WorldWideScience

Sample records for masonry diaphragm walls

  1. A seismic analysis for masonry constructions: The different schematization methods of masonry walls

    Science.gov (United States)

    Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo

    2017-11-01

    Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.

  2. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    Science.gov (United States)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  3. Restrained shrinkage of masonry walls

    NARCIS (Netherlands)

    Zijl, G.P.A.G. van; Rots, J.G.

    1998-01-01

    State of the art computational rnechanics, in combination with experimental programmes have a lot to offer in providing insight, characterization of total behaviour and predictive ability of structural masonry. Here numerical research towards rationalizing masonry wall movement joint positioning and

  4. 29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.

    Science.gov (United States)

    2010-07-01

    ..., girders, and similar structural supports shall be cleared of all loose material as the masonry demolition... 29 Labor 8 2010-07-01 2010-07-01 false Removal of walls, masonry sections, and chimneys. 1926.854....854 Removal of walls, masonry sections, and chimneys. (a) Masonry walls, or other sections of masonry...

  5. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  6. To detect anomalies in diaphragm walls

    NARCIS (Netherlands)

    Spruit, R.

    2015-01-01

    Diaphragm walls are potentially ideal retaining walls for deep excavations in densely built-up areas, as they cause no vibrations during their construction and provide structural elements with high strength and stiffness. In the recent past, however, several projects using diaphragm walls as soil

  7. Analysis of Brick Masonry Wall using Applied Element Method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.

  8. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  9. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  10. Diaphragm walling for Sizewell B sets records

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The first phase of construction of the Sizewell-B nuclear reactor has been completed. This was the building of a diaphragm wall around the site. It is one of the largest and deepest diaphragm walls to be installed in Europe. The site can be pumped dry of groundwater and the foundations constructed in the dry. The specifications of the wall and its construction, using two Hydrofraise excavation rigs, are described. The excavated material is brought up as a slurry and the (bentonite) slurry is cleaned and desanded. Most of the wall has been formed using a plastic concrete but reinforced concrete has been used for some stretches. The diaphragm wall, which is 1258m long and 55m deep on average, was built in 19 weeks. (U.K.)

  11. Detecting defects in diaphragm walls prior to excavation

    NARCIS (Netherlands)

    Spruit, R.; Hopman, V.; Van Tol, A.F.; Broere, W.

    2011-01-01

    Recent incidents with leaking diaphragm walls during construction of subway lines in Amsterdam and Rotterdam (Netherlands) have led to reconsideration of the diaphragm wall as a retaining wall construction for deep excavations. In our opinion the joints between the panels are the weak spot. During

  12. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  13. Evaluation of masonry wall design at nuclear power plants

    International Nuclear Information System (INIS)

    Con, V.N.; Subramonian, N.; Chokshi, N.

    1983-01-01

    The structural integrity of safety-related masonry walls in operating nuclear power plants may not be maintained when subjected to certain loads and load combinations. The paper presents some findings based upon the review of the design and analysis procedures used by the licensees in the reevaluation of safety-related masonry walls. The design criteria developed by the Structural Engineering Branch (SEB) of the United States Nuclear Regulatory Commission (NRC) along with other standard codes such as the Uniform Building Code, ACI 531-79, ATC 3-06, and NCMA were used as guidance in evaluating the design criteria developed by the licensees. The paper deals with the following subject areas: loads and load combinations, allowable stresses, analytical procedures, and modification methods. The paper concludes that, in general, the masonry walls in nuclear power plants comply with the working stress design requirements. In some cases, certain nonlinear analysis methods were used. The applicability of these methods is discussed. (orig.)

  14. Experimental determination of damping factors for walls of masonry and reinforced concrete

    International Nuclear Information System (INIS)

    Buttman, P.

    1983-01-01

    'Damping' is a fundamental parameter for the determination of the internal force with a given acceleration response spectrum when designing and dimensioning masonry and reinforced concrete walls for the loading case earthquake. The actual dampings of masonry and reinforced concrete walls are determined on a scale of 1:1 by means of a horizontal excitation at a chosen test setup. The test specimen have the dimensions b/h/d=100/200/11,5 cm and 24 cm. The horizontal and sinusoidal excitation of the test specimen is effected by a dynamic oscillating excitation with a maximum power of 20 kN. The evaluation of the measurements shows that the assumed damping values of 4% for the operating basis earthquake are realistic. In case of amplitudes corresponding to the loadings of the safe shutdown earthquake, however, dampings of 11% for reinforced concrete walls and of 24% for masonry walls were determined. This real damping behavior of reinforced concrete and masonry walls was documented by means of measurements, films and pictures. (orig.)

  15. The use of joint reinforcement in qualifying masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Harris, H.G.; Becica, I.J.; Chokshi, N.C.; Con, V.N.; Hamid, A.A.

    1984-01-01

    Wire joint reinforcement has been traditionally used in block masonry walls for crack control and to provide continuity for multiple wythe walls. In a number of nuclear power plants, vertically unreinforced masonry walls that failed to meet the code allowable stresses for unreinforced masonry were qualified using joint reinforcement as a structural steel to carry lateral loads in the horizontal direction. It is the objective of this paper to examine the adequacy of this approach for seismic load application. A state-of-the-art review of available test data and code design provisions will be presented. It is concluded that the use of joint reinforcement to resist tensile stresses due to seismic loading is questionable because of the lack of test data available and especially the characterization of the cyclic behavior of joint reinforced masonry walls. Further research in this area is recommended

  16. Quasi-static cyclic tests of two prefabricated, reinforced masonry walls

    OpenAIRE

    Braun, Bernard; Rupf, Michael; Beyer, Katrin; Dazio, Alessandro

    2010-01-01

    In the second half of the 20th century, the majority of residential buildings in Switzerland have been built with unreinforced brick masonry walls and reinforced concrete floors. Following a re-evaluation of the seismic hazard in Switzerland, a country of moderate seismicity, the seismic design spectra have increased in the last revision (2003) of the Swiss building code. As a consequence, it has become very difficult to justify the use of unreinforced masonry walls as sufficient seismic resi...

  17. Study of the Arrangement Effect of Units on the Shear Strength Masonry Walls in Meso-Scale

    Directory of Open Access Journals (Sweden)

    M. Sepehrinia

    2016-12-01

    Full Text Available Masonry is one of the oldest building materials which have been used in most heritage structures and new construction. In this study by using a meso-scale finite element model, the behavior of masonry walls is investigated under monotonic loading by Abaqus software. The most important factor in determining the behavior of masonry structures is discontinuity joints which are interface between unit and mortar. In most previous studies cohesive element is used for modeling of interface element. But in this study, by ignoring cohesive elements that represents the interface element between unit and mortar in masonry structures, it can be seen that while reducing the computational requirements, the results are in good agreement with experimental studies. Another important factor in the behavior of masonry walls is the arrangement of masonry units. In this study the overlapping effect of rows of units on the shear strength and failure mode of masonry walls have been investigated. As a result, it was observed that by increasing overlap, shear resistance of masonry walls increased.

  18. Climate Chamber Experiment-Based Thermal Analysis and Design Improvement of Traditional Huizhou Masonry Walls

    Directory of Open Access Journals (Sweden)

    Ling Dong

    2018-03-01

    Full Text Available Supported by thousands of years of history, traditional Huizhou buildings have played a vital role, both functionally and culturally, as residential buildings in China. Masonry walls are one of the key building components of a Huizhou building; however, the traditional Huizhou masonry wall structure, predominantly a hollow brick structure, cannot meet the local building energy code requirements, and thus needs to be improved. Within this context, the present research measures the actual thermal performance of traditional Huizhou masonry walls for historical buildings and new-built buildings, which results in mean thermal transmittances of 1.892 W/m2·K and 2.821 W/m2·K, respectively, while the local building energy code requires a minimum thermal transmittance of 1.500 W/m2·K. In order to improve the thermal performance of traditional Huizhou masonry walls, four design scenarios for wall insulation are proposed and tested in a climate chamber: (1 hollow brick wall with inorganic interior insulation mortar, (2 solid brick wall with inorganic interior insulation mortar, (3 hollow brick wall with foamed concrete, and (4 hollow brick wall with foamed concrete plus inorganic interior insulation mortar. The experiment results indicate that, among the four proposed design scenarios, only scenario 4 can significantly improve the thermal performance of Huizhou masonry walls and meet the building energy code requirements, with a mean thermal transmittance of 1.175 W/m2·K. This research lays the foundation for improving the thermal performance of Huizhou masonry walls with new insulation and construction technology, thereby helping to improve the quality of life of Huizhou residents while respecting the cultural significance of the traditional Huizhou building.

  19. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  20. Nonlinear analysis techniques of block masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Hamid, A.A.; Harris, H.G.

    1986-01-01

    Concrete masonry walls have been used extensively in nuclear power plants as non-load bearing partitions serving as pipe supports, fire walls, radiation shielding barriers, and similar heavy construction separations. When subjected to earthquake loads, these walls should maintain their structural integrity. However, some of the walls do not meet design requirements based on working stress allowables. Consequently, utilities have used non-linear analysis techniques, such as the arching theory and the energy balance technique, to qualify such walls. This paper presents a critical review of the applicability of non-linear analysis techniques for both unreinforced and reinforced block masonry walls under seismic loading. These techniques are critically assessed in light of the performance of walls from limited available test data. It is concluded that additional test data are needed to justify the use of nonlinear analysis techniques to qualify block walls in nuclear power plants. (orig.)

  1. Experimental evaluation of the prevention methods for the interface between masonry infill walls and concrete columns

    Directory of Open Access Journals (Sweden)

    A. P. Tramontin

    Full Text Available Cracks that form at the interfaces between masonry structures are common uncontrolled occurrences in buildings. Numerous methods have been proposed by the construction industry to address this problem. Cracks continuously form in the joints between concrete columns and masonry infill walls. In this study, the most common methods for preventing these types of cracks were evaluated in laboratory experiments. Column masonry models were constructed using different types of joints between concrete columns and masonry infill walls, such as steel bars and steel mesh. The efficiency of each type of joint method was evaluated by performing direct tensile tests (pullout tests on the models and monitoring the evolution of the crack opening in the joint between the column and wall, as a function of load applied to the model. The results from this study indicate that the model composed of "electrowelded wire mesh without steel angles" is the best model for controlling cracking in the joints between concrete columns and masonry infill walls.

  2. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used at various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. (author)

  3. Experimental and analytical investigation of the lateral load response of confined masonry walls

    Directory of Open Access Journals (Sweden)

    Hussein Okail

    2016-04-01

    Full Text Available This paper investigates the behavior of confined masonry walls subjected to lateral loads. Six full-scale wall assembles, consisting of a clay masonry panel, two confining columns and a tie beam, were tested under a combination of vertical load and monotonic pushover up to failure. Wall panels had various configurations, namely, solid and perforated walls with window and door openings, variable longitudinal and transverse reinforcement ratios for the confining elements and different brick types, namely, cored clay and solid concrete masonry units. Key experimental results showed that the walls in general experienced a shear failure at the end of the lightly reinforced confining elements after the failure of the diagonal struts formed in the brick wall due to transversal diagonal tension. Stepped bed joint cracks formed in the masonry panel either diagonally or around the perforations. A numerical model was built using the finite element method and was validated in light of the experimental results. The model showed acceptable correlation and was used to conduct a thorough parametric study on various design configurations. The conducted parametric study involved the assessment of the load/displacement response for walls with different aspect ratios, axial load ratios, number of confining elements as well as the size and orientation of perforations. It was found that the strength of the bricks and the number of confining elements play a significant role in increasing the walls’ ultimate resistance and displacement ductility.

  4. Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls

    International Nuclear Information System (INIS)

    Calderini, Chiara; Cattari, Serena; Lagomarsino, Sergio

    2008-01-01

    In the last century, severe earthquakes highlighted the seismic vulnerability of unreinforced masonry buildings. Many technological innovations have been introduced in time in order to improve resistance, ductility, and dissipation properties of this type of constructions. The most widely diffused are reinforced masonry and confined masonry. Damage observation of recent earthquakes demonstrated the effectiveness of the response of confined masonry structures to seismic actions. In general, in this type of structures, reinforced concrete beams and columns are not main structural elements, however, they have the following functions: to confine masonry in order to increase its ductility; to bear tensile stresses derived from bending; to contrast the out-of-plane overturning of masonry panels. It is well evident that these functions are as much effectively performed as the connection between masonry and reinforced concrete elements is good (for example by mean of local interlocking or reinforcements). Confined masonry structures have been extensively studied in the last decades both from a theoretical point of view and by experimental tests Aims of this paper is to give a contribution to the understanding of the seismic behaviour of confined masonry walls by means of numerical parametrical analyses. There latter are performed by mean of the finite element method; a nonlinear anisotropic constitutive law recently developed for masonry is adopted. Comparison with available experimental results are carried out in order to validate the results. A comparison between the resistance obtained from the numerical analyses and the prevision provided by simplified resistance criteria proposed in literature and in codes is finally provided

  5. Seismic fragility evaluation of unreinforced masonry walls

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used to various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. 6 refs., 4 figs., 3 tabs

  6. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    International Nuclear Information System (INIS)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-01-01

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed

  7. Investigation into the behaviour of concrete anchored diaphragm walls under earthquake condition

    International Nuclear Information System (INIS)

    Saba, H. R.; Rahaii, A. R.

    2003-01-01

    Diaphragm walls are frequently used in civil Engineering projects. Considering the variety and important volume of consumed materials (concrete, anchors and soil), one of the important factors for design and construction of these walls, are their behaviour under different executive, and loading conditions. In this paper, various models of concrete diaphragms with different number of anchors and soil parameters under static and dynamic loading have been investigated using finite element method with nonlinear models. Results including the internal forces in diaphragm walls, variation of forces in the anchors, shape of the sliding surface and variation of pressure in soil are obtained and compared. An experimental tool with suitable measurement systems for determining the pressure and internal forces was designed and realised. Also with similitude and dimensional analyses, diaphragms with different number of anchors were built and set on the shaking table test and experimented under different accelograms. Finally results of nonlinear dynamic analysis were compared with experimental results

  8. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    International Nuclear Information System (INIS)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-01-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall

  9. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    Science.gov (United States)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-07-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards [1]. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards [1] seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall.

  10. Experimental study on the seismic performance of new sandwich masonry walls

    Science.gov (United States)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  11. Internal Insulation of Masonry Walls with Wooden Floor Beams in Northern Humid Climate

    DEFF Research Database (Denmark)

    Morelli, Martin; Scheffler, Gregor Albrecht; Nielsen, Toke Rammer

    2010-01-01

    Multi-story buildings in Denmark from 1850–1950 are built with masonry walls and wooden floor beams. Large energy savings can be achieved by insulating the facades. Often interior insulation is the only possibility in order to keep the appearance of the external facade. The internal insulation...... reduces the drying potential of the wall, which might lead to moisture problems in the beam ends embedded in the masonry due to absorption of driving rain. This paper describes a solution to avoid the moisture problems and still achieve large energy savings. The thermal analyses are made in thermal...

  12. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    Science.gov (United States)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  13. In-Plane Strengthening Effect of Prefabricated Concrete Walls on Masonry Structures: Shaking Table Test

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2017-01-01

    Full Text Available The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification factors of acceleration, and displacements. The results show that the strengthened masonry structure shows much more excellent seismic capacity when compared with the unstrengthened one.

  14. Structures of masonry walls in buildings of permanent ruin – causes of damage and methods of repairs

    OpenAIRE

    Bartosz Szostak

    2017-01-01

    Currently there is a lot of castles classified as objects of the permanent ruin. In according to conservation doctrine, it is needed to protect this objects and prevent further degradation. Usually one of the most destructed element in this type of object is masonry wall. In this article has been described selected types of the masonry walls of the permanent ruin, causes of their damages and repairs methods.

  15. Structures of masonry walls in buildings of permanent ruin – causes of damage and methods of repairs

    Directory of Open Access Journals (Sweden)

    Bartosz Szostak

    2017-12-01

    Full Text Available Currently there is a lot of castles classified as objects of the permanent ruin. In according to conservation doctrine, it is needed to protect this objects and prevent further degradation. Usually one of the most destructed element in this type of object is masonry wall. In this article has been described selected types of the masonry walls of the permanent ruin, causes of their damages and repairs methods.

  16. Strengthening masonry walls made of brick blocks with FRCM composites

    Directory of Open Access Journals (Sweden)

    Radovanović Željka

    2015-01-01

    Full Text Available Results of testing more types of masonry walls made of brick blocks with the aim to define their mechanical characteristics and possibilities of external strengthening of walls with FRCM composites are presented in this paper. The characteristic compressive strengths, elasticity modulus and shear strengths of the various types of the walls were obtained on the basis of these testing results. Comparison between experimental results and values obtained by analytical approach in accordance with the current standard, European standards EN 1996 and the American standard ACI 530 is presented in this paper. After testing walls with application of compressive forces on the walls diagonal the cracked walls samples have been strengthened with selected types of FRCM composites. It was determined that the shear resistance of the walls after strengthening has increased significantly.

  17. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees

    Science.gov (United States)

    Furtado, André; Rodrigues, Hugo; Arêde, António

    2015-06-01

    Recent earthquakes show that masonry infill walls should be taken into account during the design and assessment process of structures, since this type of non-structural elements increase the in-plane stiffness of the structure and consequently the natural period. An overview of the past researches conducted on the modelling of masonry infilled frame issues has been done, with discussion of past analytical investigations and different modelling approaches that many authors have proposed, including micro- and macro-modelling strategies. After this, the present work presents an improved numerical model, based on the Rodrigues et al. (J Earthq Eng 14:390-416, 2010) approach, for simulating the masonry infill walls behaviour in the computer program OpenSees. The main results of the in-plane calibration analyses obtained with one experimental test are presented and discussed. For last, two reinforced concrete regular buildings were studied and subjected to several ground motions, with and without infills' walls.

  18. In-Plane Strengthening Effect of Prefabricated Concrete Walls on Masonry Structures: Shaking Table Test

    OpenAIRE

    Li, Weiwei; Liu, Weiqing; Wang, Shuguang; Du, Dongsheng

    2017-01-01

    The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification f...

  19. Concrete Flow in Diaphragm Wall Panels : A Full-Scale In-Situ Test

    NARCIS (Netherlands)

    Van Dalen, J.H.; Bosch, J.W.; Broere, W.

    2015-01-01

    Flow processes, taking place during the concreting of diaphragm wall panels (D-wall panels), are of great importance for the quality of the wall. During this phase, the bentonite, present in the excavated trench, should be completely replaced by concrete in a controlled way. In literature several

  20. Strengthening of Unreinforced Masonry Walls with Composite Materials

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available Unreinforced masonry (URM is considered one of the oldest construction materials being until the end of XIXth century, the basic material for: foundations, walls, columns, volts, staircases, floor joints, roofs, retaining walls, drainage channels, barrages, etc. Construction with URM elements posses a series of advantages such as: fire resistance, thermal an acoustic insulations between interior and outside spaces, humidity resistance. However the URM elements have some significant inconveniences such as: large self weight (heaviness causes cracks in the other elements of structures, reduced mechanical strengths in comparison with other traditional materials (steel and concrete, low tenacity, great manual labor consumptions, and vulnerability to earthquakes. Various factors cause deteriorations which must be overcome by strengthening solutions. Some strengthening solutions based on fiber reinforced polymers (FRP products applied directly on URM brick walls are presented in the paper.

  1. Investigation of interior post-insulated masonry walls with wooden beam ends

    DEFF Research Database (Denmark)

    Morelli, Martin; Svendsen, Svend

    2013-01-01

    The preponderant number of multistorey buildings constructed in Denmark in the period between 1850 and 1930 were built with masonry walls incorporating wooden floor beams. Given the nature of this construction, it is supposed that significant energy savings could be achieved by simply insulating...... the facades of such buildings. To maintain the exterior appearance of the facade, the only possible means of installing the required insulation is placing it on the interior of the wall. However, the installation of insulation on the interior of the wall assembly reduces the overall drying potential...

  2. CONSTRUCTIVE ASPECTS INFLUENCE ON STIFFNESS OF DIAPHRAGM WALLS IN FRAME CONSTRUCTIONS WITH (LIGHT STEEL THIN –WALLED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. V. Savytskyi

    2010-10-01

    Full Text Available The dependences of influence of structural features of diaphragms of lightweight steel framing braced wall structures on their stiffness are determined. On the basis of dependences the procedure for estimation of stiffness of a diaphragm of any configuration that allows making decisions for maintenance of building stiffness is developed.

  3. Force-displacement response of unreinforced masonry walls for seismic design

    International Nuclear Information System (INIS)

    Petry, S.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology EPFL contributes to the improvement of the design and assessment methods for unreinforced masonry (URM) wall structures built with modern hollow core clay bricks. First, an experimental campaign on the lateral nonlinear in-plane response of URM walls is presented; secondly, an existing dataset on URM walls is extended and reanalysed. A newly developed mechanical model which describes the full force-displacement response of URM walls is described. Two series of URM walls tested under lateral in-plane loading are presented. Throughout the quasi-cyclic tests of all URM walls, the deformations were recorded using a digital photogrammetric measurement system which tracked the displacement field of the walls. Based on these findings, a new mechanical model is proposed which describes the nonlinear force-displacement response of flexural dominated URM walls up to near collapse

  4. Experimental study on the influence of the opening in brick-masonry wall to seismic performance of reinforced concrete frame structures

    Science.gov (United States)

    Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni

    2017-10-01

    Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of

  5. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    International Nuclear Information System (INIS)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-01-01

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), and 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature

  6. Influence of masonry infill walls on longitudinal forces in columns of ...

    African Journals Online (AJOL)

    In this paper the result of conducted numerical studies based on space calculation models are presented. It presents the results of a conducted numerical assessment of the influence of masonry infill walls on variation and redistribution of efforts arising in columns of a cast-in-situ framed building. The quantitative data of the ...

  7. Mechanical Behaviour of the Wood Masonry

    Directory of Open Access Journals (Sweden)

    Fazia FOUCHAL

    2011-09-01

    Full Text Available In this paper we study the walls wood masonry behaviour. First, we propose a regulatory validation of the walls wood masonry behaviour subjected to vertical and horizontal loads according to Eurocode 5. Then we present the numerical application on the wall wood supported two floors level.

  8. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  9. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  10. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  11. Influence of light-weight masonry mortar on the thermal insulation of walling made from hollow blocks

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C; Schuele, M

    1984-10-01

    The thermal conductivity equivalent of hollow-block masonry with different types of mortar is calculated for ten different types of blocks as a function of the thermal conductivity of the brick material. A measure is derived for determining the improved thermal conductivity of hollow-block masonry with light mortar as compared to walls with normal mortar. The findings supplement the findings already obtained for solid bricks.

  12. Inplane shear capacity of reinforced composite masonry block walls

    International Nuclear Information System (INIS)

    White, W.H.; Tseng, W.S.

    1981-01-01

    The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)

  13. Seismic fragility analysis of the block masonry wall in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Z-L.; Pandey, M.D.; Xie, X-C.

    2014-01-01

    The evaluation of seismic fragility of a structure is an integral part in the Seismic Probabilistic Risk Analysis (SPRA). The block masonry wall, a commonly used barrier in nuclear power plants, is fairly vulnerable to failure under an earthquake. In practice, the seismic fragility of block walls is commonly evaluated using a simple deterministic approach called Conservative Deterministic Failure Margin (CDFM) method. This paper presents a more formal fragility analysis of a block wall based on rigorous probabilistic methods and the accuracy of the CDFM method is evaluated by comparison to the more rigorous FA method. (author)

  14. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  15. Hygrothermal Modeling in the Application of Fiber-Reinforced Polymers for Structural Upgrade of Unreinforced Masonry Walls

    National Research Council Canada - National Science Library

    Feickert, Carl A; Lin, Mark W; Trovillion, Jonathan C; Abatan, Ayo O; Berman, Justin B

    2003-01-01

    .... In some instances, these aging structures fail to meet prevailing seismic engineering codes. In the United States alone, 30 percent of the Army's structures use unreinforced masonry (URM) walls...

  16. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    International Nuclear Information System (INIS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-01-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model

  17. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  18. Performance of masonry structures during earthquake-2005 in kashmir

    International Nuclear Information System (INIS)

    Javed, M.

    2008-01-01

    The Kashmir earthquake of October 8th, 2005 was one of the deadliest earthquakes according to the number of fatalities in the history of indo-Pakistan subcontinent. More than 70,000 people were killed, mainly due to collapse of masonry buildings being widely used in Kashmir and Northern Pakistan. Major causes of damages/ collapse of masonry buildings were: poor quality of mortar, undressed stones, flexible roofs not bonded to supporting walls, lateral thrust from inclined roofs, unbraced parapet and gable walls, non-anchored infilled walls, wide openings without surrounding reinforcement, heavy roofs resting on poor quality masonry walls, etc. A critical review of damages to masonry structures is presented in the paper along with measures that need to be taken in future construction. In order to minimize the losses in masonry structures in case of future seismic activities, strategies such as loss assessment are discuss, a part of which has already been taken as a research project by the authors. (author)

  19. Numerical simulations of tests masonry walls from ceramic block using a detailed finite element model

    Directory of Open Access Journals (Sweden)

    V. Salajka

    2017-01-01

    Full Text Available This article deals with an analysis of the behaviour of brick ceramic walls. The behaviour of the walls was analysed experimentally in order to obtain their bearing capacity under static loading and their seismic resistance. Simultaneously, numerical simulations of the experiments were carried out in order to obtain additional information on the behaviour of masonry walls made of ceramic blocks. The results of the geometrically and materially nonlinear computations were compared to the results of the performed tests.

  20. Analysis and design of column reinforced masonry and concrete walls

    International Nuclear Information System (INIS)

    Doyle, J.M.; Roy, S.B.; Fang, S.J.

    1983-01-01

    Fundamental frequencies, maximum moments and maximum shear forces are determined as a function of the governing parameters, for several different boundary conditions. The quantities are obtained for uniform panels, for walls with openings typical of doorways and other penetrations, and for panels having a region of degraded stiffness. In addition to the internal forces and moment due to out-of-plane action, the stresses due to in-plane loading are also found. From the results curves are constructed which allow for easy computation of flexural frequency, and bending moments and shears due to dynamic loads normal to the wall. Furthermore, based on the studies of panels with geometric or material discontinuities, corrections to results for uniform panels are found which can be used if openings or weakened areas exist in the wall. Several conclusions are presented concerning effects on behavior due to varied column location, critical stiffness ratio for columns to be effective, and the effect of openings on overall behavior. A number of design recommendations are presented. While the motivation for the study came from the need to design masonry walls, the analysis results are applicable to solid concrete walls reinforced by vertical columns. (orig./HP)

  1. Experimental investigation of the seismic performance of the R/C frames with reinforced masonry infills

    Science.gov (United States)

    Tanjung, Jafril; Maidiawati, Nugroho, Fajar

    2017-10-01

    Intensive studies regarding the investigation of seismic performance of reinforced concrete (R/C) frames which are infilled with brick masonry walls have been carried out by several researchers within the last three-decades. According to authors' field and experimentally experiences conclude that the unreinforced brick masonry infills significantly contributes to increase the seismic performance of the R/C frame structure. Unfortunately, the presence of brick masonry infill walls causes several undesirable effects such as short column, soft-storey, torsion and out of plane collapse. In this study, a strengthening technique for the brick masonry infills were experimentally investigated to improve the seismic performance of the R/C frame structures. For this purpose, four experimental specimens have been prepared, i.e. one of bare R/C frame (BF), one of R/C frame infilled with unreinforced brick-masonry wall (IFUM) and two of R/C frames were infilled with reinforced brick-masonry wall (IFRM-1 and IFRM-2). The bare frame and R/C frame infilled with unreinforced brick-masonry wall represents the typical R/C buildings' construction in Indonesia assuming the brick-masonry wall as the non-structural elements. The brick-masonry wall infills in specimens IFRM-1 and IFRM-2 were strengthened by using embedded ϕ4 plain steel bar on their diagonal and center of brick-masonry wall, respectively. All specimens were laterally pushed-over. The lateral loading and its lateral displacement, failure mechanism and their crack pattern were recorded during experimental works. Comparison of the experimental results of these four specimens conclude that the strengthening of the brick-masonry infills wall gave the significantly increasing of the seismic performance of the R/C frame. The seismic performance was evaluated based on the lateral strength of the R/C specimen. The embedded plain steel bar on brick-masonry also reduces the diagonal crack on the brick-masonry wall. It seems that

  2. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  3. Seismic Response of a Half-Scale Masonry Building with Flexible Diaphragms

    National Research Council Canada - National Science Library

    Sweeney, Steven C; Horney, Matthew A; Orton, Sarah L

    2005-01-01

    Unreinforced masonry (URM) buildings constructed on Army installations before the development of modern seismic codes may be susceptible to earthquake damage and therefore could benefit from seismic mitigation measures...

  4. Basic Deformation Parameters of Solid Clay Bricks and Small Masonry Walls

    Directory of Open Access Journals (Sweden)

    P. Bouška

    2000-01-01

    Full Text Available The basic mechanical properties of clay brick masonry and its components were experimentally investigated in the laboratories of the Klokner Institute. The test specimens of masonry materials and the relevant mechanical properties have been identified in solid clay bricks and cement-lime mortar. The aim of the research activity was to study both the deformability of the prevailing type of clay masonry in the existing buildings, i.e. the masonry made from the solid clay units and the lime-cement mortar, and the most important mechanical properties of masonry components.

  5. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  6. Effect of horizontal reinforcement in strengthening of masonry members

    International Nuclear Information System (INIS)

    Farooq, S.H.; Ilyas, M.; Ggaffar, A.

    2008-01-01

    An experimental research program was undertaken to ascertain the effectiveness of a new technique for strengthening masonry wall panels using steel strips on compressive and shear strength enhancement. The experimental work includes eight wall panels, four each for compressive and shear strength evaluation. This work was the phase I of extensive research project which include testing of strengthened masonry wall panels under monotonic load (Phase-I), static cyclic load (Phase-2) and dynamic load (Phase-3). The wall panels were strengthened with different steel strip arrangements, which consist of single/double face application of coarse and fine steel strip mesh with reduced spacing of horizontal strips. This paper investigates only the effectiveness of horizontal steel strips on strength enhancement. Four masonry wall panels are considered in two groups and in each group, one wall was retrofitted with coarse steel mesh on single face and on second wall fine steel mesh was applied on one side. Furthermore, test results of strengthened specimens are also compared with the un-strengthened specimen (REFE). The mechanisms by which load was carried were observed, varying from the initial, uncracked state, and the final, fully cracked state. The results demonstrate a quite significant increase in the compressive and shear capacity of strengthened panels as compared to REFE-panel. However, increase in the compressive strength of fine mesh above that of coarse mesh is negligible. The technique/approach is found quite viable for strengthening of masonry walls, for rehabilitation of old deteriorated buildings and unreinforced masonry structures in seismic zones. (author)

  7. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  8. A data fusion approach for progressive damage quantification in reinforced concrete masonry walls

    International Nuclear Information System (INIS)

    Vanniamparambil, Prashanth Abraham; Carmi, Rami; Kontsos, Antonios; Bolhassani, Mohammad; Khan, Fuad; Bartoli, Ivan; Moon, Franklin L; Hamid, Ahmad

    2014-01-01

    This paper presents a data fusion approach based on digital image correlation (DIC) and acoustic emission (AE) to detect, monitor and quantify progressive damage development in reinforced concrete masonry walls (CMW) with varying types of reinforcements. CMW were tested to evaluate their structural behavior under cyclic loading. The combination of DIC with AE provided a framework for the cross-correlation of full field strain maps on the surface of CMW with volume-inspecting acoustic activity. AE allowed in situ monitoring of damage progression which was correlated with the DIC through quantification of strain concentrations and by tracking crack evolution, visually verified. The presented results further demonstrate the relationships between the onset and development of cracking with changes in energy dissipation at each loading cycle, measured principal strains and computed AE energy, providing a promising paradigm for structural health monitoring applications on full-scale concrete masonry buildings. (paper)

  9. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal temperatures. However, due to the relatively low strength there use load bearing walls is limited to single storey and low-rise construction. A system to enhance the strength of the AAC masonry wall in resisting both inplane vertical and combined vertical and lateral loads using ferrocement technology is proposed in this research. The proposed system significantly enhances the load carrying capacity and stiffness of the AAC wall without affecting its insulation characteristics. Ferrocement is made of cement mortar reinforced with closely spaced wire mesh. Full scale wall specimens with height of 2100mm and width of 1820mm were tested with different configuration of ferrocement. A finite elementmodel is developed and verified against the experimentalwork. The results of the finite element model correlates well with the experimental results.

  10. Masonry calendar 1989. A handbook on masonry, wall construction materials, sound, thermal and moisture insulation. Mauerwerk-Kalender 1989. Taschenbuch fuer Mauerwerk, Wandbaustoffe, Schall-, Waerme- und Feuchtigkeitsschutz

    Energy Technology Data Exchange (ETDEWEB)

    Funk, P [ed.

    1989-01-01

    The 1989 Masonry Calendar comprises the following sections and contibutions: Harmonisation of technical rules for brickwork construction on a European scale; fundamentals for brickwork dimensioning according to DIN 1053, part 2; exemplary calculations for the dimensioning of brick walls under compressive and shearing loads according to DIN 1053, part 2; calculation aids for brickwork dimensioning according to DIN 1053, part 2; dimensioning tables for reinforced brickwork of rectangular cross section; characteristic data of brickwork, bricks, and mortar; thermal insulation of brickwork; moisture protection problems in brickwork construction; noise abatement in brickwork construction; novel materials and designs in brickwork construction; characteristic data for calculating the thermal conductivity of building materials; regulations on construction, bricks, binders; further construction materials, testing standards, constructional physics, further standards and technical regulations for brickwork construction, with supplements; DGfM codes; work scaffolding; dwelling on brickwork construction; experiments on the seismic response of brickwork; supporting strength of brick walls under simultaneous horizontal and vertical stress; masonry cost calculation in the framework of overall construction cost calculation; bibliography and important addresses. (BR).

  11. Nonlinear Analyses of Adobe Masonry Walls Reinforced with Fiberglass Mesh

    Directory of Open Access Journals (Sweden)

    Vincenzo Giamundo

    2014-02-01

    Full Text Available Adobe constructions were widespread in the ancient world, and earth was one of the most used construction materials in ancient times. Therefore, the preservation of adobe structures, especially against seismic events, is nowadays an important structural issue. Previous experimental tests have shown that the ratio between mortar and brick mechanical properties (i.e., strength, stiffness and elastic modulus influences the global response of the walls in terms of strength and ductility. Accurate analyses are presented in both the case of unreinforced and reinforced with fiberglass mesh when varying the mechanical properties of the materials composing the adobe masonry structure. The main issues and variability in the behavior of seismic resisting walls when varying the mechanical properties are herein highlighted. The aim of the overall research activity is to improve the knowledge about the structural behavior of adobe structural members unreinforced and reinforced with fiberglass mesh inside horizontal mortar joints.

  12. Alternativa estructural de refuerzo horizontal en muros de mampostería Structural alternative of horizontal reinforcement in masonry walls

    Directory of Open Access Journals (Sweden)

    Diego Fernando Páez Moreno

    2009-01-01

    Full Text Available La implementación de refuerzo horizontal en muros de mampostería con ladrillo macizo de arcilla cocida es una técnica empleada en varios países. En este trabajo se propone un análisis para muros de mampostería representativos de la ciudad de Tunja con la implementación de grafiles de acero como alternativa de refuerzo horizontal. Este estudio involucra la definición de los tipos de materiales a emplear, las características de los muros a ensayar y las variables que se deben aplicar, tanto en los muros como en la ejecución del ensayo de compresión diagonal, que define tipos de muros con características propias de refuerzo. Los resultados del proceso de análisis del comportamiento individual y general de los muros de mampostería sometidos al ensayo de compresión diagonal permiten identificar la variación del esfuerzo cortante representativo para cada tipo de muro, en relación con el refuerzo empleado en los diferentes modelos y la tipología de falla.Implementation of horizontal reinforcement in masonry walls with solid cooked clay bricks is a commonly used technique in several countries. This article is intended to analyze masonry walls representatives of Tunja City, with implementation of small steel bars as an alternative of horizontal reinforcement. This study involves definition of types of materials to be used, characteristics of walls to be tested, and variables which should be applied in both walls and during the execution of the diagonal compression test which defines the types of walls with own characteristics of reinforcement. Results from individual and general behavior analysis process of masonry walls subject to diagonal compression tests allow identifying variation of shear stress for each kind of wall, in relation to reinforcement used in several models and failure typology.

  13. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed; Hendam, Ahmed; Fahmy, Ezzat; Abou Zeid, Mohamed; Haroun, Medhat

    2012-01-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  14. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed

    2012-05-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  15. Analysis of Joist Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  16. Delamination of plasters applied to historical masonry walls: analysis by acoustic emission technique and numerical model

    Science.gov (United States)

    Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.

    2018-06-01

    Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.

  17. Insulated Masonry Cavity Walls. Proceedings of the Research Correlation Conference by the Building Research Institute, Division of Engineering and Industrial Research. (April 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference paper texts include --(1) history and development of masonry cavity walls, (2) recent research related to determination of thermal and moisture resistance, (3) wall design and detailing, (4) design for crack prevention, (5) mortar specification characteristics, (6) performance experience with low-rise buildings, (7)…

  18. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  19. Analyzing crack development pattern of masonry structure in seismic oscillation by digital photography

    Science.gov (United States)

    Zhang, Guojian; Yu, Chengxin; Ding, Xinhua

    2018-01-01

    In this study, digital photography is used to monitor the instantaneous deformation of a masonry wall in seismic oscillation. In order to obtain higher measurement accuracy, the image matching-time baseline parallax method (IM-TBPM) is used to correct errors caused by the change of intrinsic and extrinsic parameters of digital cameras. Results show that the average errors of control point C5 are 0.79mm, 0.44mm and 0.96mm in X, Z and comprehensive direction, respectively. The average errors of control point C6 are 0.49mm, 0.44mm and 0.71mm in X, Z and comprehensive direction, respectively. These suggest that IM-TBPM can meet the accuracy requirements of instantaneous deformation monitoring. In seismic oscillation the middle to lower of the masonry wall develops cracks firstly. Then the shear failure occurs on the middle of masonry wall. This study provides technical basis for analyzing the crack development pattern of masonry structure in seismic oscillation and have significant implications for improved construction of masonry structures in earthquake prone areas.

  20. Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures

    International Nuclear Information System (INIS)

    Liberatore, Laura; Tocci, Cesare; Masiani, Renato

    2008-01-01

    In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building in which the r.c. internal frames are replaced with masonry walls

  1. Effect of historical earthquakes on pre-stressed anchor tie back diaphragm wall and on near-by building

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2013-04-01

    Full Text Available Pre-stressed tie back anchored diaphragm walls are considered one of the safest lateral supports which help in overall stability when there is a significant difference in land level between back and front of these walls. Permanent lateral supports to these walls are frequently represented by supporting it laterally with foundation and floor slabs of the building. In this paper a special study of one raw anchor diaphragm wall subjected to different earthquake dynamic loads will be presented. The wall retains an excavation of 9.5 m and supports laterally a near-by 5 floor building. Five historical strong motions with different fundamental frequencies are subjected on the wall. The wall displacement, straining actions, anchor extreme force and the influence of variation of anchor stiffness are calculated using a dynamic Plaxis finite element program. The soil is considered as elasto-plastic material and represented using Mohr–Coulomb criteria, the wall and the anchor are considered to behave elastically. Prescribed displacement at the lower bottom boundary represents the earthquake motion. Far left and right absorbent boundaries are assumed to prevent dynamic wave reflection. Four static phases representing construction procedure and one dynamic loading phase are considered. It is found that the straining actions of different historical earthquakes match in shape with each other, the only change is in the amplitude which is affected by earthquake fundamental frequency and its intensity. The maximum dynamic lateral displacement of the wall is at its free top. The near-by building shows a differential settlement towards the wall which causes a change in the sign and amplitude of the straining actions. Increasing the stiffness of anchor was also studied and it was found that it reduces too much the maximum dynamic top wall lateral displacement.

  2. The masonry behaviour under contact detonation

    Directory of Open Access Journals (Sweden)

    Marin Lupoae

    2017-03-01

    Full Text Available Breaching in masonry wall as a process of quick intervention of special forces in emergency cases, may require the use of explosive charges. In order to maximize the explosive effects on the wall and to minimize the shock wave and fragments propulsion, such breaching systems usually use a water layer which cover the explosive charge. The thickness of the water layer has a significant influence both on the mitigation of unwanted effects and enhancing the demolition effect, but also increases the mass of the system which can have negative consequences on the maneuverability and rapidity of intervention, respectivly. In this respect, the paper under consideration addresses numerical and experimental research on masonry walls to determine the behavior of mortar and brick under contact detonation and to establish an optimal water layer thickness to balance the breaching system requirement related to the mass on the one hand and effects and offered protection on the other hand.

  3. Comparison between TRM and FRP strengthening systems at preventing buckling failure of brick masonry walls

    Directory of Open Access Journals (Sweden)

    Bernat-Maso, E.

    2016-09-01

    Full Text Available Fibre Reinforced Polymer (FRP and Textile Reinforced Mortar (TRM have been studied, compared and applied to strengthen brick masonry walls. The comparison of their performance against second order bending effects is addressed in this paper for the first time. Experimental and analytical data from previous researches and new analytical data for TRM cases are summarised, ordered and systematically compared to analyse the structural response of strengthened brick masonry walls. The results show a similar performance for both systems in terms of load bearing capacity and in-plane response. However, TRM strengthened cases showed greater lateral deformation than FRP ones.Materiales tipo Fibre Reinforced Polymer (FRP y Textile Reinforced Mortar (TRM han sido estudiados, comparados y aplicados para reforzar muros de fábrica de ladrillo. La comparación de su comportamiento frente a efectos de flexión de segundo orden se abordada en este artículo por primera vez. Datos experimentales y analíticos de investigaciones previas y nuevos datos analíticos para los casos de TRM son resumidos, ordenados y sistemáticamente comparados para analizar la respuesta estructural de los muros de fábrica de ladrillo reforzados. Los resultados muestran un comportamiento similar de los dos sistemas respecto su capacidad de carga y su respuesta en el plano. Los casos reforzados con TRM mostraron desplazamientos laterales superiores a los reforzados con FRP.

  4. Experimental assessment and numerical modeling of the nonlinear behavior of the masonry shear walls under in-plane cyclic loading considering the brickwork-setting effect

    Directory of Open Access Journals (Sweden)

    Amir Hossein Karimi

    2017-08-01

    Full Text Available In this article, the main purpose is nonlinear analysis of the cyclic behavior of the masonry shear walls including brickwork setting using finite element method. Three different brickwork-settings including running bond style, herringbone style and Zarbi style (herreh style were investigated. To this end, the walls (in dimension of 195×1500×1720 mm were tested in the laboratory and then were simulated using macro modeling method by Abaqus software, and their hysteretic curves was drawn. The concrete damaged plasticity criteria in the Abaqus software is a model used in this research.In this method, the main failure mechanisms of fracture are cracking in tension and crushing in compression. The macro modeling method was used for numerical assessment of the masonry walls. After numerical modeling and drawing hysteretic curves and contrasting them with laboratory results, it was proven that the concrete damaged plasticity model, which is behavioral model for simulating concrete material, can be used for modeling masonry materials under seismic loading. However, this model cannot be used to simulate pinching effect in hysteretic curve drawn from seismic loading. The envelope curve resulted from the numerical analysis of all three brickwork layouts had a good agreement with the results of the laboratory tests, but in Hysteretic curve of Herringbone style and Zarbi style the pinching effect did not match experimental results

  5. Salt Induced Decay of Masonry and Electrokinetic Repair

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    in brick depending on its water content and salts may be precipitated on the outer wall or concentrated under paint layers covering the surface of the brick. Different types of damage may appear in masonry walls due to these concentrating phenomena. Bricks themselves can be destroyed and the mortar can...... of bricks without increased salt content is very low compared to soils in general. Furthermore in a masonry wall there are boundaries with different chemistry (e.g. pH) that the ions must pass, brick-mortar boundaries. From initial experiments with electrokinetic removal of Ca2+ ions from bricks good......Salt induced decay of bricks is caused when salts exert internal pressures, which exceed the strength of the stone. The presence of aqueous electrolyte solutions in the capillary pores of brick materials can under changing climate conditions cause deterioration of wall structures. Ions move...

  6. Seismic performance of masonry-infilled RC frames

    Directory of Open Access Journals (Sweden)

    Mircea Bârnaure

    2016-09-01

    Full Text Available The masonry infill of RC frames structures is generally considered as non-structural. The design of the concrete frames is often made by ignoring the influence of the masonry infill, which is only accounted for its mass. The experience on buildings submitted to earthquakes shows that masonry infill walls completely change the behaviour of bare frames due to increased initial stiffness and low deformability. The way in which masonry infills affect the RC frames members is difficult to predict, as different failure modes can occur either in the masonry or in the surrounding frame. In addition to local effects, the position of the masonry infills at different levels can lead to structural irregularity, with a strong influence on the global seismic response of the building. Less infilled stories, also called soft stories, have a particularly unfavourable behaviour under seismic loads, as frame members at these levels are more susceptible to failure. This paper analyses the differences in the behaviour of bare and infilled frames through numerical modelling. Nonlinear push-over analyses of infilled frames are carried out under in-plane vertical and lateral loading. The infill panels are modelled as equivalent single diagonal struts. Several force-displacements laws are considered for these diagonals.

  7. System identification of timber masonry walls using shaking table test

    Science.gov (United States)

    Roy, Timir B.; Guerreiro, Luis; Bagchi, Ashutosh

    2017-04-01

    Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as: bridges, dams, high rise buildings etc. There had been substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as: natural frequency, modal damping and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototype of such wall has been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

  8. Analysis of Joint Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  9. Numerical Analysis of a Masonry Panel Reinforced with Pultruded FRP Frames

    Science.gov (United States)

    Casalegno, C.; Russo, S.; Sciarretta, F.

    2018-05-01

    The paper presents a numerical study on the retrofit of traditional masonry with pultruded GFRP profile frames adjacent to a wall and connected to it by mechanical fasteners. This kind of retrofit solution, not having been explored yet either in theory or practice, is similar to the common steel frame retrofits, but offers the advantages of lightness and durability of FRP composite materials. The retrofit system proposed, once proven effective and advantageous, would bring a considerable potential innovation into its available options. Three different frame geometries and two cases of masonry thickness were considered to investigate the effectiveness of the retrofit GFRP frame on the inplane static response of the wall to horizontal loads. The global and local (connection) failure behavior of the wall-frame system was investigated using the 3D finite-element method. A general increase in strength after the retrofit, up to about 130%, was found, and a switch from rocking to the diagonal tension failure mode was observed. The strength hierarchy of the retrofitted systems was also analyzed to clarify the effectiveness of the retrofit in imparting a residual strength to masonry. A thinner masonry structure was clearly recognized to have got the greatest benefits, but the retrofit could also significantly improve the inplane shear strength of a thicker wall. A comparison with steel structures of analogous capacity in terms of weight and natural vibration frequencies supported the viability of composite FRP frames for retrofit.

  10. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    Science.gov (United States)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  11. Measure Guideline. Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F. [Building Science Corporation (BSC), Somerville, MA (United States); Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Schumacher, C. J. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  12. Measure Guideline: Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  13. Calibration under uncertainty for finite element models of masonry monuments

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  14. Image-Based Delineation and Classification of Built Heritage Masonry

    Directory of Open Access Journals (Sweden)

    Noelia Oses

    2014-02-01

    Full Text Available Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.

  15. Influence of diaphragm wall installation in overconsolidated sandy clays on in situ stress disturbance and resulting wall deformations

    Directory of Open Access Journals (Sweden)

    Truty Andrzej Adam

    2016-09-01

    Full Text Available Numerical modeling of deep excavations becomes a standard practice in modern geotechnical engineering. A detailed numerical model for a given case is able to reproduce major effects of soil-structure interaction by taking into account any kind of drainage conditions, strong stiffness variation due to effective stress and strain changes, creep and cracking, when reinforced concrete is used as a structural material, but also interface effects between subsoil and structure. Calibrating soil constitutive models is one of the most difficult tasks and due to several sources of uncertainty there is no one unique set of the data that should be used in numerical predictions. Lack or incompleteness of experimental data, significant mismatch between laboratory and field tests is an another source of difficulty. Contrary to several simplified methods, that are usually limited to two dimensions, numerical models allow a full 3D analysis in which many simplifications can be eliminated. This paper is devoted to the problem of in situ stress disturbance caused by diaphragm wall installation in overconsolidated quaternary sandy clays and its influence on final wall deformations.

  16. Influence of light masonry mortar on the thermal insulation of a solid brick wall

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C

    1980-12-01

    For calculations of the thermal insulation of structural components according to DIN 4108 and to the Thermal Insulation Ordinance, characteristic data of thermal conductivity are used which are contained in DIN 4108 and in the Bundesanzeiger in Supplements to the publication of material characteristics for the calculation of thermal insulation according to the Thermal Insulation Ordinance. For masonry, this value is equivalent to the thermal conductivity of the bricks, including mortar joints. The mortar considered is standard mortar, group II, according to DIN 1053. In the last few years, in order to improve the thermal insulation, mortars of low thermal conductivity and low volume weight - so-called light masonry mortars - have been used to an increasing extent. The improvement in thermal conductivity as compared with standard mortar is referred to as ..delta..lambda; it depends mostly on the thermal conductivity of the light mortar and the bricks. In the article, the laws governing the influence of light masonry mortar on the thermal insulation of masonry of solid bricks and solid blocks are reviewed.

  17. Retrofitting unreinforced masonry | Ngowi | Botswana Journal of ...

    African Journals Online (AJOL)

    Unreinforced masonry (URM) walls are prone to failure and collapse when subjected to out-of-plane loads caused by earthquake or high wind pressures. This represents one of the main causes of injuries and loss of human lives and property in different parts of the world. Recent catastrophic earthquake events have ...

  18. A tool for the calculation of rockfall fragility curves for masonry buildings

    Science.gov (United States)

    Mavrouli, Olga

    2017-04-01

    Masonries are common structures in mountainous and coastal areas and they exhibit substantial vulnerability to rockfalls. For big rockfall events or precarious structures the damage is very high and the repair is not cost-effective. Nonetheless, for small or moderate rockfalls, the damage may vary in function of the characteristics of the impacting rock blocks and of the buildings. The evaluation of the expected damage for masonry buildings, and for different small and moderate rockfall scenarios, is useful for assessing the expected direct loss at constructed areas, and its implications for life safety. A tool for the calculation of fragility curves for masonry buildings which are impacted by rock blocks is presented. The fragility curves provide the probability of exceeding a given damage state (low, moderate and high) for increasing impact energies of the rock blocks on the walls. The damage states are defined according to a damage index equal to the percentage of the damaged area of a wall, as being proportional to the repair cost. Aleatoric and epistemic uncertainties are incorporated with respect to the (i) rock block velocity, (ii) rock block size, (iii) masonry width, and (iv) masonry resistance. The calculation of the fragility curves is applied using a Monte Carlo simulation. Given user-defined data for the average value of these four parameters and their variability, random scenarios are developed, the respective damage index is assessed for each scenario, and the probability of exceedance of each damage state is calculated. For the assessment of the damage index, a database developed by the results of 576 analytical simulations is used. The variables range is: wall width 0.4 - 1.0 m, wall tensile strength 0.1 - 0.6 MPa, rock velocity 1-20 m/s, rock size 1-20 m3. Nonetheless this tool permits the use of alternative databases, on the condition that they contain data that correlate the damage with the four aforementioned variables. The fragility curves can

  19. Glass Masonry - Experimental Verification of Bed Joint under Shear

    Science.gov (United States)

    Fíla, J.; Eliášová, M.; Sokol, Z.

    2017-10-01

    Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.

  20. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  1. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Directory of Open Access Journals (Sweden)

    Wanlin Cao

    2014-08-01

    Full Text Available Recycled concrete brick (RCB is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  2. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  3. Characterization of the response of quasi-periodic masonry : geometrical investigation, homogenization and application to the Guimarães castle, Portugal

    OpenAIRE

    Milani, G.; Esquivel Fernández, Yhosimi Washington; Lourenço, Paulo B.; Riveiro, Belén; Oliveira, Daniel V.

    2013-01-01

    In many countries, historical buildings were built with masonry walls constituted by random assemblages of stones of variable dimensions and shapes. The analysis of historic masonry structures requires often complex and expensive computational tools that in many cases are difficult to handle, given this large variability of masonry. The present paper validates a methodology for the characterization of the ultimate response of quasi periodic masonry. For this purpose, the behaviour at colla...

  4. Numerical Study on the In-Plane and Out-of-Plane Resistance of Brick Masonry Infill Panels in Steel Frames

    Directory of Open Access Journals (Sweden)

    Vahid Bahreini

    2017-01-01

    Full Text Available Masonry infill walls are one of the main forms of interior partitions and exterior walls in many parts of the world. Nevertheless, serious damage and loss of stability of many masonry infill walls had been reported during recent earthquakes. To improve their performance, the interaction between these infill walls and the bounding frames needs to be properly investigated. Such interaction can dramatically increase the stiffness of the frame in the in-plane direction. To avoid the negative aspects of inappropriate interactions between the frame and infill wall, some kind of isolation needs to be introduced. In this paper, three different configurations have been evaluated by using the general finite element software, ABAQUS. Nonlinear pushover and time history analyses have been conducted for each of the three configurations. Results showed that isolation of the infill from the frame has a significant effect on the in-plane response of infilled frames. Furthermore, adequate out-of-plane stability of the infill wall has been achieved. The results show that masonry infill walls that have full contact at the top of the wall but isolated from columns have shown acceptable performance.

  5. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  6. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  7. Low cost friction seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study

    Science.gov (United States)

    Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.

    2017-07-01

    A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.

  8. Numerical Analysis of Diaphragm Wall Model Executed in Poznań Clay Formation Applying Selected Fem Codes

    Directory of Open Access Journals (Sweden)

    Superczyńska M.

    2016-09-01

    Full Text Available The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.

  9. Computer simulation analysis of normal and abnormal development of the mammalian diaphragm

    Science.gov (United States)

    Fisher, Jason C; Bodenstein, Lawrence

    2006-01-01

    Background Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++™) to study diaphragm morphogenesis. Methods and results Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++™ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. Conclusion With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect

  10. Computer simulation analysis of normal and abnormal development of the mammalian diaphragm

    Directory of Open Access Journals (Sweden)

    Bodenstein Lawrence

    2006-02-01

    Full Text Available Abstract Background Congenital diaphragmatic hernia (CDH is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF, esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++™ to study diaphragm morphogenesis. Methods and results Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++™ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1 cell mitoses are restricted to the edge of growing tissue; (2 cells near the chest wall remain mitotically active; (3 mitotically active non-edge cells migrate toward the chest wall; and (4 movement direction depends on clonal differentiation between anterior and posterior PPF cells. Conclusion With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to

  11. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    Science.gov (United States)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  12. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...... that laterally loaded masonry exhibits a non-linear load-displacement behaviour with some ductility....

  13. An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall

    Directory of Open Access Journals (Sweden)

    Karina Condeixa

    2015-06-01

    Full Text Available Life Cycle Assessment is a methodology that investigates impacts linked to a product or service during its entire life cycle. Life Cycle Assessment studies investigate processes and sub-processes in a fragmented way to ascertain their inputs, outputs and emissions and get an overview of the generating sources of their environmental loads. The lifecycle concept involves all direct and indirect processes of the studied object. This article aims to model the material flows in the masonry and drywall systems and internal walls in a Brazilian scenario, and calculate the climate change impacts generated by the transport of the component materials of the systems. Internal walls of a residential dwelling in Rio de Janeiro are analyzed from a qualitative inventory of all life cycles with an analysis of material flows, based on technical and academic literature. All Life Cycle Impact Assessment of the systems is carried out with international data from the database, and using the IPCC2013 method for climate change impacts. This study disregards the refurbishment and possible extensions within the use phase. Thus, the inventory identifies weaknesses of the systems while the impact assessment validates the results. This study allows us a complete understanding about the inner walls systems in the Brazilian scenario, evidencing its main weaknesses and subsidizes decision-making for the industry and for planning of the new buildings.

  14. CFD analysis of a diaphragm free-piston Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  15. Smart bricks for strain sensing and crack detection in masonry structures

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo

    2018-01-01

    The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.

  16. Cough induced rib fracture, rupture of the diaphragm and abdominal herniation

    Directory of Open Access Journals (Sweden)

    Wurl Peter

    2006-11-01

    Full Text Available Abstract Cough can be associated with many complications. In this article, we present a 59 year old male patient with a very rare combination of a cough related stress fracture of the ninth rib, a traumatic rupture of the diaphragm, and an abdominal wall herniation. The hernia was repaired through surgical treatment without bowel resection, the diaphragm and the internal and oblique abdominal muscle were adapted, and the abdomen was reinforced with a prolene net. Although each individual injury is well documented in the literature, the combination of rib fracture, abdominal herniation and diaphragm rupture has not been reported.

  17. Thermo active piles and diaphragm walls building process and thermal response test; Pilotes y pantallas termoactivas. Proceso constructivo y caracterizacion termica

    Energy Technology Data Exchange (ETDEWEB)

    Mazariegos, A.; Anton, L. C.; Valle, R.; Urchueguia, J.; Quilis, S.; Martinez, S.; Magraner, T.

    2009-07-01

    Thermo active foundation technology uses building foundation piles diaphragm wall slabs as ground heat exchangers to provide building with heating and cooling. This type of foundation is based on the use of the ground temperature to enhance the heat pump coefficient of performance (COP). In this kind of structures, the heat exchange can be done through a closed circuit installed on the reinforced of the foundation. This closed circuit is made up of HDPE pipes geothermal probes, through which water or brine circulates producing a heat exchange between this fluid and the ground. this fluid is led to a geothermal heat pump GHP, generating the energy required for air-conditioning a building. ENERGESIS, leading company in the air-conditioning field using geothermal energy and RADIO KRONSA, leading company in the engineering field of soil and subsoil, with the collaboration of the Universidad Politecnica de Valencia (UPV) and the Escuela Universitaria de Ingenieria Tecnica de Obras Publicas (UPM), have developed an action line to design and implement saving energy facilities by using geothermal energy associated with the foundations. A series of tests at work have been done in order to have a procedure to implement the thermal response of thermo active piles and diaphragm walls. (Author) 7 refs.

  18. On the Numerical Modeling of Confined Masonry Structures for In-plane Earthquake Loads

    Directory of Open Access Journals (Sweden)

    Mircea Barnaure

    2015-07-01

    Full Text Available The seismic design of confined masonry structures involves the use of numerical models. As there are many parameters that influence the structural behavior, these models can be very complex and unsuitable for the current design purposes of practicing engineers. Simplified models could lead to reasonably accurate results, but caution should be given to the simplification assumptions. An analysis of various parameters considered in the numerical modeling of confined masonry structural walls is made. Conclusions regarding the influence of simplified procedures on the results are drawn.

  19. Shaking Table Tests Validating Two Strengthening Interventions on Masonry Buildings

    International Nuclear Information System (INIS)

    De Canio, Gerardo; Poggi, Massimo; Clemente, Paolo; Muscolino, Giuseppe; Palmeri, Alessandro

    2008-01-01

    Masonry buildings constitute quite often a precious cultural heritage for our cities. In order to future generations can enjoy this heritage, thence, effective projects of protection should be developed against all the anthropical and natural actions which may irreparably damage old masonry buildings. However, the strengthening interventions on these constructions have to respect their authenticity, without altering the original conception, not only functionally and aesthetically of course, but also statically. These issues are of central interests in the Messina area, where the seismic protection of new and existing constructions is a primary demand. It is well known, in fact, that the city of Messina lies in a highly seismic zone, and has been subjected to two destructive earthquakes in slightly more than one century, the 1783 Calabria earthquake and the more famous 1908 Messina-Reggio Calabria earthquake. It follows that the retrofitting projects on buildings which survived these two events should be designed with the aim to save the life of occupants operating with 'light' techniques, i.e. respecting the original structural scheme. On the other hand, recent earthquakes, and in particular the 1997 Umbria-Marche sequence, unequivocally demonstrated that some of the most popular retrofitting interventions adopted in the second half the last century are absolutely ineffective, or even unsafe. Over these years, in fact, a number of 'heavy' techniques proliferated, and therefore old masonry buildings suffered, among others, the substitution of existing timber slabs with more ponderous concrete slabs and/or the insertion of RC and steel members coupled with the original masonry elements (walls, arches, vaults). As a result, these buildings have been transformed by unwise engineers into hybrid structures, having a mixed behaviour (which frequently proved to be also unpredictable) between those of historic masonry and new members. Starting from these considerations, a

  20. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker

    International Nuclear Information System (INIS)

    Vedam, S.S.; Kini, V.R.; Keall, P.J.; Ramakrishnan, V.; Mostafavi, H.; Mohan, R.

    2003-01-01

    The aim of this work was to quantify the ability to predict intrafraction diaphragm motion from an external respiration signal during a course of radiotherapy. The data obtained included diaphragm motion traces from 63 fluoroscopic lung procedures for 5 patients, acquired simultaneously with respiratory motion signals (an infrared camera-based system was used to track abdominal wall motion). During these sessions, the patients were asked to breathe either (i) without instruction, (ii) with audio prompting, or (iii) using visual feedback. A statistical general linear model was formulated to describe the relationship between the respiration signal and diaphragm motion over all sessions and for all breathing training types. The model parameters derived from the first session for each patient were then used to predict the diaphragm motion for subsequent sessions based on the respiration signal. Quantification of the difference between the predicted and actual motion during each session determined our ability to predict diaphragm motion during a course of radiotherapy. This measure of diaphragm motion was also used to estimate clinical target volume (CTV) to planning target volume (PTV) margins for conventional, gated, and proposed four-dimensional (4D) radiotherapy. Results from statistical analysis indicated a strong linear relationship between the respiration signal and diaphragm motion (p<0.001) over all sessions, irrespective of session number (p=0.98) and breathing training type (p=0.19). Using model parameters obtained from the first session, diaphragm motion was predicted in subsequent sessions to within 0.1 cm (1 σ) for gated and 4D radiotherapy. Assuming a 0.4 cm setup error, superior-inferior CTV-PTV margins of 1.1 cm for conventional radiotherapy could be reduced to 0.8 cm for gated and 4D radiotherapy. The diaphragm motion is strongly correlated with the respiration signal obtained from the abdominal wall. This correlation can be used to predict diaphragm

  1. Damage to historic brick masonry structures. Masonry damage diagnostic system and damage atlas for evaluation of deterioration

    NARCIS (Netherlands)

    Balen, K. van; Binda, L.; Hees, R.P.J. van; Franke, L.

    1996-01-01

    The aim of the research on brick masonry degradation supported by the D.G. XII is presented. The project is delivering the following: ► Damage Atlas of ancient brick masonry, a book with a description of the types of damage, and their possible causes, in ancient brick masonry structures; ► Masonry

  2. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    Science.gov (United States)

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of

  3. Behaviour and strength assessment of masonry prisms

    Directory of Open Access Journals (Sweden)

    Nassif Nazeer Thaickavil

    2018-06-01

    Full Text Available This is a case study presenting the cracking behavior and assessment of the compressive strength of masonry prisms. The compressive strength of masonry was determined by performing laboratory tests on 192 masonry prism specimens corresponding to 3 specimens each in 64 groups. The variables considered in the experimental program are type of brick, strength of masonry and height-to-thickness (h/t ratio of the prism specimen. Pressed earth bricks and burnt clay bricks were used for the preparation of masonry prisms. A mathematical model is also proposed for the estimation of compressive strength of masonry prisms by performing a statistical multiple regression analysis on 232 data sets, which includes 64 test data from the present study and 168 test data published in the literature. The model was developed based on the regression analysis of test data of prisms made of a variety of masonry units namely clay bricks, pressed earth bricks, concrete blocks, calcium silicate bricks, stone blocks, perforated bricks and soft mud bricks. The proposed model not only accounts for the wide ranges of compressive strengths of masonry unit and mortar, but also accounts for the influence of volume fractions of masonry unit and mortar in addition to the height-to-thickness ratio. The predicted compressive strength of prisms using the proposed model is compared with 14 models available in published literature. The predicted strength was found to be in good agreement with the corresponding experimental data. Keywords: Prism strength, Stack bonded masonry, Running bonded masonry, Masonry unit strength, Cracking

  4. Hygrothermal analysis of surface layers of historical masonry

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Keppert, Martin; Černý, Robert

    2017-11-01

    The paper deals with the hygrothermal analysis of surface layers of historical masonry. Solid brick provided with a traditional and two modified lime-based plasters is studied. The heat and moisture transport in the envelope is induced by an exposure of the wall from the exterior side to dynamic climatic conditions of Olomouc, Czech Republic. The transport processes are described using diffusion type of mathematical model based on experimentally determined material properties. The computational results indicate that hygric transport and accumulation properties of exterior plasters affect the hygrothermal performance of the underlying solid brick in a very significant way, being able to regulate the amount of transported moisture. The modified lime plasters are not found generally superior to the traditional lime plasters in that respect. Therefore, their suitability for historical masonry should be assessed case by case, with a particular attention to the climatic conditions and to the properties of the load bearing structure.

  5. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  6. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  7. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Masera, D; Bocca, P; Grazzini, A, E-mail: davide.masera@polito.it [Department of Structural and Geotechnical Engineering - Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2011-07-19

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  8. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... insulation on north-orientated walls, since the drying potential is reduced. Additionally, caution should be exercised also with west-orientated walls....

  9. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    Science.gov (United States)

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Detection of Anomalies in Diaphragm Walls

    NARCIS (Netherlands)

    Spruit, R.; Van Tol, F.; Broere, W.

    2015-01-01

    If a calamity with a retaining wall occurs, the impact on surrounding buildings and infrastructure is at least an order of magnitude more severe than without the calamity. In 2005 and 2006 major leaks in the retaining walls of underground stations in Amsterdam and Rotterdam occurred. After these

  11. APPLICATION OF COMPUTER SIMULATION IN THE EVALUATION OF THE STRESS-STRAIN STATE OF LOAD-BEARING STRUCTURES OF BUILDINGS MASONRY

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Bedov

    2017-03-01

    Full Text Available The results of studies on the analysis of the stress-strain state of the structures of bearing walls of high-hollow pottery. The way of modeling masonry finite element method. The experimental study of masonry structures produced in the Republic of Bashkortostan high-hollow pottery, set the nature of their work load, the mechanism of destruction. The results of the comparative evaluation of the calculations in the software package and the traditional “manual” calculation.

  12. Determination of the numerical parameters of a continuous damage model for the structural analysis of clay brick masonry

    Directory of Open Access Journals (Sweden)

    Felipe Barbosa Mangueira

    2012-12-01

    Full Text Available Models based on the continuous damage theory present good responses in representing the nonlinear behavior of reinforced concrete structures with loss of strength and stiffness of the material. However, damage theory is rarely employed in the analysis of masonry structures and numerical simulations are currently performed mostly by Finite Element Method formulations. A computational program was designed to determine the numerical parameters of a damage model of the physical properties of masonry components, solid clay brick and mortar. The model was formulated based on the composition of tensile and compressive surface strengths in the plane stress state. The numerical parameters, the corresponding curves of the activation surfaces and the evolution of the surfaces are presented. The results were fed into the computational program based on the Boundary Element Method (BEM for the simulation of masonry walls, and two types of masonry were simulated. The results confirm the good performance of the model and the program based on the BEM.

  13. Properties of dry masonry mixtures based on hollow aluminosilicate microspheres

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav

    2017-01-01

    Full Text Available At present, there is a steady increase in the volume of housing construction in the Russian Federation. The modern trends in the field of energy and resource saving determine the need of the use of efficient building materials that ensure the safety, comfort and minimum cost of housing construction. Among the materials, often used for erecting of fencing structures, it is possible to note effective small-piece elements (ceramic and light-weight concrete units, etc.. To ensure the solidity of such structures, it is necessary to use the masonry mortars whose properties correspond to those of the main wall material. The existing dry mixes for obtaining of such mortars are expensive and often do not meet the minimum physical-and-mechanical and exploitation requirements. The solution of this problem is the usage of the hollow ceramics (aluminosilicate microspheres as a filler for such mixes. The article presents the results of studies of the main physical-and-mechanical and exploitation characteristics of dry masonry mixes with hollow ceramics microspheres modified with various chemical additives. The effect of the compounding factors on the average density and strength of dry masonry mixes was studied. The compositions have been optimized by the methods of mathematical planning.

  14. Interior insulation – Experimental investigation of hygrothermal conditions and damage evaluation of solid masonry façades in a listed building

    DEFF Research Database (Denmark)

    Odgaard, Tommy; Bjarløv, Søren Peter; Rode, Carsten

    2018-01-01

    Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might be the o......Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might...... be the only possibility to increase occupant comfort. This paper describes an investigation of the hygrothermal influence when applying 100 mm of diffusion open interior insulation to a historic multi-storey solid masonry spandrel. The dormitory room with the insulated spandrel had a normal indoor climate...... showed no risk of damage from the changed hygrothermal conditions when applying interior insulation to a solid masonry spandrel....

  15. Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale

    Directory of Open Access Journals (Sweden)

    A. Mebarki

    2012-05-01

    Full Text Available This paper deals with the failure risk of masonry constructions under the effect of floods. It is developed within a probabilistic framework, with loads and resistances considered as random variables. Two complementary approaches have been investigated for this purpose:

    – a global approach based on combined effects of several governing parameters with individual weighted contribution (material quality and geometry, presence and distance between columns, beams, openings, resistance of the soil and its slope. . .,
    – and a reliability method using the failure mechanism of masonry walls standing out-plane pressure.

    The evolution of the probability of failure of masonry constructions according to the flood water level is analysed.

    The analysis of different failure probability scenarios for masonry walls is conducted to calibrate the influence of each "vulnerability governing parameter" in the global approach that is widely used in risk assessment at the urban or regional scale.

    The global methodology is implemented in a GIS that provides the spatial distribution of damage risk for different flood scenarios. A real case is considered for the simulations, i.e. Cheffes sur Sarthe (France, for which the observed river discharge, the hydraulic load according to the Digital Terrain Model, and the structural resistance are considered as random variables. The damage probability values provided by both approaches are compared. Discussions are also developed about reduction and mitigation of the flood disaster at various scales (set of structures, city, region as well as resilience.

  16. Analysis Of Masonry Infilled RC Frame Structures Under Lateral Loading

    Directory of Open Access Journals (Sweden)

    Barnaure Mircea

    2015-03-01

    Full Text Available Partition walls are often made of masonry in Romania. Although they are usually considered non-structural elements in the case of reinforced concrete framed structures, the infill panels contribute significantly to the seismic behaviour of the building. Their impact is difficult to assess, mainly because the interaction between the bounding frame and the infill is an intricate issue. This paper analyses the structural behaviour of a masonry infilled reinforced concrete frame system subjected to in - plane loading. Three numerical models are proposed and their results are compared in terms of stiffness and strength of the structure. The role of the openings in the infill panel on the behaviour is analysed and discussed. The effect of gaps between the frame and the infill on the structural behaviour is also investigated. Comparisons are made with the in-force Romanian and European regulations provisions.

  17. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  18. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  19. Masonry constructions mechanical models and numerical applications

    CERN Document Server

    Lucchesi, Massimiliano; Padovani, Cristina

    2008-01-01

    Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w

  20. Sampling and Analysis Instruction for the Demolition of the Masonry Block for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    Byrnes, M. E.

    1999-01-01

    This sampling and analysis instruction (SAI) has been prepared to clearly define the sampling and analysis activities to be performed in support of the demolition and disposition (or disposal) of the 108-F Biological Laboratory masonry block walls

  1. Statics of Historic Masonry Constructions

    CERN Document Server

    Como, Mario

    2013-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum,  the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.

  2. Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect

    Science.gov (United States)

    Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang

    2018-03-01

    MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.

  3. Numerical Investigation of Masonry Strengthened with Composites

    Directory of Open Access Journals (Sweden)

    Giancarlo Ramaglia

    2018-03-01

    Full Text Available In this work, two main fiber strengthening systems typically applied in masonry structures have been investigated: composites made of basalt and hemp fibers, coupled with inorganic matrix. Starting from the experimental results on composites, the out-of-plane behavior of the strengthened masonry was assessed according to several numerical analyses. In a first step, the ultimate behavior was assessed in terms of P (axial load-M (bending moment domain (i.e., failure surface, changing several mechanical parameters. In order to assess the ductility capacity of the strengthened masonry elements, the P-M domain was estimated starting from the bending moment-curvature diagrams. Key information about the impact of several mechanical parameters on both the capacity and the ductility was considered. Furthermore, the numerical analyses allow the assessment of the efficiency of the strengthening system, changing the main mechanical properties. Basalt fibers had lower efficiency when applied to weak masonry. In this case, the elastic properties of the masonry did not influence the structural behavior under a no tension assumption for the masonry. Conversely, their impact became non-negligible, especially for higher values of the compressive strength of the masonry. The stress-strain curve used to model the composite impacted the flexural strength. Natural fibers provided similar outcomes, but a first difference regards the higher mechanical compatibility of the strengthening system with the substrate. In this case, the ultimate condition is due to the failure mode of the composite. The stress-strain curves used to model the strengthening system are crucial in the ductility estimation of the strengthened masonry. However, the behavior of the composite strongly influences the curvature ductility in the case of higher compressive strength for masonry. The numerical results discussed in this paper provide the base to develop normalized capacity models able to

  4. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  5. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2016-01-01

    This successful book, which is now appearing in its second edition, presents a comprehensive new Statics of Masonry Constructions. Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant. The book you hold in hands contributes to fill this demand. The second edition integrates the original text of the first edition with new developments, widening and revisions, due to recent research studies achievements. The result is a book that gives a complete picture of the behaviour of the Masonry Constructions. First of all, it gives the fundamentals of its Statics, based on the no-tension assumption, and then it develops the Limit Analysis for the Masonry Constructions. In this framework, through an interdisciplinary approach combining Engineering and Architecture, the book also investigates the sta...

  6. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  7. Behaviour of masonry structures during the Bhuj earthquake of ...

    Indian Academy of Sciences (India)

    A variety of masonry structures suffered damage during the recent Bhuj earthquake. Some of the traditional masonry structures had no earthquake resistant features and suffered considerable damage. This paper attempts to evaluate the behaviour of masonry structures based on the type of masonry used in places like Bhuj ...

  8. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  9. Rilem TC 203-RHM: Repair mortars for historic masonry. Requirements for repointing mortars for historic masonry

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Hughes, J.J.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, B.

    2012-01-01

    This paper gives a summary of functional and performance requirements for repointing mortars for historic masonry (design, execution and maintenance). Successful performance of repair and conservation of mortar in historic masonry requires more care with design and execution than with modern

  10. STRUCTURAL VULNERABILITY ASSESSMENT OF MASONRY BUILDINGS IN TURKEY

    OpenAIRE

    KORKMAZ, Kasım Armagan; CARHOGLU, Asuman Isıl

    2011-01-01

    Turkey is located in an active seismic zone. Mid to high rise R/C building and low rise masonry buildings are very common construction type in Turkey. In recent earthquakes, lots of existing buildings got damage including masonry buildings. Masonry building history in Turkey goes long years back. For sure, it is an important structure type for Turkey. Therefore, earthquake behavior and structural vulnerability of masonry buildings are crucial issues for Turkey as a earthquake prone country. I...

  11. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  12. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    Science.gov (United States)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  13. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  14. Evaluation of the seismic response of historical masonry bell towers located in South-East Lombardy, Italy

    Science.gov (United States)

    Valente, Marco; Milani, Gabriele; Shehu, Rafael

    2017-07-01

    This study presents some FE results regarding the behavior under horizontal loads of two existing masonry towers located in South-East Lombardy, Italy. The towers, albeit unique for geometric and architectural features, show some affinities that justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analyzed under seismic loads acting along geometric axes of the plan section, with non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Non-linear dynamic analyses are performed along both the X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some results presented in this paper show the high vulnerability of ancient masonry towers under horizontal loads.

  15. Mechanical behavior of the reinforced concrete frame with masonry filling Comportement mécanique des portiques en béton armé avec remplissage en maçonnerie

    Directory of Open Access Journals (Sweden)

    Kettar Jalal

    2018-01-01

    The analysis of frames filled with masonry is very complex. This complexity is linked from one part to the difference in the nature of elements and its behavior that make up the masonry itself (brick and mortar and their interaction, and on the other part, for the large dispersion that characterizes the bricks as well as the execution's quality parameters which make it difficult to define reliable criteria for the masonry. The objective of this work is to experimentally highlight the influence of the hollow brick masonry filler, commonly used in Morocco, on reinforced concrete frames subject to lateral stresses, to deepen understanding the seismic behavior of the masonry structures by evaluating the structural performance of a specimen wall. These experimental results will be compared to those found by modeling prototypes, using SAP 2000 software, based on various approaches and models as well as other results deduced from the other researchers. The experimental study was carried out according to standard NF EN 1052-3 on two reinforced concrete frames, of dimensions (2m X 1.6m, the one with the masonry filling, and the other without filling in order to determine the initial characteristic resistance to the shearing of the masonry walls. The obtained results showed that a filling has a beneficial effect on rigidity which can be doubled compared to an empty frame. in the same way the lateral resistance. But this effect is much contrasted; it depends a lot on the characteristics essentially of the materials (bricks and concrete. This is the main reason, which justifies the divergence of the results deduced from the nine models that we used.

  16. Masonry Columns Confined by Steel Fiber Composite Wraps

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2011-01-01

    Full Text Available The application of steel fiber reinforced polymer (SRP as a means of increasing the capacity of masonry columns is investigated in this study. The behavior of 23 solid-brick specimens that are externally wrapped by SRP sheets in low volumetric ratios is presented. The specimens are subjected to axial monotonic load until failure occurs. Two widely used types of masonry columns of differing square cross-sections were tested in compression (square and octagonal cross-sections. It is concluded that SRP-confined masonry behaves very much like fiber reinforced polymers (FRP-confined masonry. Confinement increases both the load-carrying capacity and the deformability of masonry almost linearly with average confining stress. A comparative analysis between experimental and theoretical values computed in compliance with the Italian Council of Research (CNR was also developed.

  17. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    International Nuclear Information System (INIS)

    Xiao Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang Qingyuan; Poon, Chi-Sun

    2011-01-01

    Highlights: → Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. → Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. → A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.

  18. Traumatic rupture of the diaphragm: CT findings

    International Nuclear Information System (INIS)

    Cho, Sung Tae; Kim, Sung Jin; Cha, Sang Hoon; Park, Kil Sun; Kim, Jin Hee; Yim, Se Hwan

    1995-01-01

    The aim of this study was to assess the clinical utility of the known CT signs of the traumatic rupture of the diaphragm. CT scans and chest radiographs were retrospectively reviewed in 13 patients who had diaphragmatic rupture confirmed by surgery. On chest radiographs the elevation of the diaphragm was evaluated. On CT, 1) discontinuity of the diaphragm, 2) lack of depiction of the diaphragm surrounding the herniated intraabdominal organs (absent diaphragm sign), and 3) fat seen lateral to the diaphragm (fat sign) were evaluated. Chest radiographs showed the elevation of the diaphragm in 11 patients (85%). CT scan showed absent diaphragm sign in 11 patients (85%), discontinuity of the diaphragm in 8 (62%), and fat sign in 7 (54%). All of 12 patients who had the left diaphragmatic rupture had one or more of the above findings. Discontinuity of the diaphragm, absent diaphragm sign, and fat sign may be helpful CT findings in the diagnosis of the traumatic rupture of the left diaphragm

  19. Experimental study on compressive strength of sediment brick masonry

    Science.gov (United States)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  20. Seismic Behaviour of Masonry Vault-Slab Structures

    International Nuclear Information System (INIS)

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-01-01

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed

  1. Resistance to fire of walls constituted by hollow blocks: Experiments and thermal modeling

    International Nuclear Information System (INIS)

    Al Nahhas, F.; Ami Saada, R.; Bonnet, G.; Delmotte, P.

    2007-01-01

    The thermo-mechanical behavior of masonry walls is investigated from both experimental and theoretical points of view. Fire tests have been performed in order to evaluate the thermo-mechanical resistance of masonry wall submitted to a vertical load (13 ton/m) and exposed to temperatures ranging from 20 to 1200 o C. As a result we measure the temperature evolution inside the wall and evaluate the vertical and lateral displacements of this wall during heating for a period of 6 h. These results are affected significantly by phase-change phenomena which appeared as a plateau around o C in temperature-time curves. A theoretical model was then developed to describe the experimental results taking in to account convection, conduction and radiation phenomena inside the wall. In addition, liquid water migration using an enthalpic method is considered

  2. Results obtained during wall breaching research

    CSIR Research Space (South Africa)

    Hattingh, S

    2008-11-01

    Full Text Available To understand the physics of what is happening inside the wall directly after the detonation and the application of this knowledge in the improvement of the charge Measure the shock/stress waves in the masonry material and then in the wall as a whole... to maximise the effect of the charges on the walls and to broaden the knowledge of the physics of shock and stress waves. The thickness and characteristics of walls are not usually known in an operation. The effect of the charges on real buildings is still...

  3. Diaphragm Dysfunction in Critical Illness.

    Science.gov (United States)

    Supinski, Gerald S; Morris, Peter E; Dhar, Sanjay; Callahan, Leigh Ann

    2018-04-01

    The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    Science.gov (United States)

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase.

  5. Uncertainty in Seismic Capacity of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Nicola Augenti

    2012-07-01

    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  6. The influence of local mechanisms on large scale seismic vulnerability estimation of masonry building aggregates

    Science.gov (United States)

    Formisano, Antonio; Chieffo, Nicola; Milo, Bartolomeo; Fabbrocino, Francesco

    2016-12-01

    The current paper deals with the seismic vulnerability evaluation of masonry constructions grouped in aggregates through an "ad hoc" quick vulnerability form based on new assessment parameters considering local collapse mechanisms. First, a parametric kinematic analysis on masonry walls with different height (h) / thickness (t) ratios has been developed with the purpose of identifying the collapse load multiplier for activation of the main four first-order failure mechanisms. Subsequently, a form initially conceived for building aggregates suffering second-mode collapse mechanisms, has been expanded on the basis of the achieved results. Tre proposed quick vulnerability technique has been applied to one case study within the territory of Arsita (Teramo, Italy) and, finally, it has been also validated by the comparison of results with those deriving from application of the well-known FaMIVE procedure.

  7. Dynamic research of masonry vault in a technical scale

    Science.gov (United States)

    Golebiewski, Michal; Lubowiecka, Izabela; Kujawa, Marcin

    2017-03-01

    The paper presents preliminary results of dynamic tests of the masonry barrel vault in a technical scale. Experimental studies are intended to identify material properties of homogenized masonry vaults under dynamic loads. The aim of the work is to create numerical models to analyse vault's dynamic response to dynamic loads in a simplest and accurate way. The process of building the vault in a technical scale is presented in the paper. Furthermore a excitation of vibrations with an electrodynamic modal exciter placed on the vault, controlled by an arbitrary waveform function generator, is discussed. Finally paper presents trends in the research for homogenization algorithm enabling dynamic analysis of masonry vaults. Experimental results were compared with outcomes of so-called macromodels (macromodel of a brick masonry is a model in which masonry, i.e. a medium consisting of two different fractions - bricks and mortar, is represented by a homogenized, uniformed, material). Homogenization entail significant simplifications, nevertheless according to the authors, can be a useful approach in a static and dynamic analysis of masonry structures.

  8. Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

    Directory of Open Access Journals (Sweden)

    Kawa Marek

    2015-02-01

    Full Text Available The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.

  9. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  10. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  11. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  12. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  13. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2017-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...

  14. Integrating a vented airspace into a spray-foam insulated solid masonry historic building in a cold climate: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Tzekova, Ekaterina; Pressnail, K.D.; Binkley, Clarissa [Department of Civil Engineering, University of Toronto (Canada); Pearson, Nastassja [Halsall Associates Limited (Canada); Pasqualini, Paul [Engineering Link Inc (Canada); Aikin, Craig [Halcrow Yolles (Canada)

    2011-07-01

    Thermal insulation was not included during the construction of historic brick buildings in Canada. Although thermal retrofits can improve building energy performance and occupant comfort, heritage requirements restrict the use of internal insulation. This paper presents an innovative Vented Masonry Retrofit (VMR), which consists of creating a vented airspace by incorporating Mortairvent between the insulation and the masonry. A numerical model and a field trial involving a three-storey heritage building were performed to compare the hygrothermal performance of the VMR with that of standard interior insulation. Temperature and relative humidity were collected during the winter months in foam-insulated, side-by-side wall assemblies along the east and south facing walls using both approaches. Modeling results predicted that using VMR assemblies would reduce the moisture content in both east and south elevations to below that obtained with standard insulation. However, the field trial showed improvement only along the south facade. Long term performance evaluation is required far a better evaluation of the VMR approach.

  15. Seismic Performance of Masonry Buildings in Algeria

    OpenAIRE

    F. Lazzali; S. Bedaoui

    2012-01-01

    Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

  16. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN THE UNITED STATES

    OpenAIRE

    Richard E. Klingner

    2012-01-01

    In this paper, the process used to develop building codes in the United States of America (USA) is summarized, with emphasis on masonry. Masonry materials used in the USA are discussed. Types of masonry construction in the USA are reviewed, addressing historical as well as modern masonry. Current non-structural and structural applications of masonry in the USA are reviewed. Historical development of masonry codes in the USA is summarized, with emphasis on the current Masonry Standards Joi...

  17. Repair mortars for historic masonry : Effects of the binder choice on durability

    NARCIS (Netherlands)

    Groot, C.J.W.P.

    2016-01-01

    Factors affecting the design of repair mortars for historic masonry are: the type of masonry, the condition of the masonry and the exposure conditions. Especially in case of low-strength masonry exposed to heavy rain and high salt contents the design of a repair mortar may be a challenge. The most

  18. Seismic and Restoration Assessment of Monumental Masonry Structures

    Directory of Open Access Journals (Sweden)

    Panagiotis G. Asteris

    2017-08-01

    Full Text Available Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.

  19. Seismic and Restoration Assessment of Monumental Masonry Structures

    Science.gov (United States)

    Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-01-01

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073

  20. Vulnerability of historical masonry buildings under exceptional actions

    OpenAIRE

    Florio, Gilda

    2010-01-01

    The topic of this thesis is the vulnerability assessment of historical masonry buildings under exceptional actions. In order to develop the study, the structural performance of masonry aggregates and isolated monumental buildings under extreme loading condition have been investigated.

  1. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    Science.gov (United States)

    Güney, D.; Aydin, E.; Öztürk, B.

    2015-07-01

    On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.

  2. Mechanical behavior analysis of small-scale modeling of ceramic block masonry structures: geometries effect

    Directory of Open Access Journals (Sweden)

    E. Rizzatti

    Full Text Available This paper presents the experimental results of a research program with ceramic block masonry under compression. Four different block geometries were investigated. Two of them had circular hollows with different net area. The third one had two rectangular hollow and the last block was with rectangular hollows and a double central webs. The prisms and walls were built with two mortar type 1:1:6 (I and 1:0,5:4 (II (proportions by volume of cement: lime: sand. One:three small scale blocks were used to test block, prisms and walls on compression. It was possible to conclude that the block with double central webs gave better results of compressive strength showing to be more efficient. The mortar didn't influenced the compressive strength of prisms and walls.

  3. Masonry structures between mechanics and architecture

    CERN Document Server

    Pedemonte, Orietta; Williams, Kim

    2015-01-01

    This book provides an overview of state of the art research in the mechanics of masonry structures. It continues the series Between Mechanics and Architecture, initially launched in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto and Patricia Radelet-de Grave.   The contributions in this volume represent the main approaches to the complex topic of masonry structures. In addition to historical studies, the mechanical behavior of masonry arches and structures is studied using different approaches (structural analysis, limit analysis, elastic analysis, plasticity, mathematical approaches, etc.), at times difficult to reconcile, at others intertwined and complementary.   Readers will have the opportunity to compare different theoretical lines of inquiry and thus explore new horizons of research.   Contributions by: Danila Aita Andrea Bacigalupo Riccardo Barsotti Stefano Bennati Antonio Brencich Mario Como Salvatore D’Agostino Luigi Gambarotta Jacques Heyman Santiago Huer...

  4. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN THE UNITED STATES

    Directory of Open Access Journals (Sweden)

    Richard E. Klingner

    2012-12-01

    Full Text Available In this paper, the process used to develop building codes in the United States of America (USA is summarized, with emphasis on masonry. Masonry materials used in the USA are discussed. Types of masonry construction in the USA are reviewed, addressing historical as well as modern masonry. Current non-structural and structural applications of masonry in the USA are reviewed. Historical development of masonry codes in the USA is summarized, with emphasis on the current Masonry Standards Joint Committee (MSJC Code and Specification. Future trends in that document are predicted. The paper closes with a list of challenges to the masonry industry, and a list of focused research topics intended to meet those challenges.

  5. Time-History Seismic Analysis of Masonry Buildings: A Comparison between Two Non-Linear Modelling Approaches

    Directory of Open Access Journals (Sweden)

    Michele Betti

    2015-05-01

    Full Text Available The paper presents a comparison between two numerical modelling approaches employed to investigate the seismic behavior of unreinforced masonry buildings with flexible diaphragms. The comparison is performed analyzing a two-story prototype tested on a shaking table at the CNR-ENEA research center of Casaccia (Italy. The first numerical model was built by using the finite element (FE technique, while the second one was built by a simplified macro-element (ME approach. Both models were employed to perform non-linear dynamic analyses, integrating the equations of motion by step-by-step procedures. The shaking table tests were simulated to analyze the behavior of the prototype from the initial elastic state until the development of extensive damage. The main results of the analyses are discussed and critically compared in terms of engineering parameters, such as accelerations, displacements and base shears. The effectiveness of both models within the investigated typology of buildings is then evaluated in depth.

  6. Characterizing the Material Properties of Dutch Unreinforced Masonry

    NARCIS (Netherlands)

    Jafari, S.; Rots, J.G.; Esposito, R.; Messali, F.

    2017-01-01

    In the northern part of the Netherlands, The recent seismic activities have raised concerns about the behavior of unreinforced masonry structures which were not designed and constructed to resist seismic loading. The first step towards assessment of seismic behavior of masonry structures is to

  7. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry

    Directory of Open Access Journals (Sweden)

    Saul Rico

    2017-01-01

    Full Text Available Masonry construction is the most widely used building method in the world. Concrete masonry is relatively low in cost due to the vast availability of aggregates used within the production process. These aggregate materials are not always reliable for structural use. One of the principal issues associated with masonry is the brittleness of the unit. When subject to seismic loads, the brittleness of the masonry magnifies. In regions with high seismic activity and unspecified building codes or standards, masonry housing has developed into a death trap for countless individuals. A common approach concerning the issue associated with the brittle characteristic of masonry is addition of steel reinforcement. However, this can be expensive, highly dependent on skillfulness of labor, and particularly dependent on the quality of available steel. A proposed solution presented in this investigation consists of introducing steel fibers to the lightweight aggregate concrete masonry mix. Previous investigations in the field of lightweight aggregate fiber-reinforced concrete have shown an increase in flexural strength, toughness, and ductility. The outcome of this research project provides invaluable data for the production of a ductile masonry unit capable of withstanding seismic loads for prolonged periods.

  8. Initiation of Failure for Masonry Subject to In-Plane Loads through Micromechanics

    Directory of Open Access Journals (Sweden)

    V. P. Berardi

    2016-01-01

    Full Text Available A micromechanical procedure is used in order to evaluate the initiation of damage and failure of masonry with in-plane loads. Masonry material is viewed as a composite with periodic microstructure and, therefore, a unit cell with suitable boundary conditions is assumed as a representative volume element of the masonry. The finite element method is used to determine the average stress on the unit cell corresponding to a given average strain prescribed on the unit cell. Finally, critical curves representing the initiation of damage and failure in both clay brick masonry and adobe masonry are provided.

  9. New Frontiers on Seismic Modeling of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Salvatore Caddemi

    2017-07-01

    Full Text Available An accurate evaluation of the non-linear behavior of masonry structural elements in existing buildings still represents a complex issue that rigorously requires non-linear finite element strategies difficult to apply to real large structures. Nevertheless, for the static and seismic assessment of existing structures, involving the contribution of masonry materials, engineers need reliable and efficient numerical tools, whose complexity and computational demand should be suitable for practical purposes. For these reasons, the formulation and the validation of simplified numerical strategies represent a very important issue in masonry computational research. In this paper, an innovative macroelement approach, developed by the authors in the last decade, is presented. The proposed macroelement formulation is based on different, plane and spatial, macroelements for the simulation of both the in-plane and out-of-plane behavior of masonry structures also in presence of masonry elements with curved geometry. The mechanical response of the adopted macroelement is governed by non-linear zero-thickness interfaces, whose calibration follows a straightforward fiber discretization, and the non-linear internal shear deformability is ruled by equivalence with a corresponding geometrically consistent homogenized medium. The approach can be considered as “parsimonious” since the kinematics of the adopted elements is controlled by very few degrees of freedom, if compared to a corresponding discretization performed by using non-linear finite element method strategies. This innovative discrete element strategy has been implemented in two user-oriented software codes 3DMacro (Caliò et al., 2012b and HiStrA (Historical Structures Analysis (Caliò et al., 2015, which simplify the modeling of buildings and historical structures by means of several wizard generation tools and input/output facilities. The proposed approach, that represents a powerful tool for the

  10. Method of producing the arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1976-01-01

    In producing arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels for nuclear power plants, it is of advantage to manufacture these directly on the construction site. According to the invention the, at first level, diaphragm ring is put on the predetermined place, sectionally pressed against and shaped by a shaping tool - with a profiled supporting ring as a counter-acting tool - and afterwards welded together with the annular wall sections of the large container along the shaped parts. The manufacture of single and double configurations of diaphragm rings is described. It is of advantage if shaping and mounting position coincide. (UWI) [de

  11. New Stethoscope With Extensible Diaphragm.

    Science.gov (United States)

    Takashina, Tsunekazu; Shimizu, Masashi; Muratake, Torakazu; Mayuzumi, Syuichi

    2016-08-25

    This study compared the diagnostic efficacy of the common suspended diaphragm stethoscope (SDS) with a new extensible diaphragm stethoscope (EDS) for low-frequency heart sounds. The EDS was developed by using an ethylene propylene diene monomer diaphragm. The results showed that the EDS enhanced both the volume and quality of low-frequency heart sounds, and improved the ability of examiners to auscultate such heart sounds. Based on the results of the sound analysis, the EDS is more efficient than the SDS. (Circ J 2016; 80: 2047-2049).

  12. Masonry. Teacher's Guide. Building Maintenance Units of Instruction.

    Science.gov (United States)

    Barnes, Bill

    This teaching guide on masonry building maintenance, one in a series of six publications designed for building maintenance instructors in Texas, is designed to give students an understanding of masonry construction. Introductory material provides teachers with information on use of the units of instruction and personalization and localization of…

  13. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Mead, A F; Petrov, M; Malik, A S; Mitchell, M A; Childers, M K; Bogan, J R; Seidner, G; Kornegay, J N; Stedman, H H

    2014-04-01

    Ventilatory insufficiency remains the leading cause of death and late stage morbidity in Duchenne muscular dystrophy (DMD). To address critical gaps in our knowledge of the pathobiology of respiratory functional decline, we used an integrative approach to study respiratory mechanics in a translational model of DMD. In studies of individual dogs with the Golden Retriever muscular dystrophy (GRMD) mutation, we found evidence of rapidly progressive loss of ventilatory capacity in association with dramatic morphometric remodeling of the diaphragm. Within the first year of life, the mechanics of breathing at rest, and especially during pharmacological stimulation of respiratory control pathways in the carotid bodies, shift such that the primary role of the diaphragm becomes the passive elastic storage of energy transferred from abdominal wall muscles, thereby permitting the expiratory musculature to share in the generation of inspiratory pressure and flow. In the diaphragm, this physiological shift is associated with the loss of sarcomeres in series (∼ 60%) and an increase in muscle stiffness (∼ 900%) compared with those of the nondystrophic diaphragm, as studied during perfusion ex vivo. In addition to providing much needed endpoint measures for assessing the efficacy of therapeutics, we expect these findings to be a starting point for a more precise understanding of respiratory failure in DMD.

  14. APPLICATION OF MIKRODUR IN MASONRY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Makarenkova Yuliya Viktorovna

    2012-10-01

    Full Text Available The author describes the problem of production of the ultra lightweight masonry mortar and methods of its solution. Conditions of optimization of the masonry mortar structure are considered in the article. Presently, Microdur is widely used in construction and repair of subsurface structures, tunnels, oil and gas wells. The use of Mikrodur may substantially improve the properties of the masonry mortar (ρр = 941.17 kg/m3, = 11.00 MPa, av = 66.25 kN, compression = 26.50 MPa, ρрstone = 570.47 kg/m3, per unit compression = 46.45 PMa/kg·103, per unit = 19.28 PMa/kg·103, λ = 0.190 Wt/m°С. The thermal conductivity of both bearing and thermal insulation porous concrete blocks is equal to 0.18…0.21 Wt/m°С. Thus, the new envelope structure of homogeneous thermal conductivity has a value of thermotechnical homogeneity ratio = 0.98.

  15. Masonry Procedures. Building Maintenance. Module V. Instructor's Guide.

    Science.gov (United States)

    Eck, Francis

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for a masonry procedures unit containing eight lessons. Lesson topics are masonry safety practices; set forms; mix concrete; patch and/or repair concrete; pour and finish concrete; mix…

  16. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Márcio R. S. Corrêa

    2012-12-01

    Full Text Available This paper presents an overview of the use of masonry in Brazil. Some historical remarks are presented showing how masonry was introduced and has been developed in the country. A brief on the Brazilian Universities is also reviewed, showing the extensive efforts made to improve the educational system and to insert Brazil into the international masonry research environment. Current materials are shown, focusing on the use of structural and non-structural masonry. The paper points out the development of Codes, considering the most important regulated characteristics of masonry in order to be used in Brazilian constructions. The building situation is addressed, stressing the large housing demands and how the masonry industry can help to partly solve the problem. Finally, present and future challenges are discussed, showing Brazil’s constructions needs, as an emerging country.

  17. Long-Term Dynamic Monitoring of the Historical Masonry FAÇADE: the Case of Palazzo Ducale in Venice, Italy

    Science.gov (United States)

    Noh, J.; Russo, S.

    2017-08-01

    Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge's palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.

  18. Evaluation of Effective Diaphragm Area for Pneumatic Actuator

    International Nuclear Information System (INIS)

    Ryu, Hogeun; Han, Bongsub; Seon, Juhyoung

    2016-01-01

    The purpose of this study is to develop a methodology to calculate the exact effective diaphragm area using the results of diagnostic test to be performed in the evaluation of air operated valve performance. By using this developed methodology in pneumatic actuator performance evaluation, it can be reduce the possible errors arising from effective diaphragm area in the evaluation of performance of air operated valves. The performance assessment for the operability and structural integrity of air operated valves for the domestic nuclear power plant is in progress. One of the important parameters that determine the performance of the air operated valves is the effective diaphragm area of diaphragm type actuator. The effective diaphragm area is the actual area which the air pressure acting on the diaphragm. In general, the effective diaphragm area used for the performance evaluation of pneumatic actuator is provided by the manufacture or the actuator drawing. Flat type diaphragm was showed the difference between the measured value of EDA and the manufacture’s value, in the case of convoluted type diaphragm has showed that the measured value of EDA and manufacture’s value is almost the same. When evaluate a performance of a diaphragm actuator, accurate EDA is to be used because it is an important variable affecting the actuator performance. Particularly in the case of flat type diaphragm which EDA is changed in accordance with the stroke position, by using the EDA evaluation methodology developed in this study to minimize a possible error due to EDA when evaluating the performance of the air actuator

  19. Evaluation of Effective Diaphragm Area for Pneumatic Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hogeun; Han, Bongsub; Seon, Juhyoung [SOOSAN INDUSTRIES, Seoul (Korea, Republic of)

    2016-10-15

    The purpose of this study is to develop a methodology to calculate the exact effective diaphragm area using the results of diagnostic test to be performed in the evaluation of air operated valve performance. By using this developed methodology in pneumatic actuator performance evaluation, it can be reduce the possible errors arising from effective diaphragm area in the evaluation of performance of air operated valves. The performance assessment for the operability and structural integrity of air operated valves for the domestic nuclear power plant is in progress. One of the important parameters that determine the performance of the air operated valves is the effective diaphragm area of diaphragm type actuator. The effective diaphragm area is the actual area which the air pressure acting on the diaphragm. In general, the effective diaphragm area used for the performance evaluation of pneumatic actuator is provided by the manufacture or the actuator drawing. Flat type diaphragm was showed the difference between the measured value of EDA and the manufacture’s value, in the case of convoluted type diaphragm has showed that the measured value of EDA and manufacture’s value is almost the same. When evaluate a performance of a diaphragm actuator, accurate EDA is to be used because it is an important variable affecting the actuator performance. Particularly in the case of flat type diaphragm which EDA is changed in accordance with the stroke position, by using the EDA evaluation methodology developed in this study to minimize a possible error due to EDA when evaluating the performance of the air actuator.

  20. Integrated and holistic suitability assessment of recycling options for masonry rubble

    Science.gov (United States)

    Herbst, T.; Rübner, K.; Meng, B.

    2012-04-01

    Our industrial society depends on continuous mining and consumption of raw materials and energy. Besides, the building sector causes one of the largest material streams in Germany. On the one hand, the building sector is connected with a high need in material and energetic resources as well as financial expenditures. On the other hand, nearly 50 % of the volume of waste arises from the building industry. During the last years, the limitation of natural resources, increasing negative environmental consequences as well as rising prices and shortages of dump space have led to a change in thinking in the building and waste industry to a closed substance cycle waste management. In consideration of the production figures of the main kinds of masonry units (clay bricks, sand-lime bricks, autoclaved aerated concrete brick, concrete blocks), a not unimportant quantity of masonry rubble (including gypsum plaster boards, renders, mortars and mineral insulating materials) of more than 20 million tons per year is generated in the medium term. With regard to a sustainable closed substance cycle waste management, these rest masses have to be recycled if possible. Processed aggregates made from masonry rubble can be recycled in the production of new masonry units under certain conditions. Even carefully deconstructed masonry units can once more re-used as masonry units, particularly in the area of the preservation of monuments and historical buildings. In addition, masonry rubble in different processing qualities is applied in earth and road construction, horticulture and scenery construction as well as concrete production. The choice of the most suitable recycling option causes technical, economical and ecological questions. At present, a methodology for a comprehensive suitability assessment with a passable scope of work does not exist. Basic structured and structuring information on the recycling of masonry rubble is absent up to now. This as well as the economic and technical

  1. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints......, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a stronger mortar...

  2. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  3. Four-Dimensional CT of the Diaphragm in Children: Initial Experience

    Science.gov (United States)

    2018-01-01

    Objective To evaluate the technical feasibility of four-dimensional (4D) CT for the functional evaluation of the pediatric diaphragm. Materials and Methods In 22 consecutive children (median age 3.5 months, age range 3 days–3 years), 4D CT was performed to assess diaphragm motion. Diaphragm abnormalities were qualitatively evaluated and diaphragm motion was quantitatively measured on 4D CT. Lung density changes between peak inspiration and expiration were measured in the basal lung parenchyma. The diaphragm motions and lung density changes measured on 4D CT were compared between various diaphragm conditions. In 11 of the 22 children, chest sonography was available for comparison. Results Four-dimensional CT demonstrated normal diaphragm (n = 8), paralysis (n = 10), eventration (n = 3), and diffusely decreased motion (n = 1). Chest sonography demonstrated normal diaphragm (n = 2), paralysis (n = 6), eventration (n = 2), and right pleural effusion (n = 1). The sonographic findings were concordant with the 4D CT findings in 90.9% (10/11) of the patients. In diaphragm paralysis, the affected diaphragm motion was significantly decreased compared with the contralateral normal diaphragm motion (−1.1 ± 2.2 mm vs. 7.6 ± 3.8 mm, p = 0.005). The normal diaphragms showed significantly greater motion than the paralyzed diaphragms (4.5 ± 2.1 mm vs. −1.1 ± 2.2 mm, p Hounsfield units [HU] vs. 180 ± 71 HU, p = 0.03), while no significant differences were found between the normal diaphragms and the paralyzed diaphragms (136 ± 66 HU vs. 89 ± 73 HU, p = 0.1) or between the normal diaphragms and the contralateral normal diaphragms in paralysis (136 ± 66 HU vs. 180 ± 71 HU, p = 0.1). Conclusion The functional evaluation of the pediatric diaphragm is feasible with 4D CT in select children. PMID:29354007

  4. Airtightness of the window-wall interface in masonry brick walls

    OpenAIRE

    Van Den Bossche, Nathan; Huyghe, Willem; Moens, Jan; Janssens, Arnold

    2013-01-01

    In recent decades there has been an increased focus on enhanced thermal resistance of building components and as a consequence, the relative importance of airtightness on the overall energy losses of buildings has increased significantly. The construction industry requires practical information on the airtightness of individual construction elements and building envelope interfaces. A literature review on the airtightness of window-wall interfaces has shown that no experimental data are avai...

  5. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    International Nuclear Information System (INIS)

    Güney, D; Aydin, E; Öztürk, B

    2015-01-01

    On March 8 th , 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23 rd , 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9 th , 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings. (paper)

  6. Diaphragm users should follow 13 tips for best effectiveness.

    Science.gov (United States)

    Reese, M; Hatcher, R A

    1984-11-01

    The following 13 tips should be presented by family planning practitioners to diaphragm users: 1) the client must be able to feel her cervix; 2) the diaphragm should be checked for tears or holes before each use; 3) it should always be used with contraceptive jelly or cream; 4) petroleum products should not be used with the diaphragm; 5) the device should be inserted in plentyof time before intercourse; 6) it should be used at every intercourse; 7) to insert the diaphragm, use 1 hand to hold the cup down and the dome up, fold the diaphragm in half, push it toward the back of the vagina, and tuck the front rim behind the pubic bone; 8) check placement of the diaphragm by ensuring that the soft rubber dome covers the cervix and the front rim is firmly behind the pubic bone; 9) be aware that the diaphragm is probably not in the correct position if it causes discomfort; 10) do not douche with the diaphragm in place; 11) leave the device in place for a least 6 hours after intercourse; 12) remove the diaphragm by hooking the index finger behind the front rim and pulling down and out, being careful not to puncture the diaphragm; and 13) wash the diaphragm with mild soap and water and store it in a platic container away from heat. If patients gain or lose more than 10 pounds, have a pregnancy or pelvic surgery, suspect that their diaphragm is too large or too small, or are experiencing discomfort or pain, they should have the fit checked. Finally, since several cases of toxic shock syndrome have occured in diaphragm users, patients should avoid leaving the diaphragm in place more than 24 hours and avoid its use during menstruation.

  7. An efficient Bouc & Wen approach for seismic analysis of masonry tower

    Directory of Open Access Journals (Sweden)

    Luca Facchini

    2014-07-01

    Full Text Available The assessment of existing masonry towers under exceptional loads, such as earthquake loads, requires reliable, expedite and efficient methods of analysis. These approaches should take into account both the randomness that affects the masonry properties (in some cases also the distribution of the elastic parameters and, of course, the nonlinear behavior of masonry. Considering the need of simplified but effective methods to assess the seismic response of such structures, the paper proposes an efficient approach for seismic assessment of masonry towers assuming the material properties as a stochastic field. As a prototype of masonry towers a cantilever beam is analyzed assuming that the first modal shape governs the structural motion. With this hypothesis a nonlinear hysteretic Bouc & Wen model is employed to reproduce the system response which is subsequently employed to evaluate the response bounds. The results of the simplified approach are compared with the results of a finite element model to show the effectiveness of the method.

  8. Eventration of diaphragm with a rare association

    Directory of Open Access Journals (Sweden)

    Syed Shafiq

    2014-01-01

    Full Text Available Eventration of the diaphragm is a rare anomaly of unknown origin characterized by a permanent high position of one or rarely both the leaflets of the diaphragm, providing a potential space for the displacement of abdominal viscera on the affected side(s. The etiology, diagnosis, and management of this condition remains a controversial subject. We report a rare case of infiltrating squamous cell carcinoma of the esophagus in a patient with eventration of the diaphragm and gastric volvulus who presented to us with retrosternal discomfort. To the best of our knowledge, this rare association has not been reported in the literature, although one case of esophageal adenocarcinoma arising from Barrett′s esophagus in association with eventration of the diaphragm has been reported previously. This case again emphasis the varied associations of an eventration of the diaphragm.

  9. LONG-TERM DYNAMIC MONITORING OF THE HISTORICAL MASONRY FAÇADE: THE CASE OF PALAZZO DUCALE IN VENICE, ITALY

    Directory of Open Access Journals (Sweden)

    J. Noh

    2017-08-01

    Full Text Available Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge’s palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.

  10. Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture

    Directory of Open Access Journals (Sweden)

    Camino, M. S.

    2014-06-01

    Full Text Available For a better understanding of the behaviour of old brick masonry in facing the rising damp problem, multiple tests were made in the laboratory: water absorption, moisture content, apparent porosity, temperature and thermal camera imaging on brick masonry and its components: brick and mortar. This has allowed us to determine which of the previous tests is the best in predicting the behaviour of a real wall. In addition, the tests have also helped in defining a process to evaluate the moisture content of walls in a buildings, which is important for heritage restoration projects.Para un mejor conocimiento del comportamiento de las fábricas antiguas de ladrillo frente a la ascensión capilar de agua, se han realizado en laboratorio ensayos de absorción de agua, de contenido de humedad, de porosidad aparente, de temperatura e imágenes con cámara termográfica sobre muros de fábrica y sus materiales componentes: ladrillo y argamasa. Ello ha permitido inferir cuál es el ensayo realizado a los ladrillos que mejor predice el comportamiento del muro real. También ha permitido definir un procedimiento para evaluar el contenido de humedad de fábricas existentes, importante para los proyectos de restauración del patrimonio construido.

  11. Verification on reliability of diaphragm seal

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Sakuta, Yoshiyuki; Hanawa, Yoshio; Tsuji, Tomoyuki; Tsuboi, Kazuaki; Nagao, Yoshiharu; Miyazawa, Masataka

    2009-06-01

    The main body of the JMTR is composed of reactor pressure vessel, core and reactor pool. At the bottom of the reactor pool, the Diaphragm-seal (2.6m outer diameter, 2m inner diameter, thickness 1.5mm) of the JMTR made of stainless steel is installed to prevent the water leak of the reactor pool and to absorb the expansion of the reactor pressure vessel due to pressure and temperature changes. In the long-term maintenance plans drawn up in 2004, it is required that the visual inspection for the diaphragm-seal should be carried out in 2007 and that the inspection should be carried out every around five-year. Therefore, prior to the refurbishment of the JMTR, the inspection device which is a deposition-collection apparatus with underwater-camera was developed, and the visual inspection was carried out to confirm the soundness of the diaphragm-seal. As a result, harmful flaws and/or corrosions were not inspected in the visual inspection, and the soundness of the diaphragm seal was confirmed. In future, the long-term integrity of the diaphragm-seal will could be achieved by conducting the periodic inspection. (author)

  12. Solidification of low-level radioactive wastes in masonry cement

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH 2 ) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na 2 SO 4 can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs

  13. Experimental Data and Guidelines for Stone Masonry Structures: a Comparative Review

    International Nuclear Information System (INIS)

    Romano, Alessandra

    2008-01-01

    Indications about the mechanical properties of masonry structures contained in many Italian guidelines are based on different aspects both concerning the constituents material (units and mortar) and their assemblage. Indeed, the documents define different classes (depending on the type, the arrangement and the unit properties) and suggest the use of amplification coefficients for taking into account the influence of different factors on the mechanical properties of masonry. In this paper, a critical discussion about the indications proposed by some Italian guidelines for stone masonry structures is presented. Particular attention is addressed to the classification criteria of the masonry type and to the choice of the amplification factors. Finally, a detailed analytical comparison among the suggested values and some inherent experimental data recently published is performed

  14. Finite element analyses of continuous filament ties for masonry applications : final report for the Arquin Corporation.

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, Armando, Sr. (Arquin Corporation, La Luz, NM); Bibeau, Tiffany A.; Ho, Clifford Kuofei

    2008-08-01

    Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph winds (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).

  15. Seismic Safety Of Simple Masonry Buildings

    International Nuclear Information System (INIS)

    Guadagnuolo, Mariateresa; Faella, Giuseppe

    2008-01-01

    Several masonry buildings comply with the rules for simple buildings provided by seismic codes. For these buildings explicit safety verifications are not compulsory if specific code rules are fulfilled. In fact it is assumed that their fulfilment ensures a suitable seismic behaviour of buildings and thus adequate safety under earthquakes. Italian and European seismic codes differ in the requirements for simple masonry buildings, mostly concerning the building typology, the building geometry and the acceleration at site. Obviously, a wide percentage of buildings assumed simple by codes should satisfy the numerical safety verification, so that no confusion and uncertainty have to be given rise to designers who must use the codes. This paper aims at evaluating the seismic response of some simple unreinforced masonry buildings that comply with the provisions of the new Italian seismic code. Two-story buildings, having different geometry, are analysed and results from nonlinear static analyses performed by varying the acceleration at site are presented and discussed. Indications on the congruence between code rules and results of numerical analyses performed according to the code itself are supplied and, in this context, the obtained result can provide a contribution for improving the seismic code requirements

  16. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    Science.gov (United States)

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  17. Structural Identification And Seismic Analysis Of An Existing Masonry Building

    International Nuclear Information System (INIS)

    Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara; Vignoli, Andrea

    2008-01-01

    The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings

  18. Congenital duodenal diaphragm in eight children

    International Nuclear Information System (INIS)

    Nawaz, Akhtar; Matta, Hilal; Jacobsz, Alic; Al-Salem, Ahmad H.; Trad, Omar

    2004-01-01

    Congenital duodenal obstruction (CDO) is common and usually easy to diagnose cause of intestinal obstruction in the newborn, except when the cause of the obstruction is duodenal diaphragm. We describe our experience with eight children who had intrinsic duodenal obstruction secondary to a duodenal diaphragm. The medical record of 22 children with the diagnosis of congenital intrinsic duodenal were reviewed for age, sex, gestation, birth weight, clinical features, associated anomalies, method of diagnosis, treatment and outcome. Operative findings and procedures were obtained from the operative notes. Eight of 22 children (36.4%) had congenital duodenal diaphragm (CDD). In all children, the diagnosis was made from the plain abdominal X-ray, which showed the classic double-bubble appearence, and barium meal, which showed duodenal obstruction. Four patients had associated anomalies, including two with Down's syndrome intraoperatively, five patients were found to have duodenal diaphragm with a central hole, while the other three had complete duodenal diaphragms. Postoperatively, all patients did well. Six required total parenteral nutrition. The 100% survival rate among these children is comparable to that in Western countries, and can be attributed to the lack of major associated abnormalities, good perioperative management, and the availability of total parenteral nutrition. (author)

  19. The influence of materials characteristics and workmanship on rain penetration in historic fired clay brick masonry

    NARCIS (Netherlands)

    Groot, C.J.W.P.; Gunneweg, J.T.M.

    2010-01-01

    Moisture is a major source of damage in historic solid masonry. Therefore, control of moisture movement in masonry is instrumental to the durability of masonry buildings. From research and practical experience it is known that many factors may play a role regarding permeability problems in masonry.

  20. Influence of the mechanical properties of lime mortar on the strength of brick masonry

    OpenAIRE

    PAVIA, SARA

    2013-01-01

    PUBLISHED This paper aims at improving the quality of lime mortar masonry by understanding the mechanics of mortars and masonry and their interaction. It investigates how the mortar?s compressive and flexural strengths impact the compressive and bond strength of clay brick masonry bound with calcium lime (CL) and natural hydraulic lime (NHL) mortars. It concludes that the strength of the bond has a greater impact on the compressive strength of masonry than the mortar?s st...

  1. Materials for Slack Diaphragms

    Science.gov (United States)

    Puschmann, Traute

    1940-01-01

    This report deals with systematic experiments carried out on five diaphragm materials with different pretreatment, for the purpose of ascertaining the suitability of such materials for slack diaphragms. The relationship of deflection and load, temperature and moisture, was recorded. Of the explored materials, synthetic leather, balloon cloth, goldbeaters skin, Igelit and Buna, synthetic leather treated with castor oil is the most suitable material for the small pressure range required. Balloon cloth is nearly as good, while goldbeaters skin, Igelit and Buna were found to be below the required standards.

  2. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  3. Observations on out-of-plane behaviour of URM walls in buildings with RC slabs

    OpenAIRE

    Tondelli, Marco; Beyer, Katrin

    2014-01-01

    In Switzerland many new residential buildings are constructed as unreinforced masonry (URM) structures or as mixed structures where URM walls are coupled with reinforced concrete (RC) walls by RC slabs. At present the boundary conditions of URM walls subjected to out-of-plane accelerations are still not well quantified. In the framework of a large research activity on RC-URM wall structures a shake-table test on a four-storey mixed structure was performed. The test specimen, which was built a...

  4. Rilem TC 203-RHM. Repair mortars for historic masonry. The role of mortar in masonry: an introduction to requirements for the design of repair mortars

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Maurenbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, M.

    2012-01-01

    Mortar has been in use for many thousands of years and is integral to most masonry construction. Its use is widespread in every culture where masonry is constructed. It is present in the majority of the global built cultural heritage, and is therefore a major consideration in building conservation.

  5. Masonry Infilling Effect On Seismic Vulnerability and Performance Level of High Ductility RC Frames

    International Nuclear Information System (INIS)

    Ghalehnovi, M.; Shahraki, H.

    2008-01-01

    In last years researchers preferred behavior-based design of structure to force-based one for designing and construction of the earthquake-resistance structures, this method is named performance based designing. The main goal of this method is designing of structure members for a certain performance or behavior. On the other hand in most of buildings, load bearing frames are infilled with masonry materials which leads to considerable changes in mechanical properties of frames. But usually infilling wall's effect has been ignored in nonlinear analysis of structures because of complication of the problem and lack of simple logical solution. As a result lateral stiffness, strength, ductility and performance of the structure will be computed with less accuracy. In this paper by use of Smooth hysteretic model for masonry infillings, some high ductile RC frames (4, 8 stories including 1, 2 and 3 spans) designed according to Iranian code are considered. They have been analyzed by nonlinear dynamic method in two states, with and without infilling. Then their performance has been determined with criteria of ATC 40 and compared with recommended performance in Iranian seismic code (standard No. 2800)

  6. Ultrasonographic Assessment of Diaphragm Function in Critically Ill Subjects.

    Science.gov (United States)

    Umbrello, Michele; Formenti, Paolo

    2016-04-01

    The majority of patients admitted to the ICU require mechanical ventilation as a part of their process of care. However, mechanical ventilation itself or the underlying disease can lead to dysfunction of the diaphragm, a condition that may contribute to the failure of weaning from mechanical ventilation. However, extended time on the ventilator increases health-care costs and greatly increases patient morbidity and mortality. Nevertheless, symptoms and signs of muscle disease in a bedridden (or bed rest-only) ICU patient are often difficult to assess because of concomitant confounding factors. Conventional assessment of diaphragm function lacks specific, noninvasive, time-saving, and easily performed bedside tools or requires patient cooperation. Recently, the use of ultrasound has raised great interest as a simple, noninvasive method of quantification of diaphragm contractile activity. In this review, we discuss the physiology and the relevant pathophysiology of diaphragm function, and we summarize the recent findings concerning the evaluation of its (dys)function in critically ill patients, with a special focus on the role of ultrasounds. We describe how to assess diaphragm excursion and diaphragm thickening during breathing and the meaning of these measurements under spontaneous or mechanical ventilation as well as the reference values in health and disease. The spread of ultrasonographic assessment of diaphragm function may possibly result in timely identification of patients with diaphragm dysfunction and to a potential improvement in the assessment of recovery from diaphragm weakness. Copyright © 2016 by Daedalus Enterprises.

  7. Understanding the tensile behaviour of masonry parallel to the bed joints: A numerical approach

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.; Pluijm, R. van der

    1999-01-01

    The lack of experimental data for the complete characterisation of the inelastic behaviour of masonry is a key issue in numerical modelling of masonry structures. A solution to obtain the material properties of masonry at the macro-level is to derive them on the basis of the geometrical and material

  8. Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication

    International Nuclear Information System (INIS)

    Keum, Hohyun; Eisenhaure, Jeffrey D; Kim, Seok; Carlson, Andrew; Ning, Hailong; Mihi, Agustin; Braun, Paul V; Rogers, John A

    2012-01-01

    We present a micromanufacturing method for constructing microsystems, which we term ‘micro-masonry’ based on individual manipulation, influenced by strategies for deterministic materials assembly using advanced forms of transfer printing. Analogous to masonry in construction sites, micro-masonry consists of the preparation, manipulation, and binding of microscale units to assemble microcomponents and microsystems. In this paper, for the purpose of demonstration, we used microtipped elastomeric stamps as manipulators and built three dimensional silicon microstructures. Silicon units of varied shapes were fabricated in a suspended format on donors, retrieved, delivered, and placed on a target location on a receiver using microtipped stamps. Annealing of the assembled silicon units permanently bound them and completed the micro-masonry procedure. (paper)

  9. Analytical model for an electrostatically actuated miniature diaphragm compressor

    International Nuclear Information System (INIS)

    Sathe, Abhijit A; Groll, Eckhard A; Garimella, Suresh V

    2008-01-01

    This paper presents a new analytical approach for quasi-static modeling of an electrostatically actuated diaphragm compressor that could be employed in a miniature scale refrigeration system. The compressor consists of a flexible circular diaphragm clamped at its circumference. A conformal chamber encloses the diaphragm completely. The membrane and the chamber surfaces are coated with metallic electrodes. A potential difference applied between the diaphragm and the chamber pulls the diaphragm toward the chamber surface progressively from the outer circumference toward the center. This zipping actuation reduces the volume available to the refrigerant gas, thereby increasing its pressure. A segmentation technique is proposed for analysis of the compressor by which the domain is divided into multiple segments for each of which the forces acting on the diaphragm are estimated. The pull-down voltage to completely zip each individual segment is thus obtained. The required voltage for obtaining a specific pressure rise in the chamber can thus be determined. Predictions from the model compare well with other simulation results from the literature, as well as to experimental measurements of the diaphragm displacement and chamber pressure rise in a custom-built setup

  10. The Stress and Stiffness Analysis of Diaphragm

    Directory of Open Access Journals (Sweden)

    Qu Dongyue

    2017-01-01

    Full Text Available Diaphragm coupling with its simple structure, small size, high reliability, which can compensate for its input and output displacement deviation by its elastic deformation, is widely used in aerospace, marine, and chemical etc. This paper uses the ANSYS software and its APDL language to analysis the stress distribution when the diaphragm under the load of torque, axial deviation, centrifugal force, angular deviation and multiple loads. We find that the value of maximum stress usually appears in the outer or inner transition region and the axial deviation has a greater influence to the distribution of the stress. Based on above, we got three kinds of stiffness for axial, angular and torque, which the stiffness of diaphragm is nearly invariable. The results can be regard as an important reference for design and optimization of diaphragm coupling.

  11. Collapse Mechanisms Of Masonry Structures

    International Nuclear Information System (INIS)

    Zuccaro, G.; Rauci, M.

    2008-01-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  12. Lightweight concrete masonry units based on processed granulate of corn cob as aggregate

    Directory of Open Access Journals (Sweden)

    Faustino, J.

    2015-06-01

    Full Text Available A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU. Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.En este trabajo de investigación se evaluó la posible aplicación de granulado procesado de la mazorca de maiz como un árido ligero alternativo en el proceso de fabricación de unidades de mampostería de hormigón ligero. Con esta finalidad, se prepararon en una fábrica diversas unidades de mampostería no estructural con granulado procesado de la mazorca de maiz. Además, se fabricaran unidades de mampostería estándar de peso ligero basado en agregados de arcilla expandida. Este trabajo experimental permitió lograr un conjunto de resultados que sugieren que el producto de construcción propuesto presenta interesantes propiedades materiales en el contexto de la pared de mampostería. Por lo tanto, esta solución es prometedora tanto para aplicaciones interiores y exteriores. Esta conclusión es aún más relevante teniendo en cuenta que la mazorca de maíz es un producto de desecho agrícola.

  13. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-04-01

    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  14. Laboratory Characterization of Gray Masonry Concrete

    National Research Council Canada - National Science Library

    Williams, Erin M; Akers, Stephen A; Reed, Paul A

    2007-01-01

    Personnel of the Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, conducted a laboratory investigation to characterize the strength and constitutive property behavior of a gray masonry concrete...

  15. Geo-electric measurements – internal state of historic masonry

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    A geophysical resistivity measuring device was modified to perform automatic monitoring of historical masonry structures before, during and after grout injection for consolidation purposes. The obtained image is called a geo-electrical tomography. The technique was used to evaluate the deteriorated masonry of the recently partly collapsed Maagdentoren in Zichem,(B). Geo-electric measuring techniques have been adapted from application in geology to be used as a non-destructive technique for t...

  16. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    van Rijswick, R.J.A.

    2017-01-01

    Piston diaphragm pumps are used world-wide to transport abrasive and/or aggressive slurries against high discharge pressures in the mining, mineral processing and power industries. Limitation of excessive deformation of the diaphragm is of utmost importance for eliminating fatigue failures of the

  17. Adaptive unstructured simulations of diaphragm rupture and perforation opening to start hypersonic air inlets

    International Nuclear Information System (INIS)

    Timofeev, E.V.; Tahir, R.B.; Voinovich, P.A.; Moelder, S.

    2004-01-01

    The concept of 'twin' grid nodes is discussed in the context of unstructured, adaptive meshes that are suitable for highly unsteady flows. The concept is applicable to internal boundary contours (within the computational domain) where the boundary conditions may need to be changed dynamically; for instance, an impermeable solid wall segment can be redefined as a fully permeable invisible boundary segment during the course of the simulation. This can be used to simulate unsteady gas flows with internal boundaries where the flow conditions may change rapidly and drastically. As a demonstration, the idea is applied to study the starting process in hypersonic air inlets by rupturing a diaphragm or by opening wall-perforations. (author)

  18. Diaphragms obtained by radiochemical grafting in PTFE

    International Nuclear Information System (INIS)

    Nenner, T.; Fahrasmane, A.

    1984-01-01

    Diaphragms for alkaline water electrolysis are prepared by radiochemical grafting of PTFE fabric with styrene, which is later on sulfonated, or with acrylic acid. The diaphragms obtained are mechanically resistant to potash at temperatures up to 200 0 C, but show some degrafting, which limits the lifetime. The sulfonated styrene group has been found to be more stable in electrolysis than the acrylic acid. In both cases, the incorporation of a cross-linking agent like divinyl benzene improves the lifetime of the diaphragms. Electrolysis during 500 hours at 120 0 C and 10 kAm 2 could be performed. (author)

  19. Analytical investigation of bidirectional ductile diaphragms in multi-span bridges

    Science.gov (United States)

    Wei, Xiaone; Bruneau, Michel

    2018-04-01

    In the AASHTO Guide Specifications for Seismic Bridge Design Provisions, ductile diaphragms are identified as Permissible Earthquake-Resisting Elements (EREs), designed to help resist seismic loads applied in the transverse direction of bridges. When adding longitudinal ductile diaphragms, a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge's longitudinal and transverse axes. This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces (BRBs) in straight multi-span bridge with simply supported floating spans. The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered. Design procedures for the bidirectional ductile diaphragms are first proposed. An analytical model of the example bridge with bidirectional ductile diaphragms, designed based on the proposed methodology, is then built in SAP2000. Pushover and nonlinear time history analyses are performed on the bridge model, and corresponding results are presented. The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated, in order to better understand the impact on the bridge's dynamic performance.

  20. Bending-Induced Giant Polarization in Ferroelectric MEMS Diaphragm

    KAUST Repository

    Wang, Zhihong

    2016-09-09

    The polarization induced by the strain gradient, i.e. the flexoelectric effect, has been observed in a micromachined Pb(Zr0.52Ti0.48)O3 (PZT) diaphragms. Applying air pressure to bend a flat diaphragm which initially does not exhibit any electromechanical coupling can induce a resonance peak in its impedance spectrum. This result supposes that bending, thus the strain gradient in the diaphragm causes polarization in PZT film. We also investigated the switching behaviors of the polarization in response to an external electric field in a bent diaphragm and further quantified the polarization induced by the strain gradient. The effective flexoelectric coefficient of the PZT film has been calculated as large as 2.0 × 10−4 C/m. A giant flexoelectric polarization of the order of 1 μC/cm2 was characterized which is of the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. The suggested explanation for the giant polarization is the large strain gradient in the diaphragm and the strain gradient induced reorientation of the polar nanodomains.

  1. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    Van Rijswick, R.; Van Rhee, C.

    2013-01-01

    Piston diaphragm pumps are used world-wide for the transport of aggressive and/or abrasive fluids in the chemical, mining and mineral processing industries. Figure 1 shows a cross section of a piston diaphragm pump as is used in the mining and mineral processing industries for the transport of

  2. Basic Hand Tools for Bricklaying and Cement Masonry [and] Basic Hand Tools of the Carpenter.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Intended for student use, this unit discusses and illustrates the tools used in brick and masonry and carpentry. Contents of the brick and masonry section include informative materials on bricklaying tools (brick trowels, joint tools, levels, squares, line and accessories, rules, hammers and chisels, tool kits) and cement masonry tools (tampers,…

  3. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  4. Safety assessment of historical masonry churches based on pre-assigned kinematic limit analysis, FE limit and pushover analyses

    International Nuclear Information System (INIS)

    Milani, Gabriele; Valente, Marco

    2014-01-01

    This study presents some results of a comprehensive numerical analysis on three masonry churches damaged by the recent Emilia-Romagna (Italy) seismic events occurred in May 2012. The numerical study comprises: (a) pushover analyses conducted with a commercial code, standard nonlinear material models and two different horizontal load distributions; (b) FE kinematic limit analyses performed using a non-commercial software based on a preliminary homogenization of the masonry materials and a subsequent limit analysis with triangular elements and interfaces; (c) kinematic limit analyses conducted in agreement with the Italian code and based on the a-priori assumption of preassigned failure mechanisms, where the masonry material is considered unable to withstand tensile stresses. All models are capable of giving information on the active failure mechanism and the base shear at failure, which, if properly made non-dimensional with the weight of the structure, gives also an indication of the horizontal peak ground acceleration causing the collapse of the church. The results obtained from all three models indicate that the collapse is usually due to the activation of partial mechanisms (apse, façade, lateral walls, etc.). Moreover the horizontal peak ground acceleration associated to the collapse is largely lower than that required in that seismic zone by the Italian code for ordinary buildings. These outcomes highlight that structural upgrading interventions would be extremely beneficial for the considerable reduction of the seismic vulnerability of such kind of historical structures

  5. Safety assessment of historical masonry churches based on pre-assigned kinematic limit analysis, FE limit and pushover analyses

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it; Valente, Marco, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2014-10-06

    This study presents some results of a comprehensive numerical analysis on three masonry churches damaged by the recent Emilia-Romagna (Italy) seismic events occurred in May 2012. The numerical study comprises: (a) pushover analyses conducted with a commercial code, standard nonlinear material models and two different horizontal load distributions; (b) FE kinematic limit analyses performed using a non-commercial software based on a preliminary homogenization of the masonry materials and a subsequent limit analysis with triangular elements and interfaces; (c) kinematic limit analyses conducted in agreement with the Italian code and based on the a-priori assumption of preassigned failure mechanisms, where the masonry material is considered unable to withstand tensile stresses. All models are capable of giving information on the active failure mechanism and the base shear at failure, which, if properly made non-dimensional with the weight of the structure, gives also an indication of the horizontal peak ground acceleration causing the collapse of the church. The results obtained from all three models indicate that the collapse is usually due to the activation of partial mechanisms (apse, façade, lateral walls, etc.). Moreover the horizontal peak ground acceleration associated to the collapse is largely lower than that required in that seismic zone by the Italian code for ordinary buildings. These outcomes highlight that structural upgrading interventions would be extremely beneficial for the considerable reduction of the seismic vulnerability of such kind of historical structures.

  6. Radiofrequency ablation of pulmonary tumors near the diaphragm.

    Science.gov (United States)

    Iguchi, T; Hiraki, T; Gobara, H; Fujiwara, H; Sakurai, J; Matsui, Y; Mitsuhashi, T; Toyooka, S; Kanazawa, S

    To retrospectively evaluate the feasibility, safety, and efficacy of radiofrequency ablation (RFA) of lung tumors located near the diaphragm. A total of 26 patients (15 men, 11 women; mean age, 61.5 years±13.0 [SD]) with a total of 29 lung tumors near the diaphragm (i.e., distance<10mm) were included. Mean tumor diameter was 11.0mm±5.3 (SD) (range, 2-23mm). Efficacy of RFA, number of adverse events and number of adverse events with a grade≥3, based on the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0, were compared between patients with lung tumors near the diaphragm and a control group of patients with more distally located lung tumors (i.e., distance≥10mm). RFA was technically feasible for all tumors near the diaphragm. Four grade 3 adverse events (1 pneumothorax requiring pleurodesis and 3 phrenic nerve injuries) were observed. No grade≥4 adverse events were reported. The median follow-up period for tumors near the diaphragm was 18.3 months. Local progression was observed 3.3 months after RFA in 1 tumor. The technique efficacy rates were 96.2% at 1 year and 96.2% at 2 years and were not different, from those observed in control subjects (186 tumors; P=0.839). Shoulder pain (P<0.001) and grade 1 pleural effusion (P<0.001) were more frequently observed in patients with lung tumor near the diaphragm. The rates of grade≥3 adverse events did not significantly differ between tumors near the diaphragm (4/26 sessions) and the controls (7/133 sessions) (P=0.083). RFA is a feasible and effective therapeutic option for lung tumors located near the diaphragm. However, it conveys a higher rate of shoulder pain and asymptomatic pleural effusion by comparison with more distant lung tumors. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  7. Two approaches for the analysis of masonry structures : Micro and macro-modeling

    NARCIS (Netherlands)

    Laurenco, P.B.; Rots, J.G.; Blaauwendraad, J.

    1995-01-01

    Two models for the micro- and macro-analysis of masonry structures are presented. For the micromodeling of masonry, an interface failure criterion that includes a straight tension cut-off, the Coulomb friction law and an elliptical cap is proposed. The inelastic behavior includes tensile strength

  8. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  9. Experimental assessment of dry stone retaining wall stability on a rigid foundation

    OpenAIRE

    Villemus , B.; Morel , J.C.; Boutin , C.

    2007-01-01

    International audience; Dry stone masonry retaining walls are present in the majority of mountainous areas all around the world, but the technique is marginal today in developed countries. The emergence of the concept of sustainable development calls for renewed use of this technique, both for the repair of existing retaining walls and the building of new ones. The objective of this research was to seek the knowledge necessary to ensure the stability of these structures, using experimental in...

  10. DISTORTION ANALYSIS OF TILL -WALLED BOX GIRDERS

    African Journals Online (AJOL)

    NIJOTECH

    bridges, buildings, motor vehicles, ships and aircrafts. Due to thinness of the box walls, generalized loads applied to this structure give rise to warping and distortion of ..... Recommendation for Design of. Intermediate Diaphragms in Box. Girders, Transactions of Japanese. Society of Civil Engineers, Vol. 14,1984, pp 121-126.

  11. Influence of Additives on Masonry and Protective Paints’ Quality

    Science.gov (United States)

    Kostiunina, I. L.; Vyboishchik, A. V.

    2017-11-01

    The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.

  12. The earliest history of diaphragm physiology.

    Science.gov (United States)

    Derenne, J P; Debru, A; Grassino, A E; Whitelaw, W A

    1994-12-01

    The diaphragm was recognized as a distinct anatomical structure in the earliest Greek writings. However, the precise description of wounds suffered by warriors during the Trojan war by Homer was not tied to any particular function. The diaphragm was assimilated to the region that harbours thought. The first physiologic explanations of respiration by Empedocles in the 5th century BC and the concepts introduced by Plato and Hippocrates did not include a significant participation of the diaphragm. Aristole was the first to link respiration to a particular organ and a specific movement of the thorax. However, he considered that it was the heart which caused the lungs to expand by heating them, and the lungs in turn forced the thorax to dilate, a concept which was to survive until the 17th century. As in Aristole's theory the diaphragm played no role in respiration and was just a fence separating the thorax from the abdomen. A major break through occurred in Alexandria in the 4th and 3rd century BC: Herophilus was the first to recognize that muscles were the agents of movement and Erasistratus performed animal experiments which showed that the respiratory muscles were the agents of respiratory movements, thus opening the way to the later discoveries of Galen.

  13. Finite element analyses of continuous filament ties for masonry applications: final report for the Arquin Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, Sr., Armando [Arquin Corporation, La Luz, NM (United States); Bibeau, Tiffany A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford Kuofei

    2006-06-01

    Finite-element analyses were performed to simulate the response of a hypothetical masonry shear wall with and without continuous filament ties to various lateral loads. The loads represented three different scenarios: (1) 100 mph wind, (2) explosive attack, and (3) an earthquake. In addition, a static loading analysis and cost comparison were performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Results of the shear-wall loading simulations revealed that simulated walls with the continuous filament ties yielded factors of safety that were at least ten times greater than those without the ties. In the explosive attack simulation (100 psi), the simulated wall without the ties failed (minimum factor of safety was less than one), but the simulated wall with the ties yielded a minimum factor of safety greater than one. Simulations of the walls subject to lateral loads caused by 100 mph winds (0.2 psi) and seismic events with a peak ground acceleration of 1 ''g'' (0.66 psi) yielded no failures with or without the ties. Simulations of wall displacement during the seismic scenarios showed that the wall with the ties resulted in a maximum displacement that was 20% less than the wall without the ties.

  14. Seismic Vulnerability and Performance Level of confined brick walls

    International Nuclear Information System (INIS)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-01-01

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran

  15. Seismic Vulnerability and Performance Level of confined brick walls

    Science.gov (United States)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-07-01

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material. Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide. Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures. In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

  16. Mechanics of the canine diaphragm in pleural effusion.

    Science.gov (United States)

    De Troyer, André; Leduc, Dimitri; Cappello, Matteo; Gevenois, Pierre Alain

    2012-09-01

    Pleural effusion is a complicating feature of many diseases of the lung and pleura, but its effects on the mechanics of the diaphragm have not been assessed. In the present study, radiopaque markers were attached along muscle bundles in the midcostal region of the diaphragm in anesthetized dogs, and the three-dimensional location of the markers during relaxation before and after the stepwise introduction of liquid into the left or right pleural space and during phrenic nerve stimulation in the same conditions was determined using computed tomography. From these data, accurate measurements of diaphragm muscle length and displacement were obtained, and the changes in pleural and abdominal pressure were analyzed as functions of these parameters. The effect of liquid instillation on the axial position of rib 5 was also measured. The data showed that 1) liquid leaked through the dorsal mediastinal sheet behind the pericardium so that effusion was bilateral; 2) effusion caused a caudal displacement of the relaxed diaphragm; 3) this displacement was, compared with passive lung inflation, much larger than the cranial displacement of the ribs; and 4) the capacity of the diaphragm to generate pressure, in particular pleural pressure, decreased markedly as effusion increased, and this decrease was well explained by the decrease in active muscle length. It is concluded that pleural effusion has a major adverse effect on the pressure-generating capacity of the diaphragm and that this is the result of the action of hydrostatic forces on the muscle.

  17. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  18. Study on vulnerability matrices of masonry buildings of mainland China

    Science.gov (United States)

    Sun, Baitao; Zhang, Guixin

    2018-04-01

    The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.

  19. 75 FR 60480 - Concrete and Masonry Construction; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2010-09-30

    ...] Concrete and Masonry Construction; Extension of the Office of Management and Budget's (OMB) Approval of... requirements specified in the Standard on Concrete and Masonry Construction (29 CFR part 1926, subpart Q..., screens or pumps used for concrete and masonry construction) specified by paragraphs 1926.702(a)(2), (j)(1...

  20. Validation of ultrasonography for non-invasive assessment of diaphragm function in muscular dystrophy.

    Science.gov (United States)

    Whitehead, Nicholas P; Bible, Kenneth L; Kim, Min Jeong; Odom, Guy L; Adams, Marvin E; Froehner, Stanley C

    2016-12-15

    Duchenne muscular dystrophy (DMD) is a severe, degenerative muscle disease that is commonly studied using the mdx mouse. The mdx diaphragm muscle closely mimics the pathophysiological changes in DMD muscles. mdx diaphragm force is commonly assessed ex vivo, precluding time course studies. Here we used ultrasonography to evaluate time-dependent changes in diaphragm function in vivo, by measuring diaphragm movement amplitude. In mdx mice, diaphragm amplitude decreased with age and values were much lower than for wild-type mice. Importantly, diaphragm amplitude strongly correlated with ex vivo specific force values. Micro-dystrophin administration increased mdx diaphragm amplitude by 26% after 4 weeks. Diaphragm amplitude correlated positively with ex vivo force values and negatively with diaphragm fibrosis, a major cause of DMD muscle weakness. These studies validate diaphragm ultrasonography as a reliable technique for assessing time-dependent changes in mdx diaphragm function in vivo. This technique will be valuable for testing potential therapies for DMD. Duchenne muscular dystrophy (DMD) is a severe, degenerative muscle disease caused by dystrophin mutations. The mdx mouse is a widely used animal model of DMD. The mdx diaphragm muscle most closely recapitulates key features of DMD muscles, including progressive fibrosis and considerable force loss. Diaphragm function in mdx mice is commonly evaluated by specific force measurements ex vivo. While useful, this method only measures force from a small muscle sample at one time point. Therefore, accurate assessment of diaphragm function in vivo would provide an important advance to study the time course of functional decline and treatment benefits. Here, we evaluated an ultrasonography technique for measuring time-dependent changes of diaphragm function in mdx mice. Diaphragm movement amplitude values for mdx mice were considerably lower than those for wild-type, decreased from 8 to 18 months of age, and correlated

  1. Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress

    Science.gov (United States)

    2014-01-01

    Introduction A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. Methods HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. Results HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness. PMID:24886999

  2. Seismic capacities of masonry walls at the big rock point nuclear generating plant

    International Nuclear Information System (INIS)

    Wesley, D.A.; Bunon, H.; Jenkins, R.B.

    1984-01-01

    An evaluation to determine the ability of selected concrete block walls in the vicinity of essential equipment to withstand seismic excitation was conducted. The seismic input to the walls was developed in accordance with the Systematic Evaluation Program (SEP) site-specific response spectra for the site. Time-history inputs to the walls were determined from the response of the turbine building complex. Analyses were performed to determine the capacities of the walls to withstand both in-plane and transverse seismic loads. Transverse load capacities were determined from time-history analyses of nonlinear two-dimensional analytical models of the walls. Separate inputs were used at the tops and bottoms of the walls to reflect the amplification through the building. The walls were unreinforced vertically with one exception, and have unsupported heights as high as 20'-8''. Also, cantilever walls as high as 11'-2'' were included in the evaluation. Factors of safety based on stability of the walls were determined for the transverse response, and on code allowable stresses (Reference 1) for the in-plane response

  3. Investigation by the Rutherford backscattering method of impurity deposited on the T-3M tokamak diaphragm

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Egorova, I.M.; Kulikauskas, V.S.; Baratov, D.G.; Belykh, T.A.

    1994-01-01

    The Rutherford backscattering of helium-4 ions was used for investigation of impurity deposited on the annular graphite diaphragm as a result of the interaction between hydrogen plasma and liquid-metal spray limiter. The experimental RBS spectra distributions of the impurity elements surface densities along the direction from plasma to the chamber wall are presented as depth of the elements. The erosion coefficient of the main liquid-metal limiter element has been estimated

  4. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

    KAUST Repository

    Wang, Zhihong

    2013-11-04

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr 0.52 Ti 0.48)O 3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

  5. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  6. Expansion of the neck reconstituted the shoulder-diaphragm in amniote evolution.

    Science.gov (United States)

    Hirasawa, Tatsuya; Fujimoto, Satoko; Kuratani, Shigeru

    2016-01-01

    The neck acquired flexibility through modifications of the head-trunk interface in vertebrate evolution. Although developmental programs for the neck musculoskeletal system have attracted the attention of evolutionary developmental biologists, how the heart, shoulder and surrounding tissues are modified during development has remained unclear. Here we show, through observation of the lateral plate mesoderm at cranial somite levels in chicken-quail chimeras, that the deep part of the lateral body wall is moved concomitant with the caudal transposition of the heart, resulting in the infolding of the expanded cervical lateral body wall into the thorax. Judging from the brachial plexus pattern, an equivalent infolding also appears to take place in mammalian and turtle embryos. In mammals, this infolding process is particularly important because it separates the diaphragm from the shoulder muscle mass. In turtles, the expansion of the cervical lateral body wall affects morphogenesis of the shoulder. Our findings highlight the cellular expansion in developing amniote necks that incidentally brought about the novel adaptive traits. © 2015 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  7. Inhalation of Budesonide/Formoterol Increases Diaphragm Muscle Contractility

    Directory of Open Access Journals (Sweden)

    Chiyohiko Shindoh

    2012-01-01

    Conclusions: BUD/FORM inhalation has an inotropic effect on diaphragm muscle, protects diaphragm muscle deterioration after endotoxin injection, and inhibits NO production. Increments in muscle contractility with BUD/FORM inhalation are induced through a synergistic effect of an anti-inflammatory agent and 02-agonist.

  8. Evaluation of phrenic nerve and diaphragm function with peripheral nerve stimulation and M-mode ultrasonography in potential pediatric phrenic nerve or diaphragm pacing candidates.

    Science.gov (United States)

    Skalsky, Andrew J; Lesser, Daniel J; McDonald, Craig M

    2015-02-01

    Assessing phrenic nerve function in the setting of diaphragmatic paralysis in diaphragm pacing candidates can be challenging. Traditional imaging modalities and electrodiagnostic evaluations are technically difficult. Either modality alone is not a direct measure of the function of the phrenic nerve and diaphragm unit. In this article, the authors present their method for evaluating phrenic nerve function and the resulting diaphragm function. Stimulating the phrenic nerve with transcutaneous stimulation and directly observing the resulting movement of the hemidiaphragm with M-mode ultrasonography provides quantitative data for predicting the success of advancing technologies such as phrenic nerve pacing and diaphragm pacing. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    Science.gov (United States)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  10. Subacute presentation of spontaneous diaphragmal rupture: case report

    Directory of Open Access Journals (Sweden)

    Dejan Hermann

    2005-07-01

    Full Text Available Background: Diaphragmatic injuries are relatively rare and present with non specific symptoms and signs. Late discoveries are almost a rule in all but the most evident cases. Many patients are observed or even treated for suspected other conditions, most often musculosceletal disorders.Patients and methods: We report a case of a 14-year-old boy who presented with left lumbar pain and developed peritonitis six days after strenuous training. A chest X-ray revealed abdominal viscera in the left hemithorax. A large posterolateral rupture of the left diaphragm was found at laparotomy together with herniation of the stomach, spleen and colon. The stomach was perforated and partialy necrotic. Afer partial gastrectomy, repositioning and diaphragmal repair the patient recovered well.Conclusions: If pain in toracoabdominal region is a predominant sign after trauma or endogenous strain, one should consider the posibility of ruptured diaphragm and make a chest X-ray. Operation of diaphragmal hernia is necessary and garanties good results when treated on time.

  11. Determination of ventilatory liver movement via radiographic evaluation of diaphragm position

    International Nuclear Information System (INIS)

    Balter, James M.; Dawson, Laura A.; Kazanjian, Sahira; McGinn, Cornelius; Brock, Kristy K.; Lawrence, Theodore; Haken, Randall ten

    2001-01-01

    Purpose: To determine the accuracy of estimation of liver movement inferred by observing diaphragm excursion on radiographic images. Methods and Materials: Eight patients with focal liver cancer had platinum embolization microcoils implanted in their livers during catheterization of the hepatic artery for delivery of regional chemotherapy. These patients underwent fluoroscopy, during which normal breathing movement was recorded on videotape. Movies of breathing movement were digitized, and the relative projected positions of the diaphragm and coils were recorded. For 6 patients, daily radiographs were also acquired during treatment. Retrospective measurements of coil position were taken after the diaphragm was aligned with the superior portion of the liver on digitally reconstructed radiographs. Results: Coil movement of 4.9 to 30.4 mm was observed during normal breathing. Diaphragm position tracked inferior-superior coil displacement accurately (population σ 1.04 mm) throughout the breathing cycle. The range of coil movement was predicted by the range of diaphragm movement with an accuracy of 2.09 mm (σ). The maximum error observed measuring coil movement using diaphragm position was 3.8 mm for a coil 9.8 cm inferior to the diaphragm. However, the distance of the coil from the top of the diaphragm did not correlate significantly with the error in predicting liver excursion. Analysis of daily radiographs showed that the error in predicting coil position using the diaphragm as an alignment landmark was 1.8 mm (σ) in the inferior-superior direction and 2.2 mm in the left-right direction, similar in magnitude to the inherent uncertainty in alignment. Conclusions: This study demonstrated that the range of ventilatory movement of different locations within the liver is predicted by diaphragm position to an accuracy that matches or exceeds existing systems for ventilatory tracking. This suggests that the diaphragm is an acceptable anatomic landmark for radiographic

  12. MDCT diagnosis of penetrating diaphragm injury

    Energy Technology Data Exchange (ETDEWEB)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A. [University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD (United States); Stein, Deborah M. [University of Maryland, Department of Surgery, Shock Trauma Center, Baltimore, MD (United States); Alexander, Melvin [National Study Center for Trauma and Emergency Medical Systems, Baltimore, MD (United States)

    2009-08-15

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  13. MDCT diagnosis of penetrating diaphragm injury

    International Nuclear Information System (INIS)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A.; Stein, Deborah M.; Alexander, Melvin

    2009-01-01

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  14. Strengthening of Masonry Columns with BFRCM or with Steel Wires: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Marinella Fossetti

    2016-05-01

    Full Text Available Nowadays, innovative materials are more frequently adopted for strengthening historical constructions and masonry structures. The target of these techniques is to improve the structural efficiency with retrofitting methods while having a reduced aesthetical impact. In particular, the use of basalt fiber together with a cementitious matrix emerges as a new technique. This kind of fiber is obtained by basalt rock without other components, and consequently it could be considered a natural material, compatible with masonry. Another innovative technique for strengthening masonry columns consists of applying steel wires in the correspondence of mortar joints. Both techniques have been recently proposed and some aspects of their structural performances are still open. This paper presents the results of an experimental study on the compressive behavior of clay brick masonry columns reinforced either with Basalt Fiber–Reinforced Cementitious Matrix (BFRCM or with steel wire collaring. Uniaxial compressive tests were performed on eight retrofitted columns and four control specimens until failure. Two masonry grades were considered by varying the mix used for the mortar. Results are presented and discussed in terms of axial stress-strain curves, failure modes and crack patterns of tested specimens. Comparisons with unreinforced columns show the capability of these techniques in increasing ductility with limited strength enhancements.

  15. GND-PCA-based statistical modeling of diaphragm motion extracted from 4D MRI.

    Science.gov (United States)

    Swastika, Windra; Masuda, Yoshitada; Xu, Rui; Kido, Shoji; Chen, Yen-Wei; Haneishi, Hideaki

    2013-01-01

    We analyzed a statistical model of diaphragm motion using regular principal component analysis (PCA) and generalized N-dimensional PCA (GND-PCA). First, we generate 4D MRI of respiratory motion from 2D MRI using an intersection profile method. We then extract semiautomatically the diaphragm boundary from the 4D-MRI to get subject-specific diaphragm motion. In order to build a general statistical model of diaphragm motion, we normalize the diaphragm motion in time and spatial domains and evaluate the diaphragm motion model of 10 healthy subjects by applying regular PCA and GND-PCA. We also validate the results using the leave-one-out method. The results show that the first three principal components of regular PCA contain more than 98% of the total variation of diaphragm motion. However, validation using leave-one-out method gives up to 5.0 mm mean of error for right diaphragm motion and 3.8 mm mean of error for left diaphragm motion. Model analysis using GND-PCA provides about 1 mm margin of error and is able to reconstruct the diaphragm model by fewer samples.

  16. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  17. Giant flexoelectric polarization in a micromachined ferroelectric diaphragm

    KAUST Repository

    Wang, Zhihong

    2012-08-14

    The coupling between dielectric polarization and strain gradient, known as flexoelectricity, becomes significantly large on the micro- and nanoscale. Here, it is shown that giant flexoelectric polarization can reverse remnant ferroelectric polarization in a bent Pb(Zr0.52Ti0.48) O3 (PZT) diaphragm fabricated by micromachining. The polarization induced by the strain gradient and the switching behaviors of the polarization in response to an external electric field are investigated by observing the electromechanical coupling of the diaphragm. The method allows determination of the absolute zero polarization state in a PZT film, which is impossible using other existing methods. Based on the observation of the absolute zero polarization state and the assumption that bending of the diaphragm is the only source of the self-polarization, the upper bound of flexoelectric coefficient of PZT film is calculated to be as large as 2.0 × 10-4 C m -1. The strain gradient induced by bending the diaphragm is measured to be on the order of 102 m-1, three orders of magnitude larger than that obtained in the bulk material. Because of this large strain gradient, the estimated giant flexoelectric polarization in the bent diaphragm is on the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of double-diaphragm vacuum compaction on deformation during forming of composite prepregs

    Directory of Open Access Journals (Sweden)

    Hassan Alshahrani

    2016-12-01

    Full Text Available During the diaphragm forming process, a vacuum seal is applied between the upper and lower diaphragms to compact and hold the laminate. Therefore, a thorough characterization of the in-plane shear behavior of fabrics under diaphragm forming conditions must take into account the effect of vacuum-sealing and compaction between the two diaphragms during bias extension. The study presented here examined the shear angles of out-of-autoclave 8-harness satin woven carbon/epoxy prepregs under diaphragm compaction. A bias extension test was conducted to study the effect of diaphragm compaction and ply interactions on shear properties. The test was performed at different compaction levels, and changes in shear angle with respect to vacuum levels and diaphragm compaction forces were observed. The contribution of diaphragm material and ply interaction to shear stiffness was evaluated and compared with results from a direct bias extension test. The samples were tested at both room temperature and at elevated temperatures using a radiant heater. The results show that shear angle decreases significantly as vacuum pressure and compaction is applied between the two diaphragms. This finding indicates that vacuum levels and compaction forces have a significant influence on the deformation limit and wrinkling onset during the diaphragm forming process.

  19. Mathematical Modeling of Diaphragm Pneumatic Motors

    Directory of Open Access Journals (Sweden)

    Fojtášek Kamil

    2014-03-01

    Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

  20. A novel technique for diaphragm biopsies in human patients.

    Science.gov (United States)

    Noullet, Séverine; Romero, Norma; Menegaux, Fabrice; Chapart, Maud; Demoule, Alexandre; Morelot-Panzini, Capucine; Similowski, Thomas; Gonzalez-Bermejo, Jésus

    2015-06-15

    The diaphragm is difficult to biopsy because of its anatomic location. We describe a new laparoscopic diaphragm biopsy technique. Fifty one patients with amyotrophic lateral sclerosis gave their consent to diaphragm biopsy in the context of an implanted phrenic nerve stimulation protocol (NCT01583088). The biopsy was taken from the costal diaphragm, after opening the parietal peritoneum with scissors, and by grasping the diaphragmatic muscle over the rib with toothed laparoscopy forceps. The first four electrocoagulation biopsies were unsuitable for morphologic examination. The following 47 biopsies were therefore performed without electrocoagulation. The mean size of the biopsy fragments obtained after preparation was 3 ± 1 × 2 ± 1 × 1 ± 1 mm (maximum: 4 × 3 × 2 mm). A diaphragmatic injury occurred during the section in three cases requiring immediate suture without causing pneumothorax. A small pleural effusion was observed on the postoperative chest x-ray in one patient with a spontaneously favorable outcome. Numerous stains were able to be performed on the fragments obtained. Diaphragm biopsy can be safely performed by laparoscopy and yields tissue suitable for our future histologic evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building

    International Nuclear Information System (INIS)

    Mazloom, M.

    2008-01-01

    The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquake happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly

  2. A Study of Free-Piston Double-Diaphragm Drivers for Expansion Tubes. Report 1

    Science.gov (United States)

    Kendall, M. A.

    1997-01-01

    In recent years the free-piston double-diaphragm driver has been used to increase the performance of the XI pilot expansion tube to super-orbital test conditions. However, the actual performance of the double-diaphragm driver was found to be considerably less than ideal. An experimental study of the double-diaphragm driver was carried out on the XI facility over a range of conditions with the objective of determining the effect of. heat losses; and the non-ideal rupture of the 'light' secondary diaphragm on the driver performance. The disparity between the theoretical and measured performance envelope are highlighted. A viscous limit for the experiments vas established. Heat transfer behind the primary shock is shown to be the mechanism behind this limit Incident, reflected and transmitted shock trajectories for the secondary diaphragm were experimentally determined and compared with computed trajectories from a one-dimensional diaphragm inertia model. It was found that the diaphragm did influence the unsteady expansion. A good agreement between experimental and computed shock trajectories was obtained using a diaphragm inertia model assuming that the diaphragm mass became negligible 3 microns after shock impact.

  3. Hypoxia-induced dysfunction of rat diaphragm: role of peroxynitrite.

    NARCIS (Netherlands)

    Zhu, X.; Heunks, L.M.A.; Versteeg, E.M.M.; Heijden, E. van der; Ennen, L.; Kuppevelt, A.H.M.S.M. van; Vina, J.; Dekhuijzen, P.N.R.

    2005-01-01

    Oxidants may play a role in hypoxia-induced respiratory muscle dysfunction. In the present study we hypothesized that hypoxia-induced impairment in diaphragm contractility is associated with elevated peroxynitrite generation. In addition, we hypothesized that strenuous contractility of the diaphragm

  4. Horizontal impact testing of quarter scale flasks using masonry targets

    International Nuclear Information System (INIS)

    Tufton, E.P.S.

    1985-01-01

    The programme leading up to the Train Crash Demonstration included investigation of flask impacts, in horizontal motion, against masonry targets representing abutment structures. An outline is given of a series of eight tests, of which five are described in detail. All the tests used quarter-scale flasks, and the design and construction of the appropriate brick and stone masonry targets is described. A summary of results is given in terms of damage to the model flask compared with the more severe damage seen in regulatory drop tests. (author)

  5. Strengthening masonry infill panels using engineered cementitious composites

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Fischer, Gregor; Nateghi Alahi, Fariborz

    2015-01-01

    for ECC in order to assess its distinctive mechanical properties such as tensile stress–strain behavior and multiple cracking. To investigate the influence of a thin layer of ECC on plain masonry in terms of changes in stiffness, strength, and deformability, small scale tests have been conducted...... and strength properties, including the post-peak softening behavior in view of seismic applications. The obtained resultsindicate that the proposed ECC-strengthening technique can effectively increase the shear capacity of masonry panels, improve their deformability, enhance their energy absorption capacity......, and prevent the brittle failure mode. Furthermore, the superior deformability of ECC is clearly reflected by cracks development in the ECC layer, which was monitored by a high resolution camera and was analyzed using Digital Image Correlation (DIC) technique....

  6. Idiopathic diaphragmatic paralysis: Bell's palsy of the diaphragm?

    Science.gov (United States)

    Crausman, Robert S; Summerhill, Eleanor M; McCool, F Dennis

    2009-01-01

    Idiopathic diaphragm paralysis is probably more common and responsible for more morbidity than generally appreciated. Bell's palsy, or idiopathic paralysis of the seventh cranial nerve, may be seen as an analogous condition. The roles of zoster sine herpete and herpes simplex have increasingly been recognized in Bell's palsy, and there are some data to suggest that antiviral therapy is a useful adjunct to steroid therapy. Thus, we postulated that antiviral therapy might have a positive impact on the course of acute idiopathic diaphragm paralysis which is likely related to viral infection. Three consecutive patients with subacute onset of symptomatic idiopathic hemidiaphragm paralysis were empirically treated with valacyclovir, 1,000 mg twice daily for 1 week. Prior to therapy, diaphragmatic function was assessed via pulmonary function testing and two-dimensional B-mode ultrasound, with testing repeated 1 month later. Diaphragmatic function pre- and post-treatment was compared to that of a historical control group of 16 untreated patients. All three subjects demonstrated ultrasound recovery of diaphragm function 4-6 weeks following treatment with valacyclovir. This recovery was accompanied by improvements in maximum inspiratory pressure (PI(max)) and vital capacity (VC). In contrast, in the untreated cohort, diaphragm recovery occurred in only 11 subjects, taking an average of 14.9 +/- 6.1 months (mean +/- SD). The results of this small, preliminary study suggest that antiviral therapy with valacyclovir may be helpful in the treatment of idiopathic diaphragm paralysis induced by a viral infection.

  7. The influence of construction measurement and structure storey on seismic performance of masonry structure

    Science.gov (United States)

    Sun, Baitao; Zhao, Hexian; Yan, Peilei

    2017-08-01

    The damage of masonry structures in earthquakes is generally more severe than other structures. Through the analysis of two typical earthquake damage buildings in the Wenchuan earthquake in Xuankou middle school, we found that the number of storeys and the construction measures had great influence on the seismic performance of masonry structures. This paper takes a teachers’ dormitory in Xuankou middle school as an example, selected the structure arrangement and storey number as two independent variables to design working conditions. Finally we researched on the seismic performance difference of masonry structure under two variables by finite element analysis method.

  8. Effect of flexure beam geometry and material on the displacement of piezo actuated diaphragm for micropump

    Science.gov (United States)

    Roopa, R.; Navin Karanth, P.; Kulkarni, S. M.

    2018-02-01

    In this paper, we present a COMSOL analysis of flexure diaphragm for piezo actuated valveless micropump. Diaphragms play an important role in micropumps, till now plane diaphragms are commonly used in micropumps. Use of compliant flexure hinges in diaphragm and other MEMS application is one of the new approach to achieving high deflection in diaphragm at low operating voltage. Flexures hinges in diaphragm acts as simply supported beam. Out-off plane compliance value and stiffness is considered for the selection of proper flexure for diaphragm. Diaphragm material also plays an important role in the diaphragm central deflection. Factor considered for diaphragm material selection is resilience; it is the ratio of yield stress to static modulus. Higher is the resilience will leads to higher deflection generated, it also imparts good compliance. Based on the resilience beryllium copper, stainless steel and brass materials are selected for diaphragm analysis. Simulations have been performed using COMSOL multiphysics. This study reports the effect of flexure hinge geometry and diaphragm material on the central deflection of diaphragms and compared with existing plane diaphragm. Simulation results illustrates that the deflection of three flexure diaphragm with 2mm width and 2mm length flexure is 6.75µm for stainless steel, 10.89 for beryllium copper and 12.10µm for brass, at 140V which is approximately twice that of plane diaphragm deflection. The maximum in both plane and three flexure diaphragm deflection is obtained for brass diaphragm compared to stainless steel and beryllium copper.

  9. Shahr-I Sokhta and its Masonry Walls from Structural and Seismicity Standpoint

    Directory of Open Access Journals (Sweden)

    Masoumi Mohammad Mehdi

    2014-12-01

    Full Text Available Shahr-I Sokhta, Burned City, located in the south of Zabol, Sistan where founded circa 3200 BCE and some part of the city was burnt. Marvelous finds such as the world's earliest known artificial eyeball, the first animation in the world, the oldest known backgammon, with its dice and so forth all in this city. Their expertise was merely not in handicrafts. In this work provided evidences which Burned City’s walls are highly resistance against seismic loads and has engineering aspects, a wall was simulated by a finite element software and seismically considerations was approve the walls minimal deformation even after circa five thousand years.

  10. Treating traumatic injuries of the diaphragm

    Directory of Open Access Journals (Sweden)

    Dwivedi Sankalp

    2010-01-01

    Full Text Available Traumatic diaphragmatic injury (DI is a unique clinical entity that is usually occult and can easily be missed. Their delayed presentation can be due to the delayed rupture of the diaphragm or delayed detection of diaphragmatic rupture, making the accurate diagnosis of DI challenging to the trauma surgeons. An emergency laparotomy and thorough exploration followed by the repair of the defect is the gold standard for the management of these cases. We report a case of blunt DI in an elderly gentleman and present a comprehensive overview for the management of traumatic injuries of the diaphragm.

  11. Rectal diaphragm in a patient with imperforate anus and rectoprostatic fistula

    Directory of Open Access Journals (Sweden)

    Thakur Ashokanand

    2009-01-01

    Full Text Available The association of rectal diaphragm in an imperforate anus has not been reported until now. A 1-year-old male presented with right transverse colostomy for high anorectal malformation. The patient had imperforate anus and a recto-prostatic fistula with rectal diaphragm. We managed the case by an ano-rectal pull through with excision of the diaphragm.

  12. Seismic response monitoring of the Arno river masonry embankment during the conservation works after the Lungarno Torrigiani riverbank landslide (Florence - May 25, 2016)

    Science.gov (United States)

    Lotti, Alessia; Pazzi, Veronica; Chiara, Paolo; Lombardi, Luca; Nocentini, Massimiliano; Casagli, Nicola

    2017-04-01

    Geohazards are the most relevant processes that can damage or increase the risk of human beings, properties, critical and transport infrastructures, and environment itself. They also could involve the interruption of human activities. The concepts of disaster risk reduction and disaster risk management involve the development, improvement, and application of policies, strategies, and practices to minimize disaster risks throughout society. Since 1972 (UNESCO Convention) the identification, protection, and preservation of cultural and natural heritage has been recognized to be of outstanding value to humanity, and a key resource to build resilient societies. Nevertheless, world architectural wealth is accumulating damages and heavy losses because of both materials deterioration and exceptional natural or man-made events. The "health" of buildings/structures/infrastructures may be evaluate by its deterioration or damage level. Thus, structure dynamic characterization and microtremor analysis are considered powerful techniques, even thought seismic noise techniques in densely populated area are hardly to carry out because of the background noise due to the human activities. A wide bibliography about buildings/structures/infrastructures seismic dynamic characterization is counterposed to a missing one about their seismic response during conservation/safety works, even thought the seismic vibration monitoring (SVM) is widely used. On May 25, 2016 a riverbank landslide seriously damaged a portion roughly 100 m long of the Lungarno Torrigiani historical masonry embankment wall (left river bank of the Florence urban stretch of the Arno river, between Ponte alle Grazie e Ponte Vecchio). The street next to the embankment wall collapsed, and the earth fill material was fully retained by the embankment wall that did not collapse but seriously deformed towards the Arno river, fracturing itself in three main areas (a cusp roughly in the middle of the damaged wall, where is also

  13. Diaphragm pacing improves sleep in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Gonzalez-Bermejo, Jesus; Morélot-Panzini, Capucine; Salachas, François; Redolfi, Stefania; Straus, Christian; Becquemin, Marie-Hélène; Arnulf, Isabelle; Pradat, Pierre-François; Bruneteau, Gaëlle; Ignagni, Anthony R; Diop, Moustapha; Onders, Raymond; Nelson, Teresa; Menegaux, Fabrice; Meininger, Vincent; Similowski, Thomas

    2012-01-01

    In amyotrophic lateral sclerosis (ALS) patients, respiratory insufficiency is a major burden. Diaphragm conditioning by electrical stimulation could interfere with lung function decline by promoting the development of type 1 muscle fibres. We describe an ancillary study to a prospective, non-randomized trial (NCT00420719) assessing the effects of diaphragm pacing on forced vital capacity (FVC). Sleep-related disturbances being early clues to diaphragmatic dysfunction, we postulated that they would provide a sensitive marker. Stimulators were implanted laparoscopically in the diaphragm close to the phrenic motor point in 18 ALS patients for daily conditioning. ALS functioning score (ALSFRS), FVC, sniff nasal inspiratory pressure (SNIP), and polysomnographic recordings (PSG, performed with the stimulator turned off) were assessed before implantation and after four months of conditioning (n = 14). Sleep efficiency improved (69 ± 15% to 75 ± 11%, p = 0.0394) with fewer arousals and micro-arousals. This occurred against a background of deterioration as ALSFRS-R, FVC, and SNIP declined. There was, however, no change in NIV status or the ALSFRS respiratory subscore, and the FVC decline was mostly due to impaired expiration. Supporting a better diaphragm function, apnoeas and hypopnoeas during REM sleep decreased. In conclusion, in these severe patients not expected to experience spontaneous improvements, diaphragm conditioning improved sleep and there were hints at diaphragm function changes.

  14. Components interaction in timber framed masonry structures subjected to lateral forces

    Directory of Open Access Journals (Sweden)

    Andreea DUTU

    2012-07-01

    Full Text Available Structures with timber framed masonry represent a special typology that is frequently found in Europe and other countries of the world. They are traditional buildings, non-engineered, which showed an unexpected redundancy during earthquakes where reinforced concrete buildings (improperly constructed collapsed. In the paper, aspects regarding the interaction between timber elements and masonry are mainly addressed, that were observed both in experimental studies, but also in the in situ seismic behavior of this type of structure during important earthquakes.

  15. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  16. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    International Nuclear Information System (INIS)

    Fonti, Roberta; Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-01-01

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed

  17. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Fonti, Roberta, E-mail: roberta.fonti@tum.de; Barthel, Rainer, E-mail: r.barthel@lrz.tu-muenchen.de [TUM University, Chair of Structural Design, Arcisstraße 21, 80333 Munich (Germany); Formisano, Antonio, E-mail: antoform@unina.it [University of Naples “Federico II”, DIST Department, P.le V. Tecchio, 80, 80125 Naples (Italy); Borri, Antonio, E-mail: antonio.borri@unipg.it [University of Perugia, Department of Engineering, Via G. Duranti 95, 06125 Perugia (Italy); Candela, Michele, E-mail: ing.mcandela@libero.it [University of Reggio Calabria, PAU Department, Salita Melissari 1, 89124 Reggio Calabria (Italy)

    2015-12-31

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed.

  18. Rubble masonry response under cyclic actions: The experience of L'Aquila city (Italy)

    Science.gov (United States)

    Fonti, Roberta; Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-12-01

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different "modes of damage" of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L'Aquila district is discussed.

  19. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  20. Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats

    Science.gov (United States)

    Sieck, Gary C.

    2016-01-01

    Contusion-type injuries to the spinal cord are characterized by tissue loss and disruption of spinal pathways. Midcervical spinal cord injuries impair the function of respiratory muscles and may contribute to significant respiratory complications. This study systematically assessed the impact of a 100-kDy unilateral C4 contusion injury on diaphragm muscle activity across a range of motor behaviors in rats. Chronic diaphragm electromyography (EMG) was recorded before injury and at 1 and 7 days postinjury (DPI). Histological analyses assessed the extent of perineuronal net formation, white-matter sparing, and phrenic motoneuron loss. At 7 DPI, ∼45% of phrenic motoneurons were lost ipsilaterally. Relative diaphragm root mean square (RMS) EMG activity increased bilaterally across a range of motor behaviors by 7 DPI. The increase in diaphragm RMS EMG activity was associated with an increase in neural drive (RMS value at 75 ms after the onset of diaphragm activity) and was more pronounced during higher force, nonventilatory motor behaviors. Animals in the contusion group displayed a transient decrease in respiratory rate and an increase in burst duration at 1 DPI. By 7 days, following midcervical contusion, there was significant perineuronal net formation and white-matter loss that spanned 1 mm around the injury epicenter. Taken together, these findings are consistent with increased recruitment of remaining motor units, including more fatigable, high-threshold motor units, during higher force, nonventilatory behaviors. Changes in diaphragm EMG activity following midcervical contusion injury reflect complex adaptations in neuromotor control that may increase the risk of motor-unit fatigue and compromise the ability to sustain higher force diaphragm efforts. NEW & NOTEWORTHY The present study shows that unilateral contusion injury at C4 results in substantial loss of phrenic motoneurons but increased diaphragm muscle activity across a range of ventilatory and higher

  1. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    International Nuclear Information System (INIS)

    Milani, Gabriele; Valente, Marco

    2015-01-01

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend

  2. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Valente, Marco [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2015-12-31

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.

  3. Performance evaluation of clay fly ash brick masonry

    Energy Technology Data Exchange (ETDEWEB)

    Kute, S.; Deodhar, S.V. [K.K. Wagh College of Engineering, Panchavati (India). Dept. of Civil Engineering

    2003-07-01

    Despite inexorable trends of automation in manufacturing industry throughout the world, the conventional brick manufacturing practices have remained largely unchanged since the dawn of civilization in India. This has imposed restrictions on quality of bricks in general. The paper highlights the results derived from an extensive experimental work on performance evaluation of brick masonry. Four types of bricks, three values of joint thickness and fineness modulus of sand, and two grades of mortar with four different proportions were used as samples. Fly ash was from Nashik Thermal Power Station in Maharashtra, India. The results show that the brick masonry of 40% fly ash bricks and mortar with 20% fly ash as replacement to cement with 1:4 and 1:6 proportion gives optimum strength and advocates use of fly ash for this combination. 8 tabs.

  4. Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images

    Science.gov (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.

  5. Effect of maternal steroid on developing diaphragm integrity.

    Directory of Open Access Journals (Sweden)

    Yong Song

    Full Text Available Antenatal steroids reduce the severity of initial respiratory distress of premature newborn babies but may have an adverse impact on other body organs. The study aimed to examine the effect of maternal steroids on postnatal respiratory muscle function during development and elucidate the mechanisms underlying the potential myopathy in newborn rats. Pregnant rats were treated with intramuscular injections of 0.5 mg/kg betamethasone 7 d and 3 d before birth. Newborn diaphragms were dissected for assessment of contractile function at 2 d, 7 d or 21 d postnatal age (PNA, compared with age-matched controls. The expression of myosin heavy chain (MHC isoforms and atrophy-related genes and activity of intracellular molecular signalling were measured using quantitative PCR and/or Western blot. With advancing PNA, neonatal MHC gene expression decreased progressively while MHC IIb and IIx isoforms increased. Protein metabolic signalling showed high baseline activity at 2 d PNA, and significantly declined at 7 d and 21 d. Antenatal administration of betamethasone significantly decreased diaphragm force production, fatigue resistance, total fast fibre content and anabolic signalling activity (Akt and 4E-BP1 in 21 d diaphragm. These responses were not observed in 2 d or 7 d postnatal diaphragm. Results demonstrate that maternal betamethasone treatment causes postnatal diaphragmatic dysfunction at 21 d PNA, which is attributed to MHC II protein loss and impairment of the anabolic signalling pathway. Developmental modifications in MHC fibre composition and protein signalling account for the age-specific diaphragm dysfunction.

  6. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    Science.gov (United States)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  7. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI.

    Directory of Open Access Journals (Sweden)

    Katja Mogalle

    Full Text Available Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness.The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle.Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls.Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response.

  8. Audiovisual biofeedback improves diaphragm motion reproducibility in MRI

    Science.gov (United States)

    Kim, Taeho; Pollock, Sean; Lee, Danny; O’Brien, Ricky; Keall, Paul

    2012-01-01

    Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). Methods: To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. Results: The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value biofeedback (p-value biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. Conclusions: This study was the first to investigate the potential of AV biofeedback to improve the motion

  9. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    International Nuclear Information System (INIS)

    Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.

    2008-01-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria

  10. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    Science.gov (United States)

    2008-05-27

    blocks were purchased from H. L. Munn Lumber Co., Ames, IA (masonry A) and Glen -Gary Corporation, Des Moines, IA (masonry B). One type of clay brick...approximately 1,100 lbs in total) was donated by an individual in Ames, IA (masonry C), and the other was purchased from Glen -Gary Corporation, Des...appeared to be clay brick, not concrete block, which is probably due to the fact that the clay bricks were a more brittle material than concrete blocks

  11. Seismic assessment of ancient masonry buildings : shaking table tests and numerical analysis

    OpenAIRE

    Mendes, N.

    2012-01-01

    Tese de doutoramento em Estruturas - Engenharia Civil Ancient masonry buildings were built for many centuries taking into account only vertical static loads, without reference to any particular seismic code. The different types of masonry present common features that are directly related to the high seismic vulnerability of this type of buildings, such as the high specific mass, the low tensile strength, low to moderate shear strength and low ductility (brittle behaviour). Besi...

  12. Modeling of lintel-masonry interaction using COMSOL

    NARCIS (Netherlands)

    Vermeltfoort, A.T.; Schijndel, van A.W.M.

    2008-01-01

    Usually, when using Finite Element Models, structures are subdivided into elements and uniform properties are assigned to each material. However, in masonry, like in many other materials, properties vary over the volume of the structure. Therefore an attempt was made, as described in this paper, to

  13. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  14. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Hariharan [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Klocke, Steve [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  15. Paper-thinned diaphragm: CT sign of diaphragmatic eventration

    International Nuclear Information System (INIS)

    Im, Jung Gi; Han, Man Chung; Kim, Chu Wan; Shim, Young Soo

    1990-01-01

    CT findings of total left hemidiaphragmatic eventration in two adult patients are described. Chest radiograph showed elevated left hemidiaphragm and left hilum. Paper-thinned muscular portion of the diseased diaphragm was clearly demonstrated with CT scan. With demonstration of paper-thinned diaphragm by CT scan, differentiation of the diaphragmatic eventration from recent onset phrenic nerve paralysis by tumor invasion or from post-traumatic diaphragmatic hernia can be made

  16. Paper-thinned diaphragm: CT sign of diaphragmatic eventration

    Energy Technology Data Exchange (ETDEWEB)

    Im, Jung Gi; Han, Man Chung; Kim, Chu Wan; Shim, Young Soo [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1990-10-15

    CT findings of total left hemidiaphragmatic eventration in two adult patients are described. Chest radiograph showed elevated left hemidiaphragm and left hilum. Paper-thinned muscular portion of the diseased diaphragm was clearly demonstrated with CT scan. With demonstration of paper-thinned diaphragm by CT scan, differentiation of the diaphragmatic eventration from recent onset phrenic nerve paralysis by tumor invasion or from post-traumatic diaphragmatic hernia can be made.

  17. Experimental Study on a Self-Centering Earthquake-Resistant Masonry Pier with a Structural Concrete Column

    Directory of Open Access Journals (Sweden)

    Lijun Niu

    2017-01-01

    Full Text Available This paper proposes a slotting construction strategy to avoid shear behavior of multistory masonry buildings. The aspect ratio of masonry piers increases via slotting between spandrels and piers, so that the limit state of piers under an earthquake may be altered from shear to rocking. Rocking piers with a structural concrete column (SCC form a self-centering earthquake-resistant system. The in-plane lateral rocking behavior of masonry piers subjected to an axial force is predicted, and an experimental study is conducted on two full-scale masonry piers with an SCC, which consist of a slotting pier and an original pier. Meanwhile, a comparison of the rocking modes of masonry piers with an SCC and without an SCC was conducted in the paper. Experimental verification indicates that the slotting strategy achieves a change of failure modes from shear to rocking, and this resistant system with an SCC incorporates the self-centering and high energy dissipation properties. For the slotting pier, a lateral story drift ratio of 2.5% and a high displacement ductility of approximately 9.7 are obtained in the test, although the lateral strength decreased by 22.3% after slotting. The predicted lateral strength of the rocking pier with an SCC has a margin of error of 5.3%.

  18. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  19. Effect of hyperinflation on inspiratory function of the diaphragm.

    Science.gov (United States)

    Minh, V D; Dolan, G F; Konopka, R F; Moser, K M

    1976-01-01

    The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.

  20. Design and analysis of diaphragms in dynamic microphones

    Directory of Open Access Journals (Sweden)

    Zi-Gui Huang

    2015-07-01

    Full Text Available Most contemporary high-end microphones are dynamic microphones, adopting the most basic electromagnetic transduction principles. This study investigated the diaphragm structures of dynamic microphones. The diaphragms were composed of polyimide material, and the boundary settings required for actual operation were provided using finite element model analysis software. The characteristic frequencies caused by grooving variations on the three-dimensional diaphragm were analyzed for the various groove shapes and number. The groove angles and width variations were examined based on the optimal groove shape selected in the aforementioned analysis, and the effects of these shapes were determined based on the analytical results. Acoustic waves cause thin films to vibrate, forming the working principle behind dynamic microphones. The thin film drives a coil to vibrate in a magnetic field and cuts the line of magnetic force, subsequently producing a voltage on both ends of the coil. This audio-frequency-inducted voltage represents an acoustic wave message. The finite element model analysis software was used to conduct electromagnetic induction simulations; the sound source was fed to the diaphragm to drive the coil. The coil vibrations caused the line of magnetic force to be cut, and the final voltages produced were examined and compared.

  1. Damage propagation in a masonry arch subjected to slow cyclic and dynamic loadings

    Directory of Open Access Journals (Sweden)

    J. Toti

    2014-07-01

    Full Text Available In the present work, the damage propagation of a masonry arch induced by slow cyclic and dynamic loadings is studied. A two-dimensional model of the arch is proposed. A nonlocal damage-plastic constitutive law is adopted to reproduce the hysteretic characteristics of the masonry material, subjected to cyclic static loadings or to harmonic dynamic excitations. In particular, the adopted cohesive model is able to take into account different softening laws in tension and in compression, plastic strains, stiffness recovery and loss due to crack closure and reopening. The latter effect is an unavoidable feature for realistically reproducing hysteretic cycles. In the studied case, an inverse procedure is used to calibrate the model parameters. Then, nonlinear static and dynamic responses of the masonry arch are described together with damage propagation paths.

  2. Compatible dilation limits of masonry joint mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Beran, Pavel

    2010-01-01

    Roč. 4, č. 2 (2010), s. 155-176 ISSN 1558-3058 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : material characteristics * stone masonry * thermal expansion Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.500, year: 2010

  3. Development of Electrode Units for Electrokinetic Desalination of Masonry and Pilot Scale Test at Three locations for Removal of Chlorides

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Skibsted, Gry

    2010-01-01

    which allows continuous pressure between clay and masonry so good electrical contact is remained. The electrode units were tested at three different locations, two on baked brick masonry (inside in a heated room and outside on a masonry with severe plaster peeling) and the third pilot scale experiment...

  4. Design of Diaphragm Based MEMS Pressure Sensor with Sensitivity Analysis for Environmental Applications

    Directory of Open Access Journals (Sweden)

    A. Nallathambi

    2015-05-01

    Full Text Available In this paper Micro-electromechanical System (MEMS diaphragm based pressure sensor for environmental applications is discussed. The main focus of this paper is to design, simulate and analyze the sensitivity of MEMS based diaphragm using different structures to measure the low and high pressure values. The simulation is done through the finite element tool and specifications related the maximum convinced stress; deflection and sensitivity of the diaphragms have been analyzed using the software INTELLISUITE 8.7v. The change in pressure is to bending of the diaphragm that modifies the measured displacement between the substrate and the diaphragm. This change in displacement gives the measure of the pressure in that environment. The design of these studies can be used to improve the sensitivity of these devices. Here the diaphragm based pressure sensor produced better displacement, sensitivity and stress output responses are obtained from the square diaphragm. The pressure range from 0.6 MPa to 25 MPa and its maximum displacement is accordingly 59 mm over a pressure range of 0 to 2 MPa. Its sensitivity is therefore 2.35 [10E-12/Pa].

  5. A monitoring device for pressurised-air-driven diaphragm-based artificial heart assist devices

    NARCIS (Netherlands)

    Hoeben, F.P.; Hoeben, F.P.; de Mul, F.F.M.; Stokkink, J.S.D.; Stokkink, H.S.D.; Koelink, M.H.; Koelink, M.H.; Greve, Jan

    1992-01-01

    A non-invasive device has been developed to monitor the diaphragm position and the blood flow in artificial heart assist devices equipped with a pressurised-air-driven diaphragm. Light scattering from the diaphragm is used as a mechanism for measuring. Information about the position of several

  6. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 2, structural implementation and validation

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    The simple quasi analytical holonomic homogenization approach for the non-linear analysis of in-plane loaded masonry presented in Part 1 is here implemented at a structural leveland validated. For such implementation, a Rigid Body and Spring Mass model (RBSM) is adopted, relying into a numerical modelling constituted by rigid elements interconnected by homogenized inelastic normal and shear springs placed at the interfaces between adjoining elements. Such approach is also known as HRBSM. The inherit advantage is that it is not necessary to solve a homogenization problem at each load step in each Gauss point, and a direct implementation into a commercial software by means of an external user supplied subroutine is straightforward. In order to have an insight into the capabilities of the present approach to reasonably reproduce masonry behavior at a structural level, non-linear static analyses are conducted on a shear wall, for which experimental and numerical data are available in the technical literature. Quite accurate results are obtained with a very limited computational effort.

  7. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...

  8. β-hydroxy-β-methylbutyrate (HMB) prevents sepsis-induced diaphragm dysfunction in mice.

    Science.gov (United States)

    Supinski, Gerald S; Callahan, Leigh A

    2014-06-01

    Infections induce severe respiratory muscle weakness. Currently there are no treatments for this important clinical problem. We tested the hypothesis that β-hydroxy-β-methylbutyrate (HMB) would prevent sepsis-induced diaphragm weakness. Four groups of adult male mice were studied: controls (saline-injected), sepsis (intraperitoneal lipopolysaccharide), sepsis+HMB (injected intravenously), and HMB. Diaphragm force generation and indices of caspase 3, calpain, 20S proteasomal subunit, and double-stranded RNA-dependent protein kinase (PKR) activation were assessed after 24h. Sepsis elicited large reductions in diaphragm specific force generation at all stimulation frequencies. Endotoxin also activated caspase 3, calpain, the 20S proteasomal subunit and PKR in the diaphragm. HMB blocked sepsis-induced caspase 3, 20S proteasomal and PKR activation, but did not prevent calpain activation. Most importantly, HMB administration significantly attenuated sepsis-induced diaphragm weakness, preserving muscle force generation at all stimulation frequencies (pHMB may prove to be an important therapy in infected patients, with the potential to increase diaphragm strength, to reduce the duration of mechanical ventilation and to decrease mortality in this patient population. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Seismic analysis and testing of clay tile walls at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Fricke, K.E.; Jones, W.D.

    1989-01-01

    The recent DOE 6430.1A General Design Criteria has emphasized the importance of determining the adequacy and, hence, safety of both new and old facilities to natural phenomenon hazards such as earthquakes and high winds. In order to meet the criteria, an existing unreinforced clay time wall, which is an integral part of a new facility being placed in an old building, has been evaluated for resistance to seismic events. Part I of this paper consists of the analytical studies. The facility was mathematically modeled and analyzed using a finite element program. The material properties used in the analysis are based exclusively on data available in the current engineering literature for masonry blocks and walls. The results of the analysis conclude that the wall is adequate to meet the seismic requirements per the new criteria, but the results of the testing program described in Part II will eventually need to be incorporated into the analysis. Part II documents the results of a testing program to obtain material properties of the masonry and verify the values used in the analysis of Part I. The fact that most of the available testing data is on brick and concrete block and that the condition of the walls throughout the plants is suspect led to the testing program. The following tests on clay-tile walls, units, and panels were performed: (1) in-situ mortar joint shear strength of existing 12-inch walls, (2) compression strength, (3) tensile strength, and (4) diagonal tension (shear) strength of panels taken from the existing walls. The test results at this time are fairly inconclusive and have high standard deviations. The testing program is ongoing and is currently being expanded

  10. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  11. Data fusion of ultrasound and GPR signals for analysis of historic walls

    International Nuclear Information System (INIS)

    Salazar, A; Gosalbez, J; Safont, G; Vergara, L

    2012-01-01

    This paper presents an application of ultrasounds and ground-penetrating radar (GPR) for analysis of historic walls. The objectives are to characterize the deformation of a historic wall under different levels of load weights and to obtain an enhanced image of the wall. A new method that fuses data from ultrasound and GPR traces is proposed which is based on order statistics digital filters. Application results are presented for non destructive testing (NDT) of two replicates of historic ashlars' masonry walls: the first one homogeneous and the second one containing controlled defects such as cracks and nooks. The walls are measured separately using ultrasounds and GPR at different load steps. Time and frequency parameters extracted from the signals and different B-Scans for each of the NDT techniques are obtained. After this, a new fused representation is obtained, which results demonstrate the improvement of characterization and defect detection in historic walls using data fusion.

  12. Investigation of the Durability of a Diaphragm for a Total Artificial Heart.

    Science.gov (United States)

    Gräf, Felix; Rossbroich, Ralf; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-10-01

    One of the most critical components regarding the durability of the ReinHeart total artificial heart (TAH) is its biocompatible diaphragm, which separates the drive unit from the ventricles. Hence, a durability tester was designed to investigate its required 5-year lifetime. The aim of this study was to prove the validity of accelerated testing of the polyurethane diaphragm. The durability tester allows simultaneous testing of 12 diaphragms and mimics physiological conditions. To accelerate the time of testing, it operates with an increased speed at a frequency of 8 Hz. To prove the correctness of this acceleration, a servo-hydraulic testing machine was used to study the effect of different frequencies and their corresponding loads. Thereby the viscoelastic behavior of the polyurethane was investigated. Additionally, high-speed video measurements were performed. The force against frequency and the high-speed video measurements showed constant behavior. In the range of 1-10 Hz, the maximum resulting forces varied by 3%, and the diaphragm movement was identical. Frequencies below 10 Hz allow a valid statement of the diaphragm's mechanical durability. Viscoelasticity of the polyurethane in the considered frequency-range is negligible. The accelerated durability test is applicable to polyurethane diaphragms, and the results are applicable to TAH use. The reliability of the diaphragm for a lifetime of 5 years was found to be 80% with a confidence of 62%. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Phrenic nerves and diaphragms in sudden infant death syndrome.

    Science.gov (United States)

    Weis, J; Weber, U; Schröder, J M; Lemke, R; Althoff, H

    1998-01-30

    Disturbances of the respiratory system may be an important factor in the cascade of events leading to sudden infant death syndrome (SIDS). Even though the diaphragm is the major respiratory muscle in infants, little is known about alterations of this muscle and of the phrenic nerve in SIDS. In the present study, diaphragms and phrenic nerves of 24 SIDS infants and seven controls were analyzed. Morphometric analysis revealed only slightly larger cross sectional areas of phrenic nerve axons but no increase in myelin sheath thickness in SIDS cases. However, in one SIDS case, myelinated nerve fibre density was severely reduced. Using electron microscopy, several nerve fibres of SIDS infants showed focal accumulations of neurofilaments. Muscle fibre diameters in SIDS diaphragms were significantly larger compared to controls (P fibre ruptures and contracture bands were found. These prominent nonspecific ultrastructural alterations should advise caution in the interpretation of morphometric data. Thus, in some cases exemplified by one case of the present series, decreased density of phrenic nerve myelinated axons might contribute to SIDS. Still, the present results indicate that development of phrenic nerves and diaphragms is not delayed in most SIDS infants.

  14. Modelling Force Transfer Around Openings of Full-Scale Shear Walls

    Science.gov (United States)

    Tom Skaggs; Borjen Yeh; Frank Lam; Minghao Li; Doug Rammer; James Wacker

    2011-01-01

    Wood structural panel (WSP) sheathed shear walls and diaphragms are the primary lateralload-resisting elements in wood-frame construction. The historical performance of lightframe structures in North America has been very good due, in part, to model building codes that are designed to preserve life safety. These model building codes have spawned continual improvement...

  15. DOUBLE BOSS SCULPTURED DIAPHRAGM EMPLOYED PIEZORESISTIVE MEMS PRESSURE SENSOR WITH SILICON-ON-INSULATOR (SOI

    Directory of Open Access Journals (Sweden)

    D. SINDHANAISELVI

    2017-07-01

    Full Text Available This paper presents the detailed study on the measurement of low pressure sensor using double boss sculptured diaphragm of piezoresistive type with MEMS technology in flash flood level measurement. The MEMS based very thin diaphragms to sense the low pressure is analyzed by introducing supports to achieve linearity. The simulation results obtained from Intellisuite MEMS CAD design tool show that very thin diaphragms with rigid centre or boss give acceptable linearity. Further investigations on very thin diaphragms embedded with piezoresistor for low pressure measurement show that it is essential to analyse the piezoresistor placement and size of piezoresistor to achieve good sensitivity. A modified analytical modelling developed in this study for double boss sculptured diaphragm results were compared with simulated results. Further the enhancement of sensitivity is analyzed using non uniform thickness diaphragm and Silicon-On-Insulator (SOI technique. The simulation results indicate that the double boss square sculptured diaphragm with SOI layer using 0.85μm thickness yields the higher voltage sensitivity, acceptable linearity with Small Scale Deflection.

  16. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition.

    Science.gov (United States)

    Stan, Radu V; Tse, Dan; Deharvengt, Sophie J; Smits, Nicole C; Xu, Yan; Luciano, Marcus R; McGarry, Caitlin L; Buitendijk, Maarten; Nemani, Krishnamurthy V; Elgueta, Raul; Kobayashi, Takashi; Shipman, Samantha L; Moodie, Karen L; Daghlian, Charles P; Ernst, Patricia A; Lee, Hong-Kee; Suriawinata, Arief A; Schned, Alan R; Longnecker, Daniel S; Fiering, Steven N; Noelle, Randolph J; Gimi, Barjor; Shworak, Nicholas W; Carrière, Catherine

    2012-12-11

    Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels, and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries, causing a major leak of plasma proteins. This disruption results in early death of animals due to severe noninflammatory protein-losing enteropathy. Deletion of PV1 in endothelium, but not in the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Anatomic connections of the diaphragm influence of respiration on the body system

    Directory of Open Access Journals (Sweden)

    Bordoni B

    2013-07-01

    Full Text Available Bruno Bordoni,1 Emiliano Zanier2 1Rehabilitation Cardiology Institute of Hospitalization and Care with Scientific Address, S Maria Nascente Don Carlo Gnocchi Foundation, 2EdiAcademy, Milano, Italy Abstract: The article explains the scientific reasons for the diaphragm muscle being an important crossroads for information involving the entire body. The diaphragm muscle extends from the trigeminal system to the pelvic floor, passing from the thoracic diaphragm to the floor of the mouth. Like many structures in the human body, the diaphragm muscle has more than one function, and has links throughout the body, and provides the network necessary for breathing. To assess and treat this muscle effectively, it is necessary to be aware of its anatomic, fascial, and neurologic complexity in the control of breathing. The patient is never a symptom localized, but a system that adapts to a corporeal dysfunction. Keywords: diaphragm, fascia, phrenic nerve, vagus nerve, pelvis

  18. Free-Standing β-Ga2O3 Thin Diaphragms

    Science.gov (United States)

    Zheng, Xu-Qian; Lee, Jaesung; Rafique, Subrina; Han, Lu; Zorman, Christian A.; Zhao, Hongping; Feng, Philip X.-L.

    2018-02-01

    Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ˜ 2 μm to 30 μm and thicknesses of ˜ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ˜ 23 nm to 73 nm and diameters of ˜ 3.2 μm and ˜ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.

  19. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  20. Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Min; Park, Ke Un [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2013-10-15

    Micro-speaker diaphragms play an important role in generating desired sound responses, and are designed to have thin membrane shapes for flexibility in the axial direction. The micro-speaker diaphragms are formed from thin polymer film through the thermoforming process, in which local thickness reductions occur due to strain localization. This thickness reduction results in a change in vibration characteristics of the diaphragm and different sound responses from that of the original design. In this study, the effect of this thickness change in the diaphragm on its vibration characteristics is numerically investigated by coupling thermoforming simulation, structural analysis and modal analysis. Thus, the thickness change in the diaphragm is calculated from the thermoforming simulation, and reflected in the further structural and modal analyses in order to estimate the relevant stiffness and vibration modes. Comparing these simulation results with those from a diaphragm with the uniform thickness, it is found that a local thickness reduction results in the stiffness reduction and the relevant change in the natural frequencies and the corresponding vibration modes.

  1. Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Park, Ke Un

    2013-01-01

    Micro-speaker diaphragms play an important role in generating desired sound responses, and are designed to have thin membrane shapes for flexibility in the axial direction. The micro-speaker diaphragms are formed from thin polymer film through the thermoforming process, in which local thickness reductions occur due to strain localization. This thickness reduction results in a change in vibration characteristics of the diaphragm and different sound responses from that of the original design. In this study, the effect of this thickness change in the diaphragm on its vibration characteristics is numerically investigated by coupling thermoforming simulation, structural analysis and modal analysis. Thus, the thickness change in the diaphragm is calculated from the thermoforming simulation, and reflected in the further structural and modal analyses in order to estimate the relevant stiffness and vibration modes. Comparing these simulation results with those from a diaphragm with the uniform thickness, it is found that a local thickness reduction results in the stiffness reduction and the relevant change in the natural frequencies and the corresponding vibration modes.

  2. Global analyses of historical masonry buildings: Equivalent frame vs. 3D solid models

    Science.gov (United States)

    Clementi, Francesco; Mezzapelle, Pardo Antonio; Cocchi, Gianmichele; Lenci, Stefano

    2017-07-01

    The paper analyses the seismic vulnerability of two different masonry buildings. It provides both an advanced 3D modelling with solid elements and an equivalent frame modelling. The global structural behaviour and the dynamic properties of the compound have been evaluated using the Finite Element Modelling (FEM) technique, where the nonlinear behaviour of masonry has been taken into account by proper constitutive assumptions. A sensitivity analysis is done to evaluate the effect of the choice of the structural models.

  3. Failure analysis of globe control valves with spring-diaphragm actuator for nuclear power plant applications

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.W.H.; Wang, T.Y.

    1997-01-01

    The results of the failure analysis of a globe control valve with spring-diaphragm actuator indicated that the diaphragm failed because the service loading is close to the strength of the diaphragm. The resulting impact force is significantly larger than the plug guide strength and that cause it to bulge out after the impact. To improve the valve performance, proper torque should be used to tighten the actuator diaphragm case fasteners. A stronger actuator diaphragm could be used to provide additional safety margin during operation. Stiffening the plug guide may avoid jamming the bushing

  4. Structural damage in masonry : Developing diagnostic decision support

    NARCIS (Netherlands)

    De Vent, I.A.E.

    2011-01-01

    This thesis deals with the diagnosis of structural damage in traditional masonry: cracks, deformations and tilts. Establishing the cause of this type of damage can be difficult. This research project has aimed to improve and facilitate the diagnostic process by offering support in the initial phase

  5. Full-scale shear wall tests for force transfer around openings

    Science.gov (United States)

    Tom Skaggs; Borjen Yeh; Frank Lam; Douglas Rammer; James Wacker

    2010-01-01

    Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load resisting elements in wood-frame construction. The historical performance of light-frame structures in North America are very good due, in part, to model building codes that are designed to preserve life safety, as well as the inherent redundancy of wood-frame construction using wood...

  6. Recycling of waste spent catalyst in road construction and masonry blocks.

    Science.gov (United States)

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Novel diaphragm for electrolytic cells. Final report

    International Nuclear Information System (INIS)

    The basic intent of these studies is to produce a diaphragm permeable to two types of ions, which have properties which are similar to those of asbestos. PTFE in the form of fabric is rendered hydrophilic by grafting monomer acrylic acid by a radio-chemical technique; two methods were utilized to do this: - Direct radio-chemical method under radiation - Pre-irradiation method in air under radiation and accelerated electronic radiation. The monomer acrylic acid was grafted in the presence or non-presence of cross-linking agents, the latter before developing a resistance derived from the diaphragms obtained at the agressivity of the medium in which they would be utilized

  8. Investigation of PVdF active diaphragms for synthetic jets

    Science.gov (United States)

    Bailo, Kelly C.; Brei, Diann E.; Calkins, Frederick T.

    2000-06-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits by employing active flow control (AFC). One of the enabling technologies of AFC is the synthetic jet. Synthetic jets, also known as zero-net-mass flux actuators, act as bi-directional pumps injecting high momentum air into the local aerodynamic flow. Previous work has concentrated on high frequency synthetic jets based on piezoelectric active diaphragms such as Thunder actuators. Low frequency synthetic jets present a unique challenge requiring large displacements, which current technology has difficulty meeting. Boeing is investigating novel shaped low frequency synthetic jets that can modify the flow over fixed aircraft wings. This paper present the initial study of two promising active diaphragm concepts: a crescent shape and an opposing bender shape. These active diaphragms were numerically modeled utilizing the general-purpose finite element code ABAQUS. Using the ABAQUS results, the dynamic volume change within each jet was calculated and incorporated into an analytical linear Bernoulli model to predict the velocities and pressures at the nozzle. Simulations were performed to determine trends to assist in selection of prototype configurations. Prototypes of both diaphragm concepts were constructed from polyvinylidene fluoride and experimentally tested at Boeing with promising results.

  9. COULD A MASONRY HEATER BE THE MAIN HEAT SOURCE IN A TIGHT HOUSE?

    OpenAIRE

    Kasiliauskas, Jonas

    2017-01-01

    Masonry heaters are the oldest heating method for one family houses. Earlier houses had high leakage air-flow rates because thermal efficient insulation material was combustible by that time /20/. The masonry heater perfectly fits for air leaky houses. Nowadays, houses are more insulated and have an air tight envelope. People don’t want to spend time for supervising heating systems, that’s the reason they choose a heating system with automatism. The main aim of my thesis is to evaluate if...

  10. Processor farming method for multi-scale analysis of masonry structures

    Science.gov (United States)

    Krejčí, Tomáš; Koudelka, Tomáš

    2017-07-01

    This paper describes a processor farming method for a coupled heat and moisture transport in masonry using a two-level approach. The motivation for the two-level description comes from difficulties connected with masonry structures, where the size of stone blocks is much larger than the size of mortar layers and very fine finite element mesh has to be used. The two-level approach is suitable for parallel computing because nearly all computations can be performed independently with little synchronization. This approach is called processor farming. The master processor is dealing with the macro-scale level - the structure and the slave processors are dealing with a homogenization procedure on the meso-scale level which is represented by an appropriate representative volume element.

  11. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Adrian Page

    2012-12-01

    Full Text Available Masonry is a construction material which is widely used in Australia in a number of forms (fired clay, concrete, calcium silicate, natural stone, autoclaved aerated concrete and in a wide range of both loadbearing and non-loadbearing applications. As such, it serves as the primary structural element in structures such as 3-4 story “walk up” apartment buildings or low rise commercial structures, or as a veneer or infill in housing or high rise framed construction. Despite its current widespread use, for masonry to remain a viable construction material in the future, design and construction practices need to be flexible, able to adapt to change and be receptive to innovation. This applies not only to advances in materials technology and the development of new products and building systems, but also an effective response to changes in the regulatory framework which have an increasing emphasis on thermal and acoustic performance, seismic resistance and sustainable practices. In this context, an overview of the Australian past, present and possible future masonry scene is given.

  12. Behaviour of masonry structures during the Bhuj earthquake of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... were essentially made of well-cut sandstone units in lime mortar. All such .... Sathish Kumar R 1999 Natural frequencies and mode shapes of brick masonry buildings; M. E dissertation report,. Dept. of Civil Engg., IISc, ...

  13. Diaphragm Pump With Resonant Piezoelectric Drive

    Science.gov (United States)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to

  14. Results of lichenometric dating of masonry in the outskirts of Kandalaksha city (Russia, Murmansk region

    Directory of Open Access Journals (Sweden)

    Melekhin Alexey

    2014-11-01

    Full Text Available The lichenometric dating of masonry in the area of Kandalaksha city was carried out. For more accurate dating, the reference sites with known age (70 years were laid in Pechenga district (Murmansk region. According to our calculations, the age of masonry was in the range of 60 to 80 years, that is consistent with dendrochronology data (75 years.

  15. Stylus type MEMS texture sensor covered with corrugated diaphragm

    Science.gov (United States)

    Tsukamoto, Takashiro; Asao, Hideaki; Tanaka, Shuji

    2017-09-01

    In this paper, a stylus type MEMS texture sensor covered with a corrugated palylene diaphragm, which prevent debris from jamming into the sensor without significant degradation of sensitivity and bandwidth, was reported. A new fabrication process using a lost-foil method to make the corrugated diaphragm on a 3-axis piezoresistive force sensor at wafer level has been developed. The texture sensor could detect the surface microstructure as small as about 10 \

  16. Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm

    Science.gov (United States)

    Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

    2014-08-26

    An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

  17. Progressive Diaphragm Atrophy in Pediatric Acute Respiratory Failure.

    Science.gov (United States)

    Glau, Christie L; Conlon, Thomas W; Himebauch, Adam S; Yehya, Nadir; Weiss, Scott L; Berg, Robert A; Nishisaki, Akira

    2018-02-05

    Diaphragm atrophy is associated with delayed weaning from mechanical ventilation and increased mortality in critically ill adults. We sought to test for the presence of diaphragm atrophy in children with acute respiratory failure. Prospective, observational study. Single-center tertiary noncardiac PICU in a children's hospital. Invasively ventilated children with acute respiratory failure. Diaphragm thickness at end-expiration and end-inspiration were serially measured by ultrasound in 56 patients (median age, 17 mo; interquartile range, 5.5-52), first within 36 hours of intubation and last preceding extubation. The median duration of mechanical ventilation was 140 hours (interquartile range, 83-201). At initial measurement, thickness at end-expiration was 2.0 mm (interquartile range, 1.8-2.5) and thickness at end-inspiration was 2.5 mm (interquartile range, 2-2.8). The change in thickness at end-expiration during mechanical ventilation between first and last measurement was -13.8% (interquartile range, -27.4% to 0%), with a -3.4% daily atrophy rate (interquartile range, -5.6 to 0%). Thickening fraction = ([thickness at end-inspiration - thickness at end-expiration]/thickness at end-inspiration) throughout the course of mechanical ventilation was linearly correlated with spontaneous breathing fraction (beta coefficient, 9.4; 95% CI, 4.2-14.7; p = 0.001). For children with a period of spontaneous breathing fraction less than 0.5 during mechanical ventilation, those with exposure to a continuous neuromuscular blockade infusion (n = 15) had a significantly larger decrease in thickness at end-expiration compared with children with low spontaneous breathing fraction who were not exposed to a neuromuscular blockade infusion (n = 18) (-16.4%, [interquartile range, -28.4% to -7.0%] vs -7.3%; [interquartile range, -10.9% to -0%]; p = 0.036). Diaphragm atrophy is present in children on mechanical ventilation for acute respiratory failure. Diaphragm contractility, measured as

  18. Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm

    Science.gov (United States)

    Supinski, Gerald S.; Kelsen, Steven G.

    1982-01-01

    The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (La

  19. Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap

    Science.gov (United States)

    ... ACOG Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Home For Patients Search ... Format Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Contraception What are barrier ...

  20. Tests and Analysis of the Compressive Performance of an Integrated Masonry Structure of a Brick-Stem-Insulating Layer

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-05-01

    Full Text Available This paper proposes, for low buildings, an integrated wall structure of a brick-stem-insulating layer, which plays a major part in both heat preservation and force bearing. The research team has tested the thermal performance of the structure, the results of which are satisfying. To further study the force-bearing performance, the paper carries out compressive tests of specimens of different structural design, with two types of bricks, i.e., clay and recycled concrete bricks; three types of stems, i.e., square-shaped wood, square-shaped steel pipe and circular steel pipe; and one type of insulating layer, i.e., fly ash masonry blocks. Afterward, the force bearing performance, damage that occurred, compressive deformation and ductility of all of the specimens are compared. On the sideline, the structure is applied in the construction of a pilot residence project, yielding favorable outcomes. The results indicate that in comparison with a brick wall with an insulating layer sandwiched in between, the integrated wall structure of bricks and fly ash blocks is a more preferable choice in terms of compressive performance and ductility. The integrated wall structure of brick-stem-fly ash blocks delivers much better performance to this end. Note that regarding the stem’s contribution to compressive strength, circular steel pipe is highest, followed by square-shaped steel pipe and then square-shaped wood. The compressive performance of the sandwiched blocks surpasses that of the two brick wall pieces combined by a large margin.

  1. Diaphragm disease of the small intestine: an interesting case report.

    Science.gov (United States)

    Ullah, Sana; Ajab, Shereen; Rao, Rajashekhar; Raghunathan, Girish; DaCosta, Philip

    2015-06-01

    Diaphragm disease of small intestine usually presents with nonspecific clinical features. Radiological investigations often fail to differentiate it from small intestinal tumors and inflammatory bowel disease. It is therefore diagnosed on final histology after surgical resection. We hereby report an interesting case of a suspected small bowel tumor later diagnosed as diaphragm disease on histology. © The Author(s) 2014.

  2. The influence of hardening conditions on the properties of masonry cement mortar prisms made in brick moulds

    NARCIS (Netherlands)

    Bertram, G.; Lourenco, P.B.; Hasseltine, B.A.; Vasconseles, G.

    2014-01-01

    One aspect of our investigation into the spacing of movement joints involved the short and long term deformation of mortar embedded in masonry. In this research the influence of hardening conditions on the physical and mechanical properties of masonry cement mortar [M5] were studied. Mortar prisms

  3. A free-piston Stirling cryocooler using metal diaphragms

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-12-01

    A novel concept for a free-piston Stirling cryocooler has been proposed. The concept uses a pair of metal diaphragms to seal and suspend the displacer of a free-piston Stirling cryocooler. The diaphragms allow the displacer to move without rubbing or moving seals, potentially resulting in a long-life mechanism. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicates the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. Sage predicted the macroscopic behaviour of the prototype well but did not provide sufficient insights to improve performance significantly. This paper presents details of the development, modelling and testing of the proof-of-concept prototype and a second, improved prototype.

  4. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Directory of Open Access Journals (Sweden)

    Biseniece Edite

    2018-03-01

    Full Text Available Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel in a cold climate (average 4000 heating degree days. We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  5. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Science.gov (United States)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  6. Diaphragm adaptations in patients with COPD.

    NARCIS (Netherlands)

    Ottenheijm, C.A.C.; Heunks, L.M.A.; Dekhuijzen, P.N.R.

    2008-01-01

    Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm

  7. Optimum Design of Gravity Retaining Walls Using Charged System Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2012-01-01

    Full Text Available This study focuses on the optimum design retaining walls, as one of the familiar types of the retaining walls which may be constructed of stone masonry, unreinforced concrete, or reinforced concrete. The material cost is one of the major factors in the construction of gravity retaining walls therefore, minimizing the weight or volume of these systems can reduce the cost. To obtain an optimal seismic design of such structures, this paper proposes a method based on a novel meta-heuristic algorithm. The algorithm is inspired by the Coulomb's and Gauss’s laws of electrostatics in physics, and it is called charged system search (CSS. In order to evaluate the efficiency of this algorithm, an example is utilized. Comparing the results of the retaining wall designs obtained by the other methods illustrates a good performance of the CSS. In this paper, we used the Mononobe-Okabe method which is one of the pseudostatic approaches to determine the dynamic earth pressure.

  8. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D and D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies

  9. On the dynamics of viscous masonry beams

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Pintucchi, B.; Šilhavý, Miroslav; Zani, N.

    2015-01-01

    Roč. 27, č. 3 (2015), s. 349-365 ISSN 0935-1175 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : non-linear dynamics * no-tension material * masonry slender towers and arches * coupling phenomena * Galerkin method Subject RIV: BA - General Mathematics Impact factor: 1.849, year: 2015 http://link.springer.com/article/10.1007%2Fs00161-014-0352-y

  10. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    Science.gov (United States)

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  11. Timbered masonry for earthquake resistance in Europe

    Directory of Open Access Journals (Sweden)

    Dutu, A.

    2012-12-01

    Full Text Available Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their structural system is basically the same: the wooden structural system bears mainly the horizontal loads while the masonry supports the gravity loads. The study includes a brief report on the seismicity of each country where this traditional type of building made of timbered framed masonry is found, together with the description of these buildings’ constructive systems.

    Europa es un continente que está sujeto a una significativa actividad sísmica. Por esta razón, se debe analizar el comportamiento sísmico, no sólo de las nuevas estructuras, diseñadas sobre la base de códigos más exigentes, sino también de los diversos tipos de estructuras antiguas. En este artículo se analizan las estructuras constituidas por mampostería y madera, que se pueden encontrar en Portugal, Turquía, Francia, Inglaterra, Grecia, Rumania, Italia, España, Alemania y Escandinavia. Aunque estas estructuras presentan diferencias en cuanto a detalles constructivos, su sistema estructural es idéntico: el sistema estructural de madera absorbe principalmente las cargas horizontales, mientras que la mampostería garantiza la resistencia a la acción de la gravedad. El estudio presentado incluye un breve informe acerca de la sismicidad de los países en que existe el tipo de construcción mencionado, conjuntamente con la descripción de los sistemas constructivos específicos de cada país.

  12. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    Science.gov (United States)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  13. Assessing breathing motion by shape matching of lung and diaphragm surfaces

    Science.gov (United States)

    Urschler, Martin; Bischof, Horst

    2005-04-01

    Studying complex thorax breating motion is an important research topic for accurate fusion of functional and anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue such that e.g. ridges might disappear. A novel registration method based on the shape context approach for shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was reported as a promising method for matching 2D shapes without relying on extracted shape features. We use the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax data sets. Phantom experiments make use of shapes that are manipulated with known transformations that simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5 distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses the registration performance by using manually identified corresponding landmarks.

  14. Diaphragm flange and method for lowering particle beam impedance at connected beam tubes of a particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biallas, George Herman

    2017-07-04

    A diaphragm flange for connecting the tubes in a particle accelerator while minimizing beamline impedance. The diaphragm flange includes an outer flange and a thin diaphragm integral with the outer flange. Bolt holes in the outer flange provide a means for bolting the diaphragm flange to an adjacent flange or beam tube having a mating bolt-hole pattern. The diaphragm flange includes a first surface for connection to the tube of a particle accelerator beamline and a second surface for connection to a CF flange. The second surface includes a recessed surface therein and a knife-edge on the recessed surface. The diaphragm includes a thickness that enables flexing of the integral diaphragm during assembly of beamline components. The knife-edge enables compression of a soft metal gasket to provide a leak-tight seal.

  15. Diaphragm Muscle Fiber Weakness and Ubiquitin-Proteasome Activation in Critically Ill Patients

    NARCIS (Netherlands)

    Hooijman, P.E.; Beishuizen, A.; Witt, C.C.; de Waard, M.C.; Girbes, A.R.J.; Spoelstra-de Man, A.M.E.; Niessen, H.W.; Manders, E.; van Hees, H.W.H.; van den Brom, C.E.; Silderhuis, V.; Lawlor, M.W.; Labeit, S.; Stienen, G.J.M.; Hartemink, K.J.; Paul, M.A.; Heunks, L.M.A.; Ottenheijm, C.A.C.

    2015-01-01

    RATIONALE: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency, and increases morbidity and duration of hospital stay. To date, the nature of diaphragm weakness and its underlying pathophysiologic mechanisms are poorly understood.

  16. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    Science.gov (United States)

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  17. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  18. Laparoscopic repair of penetrating injury of the diaphragm: an experience from a district hospital

    Directory of Open Access Journals (Sweden)

    Ali Yahya

    2008-01-01

    Full Text Available In this study we review our experience in using laparoscopy as a diagnostic and therapeutic tool in dealing with penetrating diaphragmatic injuries due to stab wounds and look at the feasibility of using this procedure in other similar institutions.Thirty patients, all of whom were males 20-30 years of age, presented to the surgical emergency unit of our hospital with upper abdominal and lower chest wall stab wounds between 01-05-1998 and 30-11-2006. Diagnosis of the diaphragm injury was either obvious with omentum herniating through the chest wall, or occult with confirmation of the injury at laparoscopy.All patients underwent diagnostic laparoscopy, which resulted in identification and efficient treatment of eight patients with diaphragmatic injury, and thereby laparotomy was avoided. The procedure converted to open surgery in one patient because of a small left-sided colonic tear. Laparoscopy is an efficient tool for the diagnosis and management of diaphragmatic injuries. It should be used routinely instead of exploratory laparotomy in haemodynamically stable patients with penetrating lower chest injuries.

  19. Drying brick masonry by electro-osmosis

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2006-01-01

    When a fine grained, porous medium is applied an electric DC field, transport of matter occurs, and the transport mechanism in focus of the present study is electro-osmosis, which is transport of water. In laboratory it was shown possible to transport water inside a brick and brick/mortar system...... movement of water towards the cathode was seen. Thus the basis for utilizing the electro-osmotic effect for drying brick masonry is present, but proper electrodes still needs to be developed....

  20. Experimental Analysis of Repaired Masonry Elements with Flax-FRCM and PBO-FRCM Composites Subjected to Axial Bending Loads

    Directory of Open Access Journals (Sweden)

    Oscar A. Cevallos

    2015-11-01

    Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.

  1. Ground Motion Characteristics of the 2015 Gorkha Earthquake, Survey of Damage to Stone Masonry Structures and Structural Field Tests

    Directory of Open Access Journals (Sweden)

    Rishi Ram Parajuli

    2015-11-01

    Full Text Available On April 25, 2015, a M7.8 earthquake rattled central Nepal; ground motion recorded in Kantipath, Kathmandu, 76.86 km east of the epicenter suggested that the low frequency component was dominant. We consider data from eight aftershocks following the Gorkha earthquake and analyze ground motion characteristics; we found that most of the ground motion records are dominated by low frequencies for events with a moment magnitude greater than 6. The Gorkha earthquake devastated hundreds of thousands of structures. In the countryside, and especially in rural mountainous areas, most of the buildings that collapsed were stone masonry constructions. Detailed damage assessments of stone masonry buildings in Harmi Gorkha had done, with an epicentral distance of about 17 km. Structures were categorized as large, medium and small depending on their plinth area size and number of stories. Most of the structures in the area were damaged; interestingly, all ridge-line structures were heavily damaged. Moreover, Schmidt hammer tests were undertaken to determine the compressive strength of stone masonry, brick masonry with mud mortar for normal buildings and historical monuments. The compressive strengths of stone and brick masonry were found to be 12.38 and 18.75 MPa, respectively. Historical structures constructed with special bricks had a compressive strength of 29.50 MPa. Pullout tests were also conducted to determine the stone masonry-mud mortar bond strength. The cohesive strength of mud mortar and the coefficient of friction were determined.

  2. Right Diaphragm Spontaneous Rupture: A Surgical Approach

    Directory of Open Access Journals (Sweden)

    Duilio Divisi

    2011-01-01

    Full Text Available We present a case of spontaneous rupture of the diaphragm, characterized by nonspecific symptoms. The rapid diagnosis and appropriate surgical approach led to a positive resolution of the pathology.

  3. Free radicals in hypoxic rat diaphragm contractility: no role for xanthine oxidase.

    NARCIS (Netherlands)

    Heunks, L.M.A.; Machiels, H.A.; Abreu, R.A. de; Zhu, X.; Heijden, E. van der; Dekhuijzen, P.N.R.

    2001-01-01

    Recent evidence indicates that hypoxia enhances the generation of oxidants. Little is known about the role of free radicals in contractility of the rat diaphragm during hypoxia. We hypothesized that antioxidants improve contractility of the hypoxic rat diaphragm and that xanthine oxidase (XO) is an

  4. Some basic requirements for the application of electrokinetic methods for the reconstruction of masonry with rising humidity

    Energy Technology Data Exchange (ETDEWEB)

    Friese, P; Jacobasch, H J; Boerner, M

    1987-12-01

    Based on some theoretical statements concerning the electro-osmosis the most important requirements for the application of electrokinetic methods for drying masonry with rising humidity are described. Samples of brick masonry (brick and mortar) were examined by means of an electrokinetic measuring system (EKM) with different electrolytes (CaSO/sub 4/ and KCl) being used for different concentrations. It was found for all samples, that the zeta potential is provided with a negative sign and that the absolute value of the zeta potential approaches zero with increasing electrolyte concentration. Based on these measurements, an upper limit of the electrolyte concentration of 0.1 Mol/liter is established for the application of electrokinetic methods for drying masonry.

  5. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism.

    Science.gov (United States)

    Liao, J W; Kang, J J; Liu, S H; Jeng, C R; Cheng, Y W; Hu, C M; Tsai, S F; Wang, S C; Pang, V F

    2000-06-01

    Cartap, a nereistoxin analogue pesticide, is reported to have no irritation to eyes in rabbits. However, we have demonstrated recently that cartap could actually cause acute death in rabbits via ocular exposure. Our preliminary study with isolated mouse phrenic nerve diaphragms has shown that instead of neuromuscular blockade, cartap caused muscular contracture. The objective of the study was to examine the effect of cartap on the neuromuscular junction in more detail and to investigate its possible underlying mechanism with isolated mouse phrenic nerve diaphragms and sarcoplasmic reticulum (SR) vesicles. Cartap or nereistoxin at various concentrations was added in the organ bath with isolated mouse phrenic nerve diaphragm and both nerve- and muscle-evoked twitches were recorded. Instead of blocking the neuromuscular transmission as nereistoxin did, cartap caused contracture in stimulated or quiescent isolated mouse phrenic nerve diaphragm. Both the cartap-induced muscular contracture force and the time interval to initiate the contracture were dose-dependent. The contracture induced by cartap was not affected by the pretreatment of the diaphragm with the acetylcholine receptor blocker alpha-bungarotoxin; the Na(+) channel blocker tetrodotoxin; or various Ca(2+) channel blockers, NiCl(2), verapamil, and nifedipine. On the contrary, the contracture was significantly inhibited when the diaphragm was pretreated with ryanodine or EGTA containing Ca(2+)-free Krebs solution or in combination. This suggested that both internal and extracellular Ca(2+) might participate in cartap-induced skeletal muscle contracture. Moreover, cartap inhibited the [(3)H]-ryanodine binding to the Ca(2+) release channel of SR in a dose-dependent manner. Additionally, cartap could induce a significant reduction in Ca(2+)-ATPase activity of SR vesicles at a relatively high dose. The results suggested that cartap might cause the influx of extracellular Ca(2+) and the release of internal Ca(2

  6. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  7. Design of calandria-end shield support diaphragm of Narora Atomic Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S K; Nanda Kumar, S; Kakodkar, A

    1975-01-01

    The calandria-end shield diaphragm is one of the important components in Narora Atomic Power Plant. The support diaphragm is designed against elastic and plastic instability failures. Method of analysis for elastic and plastic instability is discussed for normal loading, pipe rupture loading, and earthquake loading.

  8. Design of calandria-end shield support diaphragm of Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Nanda Kumar, S.; Kakodkar, A.

    1975-01-01

    The calandria-end shield diaphragm is one of the important components in Narora Atomic Power Plant. The support diaphragm is designed against elastic and plastic instability failures. Method of analysis for elastic and plastic instability is discussed for normal loading, pipe rupture loading and earthquake loading. (author)

  9. Chapter 5: Buildings (EERI Earthquake Reconnaissance Team Report: M7.8 Gorkha, Nepal Earthquake on April 25, 2015 and its Aftershocks)

    Science.gov (United States)

    Kaushik, Hemant; Bevington, John; Jaiswal, Kishor; Lizundia, Bret; Shrestha, Surya

    2016-01-01

    The most common building typologies in Nepal are reinforced concrete (RC) frame buildings with masonry infill walls, unreinforced masonry (URM) bearing wall buildings, and wood frame buildings (Figure 5-1). The RC frames with masonry infills are commonly constructed in urban and semi-urban areas. Most of these buildings are three to five stories high, and most privately owned buildings are non-engineered. High rise buildings (up to 17 stories high) are also found in Kathmandu, but their number is limited. Burnt clay bricks are widely used as masonry infill walls; external walls are generally one full brick thick (~ 230 mm), and internal walls are one half brick thick. URM bearing wall buildings are an obvious choice for the population in rural areas and the outskirts of cities, primarily to limit the material expenses. Such buildings are generally two to four stories high and constructed using burnt clay brick masonry or stone masonry with cement, lime, or mud mortar. In some of the older constructions, a different mortar known as Vajra (a mix of lime and brick dust) is also observed. These buildings have either wooden or reinforced concrete flooring. A hybrid type of construction also prevails in semi-urban and rural areas, where wood frames are used in the ground story front façade, and rest of the house is made of unreinforced masonry bearing walls. Wood frame houses (generally two to three stories high) are also observed in rural areas where the material for such construction is easily available.

  10. Proof mass effects on spiral electrode d33 mode piezoelectric diaphragm-based energy harvester

    KAUST Repository

    Shen, Zhiyuan; Liu, Shuwei; Miao, Jianmin; Woh, Lye Sun; Wang, Zhihong

    2013-01-01

    This paper presents the characterization of an energy harvester using a piezoelectric diaphragm as the vibration energy conversion microstructure. The diaphragm containing the spiral electrode operates in the d33 mode. The energy harvesting performance of the diaphragm was characterized. The optimal resistance load and the working frequency were characterized. The resonance tuning and the energy harvesting enhancement due to a proof mass were verified. © 2013 IEEE.

  11. A modified SILCS contraceptive diaphragm for long-term controlled release of the HIV microbicide dapivirine.

    Science.gov (United States)

    Major, Ian; Boyd, Peter; Kilbourne-Brook, Maggie; Saxon, Gene; Cohen, Jessica; Malcolm, R Karl

    2013-07-01

    There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine. Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices. A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm. The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Timbered masonry for earthquake resistance in Europe

    OpenAIRE

    Dutu, A.; Gomes Ferreira, J.; Guerreiro, L.; Branco, F.; Gonçalves, A. M.

    2012-01-01

    Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their struc...

  13. Timbered masonry for earthquake resistance in Europe

    OpenAIRE

    Dutu, A.; Gomes Ferreira, J.; Guerreiro, L.; Branco, F.; Gonçalves, A. M.

    2012-01-01

    Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their str...

  14. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

    International Nuclear Information System (INIS)

    Coz Diaz, J.J. del; Garcia Nieto, P.J.; Betegon Biempica, C.; Prendes Gero, M.B.

    2007-01-01

    Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed

  15. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Coz Diaz, J.J. del; Betegon Biempica, C.; Prendes Gero, M.B. [Edificio Departamental Viesques, No 7, 33204 Gijon (Asturias) (Spain); Garcia Nieto, P.J. [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo (Asturias) (Spain)

    2007-06-15

    Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed. (author)

  16. Study of the brickwork masonry cracking with a cohesive fracture model

    Directory of Open Access Journals (Sweden)

    Reyes, E.

    2011-09-01

    Full Text Available This paper presents a numerical procedure to simulate the cracking process of the brickwork masonry under tensile/shear loading. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. The numerical procedure includes two steps: 1 calculation of the crack path with a linear elastic fracture model, 2 after the crack path is obtained, an interface finite element (using the cohesive fracture model is incorporated into the trajectory. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed mode fracture records for different orientations of the brick layers on masonry panels.

    Este artículo presenta un modelo de cálculo que permite simular el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. El modelo extiende el modelo cohesivo formulado por los autores para hormigón, considerando la anisotropía del material. El procedimiento de cálculo consta de dos fases: 1 obtención de la trayectoria de grieta mediante un cálculo elástico lineal, 2 incorporación del modelo cohesivo en la misma mediante elementos de intercara. El modelo se ha implementado en un programa de elementos finitos comercial con una subrutina de usuario y se ha contrastado con los resultados experimentales de los ensayos a escala. Las propiedades mecánicas de la fábrica, en especial las de fractura, se miden con ensayos de caracterización en dos direcciones. Éstas se incorporan al modelo de cálculo para simular los ensayos de fractura en modo mixto, prediciendo los resultados adecuadamente para distintas orientaciones de los tendeles.

  17. Dexmedetomidine May Produce Extra Protective Effects on Sepsis-induced Diaphragm Injury

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2015-01-01

    Full Text Available Objective: The objective was to evaluate the protective effects of dexmedetomidine (DEX, a selective agonist of α2-adrenergic receptor, on sepsis-induced diaphragm injury and the underlying molecular mechanisms. Data Sources: The data used in this review were mainly from PubMed articles published in English from 1990 to 2015. Study Selection: Clinical or basic research articles were selected mainly according to their level of relevance to this topic. Results: Sepsis could induce severe diaphragm dysfunction and exacerbate respiratory weakness. The mechanism of sepsis-induced diaphragm injury includes the increased inflammatory cytokines and excessive oxidative stress and superfluous production of nitric oxide (NO. DEX can reduce inflammatory cytokines, inhibit nuclear factor-kappaB signaling pathways, suppress the activation of caspase-3, furthermore decrease oxidative stress and inhibit NO synthase. On the basis of these mechanisms, DEX may result in a shorter period of mechanical ventilation in septic patients in clinical practice. Conclusions: Based on this current available evidence, DEX may produce extra protective effects on sepsis-induced diaphragm injury. Further direct evidence and more specific studies are still required to confirm these beneficial effects.

  18. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-03-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  19. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    Science.gov (United States)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  20. Integration of parametric measures and the statics of masonry panels

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Šilhavý, Miroslav; Zani, N.

    2011-01-01

    Roč. 2, č. 1 (2011), s. 33-44 ISSN 1867-6936 Institutional research plan: CEZ:AV0Z10190503 Keywords : masonry panels * limit analysis * integration of measures Subject RIV: BA - General Mathematics http://www.springerlink.com/content/e0086750m731182u/

  1. Seismic retrofit system for single leaf masonry buildings in Groningen

    NARCIS (Netherlands)

    Türkmen, Ö.S.; Vermeltfoort, A.T.; Martens, D.R.W.

    2016-01-01

    Due to recent seismic activity in the Netherlands, the demand of adequate strengthening and retrofitting techniques increased, especially for single leaf masonry. Two Dutch companies founded in the re-gion have initiated an experimental program to study the applicability of existing stand-alone

  2. Cement treated recycled crushed concrete and masonry aggregates for pavements

    NARCIS (Netherlands)

    Xuan, D.X.

    2012-01-01

    This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical

  3. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    Science.gov (United States)

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  4. Diffusivity measurements in some organic solvents by a gas-liquid diaphragm cell

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases In liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process Is followed by means of the gas pressure decrease which is recorded by means of a

  5. Diffusivity Measurements in Some Organic Solvents by a Gas-Liquid Diaphragm Cell

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    A diaphragm cell has been developed for the measurement of diffusion coefficients of gases in liquids. The diaphragm cell is operated batchwise with respect to both gas and liquid phases, and the diffusion process is followed by means of the gas pressure decrease which is recorded by means of a

  6. First reported experience with intramuscular diaphragm pacing in replacing positive pressure mechanical ventilators in children.

    Science.gov (United States)

    Onders, Raymond P; Ponsky, Todd A; Elmo, MaryJo; Lidsky, Karen; Barksdale, Edward

    2011-01-01

    Diaphragm pacing (DP) has been shown to successfully replace mechanical ventilators for adult tetraplegic patients with chronic respiratory insufficiency. This is the first report of DP in ventilator-dependent children. This was a prospective interventional experience under institutional review board approval. Diaphragm pacing involves outpatient laparoscopic diaphragm motor point mapping to identify the site where stimulation causes maximum diaphragm contraction with implantation of 4 percutaneous intramuscular electrodes. Diaphragm conditioning ensues to wean the child from the ventilator. Six children were successfully implanted ranging from 5 to 17 years old with the smallest 15 kg in weight. Length of time on mechanical ventilation ranged from 11 days to 7.6 years with an average of 3.2 years. In all patients, DP provided tidal volumes above basal needs. Five of the patients underwent a home-based weaning program, whereas one patient who was implanted only 11 days post spinal cord injury never returned to the ventilator with DP use. Another patient was weaned from the ventilator full time but died of complications of his underlying brain stem tumor. The remaining patients weaned from the ventilator for over 14 hours a day and/or are actively conditioning their diaphragms. Diaphragm pacing successfully replaced mechanical ventilators, which improves quality of life. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Seismic performance evaluation of multi-span existing masonry arch bridge

    Science.gov (United States)

    Laterza, Michelangelo; D'Amato, Michele; Casamassima, Vito Michele

    2017-07-01

    Existing old masonry arch bridges represent an architectural and cultural heritage of inestimable value, assuming nowadays an important strategic role since most of them are still in service and link roads of primary importance for vehicular traffic. They were mostly built in the last century without considering any horizontal action, and nowadays are serving roads characterized by a transit loads certainly heavier and more frequent than the ones of past. Moreover, very often due to absence of maintenance and to weathering conditions, the elements deteriorate more and more with a consequent loss of integrity and reduction of their carrying capacity. In this paper the seismic assessment of an old multi span masonry arch bridge still in service is illustrated. Pushover analyses are performed with the aim to investigate the numerical model sensitivity and the influence on the global nonlinear response of the bridge components.

  8. Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine

    Directory of Open Access Journals (Sweden)

    Andrew J. O’Leary

    2018-01-01

    Full Text Available Oxygen deficit (hypoxia is a major feature of cardiorespiratory diseases characterized by diaphragm dysfunction, yet the putative role of hypoxic stress as a driver of diaphragm dysfunction is understudied. We explored the cellular and functional consequences of sustained hypoxic stress in a mouse model. Adult male mice were exposed to 8 hours of normoxia, or hypoxia (FiO2 = 0.10 with or without antioxidant pretreatment (N-acetyl cysteine, 200 mg/kg i.p.. Ventilation and metabolism were measured. Diaphragm muscle contractile function, myofibre size and distribution, gene expression, protein signalling cascades, and oxidative stress (TBARS were determined. Hypoxia caused pronounced diaphragm muscle weakness, unrelated to increased respiratory muscle work. Hypoxia increased diaphragm HIF-1α protein content and activated MAPK, mTOR, Akt, and FoxO3a signalling pathways, largely favouring protein synthesis. Hypoxia increased diaphragm lipid peroxidation, indicative of oxidative stress. FoxO3 and MuRF-1 gene expression were increased. Diaphragm 20S proteasome activity and muscle fibre size and distribution were unaffected by acute hypoxia. Pretreatment with N-acetyl cysteine substantially enhanced cell survival signalling, prevented hypoxia-induced diaphragm oxidative stress, and prevented hypoxia-induced diaphragm dysfunction. Hypoxia is a potent driver of diaphragm weakness, causing myofibre dysfunction without attendant atrophy. N-acetyl cysteine protects the hypoxic diaphragm and may have application as a potential adjunctive therapy.

  9. Mechanical characterization and force-displacement hysteretic curves from in-plane cyclic tests on strong masonry infills.

    Science.gov (United States)

    Morandi, Paolo; Hak, Sanja; Magenes, Guido

    2018-02-01

    This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.

  10. Development of a national code of practice for structural masonry ...

    African Journals Online (AJOL)

    The problems and constraints faced by most developing countries, particularly Ghana, in developing codes of practice for structural masonry are highlighted. The steps that must be undertaken through the coordinated efforts of the National Standards Boards, Research Institutions, Universities and Professional Bodies in the ...

  11. Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube

    Science.gov (United States)

    Bogdanoff, D. W.; Miller, Robert J.

    1995-01-01

    Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.

  12. Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry–Perot interference

    International Nuclear Information System (INIS)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2016-01-01

    Application of the Fabry–Perot (FP) interference method for determining the coefficient of thermal expansion (CTE) of a graphene diaphragm is investigated in this paper. A miniature extrinsic FP interferometric (EFPI) sensor was fabricated by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μ m, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse FP interferometer with a cavity length of 36.13 μ m. Double reference FP cavities using two cleaved optical fibers as reflectors were also constructed to differentially cancel the thermal expansion effects of the trapped gas and adhesive material. A temperature test demonstrated an approximate cavity length change of 166.1 nm °C −1 caused by film thermal expansion in the range of 20–60 °C. Then along with the established thermal deformation model of the suspended circular diaphragm, the calculated CTE ranging from  −9.98  ×  10 −6 K −1 to  −2.09  ×  10 −6 K −1 conformed well to the previously measured results. The proposed method would be applicable in other types of elastic materials as the sensitive diaphragm of an EFPI sensor over a wide temperature range. (paper)

  13. Quantification of diaphragm mechanics in Pompe disease using dynamic 3D MRI

    DEFF Research Database (Denmark)

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi

    2016-01-01

    BACKGROUND: Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respira......BACKGROUND: Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification...... methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle....... RESULTS: Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function...

  14. Serviceability limit state related to excessive lateral deformations to account for infill walls in the structural model

    Directory of Open Access Journals (Sweden)

    G. M. S. ALVA

    Full Text Available Brazilian Codes NBR 6118 and NBR 15575 provide practical values for interstory drift limits applied to conventional modeling in order to prevent negative effects in masonry infill walls caused by excessive lateral deformability, however these codes do not account for infill walls in the structural model. The inclusion of infill walls in the proposed model allows for a quantitative evaluation of structural stresses in these walls and an assessment of cracking in these elements (sliding shear diagonal tension and diagonal compression cracking. This paper presents the results of simulations of single-story one-bay infilled R/C frames. The main objective is to show how to check the serviceability limit states under lateral loads when the infill walls are included in the modeling. The results of numerical simulations allowed for an evaluation of stresses and the probable cracking pattern in infill walls. The results also allowed an identification of some advantages and limitations of the NBR 6118 practical procedure based on interstory drift limits.

  15. Electrochemical removal of salts from masonry - Experiences from pilot scale

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge; Villumsen, Arne

    2008-01-01

    A pilot experiment with newly developed electrodes was tested for removal of contaminating salts from brick masonry where plaster peeling was a problem. A high concentration of sulfate was found at the height where the paint peeling was most pronounced. The concentrations of chloride and nitrate ...

  16. The professional orientation to the masonry specialty: a system of activities

    Directory of Open Access Journals (Sweden)

    Jóse Andrés Gómez Torres

    2018-03-01

    Full Text Available The specialty Masonry in Technical and Vocational Education is of great importance given the mission that has to train workers who have to use the most efficient and updated techniques and technologies for the construction of buildings and other construction works. In the pedagogical practice manifested a contradiction expressed in the need to raise the quality of the professional training of the workers in the specialty Masonry, however, there were inadequacies in the work of professional guidance with students who attend the first year in the Polytechnical center "Leonides Blanco", reflected in the insufficient inclination towards the study profile, which led to the failure of a percentage of students. The objective of the work was to elaborate a system of activities that perfected the process of professional orientation towards the specialty Albañilería the first year at the "Leonides Blanco" PolytechnicCenter. In the investigative process, the dialectical-materialist method was assumed as the general method, which supported the theoretical methods, the application of statistical techniques that made possible the study and systematization of the theoretical and methodological foundations of the process under investigation. The practical significance is expressed in a system of activities that contributed to the professional orientation of the first-year students of the specialty Masonry, which guarantees a relevant initial training process, depending on the demands of the professional model and the needs educational and social

  17. Proposal of Design Formulae for Equivalent Elasticity of Masonry Structures Made with Bricks of Low Modulus

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2017-01-01

    Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.

  18. Mechanical characterization and force-displacement hysteretic curves from in-plane cyclic tests on strong masonry infills

    Directory of Open Access Journals (Sweden)

    Paolo Morandi

    2018-02-01

    Full Text Available This article contains information related to a recent study “Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills” (Morandi et al., 2017 [1]. Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.

  19. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan; Lu, Jingyu; Tan, Cheewee; Miao, Jianmin; Wang, Zhihong

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  20. Design-based modeling of magnetically actuated soft diaphragm materials

    Science.gov (United States)

    Jayaneththi, V. R.; Aw, K. C.; McDaid, A. J.

    2018-04-01

    Magnetic polymer composites (MPC) have shown promise for emerging biomedical applications such as lab-on-a-chip and implantable drug delivery. These soft material actuators are capable of fast response, large deformation and wireless actuation. Existing MPC modeling approaches are computationally expensive and unsuitable for rapid design prototyping and real-time control applications. This paper proposes a macro-scale 1-DOF model capable of predicting force and displacement of an MPC diaphragm actuator. Model validation confirmed both blocked force and displacement can be accurately predicted in a variety of working conditions i.e. different magnetic field strengths, static/dynamic fields, and gap distances. The contribution of this work includes a comprehensive experimental investigation of a macro-scale diaphragm actuator; the derivation and validation of a new phenomenological model to describe MPC actuation; and insights into the proposed model’s design-based functionality i.e. scalability and generalizability in terms of magnetic filler concentration and diaphragm diameter. Due to the lumped element modeling approach, the proposed model can also be adapted to alternative actuator configurations, and thus presents a useful tool for design, control and simulation of novel MPC applications.

  1. Technical Note: Alterations in the stone masonry of the Capitol Room of Sevilla City Hall

    Directory of Open Access Journals (Sweden)

    García Navarro, J.

    2006-12-01

    Full Text Available The main aim of this work has been to determine the causes of stone loss (small particles and one larger piece and mortar loss in the coffered vault of the Capitol Room in the City Hall of Seville. The analyses and assays carried out during the course of this research have revealed that this masonry comprises a covering of oil paints over mortar-stucco of calcite, quartz, gypsum,and lead white with linseed oil when the walls were not covered. In addition, it was confirmed that the installation of air-conditioning caused a change in the humidity and temperature in the vault, aggravated by the elimination of the cross-ventilation that the structure had since it was built. The combination of these two circumstances likely triggered the pathology in the masonry.Este trabajo ha tenido como objetivo principal determinarlas causas que han originado desprendimientos de partículas y un fragmento importante de las piedras y del mortero que conforman la bóveda-artesonado de la Sala Capitular del Ayuntamiento de Sevilla. Los diferentes análisis y ensayos realizados evidencian que estas fábricas tienen un revestimiento realizado a base de pinturas al óleo sobre estuco-mortero de calcita, cuarzo, yeso y presencia de blanco de plomo con impregnación de aceite de linaza, en tanto que las fábricas de los muros no tienen revestimiento alguno. Igualmente se ha constatado el cambio de la humedad-temperatura ambiental en la bóveda, generado por la implantación de aire acondicionado y la eliminación de la ventilación cruzada natural que tenía desde su construcción. La conjunción de ambas acciones parece ser el desencadenante de las anomalías reseñadas.

  2. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  3. Fabry-Perot Diaphragm Fiber Optic Sensor (DFOS for Acoustic Detection

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2007-10-01

    Full Text Available A diaphragm fiber optic sensor (DFOS solely based on Fabry-Perot multiple beam interference has been designed and fabricated with micro-electric mechanical system (MEMS technology. The silicon diaphragm with an embossed center was designed with an interference gap width kept accurately. The DFOS was verified to be a truly and purely Fabry-Perot device via a critical test. Parallel testing with a Piezoelectric (PZT sensor showed that the DFOS had high sensitivity. The Fabry-Perot DFOS also demonstrated excellent performance in on-line monitoring of Partial Discharge (PD in power transformers.

  4. Life cycle carbon emissions inventory of brick masonry and light steel framing houses in Brasilia: proposal of design guidelines for low-carbon social housing

    Directory of Open Access Journals (Sweden)

    Lucas Rosse Caldas

    Full Text Available Abstract This study evaluated the CO2eq emissions during the life cycle of two social housing projects in the city of Brasilia. A house of ceramic brick masonry was compared to a light steel framing one. The life cycle carbon emissions assessment (LCCO2A with a cradle-to-grave approach was used. The relation between the thermal performance of the wall systems and CO2eq emissions in the operational phase of the houses were evaluated using the DesignBuilder software. In addition, six scenarios composed of three CO2eq emission factors from the Brazilian electrical grid and two schedules of occupation of houses (full and part time were evaluated. The brick masonry house presented less CO2eq emissions than the light steel framing one. For both houses, the operational phase was the most significant regarding the total CO2eq emissions (50% to 70%, followed by the construction (20% to 30%, maintenance (11% to 20% and end-of-life (lower than 1% phases. The results also showed the importance of considering different CO2eq emission factors for the Brazilian context in the operational phase. Finally, based on the results obtained, design guidelines for low carbon social housing were proposed.

  5. Diaphragm atrophy and weakness in the absence of mitochondrial dysfunction in the critically Ill

    NARCIS (Netherlands)

    Van den Berg, Marloes; Hooijman, Pleuni E.; Beishuizen, Albertus; De Waard, Monique C.; Paul, Marinus A.; Hartemink, Koen J.; Van Hees, Hieronymus W.H.; Lawlor, Michael W.; Brocca, Lorenza; Bottinelli, Roberto; Pellegrino, Maria A.; Stienen, Ger J.M.; Heunks, Leo M.A.; Wüst, Rob C.I.; Ottenheijm, Coen A.C.

    2017-01-01

    Rationale: The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial

  6. Fulltext PDF

    Indian Academy of Sciences (India)

    Why is Vertical Reinforcement Required in Masonry. Buildings? Response of Masonry Walls. Horizontal bands are provided in masonry buildings to improve their earthquake performance. These bands include plinth band, lintel band and roof band. Even if horizontal bands are provided, masonry buildings are weakened by ...

  7. Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes.

    Science.gov (United States)

    Hochapfel, Florian; Denk, Lucia; Mendl, Gudrun; Schulze, Ulf; Maaßen, Christine; Zaytseva, Yulia; Pavenstädt, Hermann; Weide, Thomas; Rachel, Reinhard; Witzgall, Ralph; Krahn, Michael P

    2017-12-01

    Mammalian podocytes, the key determinants of the kidney's filtration barrier, differentiate from columnar epithelial cells and several key determinants of apical-basal polarity in the conventional epithelia have been shown to regulate podocyte morphogenesis and function. However, little is known about the role of Crumbs, a conserved polarity regulator in many epithelia, for slit-diaphragm formation and podocyte function. In this study, we used Drosophila nephrocytes as model system for mammalian podocytes and identified a conserved function of Crumbs proteins for cellular morphogenesis, nephrocyte diaphragm assembly/maintenance, and endocytosis. Nephrocyte-specific knock-down of Crumbs results in disturbed nephrocyte diaphragm assembly/maintenance and decreased endocytosis, which can be rescued by Drosophila Crumbs as well as human Crumbs2 and Crumbs3, which were both expressed in human podocytes. In contrast to the extracellular domain, which facilitates nephrocyte diaphragm assembly/maintenance, the intracellular FERM-interaction motif of Crumbs is essential for regulating endocytosis. Moreover, Moesin, which binds to the FERM-binding domain of Crumbs, is essential for efficient endocytosis. Thus, we describe here a new mechanism of nephrocyte development and function, which is likely to be conserved in mammalian podocytes.

  8. Fabrication of nanoplate resonating structures via micro-masonry

    International Nuclear Information System (INIS)

    Bhaswara, A; Legrand, B; Mathieu, F; Nicu, L; Leichle, T; Keum, H; Rhee, S; Kim, S

    2014-01-01

    Advantages of using nanoscale membrane and plate resonators over more common cantilever shapes include higher quality factor (Q factor) for an equivalent mass and better suitability to mass sensing applications in fluid. Unfortunately, the current fabrication methods used to obtain such membranes and plates are limited in terms of materials and thickness range, and can potentially cause stiction. This study presents a new method to fabricate nanoplate resonating structures based on micro-masonry, which is the advanced form of the transfer printing technique. Nanoplate resonators were fabricated by transfer printing 0.34 µm thick square-shaped silicon plates by means of polydimethylsiloxane microtip stamps on top of silicon oxide base structures displaying 20 µm diameter cavities, followed by a thermal annealing step to create a rigid bond. Typical resulting suspended structures display vibration characteristics, i.e. a resonance frequency of a few MHz and Q factors above 10 in air at atmospheric pressure, which are in accordance with theory. Moreover, the presented fabrication method enables the realization of multiple suspended structures in a single step and on the same single base, without mechanical crosstalk between the resonators. This work thus demonstrates the suitability and the advantages of the micro-masonry technique for the fabrication of plate resonators for mass sensing purpose. (paper)

  9. Confusing cracks and difficult deformations : Interpreting structural damage in masonry

    NARCIS (Netherlands)

    De Vent, I.; Rots, J.G.; Van Hees, R.P.J.; Hobbelman, G.J.

    2012-01-01

    Cracks and deformatiçns in masonry are common phenomena in historical buildings. If they are interpreted correctly, they can be an extremely valuable source çf informatiçn on the load history of the premises. Nevertheless, this interpretation is not always as obvious as one may think. In the

  10. Empirical studies of flexural strength for dry-stack Interlocking masonry

    African Journals Online (AJOL)

    Tests were carried out to establish the flexural strength of dry-stack masonry under vertical and horizontal bending. Two formats of wallettes were tested. Format 1 made of specimens constructed span normal to bed joints, which were tested under vertical bending and Format 2 specimens constructed span parallel to bed ...

  11. Collapse mechanisms and the existence of equilibrium solutions for masonry bodies

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2014-01-01

    Roč. 19, č. 7 (2014), s. 821-831 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : equilibrium of masonry bodies * collapse mechanism * coercivity Subject RIV: BA - General Mathematics Impact factor: 1.298, year: 2014 http://mms.sagepub.com/content/19/7/821

  12. Collapse mechanisms and the existence of equilibrium solutions for masonry bodies

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2014-01-01

    Roč. 19, č. 7 (2014), s. 821-831 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : equilibrium of masonry bodies * collapse mechanism * coercivity Subject RIV: BA - General Mathematics Impact factor: 1.298, year: 2014 http:// mms .sagepub.com/content/19/7/821

  13. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    Science.gov (United States)

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell

  14. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty; M., El-Kashef; E., Fahmy; M., Abou-Zeid; M., Haroun

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal

  15. Action of the isolated canine diaphragm on the lower ribs at high lung volumes.

    Science.gov (United States)

    De Troyer, André; Wilson, Theodore A

    2014-10-15

    The normal diaphragm has an inspiratory action on the lower ribs, but subjects with chronic obstructive pulmonary disease commonly have an inward displacement of the lateral portions of the lower rib cage during inspiration. This paradoxical displacement, conventionally called 'Hoover's sign', has traditionally been attributed to the direct action of radially oriented diaphragmatic muscle fibres. In the present study, the inspiratory intercostal muscles in all interspaces in anaesthetized dogs were severed so that the diaphragm was the only muscle active during inspiration. The displacements of the lower ribs along the craniocaudal and laterolateral axes and the changes in pleural pressure (∆Ppl) and transdiaphragmatic pressure were measured during occluded breaths and mechanical ventilation at different lung volumes between functional residual capacity (FRC) and total lung capacity. From these data, the separate effects on rib displacement of ∆Ppl and of the force exerted by the diaphragm on the ribs were determined. Isolated spontaneous diaphragm contraction at FRC displaced the lower ribs cranially and outward, but this motion was progressively reversed into a caudal and inward motion as lung volume increased. However, although the force exerted by the diaphragm on the ribs decreased with increasing volume, it continued to displace the ribs cranially and outward. These observations suggest that Hoover's sign is usually caused by the decrease in the zone of apposition and, thus, by the dominant effect of ∆Ppl on the lower ribs, rather than an inward pull from the diaphragm. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  16. Autophagy-associated atrophy and metabolic remodeling of the mouse diaphragm after short-term intermittent hypoxia.

    Directory of Open Access Journals (Sweden)

    Christian Giordano

    Full Text Available Short-term intermittent hypoxia (IH is common in patients with acute respiratory disorders. Although prolonged exposure to hypoxia induces atrophy and increased fatigability of skeletal muscle, the response to short-term IH is less well known. We hypothesized that the diaphragm and limb muscles would adapt differently to short-term IH given that hypoxia stimulates ventilation and triggers a superimposed exercise stimulus in the diaphragm.We determined the structural, metabolic, and contractile properties of the mouse diaphragm after 4 days of IH (8 hours per day, 30 episodes per hour to a FiO2 nadir=6%, and compared responses in the diaphragm to a commonly studied reference limb muscle, the tibialis anterior. Outcome measures included muscle fiber size, assays of muscle proteolysis (calpain, ubiquitin-proteasome, and autophagy pathways, markers of oxidative stress and mitochondrial function, quantification of intramyocellular lipid and lipid metabolism genes, type I myosin heavy chain (MyHC expression, and in vitro contractile properties.After 4 days of IH, the diaphragm alone demonstrated significant atrophy (30% decrease of myofiber size together with increased LC3B-II protein (2.4-fold and mRNA markers of the autophagy pathway (LC3B, Gabarapl1, Bnip3, whereas active calpain and E3 ubiquitin ligases (MuRF1, atrogin-1 were unaffected in both muscles. Succinate dehydrogenase activity was significantly reduced by IH in both muscles. However, only the diaphragm exhibited increased intramyocellular lipid droplets (2.5-fold after IH, along with upregulation of genes linked to activated lipid metabolism. In addition, although the diaphragm showed evidence for acute fatigue immediately following IH, it underwent an adaptive fiber type switch toward slow type I MyHC-expressing fibers, associated with greater intrinsic endurance of the muscle during repetitive stimulation in vitro.Short-term IH induces preferential atrophy in the mouse diaphragm

  17. Effects of acute respiratory and metabolic acidosis on diaphragm muscle obtained from rats.

    Science.gov (United States)

    Michelet, Pierre; Carreira, Serge; Demoule, Alexandre; Amour, Julien; Langeron, Olivier; Riou, Bruno; Coirault, Catherine

    2015-04-01

    Acute respiratory acidosis is associated with alterations in diaphragm performance. The authors compared the effects of respiratory acidosis and metabolic acidosis in the rat diaphragm in vitro. Diaphragmatic strips were stimulated in vitro, and mechanical and energetic variables were measured, cross-bridge kinetics calculated, and the effects of fatigue evaluated. An extracellular pH of 7.00 was obtained by increasing carbon dioxide tension (from 25 to 104 mmHg) in the respiratory acidosis group (n = 12) or lowering bicarbonate concentration (from 24.5 to 5.5 mM) in the metabolic acidosis group (n = 12) and the results compared with a control group (n = 12, pH = 7.40) after 20-min exposure. Respiratory acidosis induced a significant decrease in maximum shortening velocity (-33%, P Respiratory acidosis impaired more relaxation than contraction, as shown by impairment in contraction-relaxation coupling under isotonic (-26%, P acidosis group. In rat diaphragm, acute (20 min) respiratory acidosis induced a marked decrease in the diaphragm contractility, which was not observed in metabolic acidosis.

  18. Phrenic Nerve Reconstruction and Bilateral Diaphragm Plication After Lobectomy.

    Science.gov (United States)

    Shinohara, Shuichi; Yamada, Tetsu; Ueda, Mitsuhiro; Ishinagi, Hiroyoshi; Matsuoka, Takahisa; Nagai, Shinjiro; Matsuoka, Katsunari; Miyamoto, Yoshihiro

    2017-07-01

    A 49-year-old man with left phrenic nerve paralysis caused by mediastinal tumor resection 28 years earlier was found to have a nodule in the right upper lobe. The right phrenic nerve was severed during right upper lobectomy but was reconstructed along with bilateral plication of the diaphragm. The patient was weaned from the ventilator during the daytime on postoperative day 13 and was discharged home on postoperative day 48. Three months postoperatively, chest fluoroscopic imaging showed recovery of movement of the right diaphragm. Nerve conduction studies showed improvement of function of the reconstructed right phrenic nerve. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Comparison of a Wooden House and a Porous Concrete Masonry House

    Directory of Open Access Journals (Sweden)

    Ďurica Pavol

    2014-07-01

    Full Text Available This paper deals with an evaluation of an existing wooden panel house and its comparison with alternative material composition (porous concrete masonry house. The criteria for evaluation are the energy performance, size of the usable area, environmental impact and final costs.

  20. Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry

    NARCIS (Netherlands)

    Massart, T.J.; Peerlings, R.H.J.; Geers, M.G.D.

    2004-01-01

    Masonry may be considered macroscopically as a periodic two-phase material. The possible occurrence of cracking in each of the phases leads to a complex mechanical behaviour. Most existing macroscopic models defined for such materials are phenomenological and either isotropic or orthotropic. In this

  1. Experimental and Numerical Analysis of the Compressive and Shear Behavior for a New Type of Self-Insulating Concrete Masonry System

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2016-08-01

    Full Text Available The developed study aimed at investigating the mechanical behavior of a new type of self-insulating concrete masonry unit (SCMU. A total of 12 full-grouted wall assemblages were prepared and tested for compression and shear strength. In addition, different axial stress ratios were used in shear tests. Furthermore, numerical models were developed to predict the behavior of grouted specimens using simplified micro-modeling technique. The mortar joints were modeled with zero thickness and their behavior was applied using the traction–separation model of the cohesive element. The experimental results revealed that the shear resistance increases as the level of precompression increases. A good agreement between the experimental results and numerical models was observed. It was concluded that the proposed models can be used to deduct the general behavior of grouted specimens.

  2. Evaluating the effect of pressure on the diaphragm micro- electro-mechanical thickness and the amount of shift in medical applications

    Directory of Open Access Journals (Sweden)

    Nazli Zargarpour

    2017-04-01

    Full Text Available In this paper, the influence of design parameters on the sensitive microphone diaphragm for use in implantable medical applications is presented. The different parameters such as diaphragm shape, size, thickness and different applied pressures on the diaphragm has been considered. The effect of changes in these parameters on the displacement and stress in a variety of shapes of diaphragm is discussed. In order to design the optimal shape of the proposed diaphragm for the considered parameters, it has been simulated and analyzed in software COMSOL. According to the parameters, the diaphragm shapes of square, rectangular and oval with respect to the intended user, average central displacement in human hearing frequency range 20Hz-20KHz are nm 5. 5, nm2. 6, and nm 130 respectively . According to the results of the simulations, the oval-shaped diaphragm that has been studies in this paper, the possibility of implanted medical applications, performance is optimal than other shapes. In addition, the piezoelectric material is PZT which used in the design of the diaphragm.

  3. The influence of tensile forces on the deflection of circular diaphragms in pressure sensors

    NARCIS (Netherlands)

    Voorthuyzen, J.A.; Bergveld, Piet

    1984-01-01

    It is known that the deflection of a diaphragm is determined by two mechanisms, bending moments or bending stress and tensile forces or membrane stress. Usually the influence of tensile forces is not taken into account when calculating the mechanical properties of thin diaphragms. Hence the

  4. Documentation of diaphragmal paralysis with digital subtraction techniques

    International Nuclear Information System (INIS)

    Waggershauser, T.; Muenchen Univ.; Buente, E.; Muenchen Univ.; Kohz, P.; Muenchen Univ.; Fink, U.; Muenchen Univ.

    1992-01-01

    The causative factors for a paresis of the diaphragm are primarily subsequent to operations on lesions of the phrenic nerve or on such mediastinal tumors as lyphomas which result in compression or infiltration of the nerves. (orig.) [de

  5. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms

    Science.gov (United States)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon

    2010-01-01

    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  6. Retrofit of a Multifamily Mass Masonry Building in New England

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  7. Global Proteome Changes in the Rat Diaphragm Induced by Endurance Exercise Training.

    Directory of Open Access Journals (Sweden)

    Kurt J Sollanek

    Full Text Available Mechanical ventilation (MV is a life-saving intervention for many critically ill patients. Unfortunately, prolonged MV results in the rapid development of diaphragmatic atrophy and weakness. Importantly, endurance exercise training results in a diaphragmatic phenotype that is protected against ventilator-induced diaphragmatic atrophy and weakness. The mechanisms responsible for this exercise-induced protection against ventilator-induced diaphragmatic atrophy remain unknown. Therefore, to investigate exercise-induced changes in diaphragm muscle proteins, we compared the diaphragmatic proteome from sedentary and exercise-trained rats. Specifically, using label-free liquid chromatography-mass spectrometry, we performed a proteomics analysis of both soluble proteins and mitochondrial proteins isolated from diaphragm muscle. The total number of diaphragm proteins profiled in the soluble protein fraction and mitochondrial protein fraction were 813 and 732, respectively. Endurance exercise training significantly (P<0.05, FDR <10% altered the abundance of 70 proteins in the soluble diaphragm proteome and 25 proteins of the mitochondrial proteome. In particular, key cytoprotective proteins that increased in relative abundance following exercise training included mitochondrial fission process 1 (Mtfp1; MTP18, 3-mercaptopyruvate sulfurtransferase (3MPST, microsomal glutathione S-transferase 3 (Mgst3; GST-III, and heat shock protein 70 kDa protein 1A/1B (HSP70. While these proteins are known to be cytoprotective in several cell types, the cyto-protective roles of these proteins have yet to be fully elucidated in diaphragm muscle fibers. Based upon these important findings, future experiments can now determine which of these diaphragmatic proteins are sufficient and/or required to promote exercise-induced protection against inactivity-induced muscle atrophy.

  8. Early development of the human pelvic diaphragm

    NARCIS (Netherlands)

    Koch, Wijnandus Franciscus Robertus Maria

    2006-01-01

    The last decade an increasing interest in the pelvic floor can be observed in medical sciences. The lack of data on the development of the human pelvic floor is striking. The early development of the human pelvic diaphragm was studied. Materials and methodsUse was made of 38 human embryos and

  9. Masonry fireplace emissions test method: Repeatability and sensitivity to fueling protocol.

    Science.gov (United States)

    Stern, C H; Jaasma, D R; Champion, M R

    1993-03-01

    A test method for masonry fireplaces has been evaluated during testing on six masonry fireplace configurations. The method determines carbon monoxide and particulate matter emission rates (g/h) and factors (g/kg) and does not require weighing of the appliance to determine the timing of fuel loading.The intralaboratory repeatability of the test method has been determined from multiple tests on the six fireplaces. For the tested fireplaces, the ratio of the highest to lowest measured PM rate averaged 1.17 and in no case was greater than 1.32. The data suggest that some of the variation is due to differences in fuel properties.The influence of fueling protocol on emissions has also been studied. A modified fueling protocol, tested in large and small fireplaces, reduced CO and PM emission factors by roughly 40% and reduced CO and PM rates from 0 to 30%. For both of these fireplaces, emission rates were less sensitive to fueling protocol than emission factors.

  10. Displacement and resonance behaviors of a piezoelectric diaphragm driven by a double-sided spiral electrode

    KAUST Repository

    Shen, Zhiyuan

    2012-04-03

    This paper presents the design of a lead zirconate titanate (PZT) diaphragm actuated by double-sided patterned electrodes. Au/Cr electrodes were deposited on bulk PZT wafers by sputtering while patterned by a lift-off process. SU-8 thick film was used to form the structural layer. Double-spiral electrode induced in-plane poling and piezoelectric elongation are converted to an out-of-plane displacement due to the confined boundary condition. The influence of different drive configurations and electrode parameters on deflection has been calculated by finite element methods (FEM) using a uniform field model. Impedance and quasi-static displacement spectra of the diaphragm were measured after poling. Adouble-sided patterned electrode diaphragm can be actuated by more drive configurations than a single-sided one. Compared with a single-sided electrode drive, a double-sided out-of-phase drive configuration increases the coupling coefficient of the fundamental resonance from 7.6% to 11.8%. The displacement response of the diaphragm increases from 2.6 to 8.6nmV 1. Configurations including the electric field component perpendicular to the poling direction can stimulate shear modes of the diaphragm. © 2012 IOP Publishing Ltd.

  11. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    Science.gov (United States)

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  12. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Matthew B Hudson

    Full Text Available Mechanical ventilation (MV is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1 determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2 establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  13. Nonintrusive tools to detect salts contamination in masonry: case study of Fontaine-Chaalis church

    Science.gov (United States)

    Giovannacci, David; Brissaud, Didier; Mertz, Jean-Didier; Mouhoubi, Kamel; Bodnar, Jean-Luc

    2017-07-01

    Such developments come from conservation experts in the community of cultural heritage - encompassing artworks, museum artifacts or historical monuments - for less intrusive and non-destructive tools to gain information about the subject. Increasingly the demand is for information regarding internal structures and indications of life histories and behaviors of an object. As it is well known, the deterioration due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of Stimulated Infrared thermography and Evanescent-Field Dielectrometry was applied to a non-destructive mapping, in situ, and in a semi-quantitative way the distribution of water, salt and the structural deterioration induced in a wall of the 13th century of the abbey's church of Chaalis. Complementarity of the both techniques will be underlined. The Stimulated Infra-Red Thermography (SIRT) is a contact free technique and allows the detection of plaster layers delamination of masonry. Evanescent-Field Dielectrometry (EFD) is a recent diagnostic method based on dielectric spectroscopy at microwave frequency. The measuring instrument is a portable resonant microwave device for mapping the water content and salinity on flat surface up to a depth of 2-3 cm in real time, in a non-destructive way. The method detects the water content and salt concentration in frescoes and walls by estimating the dielectric properties of tested porous materials that is viewed as a "binary" dielectric mixture consisting of bulk material and water, by the contrast between the dielectric constant of a dry material and water. According to the resolution of the optics, the SIRT has a less lateral resolution and more limited in depth, but it is easy to implement and can be used on-site, like in scaffolding conditions. Moreover, this technique gives an overview at a larger scale (metric) than EFD (centimetric).

  14. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the

  15. Selective Internal Heat Distribution in Modified Trombe Wall

    Science.gov (United States)

    Szyszka, Jerzy; Kogut, Janusz; Skrzypczak, Izabela; Kokoszka, Wanda

    2017-12-01

    At present, the requirements for thermal insulation of the external walls in buildings are being increased. There is a need to reduce energy consumption for heating rooms during the winter season. This may be achieved by increasing the thermal resistance of the outer partitions, using solutions that utilize either recuperation or solar radiation. The most popular systems include either solar collectors, or heat pump links or ground exchangers. Trombe walls (TW) are a very promising passive heating system, which requires little or no effort to operate, and may be very convenient in different climate conditions. A typical TW consists of a masonry wall painted a dark, heat absorbing paint colour and faced with a single or double layer of glass. The principle of operation is based on the photothermal conversion of solar radiation. There are various modifications of TW. They may improve the energy efficiency in relation to the climate conditions in which they operate. The hybrid solutions are also known. The efficiency of walls is related to the use of proper materials. In TW, the compromise should be sought between the thermal resistance and the ability to distribute heat from the absorbed energy of solar radiation. The paper presents an overview of the most commonly used solutions and discusses its own concept dedicated to the climate conditions of Central Europe.

  16. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  17. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, J; Zheng, C; Czito, B; Palta, M; Yin, F [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Wang, H [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Bashir, M [Department of Radiology, Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficient (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  18. A new straight accelerator tube with U diaphragm

    International Nuclear Information System (INIS)

    Liu Jinhong; Lai Weiquan; Deng Yushen; Zhang Jidong

    1994-01-01

    After calculating the potential distribution and the particle trajectories in electrostatic accelerator tubes, a new straight tube with U diaphragm to suppress secondary particles is proposed. It's properties are demonstrated by the high voltage tests and the γ-rays measurements in the accelerator

  19. Damage functions for the vulnerability assessment of masonry buildings subjected to tunneling

    NARCIS (Netherlands)

    Giardina, C.; Hendriks, M.A.N.; Rots, J.G.

    2015-01-01

    This paper describes a new framework for the assessment of potential damage caused by tunneling-induced settlement to surface masonry buildings. Finite element models in two and three dimensions, validated through comparison with experimental results and field observations, are used to investigate

  20. Damages to masonry due to interaction(s) between mortar and brick

    NARCIS (Netherlands)

    Klugt, L.J.A.R. van der

    1995-01-01

    Masonry consists of brick and mortar. Next to the laying mortar there can be a separate pointing mortar as well. Each of these components can suffer damage. Such damages, of course, have to do with the properties of the components and with the agressiveness of the environment. However, next to their

  1. Movement of the diaphragm during radiation treatment

    International Nuclear Information System (INIS)

    Nishioka, Masayuki; Fujioka, Tomio; Sakurai, Makoto; Nakajima, Toshifumi; Onoyama, Yasuto.

    1991-01-01

    Movement of the target volume during the exposure to radiation results in decreased accuracy in radiotherapy. We carried out the quantitative evaluation of the movement of the diaphragm during the radiation therapy. Seventy seven patients, who received radiation therapy for lung cancer from December 1988 to February 1990 at the Osaka-prefectural Habikino Hospital, were studied. The movement was recorded with a sonoprinter at the time of treatment planning for radiotherapy, and the length of movement was evaluated at 6 points on the diaphragm. In a study of 402 points in 77 patients, the average movement was 12 mm, and the maximum movement was 40 mm. At the 17% of the points, the movement exceeded 20 mm. The largest movement was observed at the outer point of the right lung. Movement was greater in men than in women. Performance status was not related to the degree of movement. We concluded that in chest and abdominal irradiation, movement caused by respiration is not negligible, and synchronized radiotherapy should be developed in the future. (author)

  2. Nonlinear analyses and failure patterns of typical masonry school buildings in the epicentral zone of the 2016 Italian earthquakes

    Science.gov (United States)

    Clementi, Cristhian; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The paper discusses the behavior of typical masonry school buildings in the center of Italy built at the end of 1950s without any seismic guidelines. These structures have faced the recent Italian earthquakes in 2016 without diffuse damages. Global numerical models of the building have been built and masonry material has been simulated as nonlinear. Sensitivity analyses are done to evaluate the reliability of the structural models.

  3. Demonstration and Validation of Reactive Vitreous Coatings to Prevent Corrosion of Steel Fixtures Attached to Masonry Walls

    Science.gov (United States)

    2016-12-01

    these ties degrades bonding between the mortar and the steel, , and this can cause the loss of structural continuity within the wall . Failures in...for replacement on these buildings displayed visible evidence of failure in the form of cracking, bro- ken bricks, displaced mortar, and wall ties... retained a contractor to refurbish the failing brick veneers. This contractor was also responsible for providing the enamel-coated wall ties. All

  4. Experimental evaluation of the interaction between strength concrete block walls under vertical loads

    Directory of Open Access Journals (Sweden)

    L. O. CASTRO

    Full Text Available Abstract This paper aims to evaluate the interaction between structural masonry walls made of high performance concrete blocks, under vertical loads. Two H-shaped flanged wall series, all full scale and using direct bond, have been analyzed experimentally. In one series, three flanged-walls were built with the central wall (web supported and, in the other one, three specimens were built without any support at the central web. The load was applied on the central wall and vertical displacements were measured by means of displacement transducers located at eighteen points in the wall-assemblages. The results showed that the estimated load values for the flanges were close to those supported by the walls without central support, where 100% of the load transfer to the flanges occur. The average transfer load rate calculated based on the deformation ratio in the upper and lower section of the flanged-walls, with the central web support, were 37.65% and 77.30%, respectively, showing that there is load transfer from the central wall (web toward the flanges, particularly in the lower part of the flanged walls. Thus, there is indication that the distribution of vertical loads may be considered for projects of buildings for service load, such as in the method of isolated walls group. For estimation of the failure load, the method that considers the walls acting independently showed better results, due to the fact that failure started at the top of the central wall, where there is no effect of load distribution from the adjacent walls.

  5. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  6. The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development

    Science.gov (United States)

    Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.

    2016-01-01

    ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379

  7. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.

    Science.gov (United States)

    Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2010-04-26

    This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

  8. Automated Diaphragm Loading for the LB/TS (Large Blast/Thermal Simulator).

    Science.gov (United States)

    1986-02-28

    103 87 10 925 Q & T 150 126 132 ill 9 775 Q & T 180 151 163 137 7 575 AISI 4140 ANNEALED 90 76 70 59 15 Q & T 125 105 103 87 10 1025 Q & T 150 126 132...carbon steel diaphragm would be 1.9 inches thick, whereas the heat treated alloy steel diaphragm ( AISI 4130) would be 0.44 inches thick. A normalized...EXPOSURE SPEC TREAT @ RT @ 700 F @ RT @ 700 F PERCENT LIMIT ksi ksi ksi ksi in/in F LOW ALLOY STEELS AISI 4130 ANNEALED 90 76 70 59 15 Q & T 125 105

  9. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-01-01

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults. PMID:28793697

  10. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults.

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-11-27

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L'Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  11. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2015-11-01

    Full Text Available An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers. For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  12. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    Science.gov (United States)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  13. Retrofit of a MultiFamily Mass Masonry Building in New England

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  14. Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2015-12-01

    Full Text Available The behavior of dry stack masonry (DSM is influenced by the interaction of the infill with the frame (especially the joints between bricks, which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m and DSM prism (MP_ds. The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.

  15. Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading.

    Science.gov (United States)

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli

    2015-12-12

    The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.

  16. A PROCEDURAL SOLUTION TO MODEL ROMAN MASONRY STRUCTURES

    Directory of Open Access Journals (Sweden)

    V. Cappellini

    2013-07-01

    Full Text Available The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac – PAM, developed by IGN (Paris. We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France. Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick, this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects and metric measures for restoration purposes.

  17. a Procedural Solution to Model Roman Masonry Structures

    Science.gov (United States)

    Cappellini, V.; Saleri, R.; Stefani, C.; Nony, N.; De Luca, L.

    2013-07-01

    The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac - PAM, developed by IGN (Paris). We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France). Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick), this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects) and metric measures for restoration purposes.

  18. Feasibility of navigator setting on the left diaphragm for whole-heart coronary MRA. A study in healthy volunteers

    International Nuclear Information System (INIS)

    Watanabe, Kunihiro; Suzuki, Takayoshi; Maruyama, Kazuhiro; Noda, Mayumi; Fujita, Mitsuo; Morita, Satoru; Ohnishi, Takahiro

    2009-01-01

    We prospectively compared the quality of images obtained by navigator setting on the left and right diaphragm on whole-heart coronary magnetic resonance angiography (WHCMRA). In 10 healthy volunteers, we performed free-breathing, 3-dimensional segmented true fast imaging with steady-state precession (trueFISP) WHCMRA by setting the navigator on the left and right diaphragm in random order. For the left diaphragm, we set the navigator outside the scope of the heart to avoid the influence on coronary arteries. We compared image acquisition time and visible length of coronary arteries using paired t-test and subjective image quality on a 4-point scale (1, poor; 4, excellent) using Wilcoxon signed-rank test. Mean overall subjective image quality was significantly better in the left diaphragm than the right (3.3±0.7 versus 2.9±0.9, P=0.02). Mean overall visible length of the coronary arteries was significantly better in the left diaphragm than the right (115.4±31.1 vs. 112.6±29.9 mm, P=0.02). Mean acquisition time between the left and right diaphragm was not significantly different (15.6±5.0 versus 16.0±5.7 min, P=0.79). In this small group of healthy volunteers, navigator setting for WHCMRA was superior on the left diaphragm than the right; however, feasibility of the technique requires additional consideration in a larger group of actual patients. (author)

  19. Retrofit with Interior Insulation on Solid Masonry Walls in Cool Temperate Climates

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Finken, G.R.; Odgaard, Tommy

    2015-01-01

    For historic buildings, where an alteration of the exterior façade is not wanted, interior insulation can be the solution to improve the indoor climate and reduce heat loss, but might also introduce moisture problems like condensation in the wall. Capillary active/hydrophilic insulation materials...... have been introduced to cope with the moisture problem. An extensive amount of calculations indicating where the challenges lie in the complex work with interior insulation in cool temperate climate has been carried out. In areas with high precipitation like Denmark, capillary active insulation may...

  20. Numerical Models for the Assessment of Historical Masonry Structures and Materials, Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Stefano Invernizzi

    2016-04-01

    Full Text Available The paper reviews some recent numerical applications for the interpretation and exploitation of acoustic emission (AE monitoring results obtained from historical masonry structures and materials. Among possible numerical techniques, the finite element method and the distinct method are considered. The analyzed numerical models cover the entire scale range, from microstructure and meso-structure, up to full-size real structures. The micro-modeling includes heterogeneous concrete-like materials, but mainly focuses on the masonry texture meso-structure, where each brick and mortar joint is modeled singularly. The full-size models consider the different typology of historical structures such as masonry towers, cathedrals and chapels. The main difficulties and advantages of the different numerical approaches, depending on the problem typology and scale, are critically analyzed. The main insight we can achieve from micro and meso numerical modeling concerns the scaling of AE as a function of volume and time, since it is also able to simulate the b-value temporal evolution as the damage spread into the structure. The finite element modeling of the whole structure provides useful hints for the optimal placement of the AE sensors, while the combination of AE monitoring results is crucial for a reliable assessment of structural safety.

  1. Experimental Investigation on Bonding Characteristics of Low-Strength Mortars Used to Repoint the Joints of the Damaged Historical Masonry Structures

    OpenAIRE

    Covatariu, Daniel; Toma, Ionuţ-Ovidiu; Budescu, Mihai

    2011-01-01

    Masonry represents the oldest building material in the history. The rehabilitation of a damaged building involves knowledge about the building material’s properties, the execution technology, the elaboration of the rehabilitation project and, also, theoretical knowledge about the strength calculus of the rehabilitated structure. All these are required in order to assess the bearing capacity. With the view to determine the strength and deformability characteristics of the old masonry (made fro...

  2. Acquired relaxation of the right half of the diaphragm

    International Nuclear Information System (INIS)

    Tolmachev, V.V.; Romadanov, A.A.

    1997-01-01

    Case is described of the development of complete relaxation of the right half of diaphragm following inflammatory respiratory disease accompanied by infections neuritis involving right phrenic nerve. Results of biomedical radiography and computerized tomography in dynamics are presented

  3. Prototype of a diagnostic decision support tool for structural damage in masonry

    NARCIS (Netherlands)

    De Vent, I.A.E.

    2011-01-01

    This prototype of a diagnostic decision support tool for structural damage in traditional masonry is the result of a PhD research project. The research project has aimed to improve and facilitate the diagnostic process by offering support in the initial phase in which hypotheses are generated. The

  4. Identifying decreased diaphragmatic mobility and diaphragm thickening in interstitial lung disease: the utility of ultrasound imaging

    Science.gov (United States)

    Santana, Pauliane Vieira; Prina, Elena; Albuquerque, André Luis Pereira; Carvalho, Carlos Roberto Ribeiro; Caruso, Pedro

    2016-01-01

    Objective: To investigate the applicability of ultrasound imaging of the diaphragm in interstitial lung disease (ILD). Methods: Using ultrasound, we compared ILD patients and healthy volunteers (controls) in terms of diaphragmatic mobility during quiet and deep breathing; diaphragm thickness at functional residual capacity (FRC) and at total lung capacity (TLC); and the thickening fraction (TF, proportional diaphragm thickening from FRC to TLC). We also evaluated correlations between diaphragmatic dysfunction and lung function variables. Results: Between the ILD patients (n = 40) and the controls (n = 16), mean diaphragmatic mobility was comparable during quiet breathing, although it was significantly lower in the patients during deep breathing (4.5 ± 1.7 cm vs. 7.6 ± 1.4 cm; p < 0.01). The patients showed greater diaphragm thickness at FRC (p = 0.05), although, due to lower diaphragm thickness at TLC, they also showed a lower TF (p < 0.01). The FVC as a percentage of the predicted value (FVC%) correlated with diaphragmatic mobility (r = 0.73; p < 0.01), and an FVC% cut-off value of < 60% presented high sensitivity (92%) and specificity (81%) for indentifying decreased diaphragmatic mobility. Conclusions: Using ultrasound, we were able to show that diaphragmatic mobility and the TF were lower in ILD patients than in healthy controls, despite the greater diaphragm thickness at FRC in the former. Diaphragmatic mobility correlated with ILD functional severity, and an FVC% cut-off value of < 60% was found to be highly accurate for indentifying diaphragmatic dysfunction on ultrasound. PMID:27167428

  5. Thermal Stresses Analysis and Optimized TTP Processes to Achieved CNT-Based Diaphragm for Thin Panel Speakers

    Directory of Open Access Journals (Sweden)

    Feng-Min Lai

    2016-01-01

    Full Text Available Industrial companies popularly used the powder coating, classing, and thermal transfer printing (TTP technique to avoid oxidation on the metallic surface and stiffened speaker diaphragm. This study developed a TTP technique to fabricate a carbon nanotubes (CNTs stiffened speaker diaphragm for thin panel speaker. The self-developed TTP stiffening technique did not require a high curing temperature that decreased the mechanical property of CNTs. In addition to increasing the stiffness of diaphragm substrate, this technique alleviated the middle and high frequency attenuation associated with the smoothing sound pressure curve of thin panel speaker. The advantage of TTP technique is less harmful to the ecology, but it causes thermal residual stresses and some unstable connections between printed plates. Thus, this study used the numerical analysis software (ANSYS to analyze the stress and thermal of work piece which have not delaminated problems in transfer interface. The Taguchi quality engineering method was applied to identify the optimal manufacturing parameters. Finally, the optimal manufacturing parameters were employed to fabricate a CNT-based diaphragm, which was then assembled onto a speaker. The result indicated that the CNT-based diaphragm improved the sound pressure curve smoothness of the speaker, which produced a minimum high frequency dip difference (ΔdB value.

  6. Seismic isolation for existing masonry houses in Groningen/ NL combined with thermal upgrading

    NARCIS (Netherlands)

    Blok, Rijk; Teuffel, Patrick

    2015-01-01

    Induced earthquakes, caused by the winning of natural Gas in the North of the Netherlands (Groningen province), are causing significant damage to the existing, often relatively weak, masonry buildings. This seismic hazard and seismic rehabilitation problem in the Groningen area involves much more

  7. Acceptability of an existing, female-controlled contraceptive method that could potentially protect against HIV: a comparison of diaphragm users and other method users.

    Science.gov (United States)

    Bird, Sheryl Thorburn; Harvey, S Marie; Maher, Julie E; Beckman, Linda J

    2004-01-01

    The diaphragm, an internal barrier contraceptive device, is a candidate for a female-controlled method for preventing human immunodeficiency virus (HIV) and other sexually transmitted infections (STIs). This study's objective was to examine how women who use the diaphragm differ from women using the pill and/or condoms with respect to factors hypothesized to influence the acceptability of contraceptive methods. Our goal was to increase understanding of who finds the diaphragm acceptable and why. We conducted a cross-sectional telephone survey with selected female members of a managed care organization. For this analysis, we limited the sample to 585 women currently using the diaphragm (n = 196), pill (n = 200), condoms (n = 132), or pill and condoms (n = 57). We conducted bivariate analyses and multinomial logistic regression analyses to assess the associations between selected characteristics and diaphragm use. Diaphragm use was significantly associated with several variables. Of particular interest, placing less importance on hormonal method characteristics was significantly associated with diaphragm use (versus use of the pill, condoms, or both). Placing more importance on barrier method attributes was significantly associated with diaphragm use (versus pill use, alone or with condoms). In addition, lower condom use self-efficacy was significantly associated with diaphragm use (versus condom use, alone or with pill). Lack of motivation to avoid HIV/STIs was significantly associated with using the diaphragm versus condoms (only). These results have important implications for future research, interventions, counseling strategies for providers, and product development. Our findings suggest that if the diaphragm protects against HIV, it could be a desirable option for some women.

  8. The compressive strength of lignosulphonate stabilised extruded earth masonry units

    OpenAIRE

    Maskell, Daniel; Walker, Pete; Heath, Andrew

    2012-01-01

    Earthen (unfired clay) bricks offer several distinct advantages over conventional fired clay bricks and other high energy masonry units. Most notably there is significantly lower environmental impact, including carbon emissions during manufacture, than comparable products, with unfired clay bricks having an estimated 14% of the energy of fired bricks and 25% of concrete blocks. Earth construction is able to provide passive environmental controls; including the regulation of temperature and hu...

  9. Prone decubitus: A solution to inferior wall attenuation in thallium-201 myocardial tomography

    Energy Technology Data Exchange (ETDEWEB)

    Esquerre, J.P.; Coca, F.J.; Martinez, S.J.; Guiraud, R.F.

    1989-03-01

    We propose an efficient method to suppress inferior wall attenuation in /sup 201/TI 180 degrees myocardial tomography. We systematically performed redistribution studies in both supine and prone decubitus, assuming that the latter should result in shifting with respect to each other's cardiac structures and diaphragm as well as subphrenic organs possibly responsible for attenuation. The comparison of both studies in 25 normal subjects by visual interpretation and circumferential profiles analysis showed a complete suppression of significant attenuation in the inferior wall in prone studies. In addition and consequently, the standard deviation of activity in this area was markedly reduced and became close to its value in anterior and lateral walls. This simple technique now routinely performed in over 400 patients drastically improves specificity in the evaluation of inferior wall abnormalities by suppressing attenuation artifacts and, incidently, the effect of high individual variability in left phrenic and subphrenic anatomic configuration.

  10. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    Science.gov (United States)

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm

  11. Chest Wall tumor: combined management

    International Nuclear Information System (INIS)

    Rao Bhaskar, N.

    1997-01-01

    Cancer is relatively rare disease among children and adolescents. The incidence of solid tumors other than CNS is less than 2/100,000. Tumors of the chest wall can arise either from the somatic tissue or ribs. These are rare, so either institutional reviews or multi institutional studies should determine optimal therapeutic management. Of the bony chest wall, Ewing's sarcoma or the family of tumor (peripheral neuro epithelioma, Askin tumor), are the most common. These lesions are lytic and have associated large extra pleural component. This large extra pleural component often necessitates major chest wall resection (3 or more ribs), and when lower ribs are involved, this entails resection of portion of diaphragm. Despite this resection, survival in the early 1970 was 10-20%. Since 1970 multi agent chemotherapy has increased survival rates. of importance, however, is these regimens have caused significant reduction of these extra pleural components so that major chest wall resections have become a rarity. With improved survival and decreased morbidity preoperative chemotherapy followed by surgery is now the accepted modality of treatment. Another major advantage of this regimen is that potential radiation therapy may be obviated. The most common chest wall lesion is rhabdomyosarcoma. In the IRS study of 1620 RMS patients, in 141 (9%) the primary lesion was in the chest wall. these are primarily alveolar histology. when lesions were superficial, wide local excision with supplemental radiation therapy was associated with low morbidity and good overall survival. however, a majority have significant intra- thoracic components. in these circumstances the resectability rate is less than 30% and the survival poor. Other lesions include non rhabdomyosarcomas, eosinophilic granuloma, chondrosarcoma, and osteomyelitis. The management of these lesions varies according to extent, histology, and patient characteristics

  12. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel

    Science.gov (United States)

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou

    2016-01-01

    In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality. PMID:28787906

  13. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2016-02-01

    Full Text Available In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP semi-interlocking masonry (SIM infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.

  14. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel.

    Science.gov (United States)

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou

    2016-02-11

    In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.

  15. Earthquake response of heavily damaged historical masonry mosques after restoration

    Science.gov (United States)

    Altunışık, Ahmet Can; Fuat Genç, Ali

    2017-10-01

    Restoration works have been accelerated substantially in Turkey in the last decade. Many historical buildings, mosques, minaret, bridges, towers and structures have been restored. With these restorations an important issue arises, namely how restoration work affects the structure. For this reason, we aimed to investigate the restoration effect on the earthquake response of a historical masonry mosque considering the openings on the masonry dome. For this purpose, we used the Hüsrev Pasha Mosque, which is located in the Ortakapı district in the old city of Van, Turkey. The region of Van is in an active seismic zone; therefore, earthquake analyses were performed in this study. Firstly a finite element model of the mosque was constructed considering the restoration drawings and 16 window openings on the dome. Then model was constructed with eight window openings. Structural analyses were performed under dead load and earthquake load, and the mode superposition method was used in analyses. Maximum displacements, maximum-minimum principal stresses and shear stresses are given with contours diagrams. The results are analyzed according to Turkish Earthquake Code (TEC, 2007) and compared between 8 and 16 window openings cases. The results show that reduction of the window openings affected the structural behavior of the mosque positively.

  16. Scattering study at free air ionization chamber diaphragm

    International Nuclear Information System (INIS)

    Santos, Alexandre Lo Bianco dos

    2011-01-01

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are k RQR-M1 =0,9946, k RQR -M2 =0,9932, k RQR-M3 =0,9978 and k RQR-M4 =0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  17. Assessment of Diaphragm and External Intercostals Fatigue from Surface EMG using Cervical Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2008-03-01

    Full Text Available This study was designed: (1 to test the reliability of surface electromyography (sEMG recording of the diaphragm and external intercostals contractions response to cervical magnetic stimulation (CMS, (2 to examine the amount and the types of inspiratory muscle fatigue that developed after maximum voluntary ventilation (MVV maneuvers.Ten male college students without physical disability (22.1±2.0 years old participated in the study and each completed a control (quiet breathing trial and a fatigue (MVV maneuvers trial sequentially. In the quiet breathing trial, the subjects maintained quiet breathing for five minutes. The subjects performed five maximal static inspiratory efforts and received five CMS before and after the quiet breathing. In the MVV trial, subjects performed five maximal inspiratory efforts and received five CMS before, immediately after, and ten minutes after two sets of MVV maneuvers performed five minutes apart. Maximal inspiratory pressure (PImax, sEMG of diaphragm and external intercostals during maximal static inspiratory efforts and during CMS were recorded. In the quiet breathing trial, high intraclass correlation coefficients (ICC=0.95-0.99 were observed in all the variables. In the MVV trial, the PImax, the EMG amplitude and the median power frequency during maximal static inspiratory efforts significantly decreased in both the diaphragm and the external intercostals immediately after the MVV maneuvers Sensors 2008, 8 2175 (P 0.05. It is concluded that the sEMG recordings of the diaphragm during maximal static inspiratory efforts and in response to CMS allow reproducible sequential assessment of diaphragm contractility. MVV maneuvers resulted in inspiratory muscles fatigue, possibly central fatigue.

  18. Novel Predictive Model of the Debonding Strength for Masonry Members Retrofitted with FRP

    Directory of Open Access Journals (Sweden)

    Iman Mansouri

    2016-11-01

    Full Text Available Strengthening of masonry members using externally bonded (EB fiber-reinforced polymer (FRP composites has become a famous structural strengthening method over the past decade due to the popular advantages of FRP composites, including their high strength-to-weight ratio and excellent corrosion resistance. In this study, gene expression programming (GEP, as a novel tool, has been used to predict the debonding strength of retrofitted masonry members. The predictions of the new debonding resistance model, as well as several other models, are evaluated by comparing their estimates with experimental results of a large test database. The results indicate that the new model has the best efficiency among the models examined and represents an improvement to other models. The root mean square errors (RMSE of the best empirical Kashyap model in training and test data were, respectively, reduced by 51.7% and 41.3% using the GEP model in estimating debonding strength.

  19. Comparison among different retrofitting strategies for the vulnerability reduction of masonry bell towers

    Science.gov (United States)

    Milani, Gabriele; Shehu, Rafael; Valente, Marco

    2017-11-01

    This paper investigates the effectiveness of reducing the seismic vulnerability of masonry towers by means of innovative and traditional strengthening techniques. The followed strategy for providing the optimal retrofitting for masonry towers subjected to seismic risk relies on preventing active failure mechanisms. These vulnerable mechanisms are pre-assigned failure patterns based on the crack patterns experienced during the past seismic events. An upper bound limit analysis strategy is found suitable to be applied for simplified tower models in their present state and the proposed retrofitted ones. Taking into consideration the variability of geometrical features and the uncertainty of the strengthening techniques, Monte Carlo simulations are implemented into the limit analysis. In this framework a wide range of idealized cases are covered by the conducted analyses. The retrofitting strategies aim to increase the shear strength and the overturning load carrying capacity in order to reduce vulnerability. This methodology gives the possibility to use different materials which can fulfill the structural implementability requirements.

  20. Fiber-Reinforced Polymer Nets for Strengthening Lava Stone Masonries in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Santi Maria Cascone

    2016-04-01

    Full Text Available The strengthening of masonries is a crucial step in building restoration works because of its relevance, mostly with regard to the improvement of building seismic behavior. Current building technologies are based on the use of steel nets which are incorporated into cement plasters. The use of steel has a number of contraindications that can be solved by using composite materials such as glass fiber nets, which have high mechanical characteristics and lightness, elasticity, corrosion resistance, and compatibility with lime plaster. Building interventions, that take into account the application of glass fiber nets, are very sustainable from several points of view, e.g., material production, in situ works, economic cost and durability. In Italy, several experiments have been carried out in situ with the aim of testing the mechanical characteristics of masonries which have been treated with fiber-reinforced polymer (FRP nets. This paper deals with a series of in situ tests carried out during the restoration works of an important historical building located in Catania (Sicily, Italy. The results achieved are largely positive.