. This dynamic model was built with 2 state variables: the cheese mass and the surface temperature of the cheese. In this way, only the heat transfer coefficient had to be fitted, and it was strongly determined by the airflow characteristics close to the cheeses. Model efficiency was illustrated by comparing the estimated and measured mass and the mass loss rate for the 2 studied runs; the relative errors were less than 1.9 and 3.2% for the mass loss and the mass loss rate, respectively. The dynamic effects of special events, such as room defrosting or changes in chamber relative humidity, were well described by the model, especially in terms of kinetics (mass loss rates).

  19. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  20. Improvement of the physically-based groundwater model simulations through complementary correction of its errors

    Directory of Open Access Journals (Sweden)

    Jorge Mauricio Reyes Alcalde

    2017-04-01

    Full Text Available Physically-Based groundwater Models (PBM, such MODFLOW, are used as groundwater resources evaluation tools supposing that the produced differences (residuals or errors are white noise. However, in the facts these numerical simulations usually show not only random errors but also systematic errors. For this work it has been developed a numerical procedure to deal with PBM systematic errors, studying its structure in order to model its behavior and correct the results by external and complementary means, trough a framework called Complementary Correction Model (CCM. The application of CCM to PBM shows a decrease in local biases, better distribution of errors and reductions in its temporal and spatial correlations, with 73% of reduction in global RMSN over an original PBM. This methodology seems an interesting chance to update a PBM avoiding the work and costs of interfere its internal structure.

  1. An MEG signature corresponding to an axiomatic model of reward prediction error.

    Science.gov (United States)

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-02

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  3. Accounting for measurement error in log regression models with applications to accelerated testing.

    Science.gov (United States)

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  4. Accounting for measurement error in log regression models with applications to accelerated testing.

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  5. On the sub-model errors of a generalized one-way coupling scheme for linking models at different scales

    Science.gov (United States)

    Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong

    2017-11-01

    Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.

  6. A heteroscedastic measurement error model for method comparison data with replicate measurements.

    Science.gov (United States)

    Nawarathna, Lakshika S; Choudhary, Pankaj K

    2015-03-30

    Measurement error models offer a flexible framework for modeling data collected in studies comparing methods of quantitative measurement. These models generally make two simplifying assumptions: (i) the measurements are homoscedastic, and (ii) the unobservable true values of the methods are linearly related. One or both of these assumptions may be violated in practice. In particular, error variabilities of the methods may depend on the magnitude of measurement, or the true values may be nonlinearly related. Data with these features call for a heteroscedastic measurement error model that allows nonlinear relationships in the true values. We present such a model for the case when the measurements are replicated, discuss its fitting, and explain how to evaluate similarity of measurement methods and agreement between them, which are two common goals of data analysis, under this model. Model fitting involves dealing with lack of a closed form for the likelihood function. We consider estimation methods that approximate either the likelihood or the model to yield approximate maximum likelihood estimates. The fitting methods are evaluated in a simulation study. The proposed methodology is used to analyze a cholesterol dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Wei He

    2016-01-01

    Full Text Available Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main parameters for raw soft error vulnerability of the module and coupling factors. Results indicate that the proposed method is feasible.

  8. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO3 standards

    International Nuclear Information System (INIS)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s

  9. A Novel Approach of Understanding and Incorporating Error of Chemical Transport Models into a Geostatistical Framework

    Science.gov (United States)

    Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.

    2015-12-01

    The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.

  10. Factors influencing superimposition error of 3D cephalometric landmarks by plane orientation method using 4 reference points: 4 point superimposition error regression model.

    Science.gov (United States)

    Hwang, Jae Joon; Kim, Kee-Deog; Park, Hyok; Park, Chang Seo; Jeong, Ho-Gul

    2014-01-01

    Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT), evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23%) by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model.

  11. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    OpenAIRE

    He, Wei; Wang, Yueke; Xing, Kefei; Yang, Jianwei

    2016-01-01

    Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main paramet...

  12. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    International Nuclear Information System (INIS)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis

  13. SLC beam line error analysis using a model-based expert system

    International Nuclear Information System (INIS)

    Lee, M.; Kleban, S.

    1988-02-01

    Commissioning particle beam line is usually a very time-consuming and labor-intensive task for accelerator physicists. To aid in commissioning, we developed a model-based expert system that identifies error-free regions, as well as localizing beam line errors. This paper will give examples of the use of our system for the SLC commissioning. 8 refs., 5 figs

  14. A methodology for collection and analysis of human error data based on a cognitive model: IDA

    International Nuclear Information System (INIS)

    Shen, S.-H.; Smidts, C.; Mosleh, A.

    1997-01-01

    This paper presents a model-based human error taxonomy and data collection. The underlying model, IDA (described in two companion papers), is a cognitive model of behavior developed for analysis of the actions of nuclear power plant operating crew during abnormal situations. The taxonomy is established with reference to three external reference points (i.e. plant status, procedures, and crew) and four reference points internal to the model (i.e. information collected, diagnosis, decision, action). The taxonomy helps the analyst: (1) recognize errors as such; (2) categorize the error in terms of generic characteristics such as 'error in selection of problem solving strategies' and (3) identify the root causes of the error. The data collection methodology is summarized in post event operator interview and analysis summary forms. The root cause analysis methodology is illustrated using a subset of an actual event. Statistics, which extract generic characteristics of error prone behaviors and error prone situations are presented. Finally, applications of the human error data collection are reviewed. A primary benefit of this methodology is to define better symptom-based and other auxiliary procedures with associated training to minimize or preclude certain human errors. It also helps in design of control rooms, and in assessment of human error probabilities in the probabilistic risk assessment framework. (orig.)

  15. Study of Error Propagation in the Transformations of Dynamic Thermal Models of Buildings

    Directory of Open Access Journals (Sweden)

    Loïc Raillon

    2017-01-01

    Full Text Available Dynamic behaviour of a system may be described by models with different forms: thermal (RC networks, state-space representations, transfer functions, and ARX models. These models, which describe the same process, are used in the design, simulation, optimal predictive control, parameter identification, fault detection and diagnosis, and so on. Since more forms are available, it is interesting to know which one is the most suitable by estimating the sensitivity of the model to transform into a physical model, which is represented by a thermal network. A procedure for the study of error by Monte Carlo simulation and of factor prioritization is exemplified on a simple, but representative, thermal model of a building. The analysis of the propagation of errors and of the influence of the errors on the parameter estimation shows that the transformation from state-space representation to transfer function is more robust than the other way around. Therefore, if only one model is chosen, the state-space representation is preferable.

  16. The speed of memory errors shows the influence of misleading information: Testing the diffusion model and discrete-state models.

    Science.gov (United States)

    Starns, Jeffrey J; Dubé, Chad; Frelinger, Matthew E

    2018-05-01

    In this report, we evaluate single-item and forced-choice recognition memory for the same items and use the resulting accuracy and reaction time data to test the predictions of discrete-state and continuous models. For the single-item trials, participants saw a word and indicated whether or not it was studied on a previous list. The forced-choice trials had one studied and one non-studied word that both appeared in the earlier single-item trials and both received the same response. Thus, forced-choice trials always had one word with a previous correct response and one with a previous error. Participants were asked to select the studied word regardless of whether they previously called both words "studied" or "not studied." The diffusion model predicts that forced-choice accuracy should be lower when the word with a previous error had a fast versus a slow single-item RT, because fast errors are associated with more compelling misleading memory retrieval. The two-high-threshold (2HT) model does not share this prediction because all errors are guesses, so error RT is not related to memory strength. A low-threshold version of the discrete state approach predicts an effect similar to the diffusion model, because errors are a mixture of responses based on misleading retrieval and guesses, and the guesses should tend to be slower. Results showed that faster single-trial errors were associated with lower forced-choice accuracy, as predicted by the diffusion and low-threshold models. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    Science.gov (United States)

    Irving, J.; Koepke, C.; Elsheikh, A. H.

    2017-12-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion

  19. Quantum chaos and nuclear mass systematics

    International Nuclear Information System (INIS)

    Hirsch, Jorge G.; Velazquez, Victor; Frank, Alejandro

    2004-01-01

    The presence of quantum chaos in nuclear mass systematics is analyzed by considering the differences between measured and calculated nuclear masses as a time series described by the power law 1fα. While for the liquid droplet model plus shell corrections a quantum chaotic behavior α∼1 is found, errors in the microscopic mass formula have α∼0.5, closer to white noise. The chaotic behavior seems to arise from many body effects not included in the mass formula

  20. Modelo de error en imágenes comprimidas con wavelets Error Model in Wavelet-compressed Images

    Directory of Open Access Journals (Sweden)

    Gloria Puetamán G.

    2007-06-01

    Full Text Available En este artículo se presenta la compresión de imágenes a través de la comparación entre el modelo Wavelet y el modelo Fourier, utilizando la minimización de la función de error. El problema que se estudia es específico, consiste en determinar una base {ei} que minimice la función de error entre la imagen original y la recuperada después de la compresión. Es de resaltar que existen muchas aplicaciones, por ejemplo, en medicina o astronomía, en donde no es aceptable ningún deterioro de la imagen porque toda la información contenida, incluso la que se estima como ruido, se considera imprescindible.In this paper we study image compression as a way to compare Wavelet and Fourier models, by minimizing the error function. The particular problem we consider is to determine basis {ei} minimizing the error function between the original image and the recovered one after compression. It is to be noted or remarked that there are many applications in such diverse fields as for example medicine and astronomy, where no image deteriorating is acceptable since even noise is considered essential.

  1. A new calibration model for pointing a radio telescope that considers nonlinear errors in the azimuth axis

    International Nuclear Information System (INIS)

    Kong De-Qing; Wang Song-Gen; Zhang Hong-Bo; Wang Jin-Qing; Wang Min

    2014-01-01

    A new calibration model of a radio telescope that includes pointing error is presented, which considers nonlinear errors in the azimuth axis. For a large radio telescope, in particular for a telescope with a turntable, it is difficult to correct pointing errors using a traditional linear calibration model, because errors produced by the wheel-on-rail or center bearing structures are generally nonlinear. Fourier expansion is made for the oblique error and parameters describing the inclination direction along the azimuth axis based on the linear calibration model, and a new calibration model for pointing is derived. The new pointing model is applied to the 40m radio telescope administered by Yunnan Observatories, which is a telescope that uses a turntable. The results show that this model can significantly reduce the residual systematic errors due to nonlinearity in the azimuth axis compared with the linear model

  2. A Logistic Regression Model with a Hierarchical Random Error Term for Analyzing the Utilization of Public Transport

    Directory of Open Access Journals (Sweden)

    Chong Wei

    2015-01-01

    Full Text Available Logistic regression models have been widely used in previous studies to analyze public transport utilization. These studies have shown travel time to be an indispensable variable for such analysis and usually consider it to be a deterministic variable. This formulation does not allow us to capture travelers’ perception error regarding travel time, and recent studies have indicated that this error can have a significant effect on modal choice behavior. In this study, we propose a logistic regression model with a hierarchical random error term. The proposed model adds a new random error term for the travel time variable. This term structure enables us to investigate travelers’ perception error regarding travel time from a given choice behavior dataset. We also propose an extended model that allows constraining the sign of this error in the model. We develop two Gibbs samplers to estimate the basic hierarchical model and the extended model. The performance of the proposed models is examined using a well-known dataset.

  3. Bayesian networks modeling for thermal error of numerical control machine tools

    Institute of Scientific and Technical Information of China (English)

    Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN

    2008-01-01

    The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.

  4. Electricity Price Forecast Using Combined Models with Adaptive Weights Selected and Errors Calibrated by Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Da Liu

    2013-01-01

    Full Text Available A combined forecast with weights adaptively selected and errors calibrated by Hidden Markov model (HMM is proposed to model the day-ahead electricity price. Firstly several single models were built to forecast the electricity price separately. Then the validation errors from every individual model were transformed into two discrete sequences: an emission sequence and a state sequence to build the HMM, obtaining a transmission matrix and an emission matrix, representing the forecasting ability state of the individual models. The combining weights of the individual models were decided by the state transmission matrixes in HMM and the best predict sample ratio of each individual among all the models in the validation set. The individual forecasts were averaged to get the combining forecast with the weights obtained above. The residuals of combining forecast were calibrated by the possible error calculated by the emission matrix of HMM. A case study of day-ahead electricity market of Pennsylvania-New Jersey-Maryland (PJM, USA, suggests that the proposed method outperforms individual techniques of price forecasting, such as support vector machine (SVM, generalized regression neural networks (GRNN, day-ahead modeling, and self-organized map (SOM similar days modeling.

  5. Compliance Modeling and Error Compensation of a 3-Parallelogram Lightweight Robotic Arm

    DEFF Research Database (Denmark)

    Wu, Guanglei; Guo, Sheng; Bai, Shaoping

    2015-01-01

    This paper presents compliance modeling and error compensation for lightweight robotic arms built with parallelogram linkages, i.e., Π joints. The Cartesian stiffness matrix is derived using the virtual joint method. Based on the developed stiffness model, a method to compensate the compliance...... error is introduced, being illustrated with a 3-parallelogram robot in the application of pick-and-place operation. The results show that this compensation method can effectively improve the operation accuracy....

  6. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  7. A method for the quantification of model form error associated with physical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Wallen, Samuel P.; Brake, Matthew Robert

    2014-03-01

    In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.

  8. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  9. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    Science.gov (United States)

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  10. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  11. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle's Motion Sensors.

    Science.gov (United States)

    Karamat, Tashfeen B; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-22

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers' measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer's errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories' data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance.

  12. Correction of electrode modelling errors in multi-frequency EIT imaging.

    Science.gov (United States)

    Jehl, Markus; Holder, David

    2016-06-01

    The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.

  13. Identification of linear error-models with projected dynamical systems

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Kuhnen, K.

    2004-01-01

    Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517

  14. A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model.

    Science.gov (United States)

    Wijetunge, Chalini D; Saeed, Isaam; Boughton, Berin A; Roessner, Ute; Halgamuge, Saman K

    2015-01-01

    Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net.

  15. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  16. Range walk error correction and modeling on Pseudo-random photon counting system

    Science.gov (United States)

    Shen, Shanshan; Chen, Qian; He, Weiji

    2017-08-01

    Signal to noise ratio and depth accuracy are modeled for the pseudo-random ranging system with two random processes. The theoretical results, developed herein, capture the effects of code length and signal energy fluctuation are shown to agree with Monte Carlo simulation measurements. First, the SNR is developed as a function of the code length. Using Geiger-mode avalanche photodiodes (GMAPDs), longer code length is proven to reduce the noise effect and improve SNR. Second, the Cramer-Rao lower bound on range accuracy is derived to justify that longer code length can bring better range accuracy. Combined with the SNR model and CRLB model, it is manifested that the range accuracy can be improved by increasing the code length to reduce the noise-induced error. Third, the Cramer-Rao lower bound on range accuracy is shown to converge to the previously published theories and introduce the Gauss range walk model to range accuracy. Experimental tests also converge to the presented boundary model in this paper. It has been proven that depth error caused by the fluctuation of the number of detected photon counts in the laser echo pulse leads to the depth drift of Time Point Spread Function (TPSF). Finally, numerical fitting function is used to determine the relationship between the depth error and the photon counting ratio. Depth error due to different echo energy is calibrated so that the corrected depth accuracy is improved to 1cm.

  17. Review of atomic mass formula

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1997-07-01

    Wapstra and Audi`s Table is famous for evaluation of experimental data of atomic nuclear masses (1993/1995 version) which estimated about 2000 kinds of nuclei. The error of atomic mass of formula is 0.3 MeV-0.8 MeV. Four kinds of atomic mass formula: JM (Jaenecke and Masson), TUYY (Tachibana, Uno, Yamada and Yamada), FRDM (Moeller, Nix, Myers and Swiatecki) and ETFSI (Aboussir, Pearson, Dutta and Tondeur) and their properties (number of parameter and error etc.) were explained. An estimation method of theoretical error of mass formula was presented. It was estimated by the theoretical error of other surrounding nuclei. (S.Y.)

  18. Some aspects of statistical modeling of human-error probability

    International Nuclear Information System (INIS)

    Prairie, R.R.

    1982-01-01

    Human reliability analyses (HRA) are often performed as part of risk assessment and reliability projects. Recent events in nuclear power have shown the potential importance of the human element. There are several on-going efforts in the US and elsewhere with the purpose of modeling human error such that the human contribution can be incorporated into an overall risk assessment associated with one or more aspects of nuclear power. An effort that is described here uses the HRA (event tree) to quantify and model the human contribution to risk. As an example, risk analyses are being prepared on several nuclear power plants as part of the Interim Reliability Assessment Program (IREP). In this process the risk analyst selects the elements of his fault tree that could be contributed to by human error. He then solicits the HF analyst to do a HRA on this element

  19. Model parameter-related optimal perturbations and their contributions to El Niño prediction errors

    Science.gov (United States)

    Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua

    2018-04-01

    Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.

  20. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Carl Stern; Martin Lee

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  1. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    CERN Document Server

    Carl-Stern

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.

  2. Relating masses and mixing angles. A model-independent model

    Energy Technology Data Exchange (ETDEWEB)

    Hollik, Wolfgang Gregor [DESY, Hamburg (Germany); Saldana-Salazar, Ulises Jesus [CINVESTAV (Mexico)

    2016-07-01

    In general, mixing angles and fermion masses are seen to be independent parameters of the Standard Model. However, exploiting the observed hierarchy in the masses, it is viable to construct the mixing matrices for both quarks and leptons in terms of the corresponding mass ratios only. A closer view on the symmetry properties leads to potential realizations of that approach in extensions of the Standard Model. We discuss the application in the context of flavored multi-Higgs models.

  3. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    Science.gov (United States)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  4. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  5. Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.

    Science.gov (United States)

    Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W

    2016-08-18

    A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed

  6. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  7. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2017-09-01

    Full Text Available By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  8. A Systems Modeling Approach for Risk Management of Command File Errors

    Science.gov (United States)

    Meshkat, Leila

    2012-01-01

    The main cause of commanding errors is often (but not always) due to procedures. Either lack of maturity in the processes, incompleteness of requirements or lack of compliance to these procedures. Other causes of commanding errors include lack of understanding of system states, inadequate communication, and making hasty changes in standard procedures in response to an unexpected event. In general, it's important to look at the big picture prior to making corrective actions. In the case of errors traced back to procedures, considering the reliability of the process as a metric during its' design may help to reduce risk. This metric is obtained by using data from Nuclear Industry regarding human reliability. A structured method for the collection of anomaly data will help the operator think systematically about the anomaly and facilitate risk management. Formal models can be used for risk based design and risk management. A generic set of models can be customized for a broad range of missions.

  9. Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Pournasr, Behshad; Duncan, Stephen A

    2017-11-01

    Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.

  10. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    Science.gov (United States)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  11. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  12. True-and-error models violate independence and yet they are testable

    Directory of Open Access Journals (Sweden)

    Michael H. Birnbaum

    2013-11-01

    Full Text Available Birnbaum (2011 criticized tests of transitivity that are based entirely on binary choice proportions. When assumptions of independence and stationarity (iid of choice responses are violated, choice proportions could lead to wrong conclusions. Birnbaum (2012a proposed two statistics (correlation and variance of preference reversals to test iid, using random permutations to simulate p-values. Cha, Choi, Guo, Regenwetter, and Zwilling (2013 defended methods based on marginal proportions but conceded that such methods wrongly diagnose hypothetical examples of Birnbaum (2012a. However, they also claimed that ``true and error'' models also satisfy independence and also fail in such cases unless they become untestable. This article presents correct true-and-error models; it shows how these models violate iid, how they might correctly identify cases that would be misdiagnosed by marginal proportions, and how they can be tested and rejected. This note also refutes other arguments of Cha et al. (2013, including contentions that other tests failed to violate iid ``with flying colors'', that violations of iid ``do not replicate'', that type I errors are not appropriately estimated by the permutation method, and that independence assumptions are not critical to interpretation of marginal choice proportions.

  13. High‐resolution trench photomosaics from image‐based modeling: Workflow and error analysis

    Science.gov (United States)

    Reitman, Nadine G.; Bennett, Scott E. K.; Gold, Ryan D.; Briggs, Richard; Duross, Christopher

    2015-01-01

    Photomosaics are commonly used to construct maps of paleoseismic trench exposures, but the conventional process of manually using image‐editing software is time consuming and produces undesirable artifacts and distortions. Herein, we document and evaluate the application of image‐based modeling (IBM) for creating photomosaics and 3D models of paleoseismic trench exposures, illustrated with a case‐study trench across the Wasatch fault in Alpine, Utah. Our results include a structure‐from‐motion workflow for the semiautomated creation of seamless, high‐resolution photomosaics designed for rapid implementation in a field setting. Compared with conventional manual methods, the IBM photomosaic method provides a more accurate, continuous, and detailed record of paleoseismic trench exposures in approximately half the processing time and 15%–20% of the user input time. Our error analysis quantifies the effect of the number and spatial distribution of control points on model accuracy. For this case study, an ∼87  m2 exposure of a benched trench photographed at viewing distances of 1.5–7 m yields a model with <2  cm root mean square error (rmse) with as few as six control points. Rmse decreases as more control points are implemented, but the gains in accuracy are minimal beyond 12 control points. Spreading control points throughout the target area helps to minimize error. We propose that 3D digital models and corresponding photomosaics should be standard practice in paleoseismic exposure archiving. The error analysis serves as a guide for future investigations that seek balance between speed and accuracy during photomosaic and 3D model construction.

  14. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Young, Kevin C

    2013-01-01

    While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. (paper)

  15. Measurement of the W{+-} boson mass in the ALEPH experiment at LEP; Mesure de la masse du boson W{+-} dans l`experience ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Trabelsi, A.

    1996-12-31

    A precise measurement of the W boson mass is a powerful test of the standard model (SM) and its possible extensions. The predictions for the value of W mass, including radiative corrections, from the SM and from the minimal supersymmetric model are different with a small overlap. A measurement of the W mass up to 30 MeV can favour one of these models. Such a precision constraint also the Higgs boson mass to 30 percent. In this study an invariant mass measurement method is developed, using the decay products of the W boson pairs produced in the electron-positron collider, LEP. The two main channels, hadronic and semileptonic, are used. By analyzing different jet algorithms, the on from DURHAM was found to give the highest correct assignment efficiency. To improve the jet momentum reconstruction, a constrained fit method is applied, taking into account the ALEPH detector resolution. The momentum resolution is improved by a factor. Combining the results from the two channels, a statistical error of 44 MeV on the W mass is achieved, the corresponding systematic error is 20 MeV. (author).

  16. Evaluation difference between mass of received cargo and mass of handed over the cargo in the determination of the masses by draft survey

    Directory of Open Access Journals (Sweden)

    Yakuta I. V.

    2016-12-01

    Full Text Available The paper provides the analysis of problems associated with the evaluation of difference between the mass of received and handed over cargo in determining the masses by draft survey and due to the difference in the measurement conditions at the loading and unloading ports (due to the change errors in various stages of the measurement procedures. The errors that may arise in determining the mass of the cargo due to roughness when measuring draft, due to using the inclinometer to determine the draft from one of boards, due to instrumental errors in the determination of the density of seawater, due to other possible errors have been investigated and evaluated. To estimate the errors of draft due to heaving and errors of inclinometer some formula are to be applied, their derivation has been done in this paper. It has been recommended to use the traditional formula of high-speed drawdown with the replacement of vessel speed on current rate to calculate the error of precipitation arising from the drawdowns ship on a current. The value per unit displacement draft from loading scale has been used to evaluate the error of the displacement appearing in the presence of draft errors. As a result two similar criteria (rigorous and statistical of allowable discrepancies calculated by draft survey mass of cargo in the port of loading and port of discharge have been substantiated. These criteria require the calculation and accumulation in a table of all the errors and calculate the total error of displacement. Criteria will allow the consignee and the carrier come to a reasonable and agreed decision about the significance of differences of the masses taking into account the indifference of conditions and measuring instruments.

  17. Facial motion parameter estimation and error criteria in model-based image coding

    Science.gov (United States)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  18. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    International Nuclear Information System (INIS)

    Du, Z C; Lv, C F; Hong, M S

    2006-01-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'

  19. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    Science.gov (United States)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  20. Registered error between PET and CT images confirmed by a water model

    International Nuclear Information System (INIS)

    Chen Yangchun; Fan Mingwu; Xu Hao; Chen Ping; Zhang Chunlin

    2012-01-01

    The registered error between PET and CT imaging system was confirmed by a water model simulating clinical cases. A barrel of 6750 mL was filled with 59.2 MBq [ 18 F]-FDG and scanned after 80 min by 2 dimension model PET/CT. The CT images were used to attenuate the PET images. The CT/PET images were obtained by image morphological processing analyses without barrel wall. The relationship of the water image centroids of CT and PET images was established by linear regression analysis, and the registered error between PET and CT image could be computed one slice by one slice. The alignment program was done 4 times following the protocol given by GE Healthcare. Compared with centroids of water CT images, centroids of PET images were shifted to X-axis (0.011slice+0.63) mm, to Y-axis (0.022×slice+1.35) mm. To match CT images, PET images should be translated along X-axis (-2.69±0.15) mm, Y-axis (0.43±0.11) mm, Z-axis (0.86±0.23) mm, and X-axis be rotated by (0.06±0.07)°, Y-axis by (-0.01±0.08)°, and Z-axis by (0.11±0.07)°. So, the systematic registered error was not affected by load and its distribution. By finding the registered error between PET and CT images for coordinate rotation random error, the water model could confirm the registered results of PET-CT system corrected by Alignment parameters. (authors)

  1. The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model.

    Science.gov (United States)

    Fritz, Matthew S; Kenny, David A; MacKinnon, David P

    2016-01-01

    Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator-to-outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. To explore the combined effect of measurement error and omitted confounders in the same model, the effect of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect.

  2. The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model

    Science.gov (United States)

    Fritz, Matthew S.; Kenny, David A.; MacKinnon, David P.

    2016-01-01

    Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator to outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined effect of measurement error and omitted confounders in the same model, the impact of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect. PMID:27739903

  3. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle’s Motion Sensors

    Science.gov (United States)

    Karamat, Tashfeen B.; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers’ measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer’s errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories’ data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance. PMID:26402680

  4. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  5. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  6. Error detection in GPS observations by means of Multi-process models

    DEFF Research Database (Denmark)

    Thomsen, Henrik F.

    2001-01-01

    The main purpose of this article is to present the idea of using Multi-process models as a method of detecting errors in GPS observations. The theory behind Multi-process models, and double differenced phase observations in GPS is presented shortly. It is shown how to model cycle slips in the Mul...

  7. Modeling of alpha mass-efficiency curve

    International Nuclear Information System (INIS)

    Semkow, T.M.; Jeter, H.W.; Parsa, B.; Parekh, P.P.; Haines, D.K.; Bari, A.

    2005-01-01

    We present a model for efficiency of a detector counting gross α radioactivity from both thin and thick samples, corresponding to low and high sample masses in the counting planchette. The model includes self-absorption of α particles in the sample, energy loss in the absorber, range straggling, as well as detector edge effects. The surface roughness of the sample is treated in terms of fractal geometry. The model reveals a linear dependence of the detector efficiency on the sample mass, for low masses, as well as a power-law dependence for high masses. It is, therefore, named the linear-power-law (LPL) model. In addition, we consider an empirical power-law (EPL) curve, and an exponential (EXP) curve. A comparison is made of the LPL, EPL, and EXP fits to the experimental α mass-efficiency data from gas-proportional detectors for selected radionuclides: 238 U, 230 Th, 239 Pu, 241 Am, and 244 Cm. Based on this comparison, we recommend working equations for fitting mass-efficiency data. Measurement of α radioactivity from a thick sample can determine the fractal dimension of its surface

  8. Glacier mass variations from recent ITSG-Grace solutions: Experiences with the point-mass modeling technique in the framework of project SPICE.

    Science.gov (United States)

    Reimond, S.; Klinger, B.; Krauss, S.; Mayer-Gürr, T.; Eicker, A.; Zemp, M.

    2017-12-01

    In recent years, remotely sensed observations have become one of the most ubiquitous and valuable sources of information for glacier monitoring. In addition to altimetry and interferometry data (as observed, e.g., by the CryoSat-2 and TanDEM-X satellites), time-variable gravity field data from the GRACE satellite mission has been used by several authors to assess mass changes in glacier systems. The main challenges in this context are i) the limited spatial resolution of GRACE, ii) the gravity signal attenuation in space and iii) the problem of isolating the glaciological signal from the gravitational signatures as detected by GRACE.In order to tackle the challenges i) and ii), we thoroughly investigate the point-mass modeling technique to represent the local gravity field. Instead of simply evaluating global spherical harmonics, we operate on the normal equation level and make use of GRACE K-band ranging data (available since April 2002) processed at the Graz University of Technology. Assessing such small-scale mass changes from space-borne gravimetric data is an ill-posed problem, which we aim to stabilize by utilizing a Genetic Algorithm based Tikhonov regularization. Concerning issue iii), we evaluate three different hydrology models (i.e. GLDAS, LSDM and WGHM) for validation purposes and the derivation of error bounds. The non-glaciological signal is calculated for each region of interest and reduced from the GRACE results.We present mass variations of several alpine glacier systems (e.g. the European Alps, Svalbard or Iceland) and compare our results to glaciological observations provided by the World Glacier Monitoring Service (WGMS) and alternative inversion methods (surface density modeling).

  9. Learning from Errors

    OpenAIRE

    Martínez-Legaz, Juan Enrique; Soubeyran, Antoine

    2003-01-01

    We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.

  10. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    Science.gov (United States)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  11. A Benefit/Cost/Deficit (BCD) model for learning from human errors

    International Nuclear Information System (INIS)

    Vanderhaegen, Frederic; Zieba, Stephane; Enjalbert, Simon; Polet, Philippe

    2011-01-01

    This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.

  12. Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation

    Science.gov (United States)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli

    2017-11-01

    The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.

  13. Masses in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Flores, F.A.

    1984-01-01

    This thesis is a detailed discussion of the currently existing limits on the masses of Higgs scalars and fermions in the Weinberg-Salam model. The spontaneous breaking of the gauge symmetry of the model generates arbitrary masses for Higgs scalars and fermions, which for the known fermions have to be set to their experimentally known values. In this thesis, the authors discuss in detail both the theoretical and experimental constraints on these otherwise arbitrary masses

  14. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    Science.gov (United States)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  15. Dynamical limits on dark mass in the outer solar system

    International Nuclear Information System (INIS)

    Hogg, D.W.; Quinlan, G.D.; Tremaine, S.

    1991-01-01

    Simplified model solar systems with known observational errors are considered in conducting a dynamical search for dark mass and its minimum detectable amount, and in determining the significance of observed anomalies. The numerical analysis of the dynamical influence of dark mass on the orbits of outer planets and comets is presented in detail. Most conclusions presented are based on observations of the four giant planets where the observational errors in latitude and longitude are independent Gaussian variables with a standard deviation. Neptune's long orbital period cannot be predicted by modern ephemerides, and no evidence of dark mass is found in considering this planet. Studying the improvement in fit when observations are fitted to models that consider dark mass is found to be an efficient way to detect dark mass. Planet X must have a mass of more than about 10 times the minimum detectable mass to locate the hypothetical planet. It is suggested that the IRAS survey would have already located the Planet X if it is so massive and close that it dynamically influences the outer planets. Orbital residuals from comets are found to be more effective than those from planets in detecting the Kuiper belt. 35 refs

  16. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2014-01-01

    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  17. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    Science.gov (United States)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  18. Error-in-variables models in calibration

    Science.gov (United States)

    Lira, I.; Grientschnig, D.

    2017-12-01

    In many calibration operations, the stimuli applied to the measuring system or instrument under test are derived from measurement standards whose values may be considered to be perfectly known. In that case, it is assumed that calibration uncertainty arises solely from inexact measurement of the responses, from imperfect control of the calibration process and from the possible inaccuracy of the calibration model. However, the premise that the stimuli are completely known is never strictly fulfilled and in some instances it may be grossly inadequate. Then, error-in-variables (EIV) regression models have to be employed. In metrology, these models have been approached mostly from the frequentist perspective. In contrast, not much guidance is available on their Bayesian analysis. In this paper, we first present a brief summary of the conventional statistical techniques that have been developed to deal with EIV models in calibration. We then proceed to discuss the alternative Bayesian framework under some simplifying assumptions. Through a detailed example about the calibration of an instrument for measuring flow rates, we provide advice on how the user of the calibration function should employ the latter framework for inferring the stimulus acting on the calibrated device when, in use, a certain response is measured.

  19. Modeling the probability distribution of positional errors incurred by residential address geocoding

    Directory of Open Access Journals (Sweden)

    Mazumdar Soumya

    2007-01-01

    Full Text Available Abstract Background The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Results Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m than 100%-matched automated geocoding (median error length = 168 m. The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Conclusion Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  20. Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2012-01-01

    A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...... by using the concept and properties of the reciprocal systems. The results are further illustrated by two practical numerical examples: a model of CD player and a model of the atmospheric storm track....

  1. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    Science.gov (United States)

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  2. Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems.

    Science.gov (United States)

    Bhadra, Anindya; Carroll, Raymond J

    2016-07-01

    In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.

  3. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Huerta, E. A.; Gair, Jonathan R.

    2009-01-01

    We present an improved numerical kludge waveform model for circular, equatorial extreme-mass-ratio inspirals (EMRIs). The model is based on true Kerr geodesics, augmented by radiative self-force corrections derived from perturbative calculations, and in this paper for the first time we include conservative self-force corrections that we derive by comparison to post-Newtonian results. We present results of a Monte Carlo simulation of parameter estimation errors computed using the Fisher matrix and also assess the theoretical errors that would arise from omitting the conservative correction terms we include here. We present results for three different types of system, namely, the inspirals of black holes, neutron stars, or white dwarfs into a supermassive black hole (SMBH). The analysis shows that for a typical source (a 10M · compact object captured by a 10 6 M · SMBH at a signal to noise ratio of 30) we expect to determine the two masses to within a fractional error of ∼10 -4 , measure the spin parameter q to ∼10 -4.5 , and determine the location of the source on the sky and the spin orientation to within 10 -3 steradians. We show that, for this kludge model, omitting the conservative corrections leads to a small error over much of the parameter space, i.e., the ratio R of the theoretical model error to the Fisher matrix error is R<1 for all ten parameters in the model. For the few systems with larger errors typically R<3 and hence the conservative corrections can be marginally ignored. In addition, we use our model and first-order self-force results for Schwarzschild black holes to estimate the error that arises from omitting the second-order radiative piece of the self-force. This indicates that it may not be necessary to go beyond first order to recover accurate parameter estimates.

  4. Neutrino Mass and Flavour Models

    International Nuclear Information System (INIS)

    King, Stephen F.

    2010-01-01

    We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

  5. 'When measurements mean action' decision models for portal image review to eliminate systematic set-up errors

    International Nuclear Information System (INIS)

    Wratten, C.R.; Denham, J.W.; O; Brien, P.; Hamilton, C.S.; Kron, T.; London Regional Cancer Centre, London, Ontario

    2004-01-01

    The aim of the present paper is to evaluate how the use of decision models in the review of portal images can eliminate systematic set-up errors during conformal therapy. Sixteen patients undergoing four-field irradiation of prostate cancer have had daily portal images obtained during the first two treatment weeks and weekly thereafter. The magnitude of random and systematic variations has been calculated by comparison of the portal image with the reference simulator images using the two-dimensional decision model embodied in the Hotelling's evaluation process (HEP). Random day-to-day set-up variation was small in this group of patients. Systematic errors were, however, common. In 15 of 16 patients, one or more errors of >2 mm were diagnosed at some stage during treatment. Sixteen of the 23 errors were between 2 and 4 mm. Although there were examples of oversensitivity of the HEP in three cases, and one instance of undersensitivity, the HEP proved highly sensitive to the small (2-4 mm) systematic errors that must be eliminated during high precision radiotherapy. The HEP has proven valuable in diagnosing very small ( 4 mm) systematic errors using one-dimensional decision models, HEP can eliminate the majority of systematic errors during the first 2 treatment weeks. Copyright (2004) Blackwell Science Pty Ltd

  6. MODEL PERMINTAAN UANG DI INDONESIA DENGAN PENDEKATAN VECTOR ERROR CORRECTION MODEL

    Directory of Open Access Journals (Sweden)

    imam mukhlis

    2016-09-01

    Full Text Available This research aims to estimate the demand for money model in Indonesia for 2005.2-2015.12. The variables used in this research are ; demand for money, interest rate, inflation, and exchange rate (IDR/US$. The stationary test with ADF used to test unit root in the data. Cointegration test applied to estimate the long run relationship berween variables. This research employed the Vector Error Correction Model (VECM to estimate the money demand model in Indonesia. The results showed that all the data was stationer at the difference level (1%. There were long run relationship between interest rate, inflation and exchange rate to demand for money in Indonesia. The VECM model could not explaine interaction between explanatory variables to independent variables. In the short run, there were not relationship between interest rate, inflation and exchange rate to demand for money in Indonesia for 2005.2-2015.12

  7. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    Science.gov (United States)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  8. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2013-07-01

    Full Text Available Advances in the development of micro-electromechanical systems (MEMS have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS and the inertial navigation system (INS integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs, stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV and the power spectral density (PSD techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade presents error sources with short-term (high-frequency and long-term (low-frequency components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  9. Peak-counts blood flow model-errors and limitations

    International Nuclear Information System (INIS)

    Mullani, N.A.; Marani, S.K.; Ekas, R.D.; Gould, K.L.

    1984-01-01

    The peak-counts model has several advantages, but its use may be limited due to the condition that the venous egress may not be negligible at the time of peak-counts. Consequently, blood flow measurements by the peak-counts model will depend on the bolus size, bolus duration, and the minimum transit time of the bolus through the region of interest. The effect of bolus size on the measurement of extraction fraction and blood flow was evaluated by injecting 1 to 30ml of rubidium chloride in the femoral vein of a dog and measuring the myocardial activity with a beta probe over the heart. Regional blood flow measurements were not found to vary with bolus sizes up to 30ml. The effect of bolus duration was studied by injecting a 10cc bolus of tracer at different speeds in the femoral vein of a dog. All intravenous injections undergo a broadening of the bolus duration due to the transit time of the tracer through the lungs and the heart. This transit time was found to range from 4-6 second FWHM and dominates the duration of the bolus to the myocardium for up to 3 second injections. A computer simulation has been carried out in which the different parameters of delay time, extraction fraction, and bolus duration can be changed to assess the errors in the peak-counts model. The results of the simulations show that the error will be greatest for short transit time delays and for low extraction fractions

  10. Mass estimates from stellar proper motions: the mass of ω Centauri

    Science.gov (United States)

    D'Souza, Richard; Rix, Hans-Walter

    2013-03-01

    We lay out and apply methods to use proper motions of individual kinematic tracers for estimating the dynamical mass of star clusters. We first describe a simple projected mass estimator and then develop an approach that evaluates directly the likelihood of the discrete kinematic data given the model predictions. Those predictions may come from any dynamical modelling approach, and we implement an analytic King model, a spherical isotropic Jeans equation model and an axisymmetric, anisotropic Jeans equation model. This maximum likelihood modelling (MLM) provides a framework for a model-data comparison, and a resulting mass estimate, which accounts explicitly for the discrete nature of the data for individual stars, the varying error bars for proper motions of differing signal-to-noise ratio, and for data incompleteness. Both of these two methods are evaluated for their practicality and are shown to provide an unbiased and robust estimate of the cluster mass. We apply these approaches to the enigmatic globular cluster ω Centauri, combining the proper motion from van Leeuwen et al. with improved photometric cluster membership probabilities. We show that all mass estimates based on spherical isotropic models yield (4.55 ± 0.1) × 106 M⊙[D/5.5 ± 0.2 kpc]3, where our modelling allows us to show how the statistical precision of this estimate improves as more proper motion data of lower signal-to-noise ratio are included. MLM predictions, based on an anisotropic axisymmetric Jeans model, indicate for ω Cen that the inclusion of anisotropies is not important for the mass estimates, but that accounting for the flattening is: flattened models imply (4.05 ± 0.1) × 106 M⊙[D/5.5 ± 0.2 kpc]3, 10 per cent lower than when restricting the analysis to a spherical model. The best current distance estimates imply an additional uncertainty in the mass estimate of 12 per cent.

  11. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  12. A method for reducing memory errors in the isotopic analyses of uranium hexafluoride by mass spectrometry; Methode de reduction des erreurs de memoire dans les analyses isotopiques de l'hexafluorure d'uranium par spectrometrie de masse

    Energy Technology Data Exchange (ETDEWEB)

    Bir, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    One of the most serious causes of systematic error in isotopic analyses of uranium from UF{sub 6} is the tendency of this material to become fixed in various ways in the mass spectrometer. As a result the value indicated by the instrument is influenced by the isotopic composition of the substances previously analysed. The resulting error is called a memory error. Making use of an elementary mathematical theory, the various methods used to reduce memory errors are analysed and compared. A new method is then suggested, which reduces the memory errors to an extent where they become negligible over a wide range of {sup 235}U concentration. The method is given in full, together with examples of its application. (author) [French] Une des causes d'erreurs systematiques les plus graves dans les analyses isotopiques d'uranium a partir d'UF{sub 6} est l'aptitude de ce produit a se fixer de diverses manieres dans le spectrometre de masse. Il en resulte une influence de la composition isotopique des produits precedemment analyses sur la valeur indiquee par l'appareil. L'erreur resultante est appelee erreur de memoire. A partir d'une theorie mathematique elementaire, on analyse et on compare les differentes methodes utilisees pour reduire les erreurs de memoire. On suggere ensuite une nouvelle methode qui reduit les erreurs de memoire dans une proportion telle qu'elles deviennent negligeables dans un grand domaine de concentration en {sup 235}U. On donne le mode operatoire complet et des exemples d'application. (auteur)

  13. Estimating error rates for firearm evidence identifications in forensic science

    Science.gov (United States)

    Song, John; Vorburger, Theodore V.; Chu, Wei; Yen, James; Soons, Johannes A.; Ott, Daniel B.; Zhang, Nien Fan

    2018-01-01

    Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. PMID:29331680

  14. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  15. Uncertainty quantification and error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  16. Double beta decay and neutrino mass models

    Energy Technology Data Exchange (ETDEWEB)

    Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso (Chile); Hirsch, M. [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University, Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan); Santos, F.A. Pereira dos [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro,Rua Marquês de São Vicente 225, 22451-900 Gávea, Rio de Janeiro (Brazil)

    2015-05-19

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  17. Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors.

    Science.gov (United States)

    Dagne, Getachew A; Huang, Yangxin

    2013-09-30

    Common problems to many longitudinal HIV/AIDS, cancer, vaccine, and environmental exposure studies are the presence of a lower limit of quantification of an outcome with skewness and time-varying covariates with measurement errors. There has been relatively little work published simultaneously dealing with these features of longitudinal data. In particular, left-censored data falling below a limit of detection may sometimes have a proportion larger than expected under a usually assumed log-normal distribution. In such cases, alternative models, which can account for a high proportion of censored data, should be considered. In this article, we present an extension of the Tobit model that incorporates a mixture of true undetectable observations and those values from a skew-normal distribution for an outcome with possible left censoring and skewness, and covariates with substantial measurement error. To quantify the covariate process, we offer a flexible nonparametric mixed-effects model within the Tobit framework. A Bayesian modeling approach is used to assess the simultaneous impact of left censoring, skewness, and measurement error in covariates on inference. The proposed methods are illustrated using real data from an AIDS clinical study. . Copyright © 2013 John Wiley & Sons, Ltd.

  18. (U) An Analytic Examination of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Ongoing efforts to validate a Richtmyer-Meshkov instability (RMI) based ejecta source model [1, 2, 3] in LANL ASC codes use ejecta areal masses derived from piezoelectric sensor data [4, 5, 6]. However, the standard technique for inferring masses from sensor voltages implicitly assumes instantaneous ejecta creation [7], which is not a feature of the RMI source model. To investigate the impact of this discrepancy, we define separate “areal mass functions” (AMFs) at the source and sensor in terms of typically unknown distribution functions for the ejecta particles, and derive an analytic relationship between them. Then, for the case of single-shock ejection into vacuum, we use the AMFs to compare the analytic (or “true”) accumulated mass at the sensor with the value that would be inferred from piezoelectric voltage measurements. We confirm the inferred mass is correct when creation is instantaneous, and furthermore prove that when creation is not instantaneous, the inferred values will always overestimate the true mass. Finally, we derive an upper bound for the error imposed on a perfect system by the assumption of instantaneous ejecta creation. When applied to shots in the published literature, this bound is frequently less than several percent. Errors exceeding 15% may require velocities or timescales at odds with experimental observations.

  19. The 1992 FRDM mass model and unstable nuclei

    International Nuclear Information System (INIS)

    Moeller, P.

    1994-01-01

    We discuss the reliability of a recent global nuclear-structure calculation in regions far from β stability. We focus on the results for nuclear masses, but also mention other results obtained in the nuclear-structure calculation, for example ground-state spins. We discuss what should be some minimal requirements of a nuclear mass model and study how the macroscopic-microscopic method and other nuclear mass models fullfil such basic requirements. We study in particular the reliability of nuclear mass models in regions of nuclei that were not considered in the determination of the model parameters

  20. Real­-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model

    Science.gov (United States)

    Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.

    2014-12-01

    Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to

  1. Endogeneity, Time-Varying Coefficients, and Incorrect vs. Correct Ways of Specifying the Error Terms of Econometric Models

    Directory of Open Access Journals (Sweden)

    P.A.V.B. Swamy

    2017-02-01

    Full Text Available Using the net effect of all relevant regressors omitted from a model to form its error term is incorrect because the coefficients and error term of such a model are non-unique. Non-unique coefficients cannot possess consistent estimators. Uniqueness can be achieved if; instead; one uses certain “sufficient sets” of (relevant regressors omitted from each model to represent the error term. In this case; the unique coefficient on any non-constant regressor takes the form of the sum of a bias-free component and omitted-regressor biases. Measurement-error bias can also be incorporated into this sum. We show that if our procedures are followed; accurate estimation of bias-free components is possible.

  2. Mapping the N-Z plane: residual mass regularities

    International Nuclear Information System (INIS)

    Hirsch, J.G.; Frank, A.; Velazquez, V.

    2004-01-01

    A new development in the study of the deviations between experimental nuclear masses and those calculated in the framework of the Finite Range Droplet Model is introduced. Some frequencies are isolated and used in a simple fit to reduce significantly the error width. The presence of this regular residual correlations suggests that the Strutinsky method of including microscopic fluctuations in nuclear masses could be improved. (Author)

  3. Modeling error and stability of endothelial cytoskeletal membrane parameters based on modeling transendothelial impedance as resistor and capacitor in series.

    Science.gov (United States)

    Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B

    2005-09-01

    Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.

  4. Uncertainties in the Antarctic Ice Sheet Contribution to Sea Level Rise: Exploration of Model Response to Errors in Climate Forcing, Boundary Conditions, and Internal Parameters

    Science.gov (United States)

    Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.

    2017-12-01

    The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  5. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Automated evolutionary restructuring of workflows to minimise errors via stochastic model checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    This paper presents a framework for the automated restructuring of workflows that allows one to minimise the impact of errors on a production workflow. The framework allows for the modelling of workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN) language...

  7. 3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, A; Fan, Zhun

    2008-01-01

    FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...

  8. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Pastawski, Fernando; Yoshida, Beni [Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics,California Institute of Technology,1200 E. California Blvd., Pasadena CA 91125 (United States); Harlow, Daniel [Princeton Center for Theoretical Science, Princeton University,400 Jadwin Hall, Princeton NJ 08540 (United States); Preskill, John [Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics,California Institute of Technology,1200 E. California Blvd., Pasadena CA 91125 (United States)

    2015-06-23

    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed in http://dx.doi.org/10.1007/JHEP04(2015)163.

  9. Studying the errors in the estimation of the variation of energy by the "patched-conics" model in the three-dimensional swing-by

    Science.gov (United States)

    Negri, Rodolfo Batista; Prado, Antonio Fernando Bertachini de Almeida; Sukhanov, Alexander

    2017-11-01

    The swing-by maneuver is a technique used to change the energy of a spacecraft by using a close approach in a celestial body. This procedure was used many times in real missions. Usually, the first approach to design this type of mission is based on the "patched-conics" model, which splits the maneuver into three "two-body dynamics." This approach causes an error in the estimation of the energy variations, which depends on the geometry of the maneuver and the system of primaries considered. Therefore, the goal of the present paper is to study the errors caused by this approximation. The comparison of the results are made with the trajectories obtained using the more realistic restricted three-body problem, assumed here to be the "real values" for the maneuver. The results shown here describe the effects of each parameter involved in the swing-by. Some examples using bodies in the solar system are used in this part of the paper. The study is then generalized to cover different mass parameters, and its influence is analyzed to give an idea of the amount of the error expected for a given system of primaries. The results presented here may help in estimating errors in the preliminary mission analysis using the "patched-conics" approach.

  10. Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks

    Science.gov (United States)

    Yoshizaki, J.; Pollock, K.H.; Brownie, C.; Webster, R.A.

    2009-01-01

    Misidentification of animals is potentially important when naturally existing features (natural tags) are used to identify individual animals in a capture-recapture study. Photographic identification (photoID) typically uses photographic images of animals' naturally existing features as tags (photographic tags) and is subject to two main causes of identification errors: those related to quality of photographs (non-evolving natural tags) and those related to changes in natural marks (evolving natural tags). The conventional methods for analysis of capture-recapture data do not account for identification errors, and to do so requires a detailed understanding of the misidentification mechanism. Focusing on the situation where errors are due to evolving natural tags, we propose a misidentification mechanism and outline a framework for modeling the effect of misidentification in closed population studies. We introduce methods for estimating population size based on this model. Using a simulation study, we show that conventional estimators can seriously overestimate population size when errors due to misidentification are ignored, and that, in comparison, our new estimators have better properties except in cases with low capture probabilities (<0.2) or low misidentification rates (<2.5%). ?? 2009 by the Ecological Society of America.

  11. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

    -correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...... This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error...

  12. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

    2009-01-01

    -correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably......This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error...

  13. Being an honest broker of hydrology: Uncovering, communicating and addressing model error in a climate change streamflow dataset

    Science.gov (United States)

    Chegwidden, O.; Nijssen, B.; Pytlak, E.

    2017-12-01

    Any model simulation has errors, including errors in meteorological data, process understanding, model structure, and model parameters. These errors may express themselves as bias, timing lags, and differences in sensitivity between the model and the physical world. The evaluation and handling of these errors can greatly affect the legitimacy, validity and usefulness of the resulting scientific product. In this presentation we will discuss a case study of handling and communicating model errors during the development of a hydrologic climate change dataset for the Pacific Northwestern United States. The dataset was the result of a four-year collaboration between the University of Washington, Oregon State University, the Bonneville Power Administration, the United States Army Corps of Engineers and the Bureau of Reclamation. Along the way, the partnership facilitated the discovery of multiple systematic errors in the streamflow dataset. Through an iterative review process, some of those errors could be resolved. For the errors that remained, honest communication of the shortcomings promoted the dataset's legitimacy. Thoroughly explaining errors also improved ways in which the dataset would be used in follow-on impact studies. Finally, we will discuss the development of the "streamflow bias-correction" step often applied to climate change datasets that will be used in impact modeling contexts. We will describe the development of a series of bias-correction techniques through close collaboration among universities and stakeholders. Through that process, both universities and stakeholders learned about the others' expectations and workflows. This mutual learning process allowed for the development of methods that accommodated the stakeholders' specific engineering requirements. The iterative revision process also produced a functional and actionable dataset while preserving its scientific merit. We will describe how encountering earlier techniques' pitfalls allowed us

  14. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    International Nuclear Information System (INIS)

    Herschtal, A; Te Marvelde, L; Mengersen, K; Foroudi, F; Ball, D; Devereux, T; Pham, D; Greer, P B; Pichler, P; Eade, T; Kneebone, A; Bell, L; Caine, H; Hindson, B; Kron, T; Hosseinifard, Z

    2015-01-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts −19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements. (paper)

  15. Human errors and mistakes

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1993-01-01

    Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)

  16. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  17. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  18. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    Science.gov (United States)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  19. Fault tree model of human error based on error-forcing contexts

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung Cheol; Ha, Jae Joo

    2004-01-01

    In the safety-critical systems such as nuclear power plants, the safety-feature actuation is fully automated. In emergency case, the human operator could also play the role of a backup for automated systems. That is, the failure of safety-feature-actuation signal generation implies the concurrent failure of automated systems and that of manual actuation. The human operator's manual actuation failure is largely affected by error-forcing contexts (EFC). The failures of sensors and automated systems are most important ones. The sensors, the automated actuation system and the human operators are correlated in a complex manner and hard to develop a proper model. In this paper, we will explain the condition-based human reliability assessment (CBHRA) method in order to treat these complicated conditions in a practical way. In this study, we apply the CBHRA method to the manual actuation of safety features such as reactor trip and safety injection in Korean Standard Nuclear Power Plants

  20. Mass imbalances in EPANET water-quality simulations

    Science.gov (United States)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  1. On the Asymptotic Capacity of Dual-Aperture FSO Systems with a Generalized Pointing Error Model

    KAUST Repository

    Al-Quwaiee, Hessa

    2016-06-28

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantify the effect of these two factors on FSO system performance, we need an effective mathematical model for them. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive a generic expression of the asymptotic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. Finally, the asymptotic channel capacity formula are extended to quantify the FSO systems performance with selection and switched-and-stay diversity.

  2. Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition

    KAUST Repository

    van der Zee, Kristoffer G.

    2010-10-27

    A posteriori estimates of errors in quantities of interest are developed for the nonlinear system of evolution equations embodied in the Cahn-Hilliard model of binary phase transition. These involve the analysis of wellposedness of dual backward-in-time problems and the calculation of residuals. Mixed finite element approximations are developed and used to deliver numerical solutions of representative problems in one- and two-dimensional domains. Estimated errors are shown to be quite accurate in these numerical examples. © 2010 Wiley Periodicals, Inc.

  3. A posteriori error analysis of multiscale operator decomposition methods for multiphysics models

    International Nuclear Information System (INIS)

    Estep, D; Carey, V; Tavener, S; Ginting, V; Wildey, T

    2008-01-01

    Multiphysics, multiscale models present significant challenges in computing accurate solutions and for estimating the error in information computed from numerical solutions. In this paper, we describe recent advances in extending the techniques of a posteriori error analysis to multiscale operator decomposition solution methods. While the particulars of the analysis vary considerably with the problem, several key ideas underlie a general approach being developed to treat operator decomposition multiscale methods. We explain these ideas in the context of three specific examples

  4. The approach of Bayesian model indicates media awareness of medical errors

    Science.gov (United States)

    Ravichandran, K.; Arulchelvan, S.

    2016-06-01

    This research study brings out the factors behind the increase in medical malpractices in the Indian subcontinent in the present day environment and impacts of television media awareness towards it. Increased media reporting of medical malpractices and errors lead to hospitals taking corrective action and improve the quality of medical services that they provide. The model of Cultivation Theory can be used to measure the influence of media in creating awareness of medical errors. The patient's perceptions of various errors rendered by the medical industry from different parts of India were taken up for this study. Bayesian method was used for data analysis and it gives absolute values to indicate satisfaction of the recommended values. To find out the impact of maintaining medical records of a family online by the family doctor in reducing medical malpractices which creates the importance of service quality in medical industry through the ICT.

  5. Modelling baryonic effects on galaxy cluster mass profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  6. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  7. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    Science.gov (United States)

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  8. Understanding the nature of errors in nursing: using a model to analyse critical incident reports of errors which had resulted in an adverse or potentially adverse event.

    Science.gov (United States)

    Meurier, C E

    2000-07-01

    Human errors are common in clinical practice, but they are under-reported. As a result, very little is known of the types, antecedents and consequences of errors in nursing practice. This limits the potential to learn from errors and to make improvement in the quality and safety of nursing care. The aim of this study was to use an Organizational Accident Model to analyse critical incidents of errors in nursing. Twenty registered nurses were invited to produce a critical incident report of an error (which had led to an adverse event or potentially could have led to an adverse event) they had made in their professional practice and to write down their responses to the error using a structured format. Using Reason's Organizational Accident Model, supplemental information was then collected from five of the participants by means of an individual in-depth interview to explore further issues relating to the incidents they had reported. The detailed analysis of one of the incidents is discussed in this paper, demonstrating the effectiveness of this approach in providing insight into the chain of events which may lead to an adverse event. The case study approach using critical incidents of clinical errors was shown to provide relevant information regarding the interaction of organizational factors, local circumstances and active failures (errors) in producing an adverse or potentially adverse event. It is suggested that more use should be made of this approach to understand how errors are made in practice and to take appropriate preventative measures.

  9. New error calibration tests for gravity models using subset solutions and independent data - Applied to GEM-T3

    Science.gov (United States)

    Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.

    1993-01-01

    A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.

  10. Nuclear masses and the number of valence nucleons

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Frank, A.; Hirsch, J.G.; Lopez Vieyra, J.C.; Morales, I.; Barea, J.; Van Isacker, P.; Velazquez, V.

    2008-01-01

    An improved version of the liquid drop model is presented. The addition of two terms, linear and quadratic in the total number of valence nucleons (particles or holes), improves the description of atomic masses, which can be fitted with an r.m.s. error of 1.2 MeV. Predictions are analysed an compared with those of established models

  11. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    Science.gov (United States)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  12. Space, time, and the third dimension (model error)

    Science.gov (United States)

    Moss, Marshall E.

    1979-01-01

    The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.

  13. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Directory of Open Access Journals (Sweden)

    Wei He

    Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.

  14. Mass discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Broeckman, A. [Rijksuniversiteit Utrecht (Netherlands)

    1978-12-15

    In thermal ionization mass spectrometry the phenomenon of mass discrimination has led to the use of a correction factor for isotope ratio-measurements. The correction factor is defined as the measured ratio divided by the true or accepted value of this ratio. In fact this factor corrects for systematic errors of the whole procedure; however mass discrimination is often associated just with the mass spectrometer.

  15. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.

    Science.gov (United States)

    Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J

    2018-01-01

    Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.

  16. Equilibrium arsenic adsorption onto metallic oxides : Isotherm models, error analysis and removal mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Esra Bilgin [Yalova University, Yalova (Turkmenistan); Beker, Ulker [Yldz Technical University, Istanbul (Turkmenistan)

    2014-11-15

    Arsenic adsorption properties of mono- (Fe or Al) and binary (Fe-Al) metal oxides supported on natural zeolite were investigated at three levels of temperature (298, 318 and 338 K). All data obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, Sips, Toth and Redlich-Peterson isotherms, and error functions were used to predict the best fitting model. The error analysis demonstrated that the As(Ⅴ) adsorption processes were best described by the Dubinin-Raduskevich model with the lowest sum of normalized error values. According to results, the presence of iron and aluminum oxides in the zeolite network improved the As(Ⅴ) adsorption capacity of the raw zeolite (ZNa). The X-ray photoelectron spectroscopy (XPS) analyses of ZNa-Fe and ZNa-AlFe samples suggested that the redox reactions are the postulated mechanisms for the adsorption onto them while the adsorption process is followed by surface complexation reactions for ZNa-Al.

  17. Limit on mass differences in the Weinberg model

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1977-01-01

    Within the Weinberg model mass differences between members of a multiplet generate further mass differences between the neutral and charged vector bosons. The experimental situation on the Weinberg model leads to an upper limit of about 800 GeV on mass differences within a multiplet. No limit on the

  18. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  19. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  20. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  1. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.

    Science.gov (United States)

    Popa, Laurentiu S; Streng, Martha L; Hewitt, Angela L; Ebner, Timothy J

    2016-04-01

    The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.

  2. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    Science.gov (United States)

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  3. A modified backpropagation algorithm for training neural networks on data with error bars

    International Nuclear Information System (INIS)

    Gernoth, K.A.; Clark, J.W.

    1994-08-01

    A method is proposed for training multilayer feedforward neural networks on data contaminated with noise. Specifically, we consider the case that the artificial neural system is required to learn a physical mapping when the available values of the target variable are subject to experimental uncertainties, but are characterized by error bars. The proposed method, based on maximum likelihood criterion for parameter estimation, involves simple modifications of the on-line backpropagation learning algorithm. These include incorporation of the error-bar assignments in a pattern-specific learning rate, together with epochal updating of a new measure of model accuracy that replaces the usual mean-square error. The extended backpropagation algorithm is successfully tested on two problems relevant to the modelling of atomic-mass systematics by neural networks. Provided the underlying mapping is reasonably smooth, neural nets trained with the new procedure are able to learn the true function to a good approximation even in the presence of high levels of Gaussian noise. (author). 26 refs, 2 figs, 5 tabs

  4. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico; Reichardt, Christian L. [School of Physics, University of Melbourne, 313 David Caro building, Swanston St and Tin Alley, Parkville VIC 3010 (Australia); Baxter, Eric J. [Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 (United States); Bleem, Lindsey E. [Argonne National Laboratory, High-Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Crawford, Thomas M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holder, Gilbert P. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Manzotti, Alessandro, E-mail: srinivasan.raghunathan@unimelb.edu.au, E-mail: s.patil2@student.unimelb.edu.au, E-mail: ebax@sas.upenn.edu, E-mail: federico.bianchini@unimelb.edu.au, E-mail: bleeml@uchicago.edu, E-mail: tcrawfor@kicp.uchicago.edu, E-mail: gholder@illinois.edu, E-mail: manzotti@uchicago.edu, E-mail: christian.reichardt@unimelb.edu.au [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  5. Prevalence of refractive errors in the Slovak population calculated using the Gullstrand schematic eye model.

    Science.gov (United States)

    Popov, I; Valašková, J; Štefaničková, J; Krásnik, V

    2017-01-01

    A substantial part of the population suffers from some kind of refractive errors. It is envisaged that their prevalence may change with the development of society. The aim of this study is to determine the prevalence of refractive errors using calculations based on the Gullstrand schematic eye model. We used the Gullstrand schematic eye model to calculate refraction retrospectively. Refraction was presented as the need for glasses correction at a vertex distance of 12 mm. The necessary data was obtained using the optical biometer Lenstar LS900. Data which could not be obtained due to the limitations of the device was substituted by theoretical data from the Gullstrand schematic eye model. Only analyses from the right eyes were presented. The data was interpreted using descriptive statistics, Pearson correlation and t-test. The statistical tests were conducted at a level of significance of 5%. Our sample included 1663 patients (665 male, 998 female) within the age range of 19 to 96 years. Average age was 70.8 ± 9.53 years. Average refraction of the eye was 2.73 ± 2.13D (males 2.49 ± 2.34, females 2.90 ± 2.76). The mean absolute error from emmetropia was 3.01 ± 1.58 (males 2.83 ± 2.95, females 3.25 ± 3.35). 89.06% of the sample was hyperopic, 6.61% was myopic and 4.33% emmetropic. We did not find any correlation between refraction and age. Females were more hyperopic than males. We did not find any statistically significant hypermetopic shift of refraction with age. According to our estimation, the calculations of refractive errors using the Gullstrand schematic eye model showed a significant hypermetropic shift of more than +2D. Our results could be used in future for comparing the prevalence of refractive errors using same methods we used.Key words: refractive errors, refraction, Gullstrand schematic eye model, population, emmetropia.

  6. A new method for automatic discontinuity traces sampling on rock mass 3D model

    Science.gov (United States)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  7. Sensitivity of subject-specific models to errors in musculo-skeletal geometry

    NARCIS (Netherlands)

    Carbone, V.; van der Krogt, M.M.; Koopman, H.F.J.M.; Verdonschot, N.

    2012-01-01

    Subject-specific musculo-skeletal models of the lower extremity are an important tool for investigating various biomechanical problems, for instance the results of surgery such as joint replacements and tendon transfers. The aim of this study was to assess the potential effects of errors in

  8. Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    KAUST Repository

    Sang, Huiyan

    2011-12-01

    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors. © 2012 Institute of Mathematical Statistics.

  9. Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable

    NARCIS (Netherlands)

    Elhorst, J. Paul

    2001-01-01

    This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the

  10. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  11. Entropy Error Model of Planar Geometry Features in GIS

    Institute of Scientific and Technical Information of China (English)

    LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng

    2003-01-01

    Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.

  12. Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.

    Science.gov (United States)

    Monica, Stefania; Ferrari, Gianluigi

    2018-05-17

    Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.

  13. Testing and inference in nonlinear cointegrating vector error correction models

    DEFF Research Database (Denmark)

    Kristensen, D.; Rahbek, A.

    2013-01-01

    We analyze estimators and tests for a general class of vector error correction models that allows for asymmetric and nonlinear error correction. For a given number of cointegration relationships, general hypothesis testing is considered, where testing for linearity is of particular interest. Under...... the null of linearity, parameters of nonlinear components vanish, leading to a nonstandard testing problem. We apply so-called sup-tests to resolve this issue, which requires development of new(uniform) functional central limit theory and results for convergence of stochastic integrals. We provide a full...... asymptotic theory for estimators and test statistics. The derived asymptotic results prove to be nonstandard compared to results found elsewhere in the literature due to the impact of the estimated cointegration relations. This complicates implementation of tests motivating the introduction of bootstrap...

  14. Markov chain-based mass estimation method for loose part monitoring system and its performance

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Shin

    2017-10-01

    Full Text Available A loose part monitoring system is used to identify unexpected loose parts in a nuclear reactor vessel or steam generator. It is still necessary for the mass estimation of loose parts, one function of a loose part monitoring system, to develop a new method due to the high estimation error of conventional methods such as Hertz's impact theory and the frequency ratio method. The purpose of this study is to propose a mass estimation method using a Markov decision process and compare its performance with a method using an artificial neural network model proposed in a previous study. First, how to extract feature vectors using discrete cosine transform was explained. Second, Markov chains were designed with codebooks obtained from the feature vector. A 1/8-scaled mockup of the reactor vessel for OPR1000 was employed, and all used signals were obtained by impacting its surface with several solid spherical masses. Next, the performance of mass estimation by the proposed Markov model was compared with that of the artificial neural network model. Finally, it was investigated that the proposed Markov model had matching error below 20% in mass estimation. That was a similar performance to the method using an artificial neural network model and considerably improved in comparison with the conventional methods.

  15. The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules

    International Nuclear Information System (INIS)

    Wang, Gang; Zhao, Ke; Qiu, Tian; Yang, Xinsheng; Zhang, Yong; Zhao, Yong

    2016-01-01

    In the modeling and simulation of photovoltaic modules, especially in calculating the reverse saturation current of the diode, the series and parallel resistances are often neglected, causing certain errors. We analyzed the errors at the open circuit point, and proposed an iterative algorithm to calculate the modified values of the reverse saturation current, series resistance and parallel resistance of the diode, in order to reduce the errors. Assuming independent irradiation and temperature effects, the irradiation-dependence and the temperature-dependence of the open circuit voltage were introduced to obtain the modified formula of the open circuit voltage under any condition. Experimental results show that this modified formula has high accuracy, even at irradiance as low as 40 W/m"2. The errors of open circuit voltage were significantly reduced, indicating that this modified model is suitable for simulations of photovoltaic modules. - Highlights: • We propose a new method for modeling PV modules with higher accuracy. • The errors of open circuit voltage are significantly reduced. • I_o under any condition is calculated.

  16. Methods for recalibration of mass spectrometry data

    Science.gov (United States)

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  17. Modelling the basic error tendencies of human operators

    Energy Technology Data Exchange (ETDEWEB)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance.

  18. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in total, simulate the general character of operator performance. (author)

  19. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, James

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance. (author)

  20. Weak instruments and the first stage F-statistic in IV models with a nonscalar error covariance structure

    NARCIS (Netherlands)

    Bun, M.; de Haan, M.

    2010-01-01

    We analyze the usefulness of the first stage F-statistic for detecting weak instruments in the IV model with a nonscalar error covariance structure. More in particular, we question the validity of the rule of thumb of a first stage F-statistic of 10 or higher for models with correlated errors

  1. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  2. A Hierarchical Bayes Error Correction Model to Explain Dynamic Effects of Price Changes

    NARCIS (Netherlands)

    D. Fok (Dennis); R. Paap (Richard); C. Horváth (Csilla); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThe authors put forward a sales response model to explain the differences in immediate and dynamic effects of promotional prices and regular prices on sales. The model consists of a vector autoregression rewritten in error-correction format which allows to disentangle the immediate

  3. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    OpenAIRE

    Alexandre Bryan Heinemann; Pepijn A.J. van Oort; Diogo Simões Fernandes; Aline de Holanda Nunes Maia

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, ...

  4. Errors in Neonatology

    Directory of Open Access Journals (Sweden)

    Antonio Boldrini

    2013-06-01

    Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  5. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  6. Modeling the cosmic-ray-induced soft-error rate in integrated circuits: An overview

    International Nuclear Information System (INIS)

    Srinivasan, G.R.

    1996-01-01

    This paper is an overview of the concepts and methodologies used to predict soft-error rates (SER) due to cosmic and high-energy particle radiation in integrated circuit chips. The paper emphasizes the need for the SER simulation using the actual chip circuit model which includes device, process, and technology parameters as opposed to using either the discrete device simulation or generic circuit simulation that is commonly employed in SER modeling. Concepts such as funneling, event-by-event simulation, nuclear history files, critical charge, and charge sharing are examined. Also discussed are the relative importance of elastic and inelastic nuclear collisions, rare event statistics, and device vs. circuit simulations. The semi-empirical methodologies used in the aerospace community to arrive at SERs [also referred to as single-event upset (SEU) rates] in integrated circuit chips are reviewed. This paper is one of four in this special issue relating to SER modeling. Together, they provide a comprehensive account of this modeling effort, which has resulted in a unique modeling tool called the Soft-Error Monte Carlo Model, or SEMM

  7. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...

  8. Accounting for measurement error in human life history trade-offs using structural equation modeling.

    Science.gov (United States)

    Helle, Samuli

    2018-03-01

    Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.

  9. Error Correction for Non-Abelian Topological Quantum Computation

    Directory of Open Access Journals (Sweden)

    James R. Wootton

    2014-03-01

    Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.

  10. The Preisach hysteresis model: Error bounds for numerical identification and inversion

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel

    2013-01-01

    Roč. 6, č. 1 (2013), s. 101-119 ISSN 1937-1632 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * Preisach model * error bounds Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7779

  11. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    Science.gov (United States)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  12. Characterization of model errors in the calculation of tangent heights for atmospheric infrared limb measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2014-12-01

    Full Text Available We review the main factors driving the calculation of the tangent height of spaceborne limb measurements: the ray-tracing method, the refractive index model and the assumed atmosphere. We find that commonly used ray tracing and refraction models are very accurate, at least in the mid-infrared. The factor with largest effect in the tangent height calculation is the assumed atmosphere. Using a climatological model in place of the real atmosphere may cause tangent height errors up to ± 200 m. Depending on the adopted retrieval scheme, these errors may have a significant impact on the derived profiles.

  13. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    Science.gov (United States)

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  14. Testing Constancy of the Error Covariance Matrix in Vector Models against Parametric Alternatives using a Spectral Decomposition

    DEFF Research Database (Denmark)

    Yang, Yukay

    I consider multivariate (vector) time series models in which the error covariance matrix may be time-varying. I derive a test of constancy of the error covariance matrix against the alternative that the covariance matrix changes over time. I design a new family of Lagrange-multiplier tests against...... to consider multivariate volatility modelling....

  15. PENDEKATAN ERROR CORRECTION MODEL SEBAGAI PENENTU HARGA SAHAM

    Directory of Open Access Journals (Sweden)

    David Kaluge

    2017-03-01

    Full Text Available This research was to find the effect of profitability, rate of interest, GDP, and foreign exchange rate on stockprices. Approach used was error correction model. Profitability was indicated by variables EPS, and ROIwhile the SBI (1 month was used for representing interest rate. This research found that all variablessimultaneously affected the stock prices significantly. Partially, EPS, PER, and Foreign Exchange rate significantlyaffected the prices both in short run and long run. Interestingly that SBI and GDP did not affect theprices at all. The variable of ROI had only long run impact on the prices.

  16. Methods for Estimation of Radiation Risk in Epidemiological Studies Accounting for Classical and Berkson Errors in Doses

    KAUST Repository

    Kukush, Alexander

    2011-01-16

    With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.

  17. Methods for estimation of radiation risk in epidemiological studies accounting for classical and Berkson errors in doses.

    Science.gov (United States)

    Kukush, Alexander; Shklyar, Sergiy; Masiuk, Sergii; Likhtarov, Illya; Kovgan, Lina; Carroll, Raymond J; Bouville, Andre

    2011-02-16

    With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.

  18. ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.; Matson, Robert D.

    2011-01-01

    As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

  19. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  20. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    International Nuclear Information System (INIS)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua; Anastasio, Mark A.; Low, Daniel A.

    2015-01-01

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  1. Chemometric brand differentiation of commercial spices using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Pavlovich, Matthew J; Dunn, Emily E; Hall, Adam B

    2016-05-15

    Commercial spices represent an emerging class of fuels for improvised explosives. Being able to classify such spices not only by type but also by brand would represent an important step in developing methods to analytically investigate these explosive compositions. Therefore, a combined ambient mass spectrometric/chemometric approach was developed to quickly and accurately classify commercial spices by brand. Direct analysis in real time mass spectrometry (DART-MS) was used to generate mass spectra for samples of black pepper, cayenne pepper, and turmeric, along with four different brands of cinnamon, all dissolved in methanol. Unsupervised learning techniques showed that the cinnamon samples clustered according to brand. Then, we used supervised machine learning algorithms to build chemometric models with a known training set and classified the brands of an unknown testing set of cinnamon samples. Ten independent runs of five-fold cross-validation showed that the training set error for the best-performing models (i.e., the linear discriminant and neural network models) was lower than 2%. The false-positive percentages for these models were 3% or lower, and the false-negative percentages were lower than 10%. In particular, the linear discriminant model perfectly classified the testing set with 0% error. Repeated iterations of training and testing gave similar results, demonstrating the reproducibility of these models. Chemometric models were able to classify the DART mass spectra of commercial cinnamon samples according to brand, with high specificity and low classification error. This method could easily be generalized to other classes of spices, and it could be applied to authenticating questioned commercial samples of spices or to examining evidence from improvised explosives. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Small Body GN and C Research Report: G-SAMPLE - An In-Flight Dynamical Method for Identifying Sample Mass [External Release Version

    Science.gov (United States)

    Carson, John M., III; Bayard, David S.

    2006-01-01

    G-SAMPLE is an in-flight dynamical method for use by sample collection missions to identify the presence and quantity of collected sample material. The G-SAMPLE method implements a maximum-likelihood estimator to identify the collected sample mass, based on onboard force sensor measurements, thruster firings, and a dynamics model of the spacecraft. With G-SAMPLE, sample mass identification becomes a computation rather than an extra hardware requirement; the added cost of cameras or other sensors for sample mass detection is avoided. Realistic simulation examples are provided for a spacecraft configuration with a sample collection device mounted on the end of an extended boom. In one representative example, a 1000 gram sample mass is estimated to within 110 grams (95% confidence) under realistic assumptions of thruster profile error, spacecraft parameter uncertainty, and sensor noise. For convenience to future mission design, an overall sample-mass estimation error budget is developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.

  3. A 2 × 2 taxonomy of multilevel latent contextual models: accuracy-bias trade-offs in full and partial error correction models.

    Science.gov (United States)

    Lüdtke, Oliver; Marsh, Herbert W; Robitzsch, Alexander; Trautwein, Ulrich

    2011-12-01

    In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.

  4. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    Science.gov (United States)

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  5. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  6. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  7. Incorporating measurement error in n=1 psychological autoregressive modeling

    NARCIS (Netherlands)

    Schuurman, Noemi K.; Houtveen, Jan H.; Hamaker, Ellen L.

    2015-01-01

    Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive

  8. Modelling the Errors of EIA’s Oil Prices and Production Forecasts by the Grey Markov Model

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Hasantash

    2012-01-01

    Full Text Available Grey theory is about systematic analysis of limited information. The Grey-Markov model can improve the accuracy of forecast range in the random fluctuating data sequence. In this paper, we employed this model in energy system. The average errors of Energy Information Administrations predictions for world oil price and domestic crude oil production from 1982 to 2007 and from 1985 to 2008 respectively were used as two forecasted examples. We showed that the proposed Grey-Markov model can improve the forecast accuracy of original Grey forecast model.

  9. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.

    Science.gov (United States)

    Schedin, Staffan; Hallberg, Per; Behndig, Anders

    2016-01-20

    We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.

  10. Introduction to models of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2004-01-01

    This review contains an introduction to models of neutrino masses for non-experts. Topics discussed are i) different types of neutrino masses ii) structure of neutrino masses and mixing needed to understand neutrino oscillation results iii) mechanism to generate neutrino masses in gauge theories and iv) discussion of generic scenarios proposed to realize the required neutrino mass structures. (author)

  11. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this....

  12. Model for the generation of leptonic mass

    International Nuclear Information System (INIS)

    Fryberger, D.

    1979-01-01

    A self-consistent model for the generation of leptonic mass is developed. In this model it is assumed that bare masses are zero, all of the (charged) leptonic masses being generated by the QED self-interaction. A perturbation expansion for the QED self-mass is formulated, and contact is made between this expansion and the work of Landau and his collaborators. In order to achieve a finite result using this expansion, it is assumed that there is a cutoff at the Landau singularity and that the functional form of the (self-mass) integrand is the same beyond that singularity as it is below. Physical interpretations of these assumptions are discussed. Self-consistency equations are obtained which show that the Landau singularity is in the neighborhood of the Planck mass. This result implies that, as originally suggested by Landau, gravitation may play a role in an ultraviolet cutoff for QED. These equations also yield estimates for the (effective) number of additional pointlike particles that electromagnetically couple to the photon. This latter quantity is consistent with present data from e + e - storage rings

  13. Insights on the impact of systematic model errors on data assimilation performance in changing catchments

    Science.gov (United States)

    Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.

    2018-03-01

    The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.

  14. Estimating Classification Errors under Edit Restrictions in Composite Survey-Register Data Using Multiple Imputation Latent Class Modelling (MILC)

    NARCIS (Netherlands)

    Boeschoten, Laura; Oberski, Daniel; De Waal, Ton

    2017-01-01

    Both registers and surveys can contain classification errors. These errors can be estimated by making use of a composite data set. We propose a new method based on latent class modelling to estimate the number of classification errors across several sources while taking into account impossible

  15. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  16. Structural Model Error and Decision Relevancy

    Science.gov (United States)

    Goldsby, M.; Lusk, G.

    2017-12-01

    The extent to which climate models can underwrite specific climate policies has long been a contentious issue. Skeptics frequently deny that climate models are trustworthy in an attempt to undermine climate action, whereas policy makers often desire information that exceeds the capabilities of extant models. While not skeptics, a group of mathematicians and philosophers [Frigg et al. (2014)] recently argued that even tiny differences between the structure of a complex dynamical model and its target system can lead to dramatic predictive errors, possibly resulting in disastrous consequences when policy decisions are based upon those predictions. They call this result the Hawkmoth effect (HME), and seemingly use it to rebuke rightwing proposals to forgo mitigation in favor of adaptation. However, a vigorous debate has emerged between Frigg et al. on one side and another philosopher-mathematician pair [Winsberg and Goodwin (2016)] on the other. On one hand, Frigg et al. argue that their result shifts the burden to climate scientists to demonstrate that their models do not fall prey to the HME. On the other hand, Winsberg and Goodwin suggest that arguments like those asserted by Frigg et al. can be, if taken seriously, "dangerous": they fail to consider the variety of purposes for which models can be used, and thus too hastily undermine large swaths of climate science. They put the burden back on Frigg et al. to show their result has any effect on climate science. This paper seeks to attenuate this debate by establishing an irenic middle position; we find that there is more agreement between sides than it first seems. We distinguish a `decision standard' from a `burden of proof', which helps clarify the contributions to the debate from both sides. In making this distinction, we argue that scientists bear the burden of assessing the consequences of HME, but that the standard Frigg et al. adopt for decision relevancy is too strict.

  17. Implementation of an operator model with error mechanisms for nuclear power plant control room operation

    International Nuclear Information System (INIS)

    Suh, Sang Moon; Cheon, Se Woo; Lee, Yong Hee; Lee, Jung Woon; Park, Young Taek

    1996-01-01

    SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation

  18. Assessment of Aliasing Errors in Low-Degree Coefficients Inferred from GPS Data

    Directory of Open Access Journals (Sweden)

    Na Wei

    2016-05-01

    Full Text Available With sparse and uneven site distribution, Global Positioning System (GPS data is just barely able to infer low-degree coefficients in the surface mass field. The unresolved higher-degree coefficients turn out to introduce aliasing errors into the estimates of low-degree coefficients. To reduce the aliasing errors, the optimal truncation degree should be employed. Using surface displacements simulated from loading models, we theoretically prove that the optimal truncation degree should be degree 6–7 for a GPS inversion and degree 20 for combing GPS and Ocean Bottom Pressure (OBP with no additional regularization. The optimal truncation degree should be decreased to degree 4–5 for real GPS data. Additionally, we prove that a Scaled Sensitivity Matrix (SSM approach can be used to quantify the aliasing errors due to any one or any combination of unresolved higher degrees, which is beneficial to identify the major error source from among all the unresolved higher degrees. Results show that the unresolved higher degrees lower than degree 20 are the major error source for global inversion. We also theoretically prove that the SSM approach can be used to mitigate the aliasing errors in a GPS inversion, if the neglected higher degrees are well known from other sources.

  19. Web service availability-impact of error recovery and traffic model

    International Nuclear Information System (INIS)

    Martinello, Magnos; Kaa-hat niche, Mohamed; Kanoun, Karama

    2005-01-01

    Internet is often used for transaction based applications such as online banking, stock trading and shopping, where the service interruption or outages are unacceptable. Therefore, it is important for designers of such applications to analyze how hardware, software and performance related failures affect the quality of service delivered to the users. This paper presents analytical models for evaluating the service availability of web cluster architectures. A composite performance and availability modeling approach is defined considering various causes of service unavailability. In particular, web cluster systems are modeled taking into account: two error recovery strategies (client transparent and non-client-transparent) as well as two traffic models (Poisson and modulated Poisson). Sensitivity analysis results are presented to show their impact on the web service availability. The obtained results provide useful guidelines to web designers

  20. An Empirical Mass Function Distribution

    Science.gov (United States)

    Murray, S. G.; Robotham, A. S. G.; Power, C.

    2018-03-01

    The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.

  1. Incorporating a prediction of postgrazing herbage mass into a whole-farm model for pasture-based dairy systems.

    Science.gov (United States)

    Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C

    2014-07-01

    The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion

  2. A Bayesian approach for the stochastic modeling error reduction of magnetic material identification of an electromagnetic device

    International Nuclear Information System (INIS)

    Abdallh, A; Crevecoeur, G; Dupré, L

    2012-01-01

    Magnetic material properties of an electromagnetic device can be recovered by solving an inverse problem where measurements are adequately interpreted by a mathematical forward model. The accuracy of these forward models dramatically affects the accuracy of the material properties recovered by the inverse problem. The more accurate the forward model is, the more accurate recovered data are. However, the more accurate ‘fine’ models demand a high computational time and memory storage. Alternatively, less accurate ‘coarse’ models can be used with a demerit of the high expected recovery errors. This paper uses the Bayesian approximation error approach for improving the inverse problem results when coarse models are utilized. The proposed approach adapts the objective function to be minimized with the a priori misfit between fine and coarse forward model responses. In this paper, two different electromagnetic devices, namely a switched reluctance motor and an EI core inductor, are used as case studies. The proposed methodology is validated on both purely numerical and real experimental results. The results show a significant reduction in the recovery error within an acceptable computational time. (paper)

  3. Validation of Metrics as Error Predictors

    Science.gov (United States)

    Mendling, Jan

    In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.

  4. Asteroids mass determination

    International Nuclear Information System (INIS)

    Hoffmann, M.

    1989-01-01

    Basic methods for asteroid mass determinations and their errors are discussed. New results and some current developments in the astrometric method are reviewed. New methods and techniques, such as electronic imaging, radar ranging and space probes are becoming important for asteroid mass determinations. Mass and density estimations on rotational properties and possible satelites are also discussed

  5. Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling: A case study in environmental remote sensing

    Science.gov (United States)

    Gao, Jing; Burt, James E.

    2017-12-01

    This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.

  6. A novel multitemporal insar model for joint estimation of deformation rates and orbital errors

    KAUST Repository

    Zhang, Lei; Ding, Xiaoli; Lu, Zhong; Jung, Hyungsup; Hu, Jun; Feng, Guangcai

    2014-01-01

    be corrected efficiently and reliably. We propose a novel model that is able to jointly estimate deformation rates and orbital errors based on the different spatialoral characteristics of the two types of signals. The proposed model is able to isolate a long

  7. Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    KAUST Repository

    Sang, Huiyan; Jun, Mikyoung; Huang, Jianhua Z.

    2011-01-01

    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models

  8. Accounting for optical errors in microtensiometry.

    Science.gov (United States)

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup

  9. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution

    Science.gov (United States)

    Wild, O.; Prather, M. J.

    2005-12-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  10. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    Directory of Open Access Journals (Sweden)

    Y. Cao

    2017-09-01

    Full Text Available Most atmospheric models, including the Weather Research and Forecasting (WRF model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.

  11. Using Lambert W function and error function to model phase change on microfluidics

    Science.gov (United States)

    Bermudez Garcia, Anderson

    2014-05-01

    Solidification and melting modeling on microfluidics are solved using Lambert W's function and error's functions. Models are formulated using the heat's diffusion equation. The generic posed case is the melting of a slab with time dependent surface temperature, having a micro or nano-fluid liquid phase. At the beginning the solid slab is at melting temperature. A slab's face is put and maintained at temperature greater than the melting limit and varying in time. Lambert W function and error function are applied via Maple to obtain the analytic solution evolution of the front of microfluidic-solid interface, it is analytically computed and slab's corresponding melting time is determined. It is expected to have analytical results to be useful for food engineering, cooking engineering, pharmaceutical engineering, nano-engineering and bio-medical engineering.

  12. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    Science.gov (United States)

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  13. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  14. Running-mass inflation model and WMAP

    International Nuclear Information System (INIS)

    Covi, Laura; Lyth, David H.; Melchiorri, Alessandro; Odman, Carolina J.

    2004-01-01

    We consider the observational constraints on the running-mass inflationary model, and, in particular, on the scale dependence of the spectral index, from the new cosmic microwave background (CMB) anisotropy measurements performed by WMAP and from new clustering data from the SLOAN survey. We find that the data strongly constraints a significant positive scale dependence of n, and we translate the analysis into bounds on the physical parameters of the inflaton potential. Looking deeper into specific types of interaction (gauge and Yukawa) we find that the parameter space is significantly constrained by the new data, but that the running-mass model remains viable

  15. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human error analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.

  16. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  17. Assessing type I error and power of multistate Markov models for panel data-A simulation study.

    Science.gov (United States)

    Cassarly, Christy; Martin, Renee' H; Chimowitz, Marc; Peña, Edsel A; Ramakrishnan, Viswanathan; Palesch, Yuko Y

    2017-01-01

    Ordinal outcomes collected at multiple follow-up visits are common in clinical trials. Sometimes, one visit is chosen for the primary analysis and the scale is dichotomized amounting to loss of information. Multistate Markov models describe how a process moves between states over time. Here, simulation studies are performed to investigate the type I error and power characteristics of multistate Markov models for panel data with limited non-adjacent state transitions. The results suggest that the multistate Markov models preserve the type I error and adequate power is achieved with modest sample sizes for panel data with limited non-adjacent state transitions.

  18. Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models

    NARCIS (Netherlands)

    Hallin, M.; van den Akker, R.; Werker, B.J.M.

    2012-01-01

    Abstract: This paper introduces rank-based tests for the cointegrating rank in an Error Correction Model with i.i.d. elliptical innovations. The tests are asymptotically distribution-free, and their validity does not depend on the actual distribution of the innovations. This result holds despite the

  19. Mass generation in composite models

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1985-10-01

    I discuss aspects of composite models of quarks and leptons connected with the dynamics of how these fermions acquire mass. Several issues related to the protection mechanisms necessary to keep quarks and leptons light are illustrated by means of concrete examples and a critical overview of suggestions for family replications is given. Some old and new ideas of how one may actually be able to generate small quark and lepton masses are examined, along with some of the difficulties they encounter in practice. (orig.)

  20. Robustness of SOC Estimation Algorithms for EV Lithium-Ion Batteries against Modeling Errors and Measurement Noise

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-01-01

    Full Text Available State of charge (SOC is one of the most important parameters in battery management system (BMS. There are numerous algorithms for SOC estimation, mostly of model-based observer/filter types such as Kalman filters, closed-loop observers, and robust observers. Modeling errors and measurement noises have critical impact on accuracy of SOC estimation in these algorithms. This paper is a comparative study of robustness of SOC estimation algorithms against modeling errors and measurement noises. By using a typical battery platform for vehicle applications with sensor noise and battery aging characterization, three popular and representative SOC estimation methods (extended Kalman filter, PI-controlled observer, and H∞ observer are compared on such robustness. The simulation and experimental results demonstrate that deterioration of SOC estimation accuracy under modeling errors resulted from aging and larger measurement noise, which is quantitatively characterized. The findings of this paper provide useful information on the following aspects: (1 how SOC estimation accuracy depends on modeling reliability and voltage measurement accuracy; (2 pros and cons of typical SOC estimators in their robustness and reliability; (3 guidelines for requirements on battery system identification and sensor selections.

  1. Financial impact of errors in business forecasting: a comparative study of linear models and neural networks

    Directory of Open Access Journals (Sweden)

    Claudimar Pereira da Veiga

    2012-08-01

    Full Text Available The importance of demand forecasting as a management tool is a well documented issue. However, it is difficult to measure costs generated by forecasting errors and to find a model that assimilate the detailed operation of each company adequately. In general, when linear models fail in the forecasting process, more complex nonlinear models are considered. Although some studies comparing traditional models and neural networks have been conducted in the literature, the conclusions are usually contradictory. In this sense, the objective was to compare the accuracy of linear methods and neural networks with the current method used by the company. The results of this analysis also served as input to evaluate influence of errors in demand forecasting on the financial performance of the company. The study was based on historical data from five groups of food products, from 2004 to 2008. In general, one can affirm that all models tested presented good results (much better than the current forecasting method used, with mean absolute percent error (MAPE around 10%. The total financial impact for the company was 6,05% on annual sales.

  2. A 2 x 2 Taxonomy of Multilevel Latent Contextual Models: Accuracy-Bias Trade-Offs in Full and Partial Error Correction Models

    Science.gov (United States)

    Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich

    2011-01-01

    In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…

  3. Assessing Variability and Errors in Historical Runoff Forecasting with Physical Models and Alternative Data Sources

    Science.gov (United States)

    Penn, C. A.; Clow, D. W.; Sexstone, G. A.

    2017-12-01

    Water supply forecasts are an important tool for water resource managers in areas where surface water is relied on for irrigating agricultural lands and for municipal water supplies. Forecast errors, which correspond to inaccurate predictions of total surface water volume, can lead to mis-allocated water and productivity loss, thus costing stakeholders millions of dollars. The objective of this investigation is to provide water resource managers with an improved understanding of factors contributing to forecast error, and to help increase the accuracy of future forecasts. In many watersheds of the western United States, snowmelt contributes 50-75% of annual surface water flow and controls both the timing and volume of peak flow. Water supply forecasts from the Natural Resources Conservation Service (NRCS), National Weather Service, and similar cooperators use precipitation and snowpack measurements to provide water resource managers with an estimate of seasonal runoff volume. The accuracy of these forecasts can be limited by available snowpack and meteorological data. In the headwaters of the Rio Grande, NRCS produces January through June monthly Water Supply Outlook Reports. This study evaluates the accuracy of these forecasts since 1990, and examines what factors may contribute to forecast error. The Rio Grande headwaters has experienced recent changes in land cover from bark beetle infestation and a large wildfire, which can affect hydrological processes within the watershed. To investigate trends and possible contributing factors in forecast error, a semi-distributed hydrological model was calibrated and run to simulate daily streamflow for the period 1990-2015. Annual and seasonal watershed and sub-watershed water balance properties were compared with seasonal water supply forecasts. Gridded meteorological datasets were used to assess changes in the timing and volume of spring precipitation events that may contribute to forecast error. Additionally, a

  4. Data Analysis & Statistical Methods for Command File Errors

    Science.gov (United States)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategi