RePS: a sequence assembler that masks exact repeats identified from the shotgun data
Wang, Jun; Wong, Gane Ka-Shu; Ni, Peixiang;
2002-01-01
We describe a sequence assembler, RePS (repeat-masked Phrap with scaffolding), that explicitly identifies exact 20mer repeats from the shotgun data and removes them prior to the assembly. The established software is used to compute meaningful error probabilities for each base. Clone-end-pairing i...
Practical use of the repeating patterns in mask writing
Shoji, Masahiro; Inoue, Tadao; Yamabe, Masaki
2010-03-01
In May 2006, the Mask Design, Drawing, and Inspection Technology Research Department (Mask D2I) at the Association of Super-Advanced Electronics Technologies (ASET) launched a 4-year program for reducing mask manufacturing cost and TAT by concurrent optimization of MDP, mask writing, and mask inspection. As one of the tasks being pursued at the Mask Design Data Technology Research Laboratory, we have evaluated the effect of reducing the drawing shot counts by utilizing the repeating patterns, and showed positive impact on mask making by using CP drawing. During the past four years, we have developed a software to extract repeating patterns from fractured OPCed mask data which can be used to minimize the shot counts. In this evaluation, we have used an actual device production data obtained from the member companies of MaskD2I. To the extraction software we added new functions for extracting common repeating patterns from a set of multiple masks, and studied how this step can reduce the counts in comparison to the shot counts required during the conventional mask writing techniques. We have also developed software that uses the extraction result of repeating patterns and prepares drawing-data for the MCC/CP drawing system, which has been developed at the Mask Writing Equipment Technology Research Laboratory. With this software, we have simulated EB proximity effect on CP writing and examined how it affect the shot count reduction where CP shots with large CD errors are to be divided into VSB shots. In this paper, we will report the evaluation result of the practical application of repeating patterns in mask writing with this software.
Geosat Exact Repeat Mission Waveform Data Records (WDR) (NODC Accession 0061150)
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains waveform data records (WDRs) from the US Navy Geodetic Satellite (GEOSAT) Exact Repeat Mission (ERM) for the time period of November 08,...
Exact Tandem Repeats Analyzer (E-TRA): A new program for DNA sequence mining
Mehmet Karaca; Mehmet Bilgen; A. Naci Onus; Ayse Gul Ince; Safinaz Y. Elmasulu
2005-04-01
Exact Tandem Repeats Analyzer 1.0 (E-TRA) combines sequence motif searches with keywords such as ‘organs’, ‘tissues’, ‘cell lines’ and ‘development stages’ for finding simple exact tandem repeats as well as non-simple repeats. E-TRA has several advanced repeat search parameters/options compared to other repeat finder programs as it not only accepts GenBank, FASTA and expressed sequence tags (EST) sequence files, but also does analysis of multiple files with multiple sequences. The minimum and maximum tandem repeat motif lengths that E-TRA finds vary from one to one thousand. Advanced user defined parameters/options let the researchers use different minimum motif repeats search criteria for varying motif lengths simultaneously. One of the most interesting features of genomes is the presence of relatively short tandem repeats (TRs). These repeated DNA sequences are found in both prokaryotes and eukaryotes, distributed almost at random throughout the genome. Some of the tandem repeats play important roles in the regulation of gene expression whereas others do not have any known biological function as yet. Nevertheless, they have proven to be very beneficial in DNA profiling and genetic linkage analysis studies. To demonstrate the use of E-TRA, we used 5,465,605 human EST sequences derived from 18,814,550 GenBank EST sequences. Our results indicated that 12.44% (679,800) of the human EST sequences contained simple and non-simple repeat string patterns varying from one to 126 nucleotides in length. The results also revealed that human organs, tissues, cell lines and different developmental stages differed in number of repeats as well as repeat composition, indicating that the distribution of expressed tandem repeats among tissues or organs are not random, thus differing from the un-transcribed repeats found in genomes.
Ravi Gupta
2007-03-01
Full Text Available The identification and analysis of repetitive patterns are active areas of biological and computational research. Tandem repeats in telomeres play a role in cancer and hypervariable trinucleotide tandem repeats are linked to over a dozen major neurodegenerative genetic disorders. In this paper, we present an algorithm to identify the exact and inexact repeat patterns in DNA sequences based on orthogonal exactly periodic subspace decomposition technique. Using the new measure our algorithm resolves the problems like whether the repeat pattern is of period P or its multiple (i.e., 2P, 3P, etc., and several other problems that were present in previous signal-processing-based algorithms. We present an efficient algorithm of O(NLwÃ¢Â€Â‰logLw, where N is the length of DNA sequence and Lw is the window length, for identifying repeats. The algorithm operates in two stages. In the first stage, each nucleotide is analyzed separately for periodicity, and in the second stage, the periodic information of each nucleotide is combined together to identify the tandem repeats. Datasets having exact and inexact repeats were taken up for the experimental purpose. The experimental result shows the effectiveness of the approach.
许涛
2004-01-01
M r.Sm ith liked to be exact. O ne day when he was w alking in thestreet a m an cam e over and asked him E xcuse m e but w here's the , : “ ,nearest bookshop ?” The nearest bookshop Y ou have to cross a bridge and then turn “ ?to the right. ” A nd is the bridge long “ ?” Thirty m eters. “ ” The m an thanked him and went towards the bridge. Suddenly heheard som eone running after him . Stop M r.Sm ith w as shouting. I'm sorry. I just rem em bered ...
High-accuracy, high-resolution gravity profiles from 2 years of the Geosat Exact Repeat Mission
Sandwell, David T.; Mcadoo, David C.
1990-01-01
Satellite altimeter data from the first 44 repeat cycles (2 years) of the Geosat Exact Repeat Mission (EWRM) were averaged to improve accuracy, resolution and coverage of the marine gravity field. Individual 17-day repeat cycles were first edited and differentiated, resulting in the along-track vertical deflection (i.e., gravity disturbance). To increase the signal-to-noise ratio, 44 of these cycles were then averaged to form a single highly accurate vertical deflection profile. The largest contribution to the vertical deflection error is short-wavelength altimeter noise and longer-wavelength oceanographic variability; the combined noise level is typically 6 microrad. Both types of noise are reduced by averaging many repeat cycles. Over most ocean areas the uncertainty of the average profile is less than 1 microrad which corresponds to 1 mgal of along-track gravity disturbance. However, in areas of seasonal ice coverage, its uncertainty can exceed 5 microrad. To assess the resolution of individual and average Geosat gravity profiles, the cross-spectral analysis technique was applied to repeat profiles. Individual Geosat repeat cycles are coherent (greater than 0.5) for wavelengths greater than about 30 km and become increasingly incoherent at shorter wavelengths.
Gao, Song; Bertrand, Denis; Chia, Burton K H; Nagarajan, Niranjan
2016-05-11
The assembly of large, repeat-rich eukaryotic genomes represents a significant challenge in genomics. While long-read technologies have made the high-quality assembly of small, microbial genomes increasingly feasible, data generation can be expensive for larger genomes. OPERA-LG is a scalable, exact algorithm for the scaffold assembly of large, repeat-rich genomes, out-performing state-of-the-art programs for scaffold correctness and contiguity. It provides a rigorous framework for scaffolding of repetitive sequences and a systematic approach for combining data from different second-generation and third-generation sequencing technologies. OPERA-LG provides an avenue for systematic augmentation and improvement of thousands of existing draft eukaryotic genome assemblies.
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of July 12, 1988 to August 15, 1988....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of April 27, 1987 to May 30, 1987....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a copy of the NODC CD_ROM product titled 'Enhanced JGM-3 Geophysical Data Records (GDRs) from the Geodetic and Exact Repeat Missions' that...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of November 02, 1986 to December 12,...
National Oceanic and Atmospheric Administration, Department of Commerce — Crossover difference data records (XDRs) from the GEOSAT Geodetic Mission (GM) and Exact Repeat Mission (ERM) for the time period April 1, 1985 to November 7, 1987....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of September 18, 1988 to October 21,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of January 24, 1988 to February 26,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of December 12, 1986 to January 15,...
National Oceanic and Atmospheric Administration, Department of Commerce — Crossover difference data records (XDRs) from the GEOSAT Geodetic Mission (GM) and Exact Repeat Mission (ERM) for the time period of January 01, 1985 to December 31,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of November 08, 1986 to December 30,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of March 24, 1987 to April 26, 1987....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of June 08, 1988 to July 11, 1988....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of August 15, 1988 to September 17,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of August 24, 1989 to September 27,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of April 01, 1988 to May 04, 1988....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the sensor data records (SDRs) from the Geodetic Satellite (GEOSAT) Exact Repeat Mission (ERM) for the time period of November 8, 1986 to...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of March 07, 1989 to April 09, 1989....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of August 07, 1987 to September 09,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of June 17, 1989 to July 20, 1989....
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains one month of geodetic data records (GDRs) from the GEOSAT Exact Repeat Mission (ERM) for the time period of December 29, 1988 to January 31,...
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a copy of the NODC CD-ROM product titled US Navy Geosat altimeter T2 GDRs for the Exact Repeat Mission for the time period of November 08,...
Mask alignment system for semiconductor processing
Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.
2017-02-14
A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.
Winiecki, A.L.; Kroop, D.C.; McGee, M.K.; Lenkszus, F.R.
1984-01-01
An analytical instrument and particularly a time-of-flight-mass spectrometer for processing a large number of analog signals irregularly spaced over a spectrum, with programmable masking of portions of the spectrum where signals are unlikely in order to reduce memory requirements and/or with a signal capturing assembly having a plurality of signal capturing devices fewer in number than the analog signals for use in repeated cycles within the data processing time period.
Mask qualification strategies in a wafer fab
Jaehnert, Carmen; Kunowski, Angela
2007-02-01
Having consistent high quality photo masks is one of the key factors in lithography in the wafer fab. Combined with stable exposure- and resist processes, it ensures yield increases in production and fast learning cycles for technology development and design evaluation. Preventive controlling of incoming masks and quality monitoring while using the mask in production is essential for the fab to avoid yield loss or technical problems caused by mask issues, which eventually result in delivery problems to the customer. In this paper an overview of the procedures used for mask qualification and production release, for both logic and DRAM, at Infineon Dresden is presented. Incoming qualification procedures, such as specification checks, incoming inspection, and inline litho process window evaluation, are described here. Pinching and electrical tests, including compatibility tests for mask copies for high volume products on optimized litho processes, are also explained. To avoid mask degradation over lifetime, re-inspection checks are done for re-qualification while using the mask in production. The necessity of mask incoming inspection and re-qualification, due to the repeater printing from either the processing defects of the original mask or degrading defects of being used in the fab (i.e. haze, ESD, and moving particles, etc.), is demonstrated. The need and impact of tight mask specifications, such as CD uniformity signatures and corresponding electrical results, are shown with examples of mask-wafer CD correlation.
Gamble, David L.
2012-01-01
Masks can represent so many things, such as emotions (happy, sad, fearful) and power. The familiar "comedy and tragedy" masks, derived from ancient Greek theater, are just one example from mask history. Death masks from the ancient Egyptians influenced the ancient Romans into creating similar masks for their departed. Masks can represent many…
Gamble, David L.
2012-01-01
Masks can represent so many things, such as emotions (happy, sad, fearful) and power. The familiar "comedy and tragedy" masks, derived from ancient Greek theater, are just one example from mask history. Death masks from the ancient Egyptians influenced the ancient Romans into creating similar masks for their departed. Masks can represent many…
Informational masking and musical training.
Oxenham, Andrew J; Fligor, Brian J; Mason, Christine R; Kidd, Gerald
2003-09-01
The relationship between musical training and informational masking was studied for 24 young adult listeners with normal hearing. The listeners were divided into two groups based on musical training. In one group, the listeners had little or no musical training; the other group was comprised of highly trained, currently active musicians. The hypothesis was that musicians may be less susceptible to informational masking, which is thought to reflect central, rather than peripheral, limitations on the processing of sound. Masked thresholds were measured in two conditions, similar to those used by Kidd et al. [J. Acoust. Soc. Am. 95, 3475-3480 (1994)]. In both conditions the signal was comprised of a series of repeated tone bursts at 1 kHz. The masker was comprised of a series of multitone bursts, gated with the signal. In one condition the frequencies of the masker were selected randomly for each burst; in the other condition the masker frequencies were selected randomly for the first burst of each interval and then remained constant throughout the interval. The difference in thresholds between the two conditions was taken as a measure of informational masking. Frequency selectivity, using the notched-noise method, was also estimated in the two groups. The results showed no difference in frequency selectivity between the two groups, but showed a large and significant difference in the amount of informational masking between musically trained and untrained listeners. This informational masking task, which requires no knowledge specific to musical training (such as note or interval names) and is generally not susceptible to systematic short- or medium-term training effects, may provide a basis for further studies of analytic listening abilities in different populations.
Visual masking & schizophrenia
Michael H. Herzog
2015-06-01
Full Text Available Visual masking is a frequently used tool in schizophrenia research. Visual masking has a very high sensitivity and specificity and masking paradigms have been proven to be endophenotypes. Whereas masking is a powerful technique to study schizophrenia, the underlying mechanisms are discussed controversially. For example, for more than 25 years, masking deficits of schizophrenia patients were mainly attributed to a deficient magno-cellular system (M-system. Here, we show that there is very little evidence that masking deficits are magno-cellular deficits. We will discuss the magno-cellular and other approaches in detail and highlight their pros and cons.
EUV mask pilot line at Intel Corporation
Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang
2004-12-01
The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.
Mask degradation monitoring with aerial mask inspector
Tseng, Wen-Jui; Fu, Yung-Ying; Lu, Shih-Ping; Jiang, Ming-Sian; Lin, Jeffrey; Wu, Clare; Lifschitz, Sivan; Tam, Aviram
2013-06-01
As design rule continues to shrink, microlithography is becoming more challenging and the photomasks need to comply with high scanner laser energy, low CDU, and ever more aggressive RETs. This give rise to numerous challenges in the semiconductor wafer fabrication plants. Some of these challenges being contamination (mainly haze and particles), mask pattern degradation (MoSi oxidation, chrome migration, etc.) and pellicle degradation. Fabs are constantly working to establish an efficient methodology to manage these challenges mainly using mask inspection, wafer inspection, SEM review and CD SEMs. Aerial technology offers a unique opportunity to address the above mask related challenges using one tool. The Applied Materials Aera3TM system has the inherent ability to inspect for defects (haze, particles, etc.), and track mask degradation (e.g. CDU). This paper focuses on haze monitoring, which is still a significant challenge in semiconductor manufacturing, and mask degradation effects that are starting to emerge as the next challenge for high volume semiconductor manufacturers. The paper describes Aerial inspector (Aera3) early haze methodology and mask degradation tracking related to high volume manufacturing. These will be demonstrated on memory products. At the end of the paper we take a brief look on subsequent work currently conducted on the more general issue of photo mask degradation monitoring by means of an Aerial inspector.
Mask industry assessment: 2004
Shelden, Gilbert V.; Hector, Scott D.
2004-12-01
Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. A survey was created with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of equipment for mask fabrication. This year's assessment is the third in the current series of annual reports and is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. This report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results may be used to guide future investments on critical path issues. This year's survey builds upon the 2003 survey to provide an ongoing database using the same questions as a baseline with only a few minor changes or additions. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services. Within each category are a many questions that create a detailed profile of both the business and technical status of the mask industry. This assessment includes inputs from ten major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market.
Malloy, Matt
2013-09-01
A comprehensive survey was sent to merchant and captive mask shops to gather information about the mask industry as an objective assessment of its overall condition. 2013 marks the 12th consecutive year for this process. Historical topics including general mask profile, mask processing, data and write time, yield and yield loss, delivery times, maintenance, and returns were included and new topics were added. Within each category are multiple questions that result in a detailed profile of both the business and technical status of the mask industry. While each year's survey includes minor updates based on feedback from past years and the need to collect additional data on key topics, the bulk of the survey and reporting structure have remained relatively constant. A series of improvements is being phased in beginning in 2013 to add value to a wider audience, while at the same time retaining the historical content required for trend analyses of the traditional metrics. Additions in 2013 include topics such as top challenges, future concerns, and additional details in key aspects of mask masking, such as the number of masks per mask set per ground rule, minimum mask resolution shipped, and yield by ground rule. These expansions beyond the historical topics are aimed at identifying common issues, gaps, and needs. They will also provide a better understanding of real-life mask requirements and capabilities for comparison to the International Technology Roadmap for Semiconductors (ITRS).
Lercel, Michael; Kasprowicz, Bryan
2016-10-01
The introduction of Extreme Ultraviolet Lithography (EUV) as a replacement for multiple patterning is based on improvements of cycle time, yield, and cost. Earlier cost studies have assumed a simple assumption that EUV masks (being more complex with the multilayer coated blank) are not more than three times as expensive as advanced ArFi (ArF immersion) masks. EUV masks are expected to be more expensive during the ramp of the technology because of the added cost of the complex mask blank, the use of EUV specific mask tools, and a ramp of yield learning relative to the more mature technologies. This study concludes that, within a range of scenarios, the hypothesis that EUV mask costs are not more than three times that of advanced ArFi masks is valid and conservative.
Lohmann, E.R.M.A.; Borm, P.E.M.; Herings, P.J.J.
2011-01-01
To verify whether a transferable utility game is exact, one has to check a linear inequality for each exact balanced collection of coalitions. This paper studies the structure and properties of the class of exact balanced collections. Comparing the definition of exact balanced collections with the
Mask tuning for process window improvement
Buttgereit, Ute; Birkner, Robert; Graitzer, Erez; Cohen, Avi; Triulzi, Benedetta; Romeo, Carmelo
2011-03-01
For the next years optical lithography stays at 193nm with a numerical aperture of 1.35. Mask design becomes more complex, mask and lithography specifications tighten. The k1 factor comes close to 0.25 which leads to a tremendously increased Mask Error Enhancement Factor (MEEF). This means that CD errors on mask are getting highly amplified on wafer. Process control becomes more important than ever. Accurate process control is a key factor to success to maintain a high yield in chip production. One key parameter to ensure a high and reliable functionality for any integrated circuit is the critical dimension uniformity (CDU). There are different contributors which impact the intra-field CD performance at wafer such as mask CD uniformity, scanner fingerprint, resist process etc. In the present work we focus on improvement of mask CD signature which is one of the main contributors to intra-field CD uniformity. The mask CD uniformity has been measured by WLCD32 which measures the CD based on proven aerial image technology. Based on this CD input the CD uniformity was corrected by CDC200TM and afterwards verified by WLCD32 measurement. The CDC200TM tool utilizes an ultrafast femto-second laser to write intra-volume shading elements (Shade-In ElementsTM) inside the bulk material of the mask. By adjusting the density of the shading elements, the light transmission through the mask is locally changed in a manner that improves wafer CDU when the corrected mask is printed. Additionally, the impact of the improved CD uniformity on the lithography process window was investigated. Goal of the work is to establish a process flow for mask CD uniformity improvement based on mask CD metrology by WLCD32 and mask CD uniformity control by CDC200TM and to verify its impact on the lithography process window. The proposed process flow will be validated by wafer prints. It was shown that the WLCD32 has an excellent correlation to wafer data and an outstanding CD repeatability. It provides
Binary Masking & Speech Intelligibility
Boldt, Jesper
The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility....
Mask industry assessment: 2003
Kimmel, Kurt R.
2003-12-01
Microelectronics industry leaders routinely name mask technology and mask supply issues of cost and cycle time as top issues of concern. A survey was initiated in 2002 with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition.1 This paper presents the results of the second annual survey which is an enhanced version of the inaugural survey building upon its strengths and improving the weak points. The original survey was designed with the input of member company mask technologists, merchant mask suppliers, and industry equipment makers. The assessment is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the critical mask industry. An objective is to create a valuable reference to identify strengths and opportunities and to guide investments on critical-path issues. As subsequent years are added, historical profiles can also be created. This assessment includes inputs from ten major global merchant and captive mask manufacturers representing approximately 80% of the global mask market (using revenue as the measure) and making this the most comprehensive mask industry survey ever. The participating companies are: Compugraphics, Dai Nippon Printing, Dupont Photomask, Hoya, IBM, Infineon, Intel, Taiwan Mask Company, Toppan, and TSMC. Questions are grouped into five categories: General Business Profile Information; Data Processing; Yields and Yield loss Mechanisms; Delivery Time; and Returns and Services. Within each category are a multitude of questions that create a detailed profile of both the business and technical status of the mask industry.
Binary mask programmable hologram.
Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K
2012-11-19
We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.
Mask industry assessment: 2005
Shelden, Gilbert; Hector, Scott
2005-11-01
Microelectronics industry leaders routinely name mask cost and cycle time as top issues of concern. A survey was created with support from International SEMATECH (ISMT) and administered by SEMI North America to gather information about the mask industry as an objective assessment of its overall condition. The survey is designed with the input of mask technologists from semiconductor manufacturers, merchant mask suppliers, and makers of equipment for mask fabrication. This year's assessment is the fourth in the current series of annual reports and is intended to be used as a baseline for the mask industry and the microelectronics industry to gain a perspective on the technical and business status of the mask industry. This report will continue to serve as a valuable reference to identify the strengths and opportunities of the mask industry. The results may be used to guide future investments on critical path issues. This year's survey contains all of the 2004 survey questions to provide an ongoing database. Additional questions were added to the survey covering operating cost factors and equipment utilization. Questions are grouped into categories: general business profile information, data processing, yields and yield loss mechanisms, delivery times, returns and services, operating cost factors and equipment utilization. Within each category are a many questions that create a detailed profile of both the business and technical status of the mask industry. This assessment includes inputs from eight major global merchant and captive mask manufacturers whose revenue represents approximately 85% of the global mask market. This participation rate is reduced by one captive from 2004. Note: Toppan, DuPont Photomasks Inc and AMTC (new) were consolidated into one input therefore the 2004 and 2005 surveys are basically equivalent.
How the global layout of the mask influences masking strength.
Ghose, Tandra; Hermens, Frouke; Herzog, Michael H
2012-12-10
In visual backward masking, the perception of a target is influenced by a trailing mask. Masking is usually explained by local interactions between the target and the mask representations. However, recently it has been shown that the global spatial layout of the mask rather than its local structure determines masking strength (Hermens & Herzog, 2007). Here, we varied the mask layout by spatial, luminance, and temporal cues. We presented a vernier target followed by a mask with 25 elements. Performance deteriorated when the length of the two mask elements neighboring the target vernier was doubled. However, when the length of every second mask element was doubled, performance improved. When the luminance of the neighboring elements was doubled, performance also deteriorated but no improvement in performance was observed when every second element had a double luminance. For temporal manipulations, a complex nonmonotonic masking function was observed. Hence, changes in the mask layout by spatial, luminance, and temporal cues lead to highly different results.
Mask Phenomenon in Communication
郎丽璇
2013-01-01
People sometimes wear masks. Abusive expression may be used to convey love while polite words can be exchanged among enemies. This essay describes and discusses this special phenomenon in communication and analyzes the elements that con-tribute to the success of a mask communication.
Ghoneim, Mohamed T.
2017-08-10
Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during semiconductor manufacturing for deep reactive etches. Such a manufacturing process may include depositing a first mask material on a substrate; depositing a second mask material on the first mask material; depositing a third mask material on the second mask material; patterning the third mask material with a pattern corresponding to one or more trenches for transfer to the substrate; transferring the pattern from the third mask material to the second mask material; transferring the pattern from the second mask material to the first mask material; and/or transferring the pattern from the first mask material to the substrate.
Amack, Andrew J; Barber, Gary A; Ng, Patrick C; Smith, Thomas B; April, Michael D
2017-01-01
We compare received minute volume with an intraoral mask versus conventional cuffed face mask among medics obtaining a 1-handed mask seal on a cadaver model. This study comprised a randomized crossover trial of adult US Army combat medic volunteers participating in a cadaver laboratory as part of their training. We randomized participants to obtain a 1-handed mask seal during ventilation of a fresh unembalmed cadaver, first using either an intraoral airway device or conventional cuffed face mask. Participants obtained a 1-handed mask seal while a ventilator delivered 10 standardized 750-mL breaths during 1 minute. After a 5-minute rest period, they repeated the study with the alternative mask. The primary outcome measure was received minute volume as measured by a respirometer. Of 27 recruited participants, all completed the study. Median received minute volume was higher with the intraoral mask compared with conventional cuffed mask by 1.7 L (95% confidence interval 1.0 to 1.9 L; P<.001). The intraoral mask resulted in greater received minute volume received compared with conventional cuffed face mask during ventilation with a 1-handed mask seal in a cadaver model. The intraoral mask may prove a useful airway adjunct for ventilation. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
1998-01-01
This gilded silver mask from the Liao Dynasty is 31 cm long and 22.2 cm wide. The plump oval face was designed with a protruding brow ridge, narrow eyes, high-bridged nose and closed mouth. The chin is slightly round against a thin neck, the ears are long and the hair can be clearly seen from the finely carved lines. The use of masks was recorded as
New mask technology challenges
Kimmel, Kurt R.
2001-09-01
Mask technology development has accelerated dramatically in recent years from the glacial pace of the last three decades to the rapid and sometimes simultaneous introductions of new wavelengths and mask-based resolution enhancement techniques. The nature of the semiconductor business has also become one driven by time-to-market as an overwhelming factor in capturing market share and profit. These are among the factors that have created enormous stress on the mask industry to produce masks with enhanced capabilities, such as phase-shifting attenuators, sub-resolution assist bars, and optical proximity correction (OPC) features, while maintaining or reducing cost and cycle time. The mask can no longer be considered a commodity item that is purchased form the lowest-cost supplier. Instead, it must now be promoted as an integral part of the technical and business case for a total lithographic solution. Improving partnership between designer, mask-maker, and wafer lithographer will be the harbinger of success in finding a profitable balance of capability, cost, and cycle time. Likewise for equipment infrastructure development, stronger partnership on the international level is necessary to control development cost and mitigate schedule and technical risks.
Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Israel, Daniel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Doebling, Scott William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woods, Charles Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kaul, Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Walter, Jr., John William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Michael Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-09
For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.
Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.
2010-01-01
We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the ......We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave...... with the well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass...
Johnson, M A; Sommargren, G E
2000-02-04
Mask blanks are the substrates that hold the master patterns for integrated circuits. Integrated circuits are semiconductor devices, such as microprocessors (mPs), dynamic random access memory (DRAMs), and application specific integrated circuits (ASICs) that are central to the computer, communication, and electronics industries. These devices are fabricated using a set of master patterns that are sequentially imaged onto light-sensitive coated silicon wafers and processed to form thin layers of insulating and conductive materials on top of the wafer. These materials form electrical paths and transistors that control the flow of electricity through the device. For the past forty years the semiconductor industry has made phenomenal improvements in device functionality, compactness, speed, power, and cost. This progress is principally due to the exponential decrease in the minimum feature size of integrated circuits, which has been reduced by a factor of {radical}2 every three years. Since 1992 the Semiconductor Industry Association (SIA) has coordinated the efforts of producing a technology roadmap for semiconductors. In the latest document, ''The International Technology Roadmap for Semiconductors: 1999'', future technology nodes (minimum feature sizes) and targeted dates were specified and are summarized in Table 1. Lithography is the imaging technology for producing a de-magnified image of the mask on the wafer. A typical de-magnification factor is 4. Mask blank defects as small as one-eighth the equivalent minimum feature size are printable and may cause device failure. Defects might be the result of the surface preparation, such as polishing, or contamination due to handling or the environment. Table 2 shows the maximum tolerable defect sizes on the mask blank for each technology node. This downward trend puts a tremendous burden on mask fabrication, particularly in the area of defect detection and reduction. A new infrastructure for mask
Masked object registration in the Fourier domain.
Padfield, Dirk
2012-05-01
Registration is one of the most common tasks of image analysis and computer vision applications. The requirements of most registration algorithms include large capture range and fast computation so that the algorithms are robust to different scenarios and can be computed in a reasonable amount of time. For these purposes, registration in the Fourier domain using normalized cross-correlation is well suited and has been extensively studied in the literature. Another common requirement is masking, which is necessary for applications where certain regions of the image that would adversely affect the registration result should be ignored. To address these requirements, we have derived a mathematical model that describes an exact form for embedding the masking step fully into the Fourier domain so that all steps of translation registration can be computed efficiently using Fast Fourier Transforms. We provide algorithms and implementation details that demonstrate the correctness of our derivations. We also demonstrate how this masked FFT registration approach can be applied to improve the Fourier-Mellin algorithm that calculates translation, rotation, and scale in the Fourier domain. We demonstrate the computational efficiency, advantages, and correctness of our algorithm on a number of images from real-world applications. Our framework enables fast, global, parameter-free registration of images with masked regions.
Study of critical dimension uniformity (CDU) using a mask inspector
Lin, Mei-Chun; Yu, Ching-Fang; Lai, Mei-Tsu; Hsu, Luke T. H.; Chin, Angus; Yen, Anthony
2012-11-01
This paper studies the repeatability and the reliability of CDUs from a mask inspector and their correlation with CD SEM measurements on various pattern attributes such as feature sizes, tones, and orientations. Full-mask image analysis with a mask inspector is one of potential solutions for overcoming the sampling rate limitation of a mask CD SEM. By comparing the design database with the inspected dimension, the complete CDU behavior of specific patterns can be obtained without extra work and tool time. These measurements can be mapped and averaged over various spatial lengths to determine changes in relative CDU across the mask. Eventually, success of this methodology relies on the optical system of the inspector being highly stable.
Exactly Solvable Quantum Mechanics
Sasaki, Ryu
2014-01-01
A comprehensive review of exactly solvable quantum mechanics is presented with the emphasis of the recently discovered multi-indexed orthogonal polynomials. The main subjects to be discussed are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modifications), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, coherent states, various deformation schemes (multiple Darboux transformations) and the infinite families of multi-indexed orthogonal polynomials, the exceptional orthogonal polynomials, and deformed exactly solvable scattering problems.
Rice, Bryan J.; Jindal, Vibhu; Lin, C. C.; Harris-Jones, Jenah; Kwon, Hyuk Joo; Ma, Hsing-Chien; Goldstein, Michael; Chan, Yau-Wai; Goodwin, Frank
2011-11-01
Extreme ultraviolet (EUV) lithography is the successor to optical lithography and will enable advanced patterning in semiconductor manufacturing processes down to the 8 nm half pitch technology node and beyond. However, before EUV can successfully be inserted into high volume manufacturing a few challenges must be overcome. Central among these remaining challenges is the requirement to produce "defect free" EUV masks. Mask blank defects have been one of the top challenges in the commercialization of extreme ultraviolet (EUV) lithography. To determine defect sources and devise mitigation solutions, detailed characterization of defects is critical. However, small defects pose challenges in metrology scale-up. SEMATECH has a comprehensive metrology strategy to address any defect larger than a 20 nm core size to obtain solutions for defect-free EUV mask blanks. SEMATECH's Mask Blank Development Center has been working since 2003 to develop the technology to support defect free EUV mask blanks. Since 2003, EUV mask blank defects have been reduced from 10000 of size greater than 100 nm to about a few tens at size 70 nm. Unfortunately, today's state of the art defect levels are still about 10 to 100 times higher than needed. Closing this gap requires progress in the various processes associated with glass substrate creation and multilayer deposition. That process development improvement in turn relies upon the availability of metrology equipment that can resolve and chemically characterize defects as small as 30 nm. The current defect reduction efforts at SEMATECH have intensively included a focus on inspection and characterization. The facility boasts nearly 100M of metrology hardware, including an FEI Titan TEM, Lasertec M1350 and M7360 tools, an actinic inspection tool, AFM, SPM, and scanning auger capabilities. The newly established Auger tool at SEMATECH can run a standard 6-inch mask blank and is already providing important information on sub-100 nm defects on EUV
Poltroniéri, J
1990-01-01
A new type of airway has been widely used for two years, throughout hospitals in the United Kingdom. Designed and created since 1983 by Dr AIJ Brain, the Laryngeal Mask Airway (LMA) is a compromise between the endotracheal tube and the face-mask. Blindly inserted in an anaesthetized patient, without either a laryngoscope or neuromuscular blockade, it provides a good airway in almost all cases. It is often able to offer an effective alternative to difficult intubation. The LMA can be used with either spontaneous or positive pressure ventilation. Because it doesn't provide a reliable protection of the airway from aspiration, it should never be used in the patient with a full stomach. The spontaneously breathing patient, undergoing elective surgery for 15 to 60 minutes, in supine position, who would ordinarily be managed with a face-mask is the more likely candidate for the LMA. But, longer procedures, in lateral or prone position, with controlled ventilation can usually be carried out using the Brain's device. More effective and less demanding than the facial-mask, much less hurtful than the endotracheal tube, the Laryngeal Mask is potentially an important and valuable addition to anaesthetic care.
Tuan, George C.; Graf, John C.
2009-01-01
Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction time, breakthroughs, and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.
Reduced basis method for source mask optimization
Pomplun, J; Burger, S; Schmidt, F; Tyminski, J; Flagello, D; Toshiharu, N; 10.1117/12.866101
2010-01-01
Image modeling and simulation are critical to extending the limits of leading edge lithography technologies used for IC making. Simultaneous source mask optimization (SMO) has become an important objective in the field of computational lithography. SMO is considered essential to extending immersion lithography beyond the 45nm node. However, SMO is computationally extremely challenging and time-consuming. The key challenges are due to run time vs. accuracy tradeoffs of the imaging models used for the computational lithography. We present a new technique to be incorporated in the SMO flow. This new approach is based on the reduced basis method (RBM) applied to the simulation of light transmission through the lithography masks. It provides a rigorous approximation to the exact lithographical problem, based on fully vectorial Maxwell's equations. Using the reduced basis method, the optimization process is divided into an offline and an online steps. In the offline step, a RBM model with variable geometrical param...
Birke, Szifra
1993-01-01
Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…
Birke, Szifra
1993-01-01
Provides information on alcoholism and codependency to help teachers identify and respond to children of alcoholics (COAs). Discusses characteristics of alcoholic homes and problems encountered by children and adult COAs. Examines survival "masks" of COAs, including hero, rebel, adjustor, clown, and caretaker. Lists organizational,…
Berthiller, Franz; Crews, Colin; Dall'Asta, Chiara; Saeger, Sarah De; Haesaert, Geert; Karlovsky, Petr; Oswald, Isabelle P; Seefelder, Walburga; Speijers, Gerrit; Stroka, Joerg
2013-01-01
The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non-extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked. Fusarium mycotoxins (deoxynivalenol, zearalenone, fumonisins, nivalenol, fusarenon-X, T-2 toxin, HT-2 toxin, fusaric acid) are prone to metabolisation or binding by plants, but transformation of other mycotoxins by plants (ochratoxin A, patulin, destruxins) has also been described. Toxicological data are scarce, but several studies highlight the potential threat to consumer safety from these substances. In particular, the possible hydrolysis of masked mycotoxins back to their toxic parents during mammalian digestion raises concerns. Dedicated chapters of this article address plant metabolism as well as the occurrence of masked mycotoxins in food, analytical aspects for their determination, toxicology and their impact on stakeholders.
CADAT integrated circuit mask analysis
1981-01-01
CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.
The VIRMOS mask manufacturing tools; 2, Mask manufacturing and handling
Conti, G; Mattaini, E; MacCagni, D; Lefèvre, O; Saisse, M; Vettolani, G
1999-01-01
We describe the VIRMOS Mask Manufacturing Unit (MMU) configuration, composed of two units:the Mask Manufacturing Machine (with its Control Unit) and the Mask Handling Unit (inclusive of Control Unit, Storage Cabinets and robot for loading of the Instrument Cabinets). For both VIMOS and NIRMOS instruments, on the basis of orders received by the Mask Preparation Software (see paper (a) in same proceedings), the function of the MMU is to perform an off-line mask cutting and identification, followed by mask storing and subsequent filling of the Instrument Cabinets (IC). We describe the characteristics of the LPKF laser cutting machine and the work done to support the choice of this equipment. We also describe the remaining of the hardware configuration and the Mask Handling Software.
On exactly conservative integrators
Bowman, J.C. [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Shadwick, B.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Morrison, P.J. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1997-06-01
Traditional explicit numerical discretizations of conservative systems generically predict artificial secular drifts of nonlinear invariants. These algorithms are based on polynomial functions of the time step. The authors discuss a general approach for developing explicit algorithms that conserve such invariants exactly. They illustrate the method by applying it to the truncated two-dimensional Euler equations.
On exactly conservative integrators
Bowman, J.C. [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Shadwick, B.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics; Morrison, P.J. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1997-06-01
Traditional explicit numerical discretizations of conservative systems generically predict artificial secular drifts of nonlinear invariants. These algorithms are based on polynomial functions of the time step. The authors discuss a general approach for developing explicit algorithms that conserve such invariants exactly. They illustrate the method by applying it to the truncated two-dimensional Euler equations.
Mask industry quality assessment
Strott, Al; Bassist, Larry
1994-12-01
Product quality and timely delivery are two of the most important parameters in determining the success of a mask manufacturing facility. Because of the sensitivity of this data, very little was known about industry performance in these areas until an assessment was authored and presented at the 1993 BACUS Symposium by Larry Regis of Intel Corporation, Neil Paulsen of Intel Corporation, and James A. Reynolds of Reynolds Consulting. This data has been updated and will be published and presented at this year's BACUS Symposium. Contributor identities will again remain protected by utilizing Arthur Andersen & Company to compile the submittals. Participation was consistent with last year's representation of over 75% of the total merchant and captive mask volume in the United States. The data compiled includes shipments, customer return rate, customer return reasons from 1988 through Q2, 1994, performance to schedule, plate survival yield, and throughput time (TPT).
Mask strategy at International SEMATECH
Kimmel, Kurt R.
2002-08-01
International SEMATECH (ISMT) is a consortium consisting of 13 leading semiconductor manufacturers from around the globe. Its objective is to develop the infrastructure necessary for its member companies to realize the International Technology Roadmap for Semiconductors (ITRS) through efficiencies of shared development resources and knowledge. The largest area of effort is lithography, recognized as a crucial enabler for microelectronics technology progress. Within the Lithography Division, most of the efforts center on mask-related issues. The development strategy at International SEMATCH will be presented and the interlock of lithography projects clarified. Because of the limited size of the mask production equipment market, the business case is weak for aggressive investment commensurate with the pace of the International Technology Roadmap for Semiconductors. With masks becoming the overwhelming component of lithography cost, new ways of reducing or eliminating mask costs are being explored. Will mask technology survive without a strong business case? Will the mask industry limit the growth of the semiconductor industry? Are advanced masks worth their escalating cost? An analysis of mask cost from the perspective of mask value imparted to the user is presented with examples and generic formulas for the reader to apply independently. A key part to the success for both International SEMATECH and the industry globally will be partnerships on both the local level between mask-maker and mask-user, and the macro level where global collaborations will be necessary to resolve technology development cost challenges.
YASAR KESKIN
2006-08-01
Full Text Available Avian influenza (bird flu is a disease of birds caused by influenza viruses closely related to human influenza viruses. The potential for transformation of avian influenza into a form that both causes severe disease in humans and spreads easily from person to person is a great concern for world health. The main purpose of a mask is to help prevent particles (droplets being expelled into the environment by the wearer. Masks are also resistant to fluids, and help protect the wearer from splashes of blood or other potentially infectious substances. They are not necessarily designed for filtration efficiency, or to seal tightly to the face. Masks and respirators are components of a number of infection control measures intended to protect healthcare workers, and prevent the spread of diseases. All healthcare workers who come into contact with a possible or probable case of any respiratory track infections should wear a respirator conforming to at least EN149:2001 FFP3. [TAF Prev Med Bull 2006; 5(4.000: 296-306
Exact Relativistic 'Antigravity' Propulsion
Felber, F S
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Simulation of AIMS measurements using rigorous mask 3D modeling
Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng
2015-03-01
Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.
Assessing EUV mask defectivity
Okoroanyanwu, Uzodinma; Tchikoulaeva, Anna; Ackmann, Paul; Wood, Obert; La Fontaine, Bruno; Bubke, Karsten; Holfeld, Christian; Peters, Jan Hendrik; Kini, Sumanth; Watson, Sterling; Lee, Isaac; Mu, Bo; Lim, Phillip; Raghunathan, Sudhar; Boye, Carol
2010-04-01
This paper assesses the readiness of EUV masks for pilot line production. The printability of well characterized reticle defects, with particular emphasis on those reticle defects that cause electrical errors on wafer test chips, is investigated. The reticles are equipped with test marks that are inspected in a die-to-die mode (using DUV inspection tool) and reviewed (using a SEM tool), and which also comprise electrically testable patterns. The reticles have three modules comprising features with 32 nm ground rules in 104 nm pitch, 22 nm ground rules with 80 nm pitch, and 16 nm ground rules with 56 nm pitch (on the wafer scale). In order to determine whether specific defects originate from the substrate, the multilayer film, the absorber stack, or from the patterning process, the reticles were inspected after each fabrication step. Following fabrication, the reticles were used to print wafers on a 0.25 NA full-field ASML EUV exposure tool. The printed wafers were inspected with state of the art bright-field and Deep UV inspection tools. It is observed that the printability of EUV mask defects down to a pitch of 56 nm shows a trend of increased printability as the pitch of the printed pattern gets smaller - a well established trend at larger pitches of 80 nm and 104 nm, respectively. The sensitivity of state-of-the-art reticle inspection tools is greatly improved over that of the previous generation of tools. There appears to be no apparent decline in the sensitivity of these state-of-the-art reticle inspection tools for higher density (smaller) patterns on the mask, even down to 56nm pitch (1x). Preliminary results indicate that a blank defect density of the order of 0.25 defects/cm2 can support very early learning on EUV pilot line production at the 16nm node.
AbouEisha, Hassan M.
2014-01-01
The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Exactly conservation integrators
Shadwick, B.A.; Bowman, J.C.; Morrison, P.J. [Univ. of Texas, Austin, TX (United States)
1999-03-01
Traditional explicit numerical discretizations of conservative systems generically predict artificial secular drifts of any nonlinear invariants. In this work the authors present a general approach for developing explicit nontraditional algorithms that conserve such invariants exactly. They illustrate the method by applying it to the three-wave truncation of the Euler equations, the Lotka-Volterra predator-prey model, and the Kepler problem. The ideas are discussed in the context of symplectic (phase-space-conserving) integration methods as well as nonsymplectic conservative methods. They comment on the application of the method to general conservative systems.
Exactly conservative integrators
Shadwick, B.A.; Bowman, J.C.; Morrison, P.J.
1995-07-19
Traditional numerical discretizations of conservative systems generically yield an artificial secular drift of any nonlinear invariants. In this work we present an explicit nontraditional algorithm that exactly conserves invariants. We illustrate the general method by applying it to the Three-Wave truncation of the Euler equations, the Volterra-Lotka predator-prey model, and the Kepler problem. We discuss our method in the context of symplectic (phase space conserving) integration methods as well as nonsymplectic conservative methods. We comment on the application of our method to general conservative systems.
Exactly conservative integrators
Shadwick, B A; Morrison, P J; Bowman, John C
1995-01-01
Traditional numerical discretizations of conservative systems generically yield an artificial secular drift of any nonlinear invariants. In this work we present an explicit nontraditional algorithm that exactly conserves these invariants. We illustrate the general method by applying it to the three-wave truncation of the Euler equations, the Lotka--Volterra predator--prey model, and the Kepler problem. This method is discussed in the context of symplectic (phase space conserving) integration methods as well as nonsymplectic conservative methods. We comment on the application of our method to general conservative systems.
Exactly conservative integrators
Shadwick, B.A.; Bowman, J.C.; Morrison, P.J.
1995-07-19
Traditional numerical discretizations of conservative systems generically yield an artificial secular drift of any nonlinear invariants. In this work we present an explicit nontraditional algorithm that exactly conserves invariants. We illustrate the general method by applying it to the Three-Wave truncation of the Euler equations, the Volterra-Lotka predator-prey model, and the Kepler problem. We discuss our method in the context of symplectic (phase space conserving) integration methods as well as nonsymplectic conservative methods. We comment on the application of our method to general conservative systems.
Trends in mask data preparation
Fujimura, Aki; Pang, Liyong; Su, Bo; Choi, Yohan
2014-10-01
Whether for VSB mask writing or for multibeam mask writing, the shapes we need to write on masks are increasingly complex, increasingly curvilinear, and smaller in minimum width and space. The overwhelming trend in mask data preparation (MDP) is the shift from deterministic, rule-based, geometric, context-independent, shape-modulated, rectangular processing to statistical, simulation-based, context-dependent, dose- and shape-modulated any-shape processing. The paper briefly surveys the history of MDP, and explains through a simulation-based study that 50nm line and space is the tipping point where rule-based processing gives away to simulation-based processing.
Masked hypertension: a systematic review.
Bobrie, Guillaume; Clerson, Pierre; Ménard, Joël; Postel-Vinay, Nicolas; Chatellier, Gilles; Plouin, Pierre-François
2008-09-01
The purpose of this research was to review the literature on masked hypertension. Studies, reviews and editorials on masked hypertension were identified by PubMed, Pascal BioMed and Cochrane literature systematic searches. Then, we carried out a meta-analysis of the six cohort studies reporting quantitative data for masked hypertension prognosis. There is still no clear consensus definition of masked hypertension and the reproducibility of the phenomenon is unknown. Nevertheless, the prevalence of masked hypertension seems to lie between 8 and 20%, and can be up to 50% in treated hypertensive patients. Subjects with masked hypertension have a higher risk of cardiovascular accidents [hazard ratios: 1.92 (1.51-2.44)] than normotensive subjects. This is due to a possible failure to recognize and appropriately manage this particular form of hypertension, the frequent association with other risk factors and coexisting target organ damage. The remaining unresolved questions are as follows: is masked hypertension a clinical entity that requires identification and characterization or a statistical phenomenon linked to the variability of blood pressure measurements?; because screening of the entire population is not feasible, how to identify individuals with masked hypertension?; and, in the absence of randomized trial, how to treat masked hypertension?
Localization & Exact Holography
Dabholkar, Atish; Murthy, Sameer
2011-01-01
We consider the AdS_2/CFT_1 holographic correspondence near the horizon of big four-dimensional black holes preserving four supersymmetries in toroidally compactified Type-II string theory. The boundary partition function of CFT_1 is given by the known quantum degeneracies of these black holes. The bulk partition function is given by a functional integral over string fields in AdS_2. Using recent results on localization we reduce the infinite-dimensional functional integral to a finite number of ordinary integrals over a space of localizing instantons. Under reasonable assumptions about the relevant terms in the effective action, these integrals can be evaluated exactly to obtain a bulk partition function. It precisely reproduces all terms in the exact Rademacher expansion of the boundary partition function as nontrivial functions of charges except for the Kloosterman sum which can in principle follow from an analysis of phases in the background of orbifolded instantons. Our results can be regarded as a step ...
What Is Being Masked in Object Substitution Masking?
Gellatly, Angus; Pilling, Michael; Cole, Geoff; Skarratt, Paul
2006-01-01
Object substitution masking (OSM) is said to occur when a perceptual object is hypothesized that is mismatched by subsequent sensory evidence, leading to a new hypothesized object being substituted for the first. For example, when a brief target is accompanied by a longer lasting display of nonoverlapping mask elements, reporting of target…
SEMATECH EUVL mask program status
Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick
2009-04-01
As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been
Exact Solutions to Maccari's System
PAN Jun-Ting; GONG Lun-Xun
2007-01-01
Based on the generalized Riccati relation, an algebraic method to construct a series of exact solutions to nonlinear evolution equations is proposed. Being concise and straightforward, the method is applied to Maccari's system, and some exact solutions of the system are obtained. The method is of important significance in exploring exact solutions for other nonlinear evolution equations.
Masked Repetition Priming Using Magnetoencephalography
Monahan, Philip J.; Fiorentino, Robert; Poeppel, David
2008-01-01
Masked priming is used in psycholinguistic studies to assess questions about lexical access and representation. We present two masked priming experiments using MEG. If the MEG signal elicited by words reflects specific aspects of lexical retrieval, then one expects to identify specific neural correlates of retrieval that are sensitive to priming.…
Masked hypertension in diabetes mellitus
Franklin, Stanley S; Thijs, Lutgarde; Li, Yan
2013-01-01
Although distinguishing features of masked hypertension in diabetics are well known, the significance of antihypertensive treatment on clinical practice decisions has not been fully explored. We analyzed 9691 subjects from the population-based 11-country International Database on Ambulatory Blood...... Pressure in Relation to Cardiovascular Outcomes. Prevalence of masked hypertension in untreated normotensive participants was higher (P...
Masked Uncontrolled Hypertension in CKD.
Agarwal, Rajiv; Pappas, Maria K; Sinha, Arjun D
2016-03-01
Masked uncontrolled hypertension (MUCH) is diagnosed in patients treated for hypertension who are normotensive in the clinic but hypertensive outside. In this study of 333 veterans with CKD, we prospectively evaluated the prevalence of MUCH as determined by ambulatory BP monitoring using three definitions of hypertension (daytime hypertension ≥135/85 mmHg; either nighttime hypertension ≥120/70 mmHg or daytime hypertension; and 24-hour hypertension ≥130/80 mmHg) or by home BP monitoring (hypertension ≥135/85 mmHg). The prevalence of MUCH was 26.7% by daytime ambulatory BP, 32.8% by 24-hour ambulatory BP, 56.1% by daytime or night-time ambulatory BP, and 50.8% by home BP. To assess the reproducibility of the diagnosis, we repeated these measurements after 4 weeks. Agreement in MUCH diagnosis by ambulatory BP was 75-78% (κ coefficient for agreement, 0.44-0.51), depending on the definition used. In contrast, home BP showed an agreement of only 63% and a κ coefficient of 0.25. Prevalence of MUCH increased with increasing clinic systolic BP: 2% in the 90-110 mmHg group, 17% in the 110-119 mmHg group, 34% in the 120-129 mmHg group, and 66% in the 130-139 mmHg group. Clinic BP was a good determinant of MUCH (receiver operating characteristic area under the curve 0.82; 95% confidence interval 0.76-0.87). In diagnosing MUCH, home BP was not different from clinic BP. In conclusion, among people with CKD, MUCH is common and reproducible, and should be suspected when clinic BP is in the prehypertensive range. Confirmation of MUCH diagnosis should rely on ambulatory BP monitoring.
Fiol, Bartomeu; Torrents, Genis
2014-01-01
We compute the exact vacuum expectation value of circular Wilson loops for Euclidean ${\\cal N}=4$ super Yang-Mills with $G=SO(N),Sp(N)$, in the fundamental and spinor representations. These field theories are dual to type IIB string theory compactified on $AdS_5\\times {\\mathbb R} {\\mathbb P}^5$ plus certain choices of discrete torsion, and we use our results to probe this holographic duality. We first revisit the LLM-type geometries having $AdS_5\\times {\\mathbb R} {\\mathbb P}^5$ as ground state. Our results clarify and refine the identification of these LLM-type geometries as bubbling geometries arising from fermions on a half harmonic oscillator. We furthermore identify the presence of discrete torsion with the one-fermion Wigner distribution becoming negative at the origin of phase space. We then turn to the string world-sheet interpretation of our results and argue that for the quantities considered they imply two features: first, the contribution coming from world-sheets with a single crosscap is closely ...
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-01-01
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reprod...
Biological Activity of Masked Endotoxin
Schwarz, Harald; Gornicec, Jan; Neuper, Theresa; Parigiani, Maria Alejandra; Wallner, Michael; Duschl, Albert; Horejs-Hoeck, Jutta
2017-01-01
Low endotoxin recovery (LER) is a recently discovered phenomenon describing the inability of limulus amebocyte lysate (LAL)-based assays to detect lipopolysaccharide (LPS) because of a “masking effect” caused by chelators or detergents commonly used in buffer formulations for medical products and recombinant proteins. This study investigates the masking capacities of different buffer formulations and whether masked endotoxin is biologically active. We show that both naturally occurring endotoxin as well as control standard endotoxin can be affected by LER. Furthermore, whereas masked endotoxin cannot be detected in Factor C based assays, it is still detectable in a cell-based TLR4-NF-κB-luciferase reporter gene assay. Moreover, in primary human monocytes, masked LPS induces the expression of pro-inflammatory cytokines and surface activation markers even at very low concentrations. We therefore conclude that masked LPS is a potent trigger of immune responses, which emphasizes the potential danger of masked LPS, as it may pose a health threat in pharmaceutical products or compromise experimental results. PMID:28317862
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.
In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).
Mechanical alignment of substrates to a mask
Webb, Aaron P.; Carlson, Charles T.; Honan, Michael; Amato, Luigi G.; Grant, Christopher Neil; Strassner, James D.
2016-11-08
A plurality of masks is attached to the underside of a mask frame. This attachment is made such that each mask can independently move relative to the mask frame in three directions. This relative movement allows each mask to adjust its position to align with respective alignment pins disposed on a working surface. In one embodiment, each mask is attached to the mask frame using fasteners, where the fasteners have a shaft with a diameter smaller than the diameter of the mounting hole disposed on the mask. A bias element may be used to allow relative movement between the mask and the mask frame in the vertical direction. Each mask may also have kinematic features to mate with the respective alignment pins on the working surface.
Expansion of protein domain repeats.
Asa K Björklund
2006-08-01
Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.
Vibrotactile masking through the body.
D'Amour, Sarah; Harris, Laurence R
2014-09-01
Touches on one hand or forearm can affect tactile sensitivity at contralateral locations on the opposite side of the body. These interactions suggest an intimate connection between the two sides of the body. Here, we explore the effect of masking not across the body but through the body by measuring the effect of a masking stimulus on the back on the tactile sensitivity of the corresponding point on the front. Tactile sensitivity was measured on each side of the stomach, while vibrotactile masking stimulation was applied to one side of the front and to points on the back including the point directly behind the test point on the front. Results were compared to sensitivity, while vibrotactile stimulation was applied to a control site on the shoulder. A reduction in sensitivity of about .8 dB was found that required the masking stimulus to be within about 2 cm of the corresponding point on the back.
Endom, Joerg
2014-05-01
negligible any more. Locating for example the exact position of joints, rebars on site, getting correct calibration information or overlaying measurements of independent methods requires high accuracy positioning for all data. Different technologies of synchronizing and stabilizing are discussed in this presentation. Furthermore a scale problem for interdisciplinary work between the geotechnical engineer, the civil engineer, the surveyor and the geophysicist is presented. Manufacturers as well as users are addressed to work on a unified methodology that could be implemented in future. This presentation is a contribution to COST Action TU1208.
2016-04-01
controlled to great precision, but in a Cubesat , there may be no attitude determination at all. Such a Cubesat might treat sun angle and tumbling rates as...could be sensitive to small differences in motor controller timing. In these cases, the analyst might choose to model the entire deployment path, with...knowledge of the material damage model or motor controller timing precision. On the other hand, if many repeated and environmentally representative
CedarBough Saeji
2012-09-01
Full Text Available Korean mask dance dramas are captivating and entrancing. Comedy, tragedy, and social commentary meld with energetic dance, distinctive masks, and lively music. These dramas are often colloquially and incorrectly referred to as talchum (“mask dance” in Korean—in fact, talchum is one of the major variants of mask dance drama from Hwanghae Province in present-day North Korea. Performers of other variants have long objected to the broad application of the term (akin to calling all in-line skates “Rollerblades” or all MP3 players “iPods”. Only in the late 1990s did academia catch on, when two highly respected midcareer mask dance drama scholars, Bak Jintae (Daegu University and Jeon Kyungwook (Korea University, began to use the terminology talnoli (“mask play” and gamyeon-geuk (“mask drama” in their publications.I needed to watch only one performance, in 1997, to fall in love with the mask dance dramas, but at first the many forms of the genre melded together in my mind. It took repeated exposure and study over more than a dozen years for me to see the profound similarities and differences among all of Korea’s mask dance dramas...
Mask specification guidelines in spacer patterning technology
Hashimoto, Kohji; Mukai, Hidefumi; Miyoshi, Seiro; Yamaguchi, Shinji; Mashita, Hiromitsu; Kobayashi, Yuuji; Kawano, Kenji; Hirano, Takashi
2008-11-01
We have studied both the mask CD specification and the mask defect specification for spacer patterning technology (SPT). SPT has the possibility of extending optical lithography to below 40nm half-pitch devices. Since SPT necessitates somewhat more complicated wafer process flow, the CD error and mask defect printability on wafers involve more process factors compared with conventional single-exposure process (SEP). This feature of SPT implies that it is very important to determine mask-related specifications for SPT in order to select high-end mask fabrication strategies; those are for mask writing tools, mask process development, materials, inspection tools, and so on. Our experimental studies reveal that both mask CD specification and mask defect specification are somehow relaxed from those in ITRS2007. This is most likely because SPT reduces mask CD error enhanced factor (MEF) and the reduction of line-width roughness (LWR).
Contralateral tactile masking between forearms.
D'Amour, Sarah; Harris, Laurence R
2014-03-01
Masking effects have been demonstrated in which tactile sensitivity is affected when one touch is close to another on the body surface. Such effects are likely a result of local lateral inhibitory circuits that sharpen the spatial tuning of a given tactile receptor. Mutually inhibitory pathways have also been demonstrated between cortical tactile maps of the two halves of the body. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at contralateral locations. Here, we measure the spatial tuning and effect of posture on this contralateral masking effect. Tactile sensitivity was measured on one forearm, while vibrotactile masking stimulation was applied to the opposite arm. Results were compared to sensitivity while vibrotactile stimulation was applied to a control site on the right shoulder. Sensitivity on the forearm was reduced by over 3 dB when the arms were touching and by 0.52 dB when they were held parallel. The masking effect depended on the position of the masking stimulus. Its effectiveness fell off by 1 STD when the stimulus was 29 % of arm length from the corresponding contralateral point. This long-range inhibitory effect in the tactile system suggests a surprisingly intimate relationship between the two sides of the body.
2013-01-01
Nine new self-rescue mask instructors have been trained since early 2013, which provides CERN with a total of 26 self-rescue mask instructors to date. This will allow us to meet the increasing training needs caused by the Long Shut Down LS1. The self-rescue mask instructors have trained 1650 persons in 2012 and about 500 persons since the beginning of the year on how to wear the masks properly. We thank all the instructors and all the persons that made this training possible. Please remember that the self-rescue masks training sessions are scheduled as follows: Basic course: Tuesday and Thursday mornings (2 sessions – 8.30 AM and 10.30 AM), duration: 1.30 hour, in French and English – registration via CERN online training catalogue – Course code 077Y00. Refresher training : Monday mornings (2 sessions – 8.30 AM and 10.30 AM), duration: 1.30 hour , in French and English – registration via CERN online training catalogue &...
Serotonin dependent masking of hippocampal sharp wave ripples.
ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe
2016-02-01
Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory.
Towards reduced impact of EUV mask defectivity on wafer
Jonckheere, R.; Van den Heuvel, D.; Pacco, A.; Pollentier, I.; Baudemprez, B.; Jehoul, C.; Hermans, J.; Hendrickx, E.
2014-07-01
The defectivity challenges of extreme ultraviolet (EUV) masks, that need to be addressed before production readiness of EUV lithography is assured from the mask perspective, are twofold. First, the EUV-specific defect type relating to the multi-layer (ML) mirror, the so-called ML-defects, require to become more detectable than they are printable. This not only requires proven capability of blank inspection, but also the existence of satisfactory printability mitigation strategies (comprising avoidance, pattern shift methodology, compensation repair). Both these assets need to become available within the mask supply chain, as there is little that can still be done about such residual defects at the wafer fab. In a production phase, finding unexpected printing ML-defects is unacceptable. It is shown how the specific way-of-working in use at imec, starting from the printed wafer, contributes to related learning and identification of remaining gaps, in getting this issue fully dealt with. The second challenge relates to particle contamination during use of the reticle at the wafer fab. Avoiding overlaycritical particles on the backside of NXE3100 reticles is facilitated by the established way-of-working. Minimizing the occurrence of particles "hopping" between reticles via the electrostatic clamp of the scanner (so-called clamp-traveling particles) is a major driver for appropriate mask cleaning. The latter may not have negative impact by frequent use, in view of the highly vulnerable EUV mask stack, and especially for the present "black-border" solution in which the ML is etched away at the image border on the reticle. A lot of effort is spent into monitoring of NXE3100 reticles for particle adders on the pattern side. This is realized by comparing past and present mask defect maps obtained by inspection of printed wafers with subsequent repeater analysis.
Production mask composition checking flow
Ma, Shou-Yuan; Yang, Chuen-Huei; Tsai, Joe; Wang, Alice; Lin, Roger; Lee, Rachel; Deng, Erwin; Lin, Ling-Chieh; Liao, Hung-Yueh; Tsai, Jenny; Bowhill, Amanda; Vu, Hien; Russell, Gordon
2016-05-01
The mask composition checking flow is an evolution of the traditional mask rule check (MRC). In order to differentiate the flow from MRC, we call it Mask Data Correctness Check (MDCC). The mask house does MRC only to identify process limitations including writing, etching, metrology, etc. There still exist many potential errors that could occur when the frame, main circuit and dummies all together form a whole reticle. The MDCC flow combines the design rule check (DRC) and MRC concepts to adapt to the complex patterns in today's wafer production technologies. Although photomask data has unique characteristics, the MRC tool in Calibre® MDP can easily achieve mask composition by using the Extended MEBES job deck (EJB) format. In EJB format, we can customize the combination of any input layers in an IC design layout format, such as OASIS. Calibre MDP provides section-based processing for many standard verification rule format (SVRF) commands that support DRC-like checks on mask data. Integrating DRC-like checking with EJB for layer composition, we actually perform reticle-level DRC, which is the essence of MDCC. The flow also provides an early review environment before the photomask pattern files are available. Furthermore, to incorporate the MDCC in our production flow, runtime is one of the most important indexes we consider. When the MDCC is included in the tape-out flow, the runtime impact is very limited. Calibre, with its multi-threaded processes and good scalability, is the key to achieving acceptable runtime. In this paper, we present real case runtime data for 28nm and 14nm technology nodes, and prove the practicability of placing MDCC into mass production.
Masked Hypertension in Diabetes Mellitus
Franklin, Stanley S.; Thijs, Lutgarde; Li, Yan; Hansen, Tine W.; Boggia, José; Liu, Yanping; Asayama, Kei; Björklund-Bodegård, Kristina; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Kuznetsova, Tatiana; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Sandoya, Edgardo; Kawecka-Jaszcz, Kalina; Filipovský, Jan; Imai, Yutaka; Wang, Jiguang; Ibsen, Hans; O’Brien, Eoin; Staessen, Jan A.
2013-01-01
Although distinguishing features of masked hypertension in diabetics are well known, the significance of antihypertensive treatment on clinical practice decisions has not been fully explored. We analyzed 9691 subjects from the population-based 11-country International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes. Prevalence of masked hypertension in untreated normotensive participants was higher (Phypertensives tended to be higher than in normotensives (hazard rate [HR], 1.96; 95% confidence interval [CI], 0.97–3.97; P=0.059), similar to untreated stage 1 hypertensives (HR, 1.07; CI, 0.58–1.98; P=0.82), but less than stage 2 hypertensives (HR, 0.53; CI, 0.29–0.99; P=0.048). In contrast, cardiovascular risk was not significantly different in antihypertensive-treated diabetic-masked hypertensives, as compared with the normotensive comparator group (HR, 1.13; CI, 0.54–2.35; P=0.75), stage 1 hypertensives (HR, 0.91; CI, 0.49–1.69; P=0.76), and stage 2 hypertensives (HR, 0.65; CI, 0.35–1.20; P=0.17). In the untreated diabetic-masked hypertensive population, mean conventional systolic/diastolic blood pressure was 129.2±8.0/76.0±7.3 mm Hg, and mean daytime systolic/diastolic blood pressure 141.5±9.1/83.7±6.5 mm Hg. In conclusion, masked hypertension occurred in 29% of untreated diabetics, had comparable cardiovascular risk as stage 1 hypertension, and would require considerable reduction in conventional blood pressure to reach daytime ambulatory treatment goal. Importantly, many hypertensive diabetics when receiving antihypertensive therapy can present with normalized conventional and elevated ambulatory blood pressure that mimics masked hypertension. PMID:23478096
Exact solution for generalized pairing
Pan, Feng; J.P. Draayer
1997-01-01
An infinite dimensional algebra, which is useful for deriving exact solutions of the generalized pairing problem, is introduced. A formalism for diagonalizing the corresponding Hamiltonian is also proposed. The theory is illustrated with some numerical examples.
Exact cosmological solutions for MOG
Roshan, Mahmood [Ferdowsi University of Mashhad, Department of Physics, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2015-09-15
We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)
Winter, Susan; Thomas, Jane H; Stephens, Dianne P; Davis, Joshua S
2010-03-01
To determine the proportion of hospital staff who pass fit tests with each of three commonly used particulate face masks, and factors influencing preference and fit test results. Observational study. 50 healthy hospital staff volunteers in an 18-bed general intensive care unit in an Australian teaching hospital. Participants were administered a questionnaire about mask use and their preferred mask and underwent qualitative fit-testing with each of three different particulate masks: Kimberly-Clark Tecnol FluidShield N95 particulate filter respirator (KC), 3M Flat Fold 9320 particulate respirator and 3M 8822 particulate respirator with exhalation valve. Participants who failed fittesting were trained in correct mask donning, and fittesting was repeated. Proportion of participants who passed the fit test for each mask and the effect of training. The proportion of participants who passed a fit test was low for all three masks tested (KC, 16%; flat fold, 28%; and valved, 34%). Rates improved after training: the first mask tested fitted in 18% of participants pre-training and 40% post-training (P = 0.02). None of the masks fitted for 28% of participants. There were no significant predictors of fit-test results. A large proportion of individuals failed a fit test with any given mask, and we were not able to identify any factors that predicted mask fit in individuals. Training on mask use improved the rates of adequate fit. Hospitals should carry a range of P2 masks, and should conduct systematic P2 mask training and fit-testing programs for all staff potentially exposed to airborne pathogens.
"The Mask Who Wasn't There": Visual Masking Effect with the Perceptual Absence of the Mask
Rey, Amandine Eve; Riou, Benoit; Muller, Dominique; Dabic, Stéphanie; Versace, Rémy
2015-01-01
Does a visual mask need to be perceptually present to disrupt processing? In the present research, we proposed to explore the link between perceptual and memory mechanisms by demonstrating that a typical sensory phenomenon (visual masking) can be replicated at a memory level. Experiment 1 highlighted an interference effect of a visual mask on the…
Leistedt, B
2012-01-01
We develop an exact wavelet transform on the three-dimensional ball (i.e. on the solid sphere), which we name the flaglet transform. For this purpose we first construct an exact harmonic transform on the radial line using damped Laguerre polynomials and develop a corresponding quadrature rule. Combined with the spherical harmonic transform, this approach leads to a sampling theorem on the ball and a novel three-dimensional decomposition which we call the Fourier-Laguerre transform. We relate this new transform to the well-known Fourier-Bessel decomposition and show that band-limitness in the Fourier-Laguerre basis is a sufficient condition to compute the Fourier-Bessel decomposition exactly. We then construct the flaglet transform on the ball through a harmonic tiling, which is exact thanks to the exactness of the Fourier-Laguerre transform (from which the name flaglets is coined). The corresponding wavelet kernels have compact localisation properties in real and harmonic space and their angular aperture is i...
Exact completions and small sheaves
Shulman, Michael
2012-01-01
We prove a general theorem which includes most notions of "exact completion". The theorem is that "k-ary exact categories" are a reflective sub-2-category of "k-ary sites", for any regular cardinal k. A k-ary exact category is an exact category with disjoint and universal k-small coproducts, and a k-ary site is a site whose covering sieves are generated by k-small families and which satisfies a weak size condition. For different values of k, this includes the exact completions of a regular category or a category with (weak) finite limits; the pretopos completion of a coherent category; and the category of sheaves on a small site. For a large site with k the size of the universe, it gives a well-behaved "category of small sheaves". Along the way, we define a slightly generalized notion of "morphism of sites", and show that k-ary sites are equivalent to a type of "enhanced allegory".
Exact analysis of discrete data
Hirji, Karim F
2005-01-01
Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...
A characterisation of algebraic exactness
Garner, Richard
2011-01-01
An algebraically exact category in one that admits all of the limits and colimits which every variety of algebras possesses and every forgetful functor between varieties preserves, and which verifies the same interactions between these limits and colimits as hold in any variety. Such categories were studied by Ad\\'amek, Lawvere and Rosick\\'y: they characterised them as the categories with small limits and sifted colimits for which the functor taking sifted colimits is continuous. They conjectured that a complete and sifted-cocomplete category should be algebraically exact just when it is Barr-exact, finite limits commute with filtered colimits, regular epimorphisms are stable by small products, and filtered colimits distribute over small products. We prove this conjecture.
21 CFR 868.5580 - Oxygen mask.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b)...
Sinusoidal masks for single channel speech separation
Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt
2010-01-01
In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...
Frascone, R J; Pippert, Greg; Heegaard, William; Molinari, Paul; Dries, David
2008-01-01
To evaluate laryngeal mask airway (LMA) and intubating laryngeal mask airway (ILMA) placement by helicopter emergency medical services (HEMS) personnel after a comprehensive training program. HEMS flight staff attended a didactic and manikin-based training session for both devices. After this training, they attempted LMA and ILMA placement in live, anesthetized patients in an operating room (OR). Outcome measures included placement success rates with the LMA, ILMA, and endotracheal intubation through the ILMA, time to ventilation, and time to intubation. Success rates and time to ventilation were compared using chi-squared and analysis of variance (ANOVA), respectively. Mean time to ventilation for the first and second placements of both devices was examined with repeated measures ANOVA. There was no difference in successful placement of the LMA compared with the ILMA (100% vs. 91%, P = .15). Ninety-five percent (19/20) of patients were successfully intubated through the ILMA. Time to intubation was 57.1 +/- 55 seconds (range, 20-240). Mean time to ventilation with either device did not differ significantly (36.8 +/- 17 vs. 38.05 +/- 20 seconds; P = .29). Mean time to ventilation for the first and second placement of either the LMA (P = .45) or the ILMA (P = .47) was not statistically different. Trained HEMS flight staff are capable of effectively placing the LMA and ILMA in the operating room after a comprehensive training protocol.
Weights of Exact Threshold Functions
Babai, László; Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.
2010-01-01
We consider Boolean exact threshold functions defined by linear equations, and in general degree d polynomials. We give upper and lower bounds on the maximum magnitude (absolute value) of the coefficients required to represent such functions. These bounds are very close and in the linear case...
Exactly solvable models of nuclei
Van Isacker, P
2014-01-01
In this paper a review is given of a class of sub-models of both approaches, characterized by the fact that they can be solved exactly, highlighting in the process a number of generic results related to both the nature of pair-correlated systems as well as collective modes of motion in the atomic nucleus.
Shadows alter facial expressions of Noh masks.
Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo
2013-01-01
A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety)", which highly appreciates subtle emotional expressions in the darkness.
Shadows alter facial expressions of Noh masks.
Nobuyuki Kawai
Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.
Spatial release from informational masking
Rakerd, Brad; Aaronson, Neil L.
2001-05-01
A new method for investigating spatial release from informational masking was developed and employed in two experiments. The new method is computer controlled and efficient. It employs the versatile coordinate response measure speech stimulus set [Bolia et al., J. Acoust. Soc. Am. 107, 1065 (2000)]. The experiments were conducted in an anechoic room, with a primary loudspeaker in front of the listener and a secondary loudspeaker at 60 deg to the right. Target messages were presented from the primary speaker only. For a standard, distractor messages, simultaneous with the target, were also presented from the primary speaker only. Spatial release was measured by presenting the distractors from both primary and secondary speakers with a temporal offset. Experiment 1 fixed the offset (secondary leading, +4 ms) and varied the number of distractors (1 to 3) and the target-to-distractor ratio (-12 to +4 dB). Masking release, sometimes as large as 10 dB, was found for all combinations of these variables. Experiment 2 varied the offset over a wide range of values. Substantial release from masking was found for both positive and negative offsets, but only in the range in which speech echoes are suppressed (<50 ms). [Work supported by NIDCD grant DC 00181.
When 'exact recovery' is exact recovery in compressed sensing simulation
Sturm, Bob L.
2012-01-01
In a simulation of compressed sensing (CS), one must test whether the recovered solution \\(\\vax\\) is the true solution \\(\\vx\\), i.e., ``exact recovery.'' Most CS simulations employ one of two criteria: 1) the recovered support is the true support; or 2) the normalized squared error is less than...... for a given distribution of \\(\\vx\\)? We show that, in a best case scenario, \\(\\epsilon^2\\) sets a maximum allowed missed detection rate in a majority sense....
High performance mask fabrication process for the next-generation mask production
Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kobayashi, Yoshihito; Motokawa, Takeharu; Hagihara, Kazuki; Saito, Masato; Itoh, Masamitsu
2014-07-01
ArF immersion lithography combined with double patterning has been used for fabricating below half pitch 40nm devices. However, when pattern size shrinks below 20nm, we must use new technology like quadruple patterning process or next generation lithography (NGL) solutions. Moreover, with change in lithography tool, next generation mask production will be needed. According to ITRS 2013, fabrication of finer patterns less than 15nm will be required on mask plate in NGL mask production 5 years later [1]. In order to fabricate finer patterns on mask, higher resolution EB mask writer and high performance fabrication process will be required. In a previous study, we investigated a potential of mask fabrication process for finer patterning and achieved 17nm dense line pattern on mask plate by using VSB (Variable Shaped Beam) type EB mask writer and chemically amplified resist [2][3]. After a further investigation, we constructed higher performance mask process by using new EB mask writer EBM9000. EBM9000 is the equipment supporting hp16nm generation's photomask production and has high accuracy and high throughput. As a result, we achieved 15.5nm pattern on mask with high productivity. Moreover, from evaluation of isolated pattern, we proved that current mask process has the capability for sub-10nm pattern. These results show that the performance of current mask fabrication process have the potential to fabricate the next-generation mask.
Exact models for isotropic matter
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Hewson, S F
1996-01-01
We investigate non-abelian gaugings of WZNW models. When the gauged group is semisimple we are able to present exact formulae for the dual conformal field theory, for all values of the level k. The results are then applied to non-abelian target space duality in string theory, showing that the standard formulae are quantum mechanically well defined in the low energy limit if the gauged group is semisimple.
Effects of Masking Noise on Laryngeal Resistance for Breathy, Normal, and Pressed Voice
Grillo, Elizabeth U.; Abbott, Katherine Verdolini; Lee, Timothy D.
2010-01-01
Purpose: The purpose of the present study was to explore the effects of masking noise on laryngeal resistance for breathy, normal, and pressed voice in vocally trained women. Method: Eighteen vocally trained women produced breathy, normal, and pressed voice across 7 fundamental frequencies during a repeated CV utterance of /pi/ under normal and…
Mask data volume: explosion or damp squib?
Spence, Chris; Goad, Scott; Buck, Peter; Gladhill, Richard; Cinque, Russell
2005-11-01
Mask data file sizes are increasing as we move from technology generation to generation. The historical 30% linear shrink every 2-3 years that has been called Moore's Law, has driven a doubling of the transistor budget and hence feature count. The transition from steppers to step-and-scan tools has increased the area of the mask that needs to be patterned. At the 130nm node and below, Optical Proximity Correction (OPC) has become prevalent, and the edge fragmentation required to implement OPC leads to an increase in the number of polygons required to define the layout. Furthermore, Resolution Enhancement Techniques (RETs) such as Sub-Resolution Assist Features (SRAFs) or tri-tone Phase Shift Masks (PSM) require additional features to be defined on the mask which do not resolve on the wafer, further increasing masks volumes. In this paper we review historical data on mask file sizes for microprocessor designs. We consider the consequences of this increase in file size on Mask Data Prep (MDP) activities, both within the Integrated Device Manufacturer (IDM) and Mask Shop, namely: computer resources, storage and networks (for file transfer). The impact of larger file sizes on mask writing times is also reviewed. Finally we consider, based on the trends that have been observed over the last 5 technology nodes, what will be required to maintain reasonable MDP and mask manufacturing cycle times.
Halle, Scott D.; Meli, Luciana; Delancey, Robert; Vemareddy, Kaushik; Crispo, Gary; Bonam, Ravi; Burkhardt, Martin; Corliss, Daniel
2015-03-01
The detection of EUV mask adder defects has been investigated with an optical wafer defect inspection system employing a methodology termed Die-to-"golden" Virtual Reference Die (D2VRD). Both opaque and clear type mask absorber programmed defects were inspected and characterized over a range of defect sizes, down to (4x mask) 40 nm. The D2VRD inspection system was capable of identifying the corresponding wafer print defects down to the limit of the defect printability threshold at approximately 30 nm (1x wafer). The efficacy of the D2VRD scheme on full chip wafer inspection to suppress random process defects and identify real mask defects is demonstrated. Using defect repeater analysis and patch image classification of both the reference die and the scanned die enables the unambiguous identification of mask adder defects.
Exact exchange with non-orthogonal generalized Wannier functions
Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J.
2017-03-01
The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.
Computational mask defect review for contamination and haze inspections
Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram; Wolf, Yulian; Shah, Pinkesh
2013-09-01
the mask manufacturing process. The latter characterization qualifies real defect signatures, such as pin-dots or pin-holes, extrusions or intrusions, assist-feature or dummy-fill defects, writeerrors or un-repairable defects, chrome-on-shifter or missing chrome-from-shifter defects, particles, etc., and also false defect signatures, such as those due to inspection tool registration or image alignment, interlace artifacts, CCD camera artifacts, optical shimmer, focus errors, etc. Such qualitative characterization of defects has enabled better inspection tool SPC and process defect control in the mask shop. In this paper, the same computational approach to defect review has been extended to contamination style defect inspections, including Die-to-Die reflected, and non Die-to-Die or single-die inspections. In addition to the computational methods used for transmitted aerial images, defects detected in die-to-die reflected light mode are analyzed based on special defect and background coloring in reflected-light, and other characteristics to determine the exact type and severity. For those detected in the non Die-to-Die mode, only defect images are available from the inspection tool. Without a reference, i.e., defect-free image, it is often difficult to determine the true nature or impact of the defect in question. Using a combination of inspection-tool modeling and image inversion techniques, Luminescent's LAIPHTM system generates an accurate reference image, and then proceeds with automated defect characterization as if the images were simply from a die-to-die inspection. The disposition of contamination style defects this way, filters out >90% of false and nuisance defects that otherwise would have been manually reviewed or measured on AIMSTM. Such computational defect review, unifying defect disposition across all available inspection modes, has been imperative to ensuring no yield losses due to errors in operator defect classification on one hand, and on the other
Helical apodizers for tunable hyper Gaussian masks
Ojeda-Castañeda, J.; Ledesma, Sergio; Gómez-Sarabia, Cristina M.
2013-09-01
We discuss an optical method for controlling the half-width of Gaussian like transmittance windows, by using a pair of absorption masks that have both radial and helical amplitude variations. For describing the radial part of the proposed masks, we employ amplitude transmittance profiles of the form T(ρ) = exp(- ρ s ). For s = 2, one has an amplitude transmittance that is proportional to a Gaussian function. A sub Gaussian mask is defined by a value of s 2, one has super Gaussian masks. Our discussion considers that any of these radially varying masks has also helical modulations. We show that by using a suitable pair of this type of masks, one can control the halfwidth of Gaussian like windows.
Delgado, Cherlene; Bentley, Ellison; Hetzel, Scott; Smith, Lesley J
2015-01-01
Objective To compare analgesia provided by carprofen or tramadol in dogs after enucleation. Design Randomized, masked trial Animals Forty-three dogs Procedures Client-owned dogs admitted for routine enucleation were randomly assigned to receive either carprofen or tramadol orally 2 hours prior to surgery and 12 hours after the first dose. Dogs were scored for pain at baseline, and postoperatively at 0.25, 0.5, 1, 2, 4, 6, 8, 24, and 30 hours after extubation. Dogs received identical premedication and inhalation anesthesia regimens, including premedication with hydromorphone. If the total pain score was ≥9, if there was a score ≥ 3 in any one category, or if the visual analog scale score (VAS) was ≥35 combined with a palpation score of >0, rescue analgesia (hydromorphone) was administered and treatment failure was recorded. Characteristics between groups were compared with a Student’s t-test and Fisher’s exact test. The incidence of rescue was compared between groups using a log rank test. Pain scores and VAS scores between groups were compared using repeated measures ANOVA. Results There was no difference in age (p=0.493), gender (p=0.366) or baseline pain scores (p=0.288) between groups. Significantly more dogs receiving tramadol required rescue analgesia (6/21) compared to dogs receiving carprofen (1/22; p=0.035). Pain and VAS scores decreased linearly over time (p=0.038, ptramadol in dogs undergoing enucleation. PMID:25459482
Computational defect review for actinic mask inspections
Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram
2013-04-01
As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.
Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)
1998-01-01
X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.
Exact analytical solutions for ADAFs
Habibi, Asiyeh; Shadmehri, Mohsen
2016-01-01
We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is $T_{r\\varphi}$. Furthermore we assume that the value of viscosity coefficient $\\alpha$ varies with $\\theta$. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.
EXACT ALGORITHM FOR BIN COVERING
无
2001-01-01
This paper presents a new arc flow model for the one-dimensional bin covering problem and an algorithm to solve the problem exactly through a branch-and-bound procedure and the technique of column generation. The subproblems occuring in the procedure of branch-and-bound have the same structure and therefore can be solved by the same algorithm. In order to solve effectively the subproblems which are generally large scale, a column generation algorithm is employed. Many rules found in this paper can improve the performance of the methods.
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing
Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis
1999-07-01
While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.
Model-based mask verification on critical 45nm logic masks
Sundermann, F.; Foussadier, F.; Takigawa, T.; Wiley, J.; Vacca, A.; Depre, L.; Chen, G.; Bai, S.; Wang, J.-S.; Howell, R.; Arnoux, V.; Hayano, K.; Narukawa, S.; Kawashima, S.; Mohri, H.; Hayashi, N.; Miyashita, H.; Trouiller, Y.; Robert, F.; Vautrin, F.; Kerrien, G.; Planchot, J.; Martinelli, C.; Di-Maria, J. L.; Farys, V.; Vandewalle, B.; Perraud, L.; Le Denmat, J. C.; Villaret, A.; Gardin, C.; Yesilada, E.; Saied, M.
2008-05-01
In the continuous battle to improve critical dimension (CD) uniformity, especially for 45-nanometer (nm) logic advanced products, one important recent advance is the ability to accurately predict the mask CD uniformity contribution to the overall global wafer CD error budget. In most wafer process simulation models, mask error contribution is embedded in the optical and/or resist models. We have separated the mask effects, however, by creating a short-range mask process model (MPM) for each unique mask process and a long-range CD uniformity mask bias map (MBM) for each individual mask. By establishing a mask bias map, we are able to incorporate the mask CD uniformity signature into our modelling simulations and measure the effects on global wafer CD uniformity and hotspots. We also have examined several ways of proving the efficiency of this approach, including the analysis of OPC hot spot signatures with and without the mask bias map (see Figure 1) and by comparing the precision of the model contour prediction to wafer SEM images. In this paper we will show the different steps of mask bias map generation and use for advanced 45nm logic node layers, along with the current results of this new dynamic application to improve hot spot verification through Brion Technologies' model-based mask verification loop.
Crowding by a repeating pattern.
Rosen, Sarah; Pelli, Denis G
2015-01-01
Theinability to recognize a peripheral target among flankers is called crowding. For a foveal target, crowding can be distinguished from overlap masking by its sparing of detection, linear scaling with eccentricity, and invariance with target size.Crowding depends on the proximity and similarity of the flankers to the target. Flankers that are far from or dissimilar to the target do not crowd it. On a gray page, text whose neighboring letters have different colors, alternately black and white, has enough dissimilarity that it might escape crowding. Since reading speed is normally limited by crowding, escape from crowding should allow faster reading. Yet reading speed is unchanged (Chung & Mansfield, 2009). Why? A recent vernier study found that using alternating-color flankers produces strong crowding (Manassi, Sayim, & Herzog, 2012). Might that effect occur with letters and reading? Critical spacing is the minimum center-to-center target-flanker spacing needed to correctly identify the target. We measure it for a target letter surrounded by several equidistant flanker letters of the same polarity, opposite polarity, or mixed polarity: alternately white and black. We find strong crowding in the alternating condition, even though each flanker letter is beyond its own critical spacing (as measured in a separate condition). Thus a periodic repeating pattern can produce crowding even when the individual elements do not. Further, in all conditions we find that, once a periodic pattern repeats (two cycles), further repetition does not affect critical spacing of the innermost flanker.
The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population
Catherina Josephine Goenadi
2016-06-01
Full Text Available Purpose: Swimming goggles increase the intraocular pressure (IOP via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Methods: Tonometry was performed in both eyes of all subjects with an AVIA®Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT was also measured in each eye, using a contact pachymeter (OcuScan®Alcon. Results: Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21–52 were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40. The IOP decreased by 0.43 mm Hg (p < 0.05 to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337, gender (r = –0.174, p = 0.283 or CCT (r = –0.123, p = 0.445. Conclusion: There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery.
Optimization of mask manufacturing rule check constraint for model based assist feature generation
Shim, Seongbo; Kim, Young-chang; Chun, Yong-jin; Lee, Seong-Woo; Lee, Suk-joo; Choi, Seong-woon; Han, Woo-sung; Chang, Seong-hoon; Yoon, Seok-chan; Kim, Hee-bom; Ki, Won-tai; Woo, Sang-gyun; Cho, Han-gu
2008-11-01
SRAF (sub-resolution assist feature) generation technology has been a popular resolution enhancement technique in photo-lithography past sub-65nm node. It helps to increase the process window, and these are some times called ILT(inverse lithography technology). Also, many studies have been presented on how to determine the best positions of SRAFs, and optimize its size. According to these reports, the generation of SRAF can be formulated as a constrained optimization problem. The constraints are the side lobe suppression and allowable minimum feature size or MRC (mask manufacturing rule check). As we know, bigger SRAF gives better contribution to main feature but susceptible to SRAF side lobe issue. Thus, we finally have no choice but to trade-off the advantages of the ideally optimized mask that contains very complicated SRAF patterns to the layout that has been MRC imposed applied to it. The above dilemma can be resolved by simultaneously using lower dose (high threshold) and cleaning up by smaller MRC. This solution makes the room between threshold (side lobe limitation) and MRC constraint (minimum feature limitation) wider. In order to use smaller MRC restriction without considering the mask writing and inspection issue, it is also appropriate to identify the exact mask writing limitation and find the smart mask constraints that well reflect the mask manufacturability and the e-beam lithography characteristics. In this article, we discuss two main topics on mask optimizations with SRAF. The first topic is on the experimental work to find what behavior of the mask writing ability is in term of several MRC parameters, and we propose more effective MRC constraint for aggressive generation of SRAF. The next topic is on finding the optimum MRC condition in practical case, 3X nm node DRAM contact layer. In fact, it is not easy to encompass the mask writing capability for very complicate real SRAF pattern by using the current MRC constraint based on the only width and
Repeat-until-success quantum repeaters
Bruschi, David Edward; Barlow, Thomas M.; Razavi, Mohsen; Beige, Almut
2014-09-01
We propose a repeat-until-success protocol to improve the performance of probabilistic quantum repeaters. Conventionally, these rely on passive static linear-optics elements and photodetectors to perform Bell-state measurements (BSMs) with a maximum success rate of 50%. This is a strong impediment for entanglement swapping between distant quantum memories. Every time a BSM fails, entanglement needs to be redistributed between the corresponding memories in the repeater link. The key ingredients of our scheme are repeatable BSMs. Under ideal conditions, these turn probabilistic quantum repeaters into deterministic ones. Under realistic conditions, our protocol too might fail. However, using additional threshold detectors now allows us to improve the entanglement generation rate by almost orders of magnitude, at a nominal distance of 1000 km, compared to schemes that rely on conventional BSMs. This improvement is sufficient to make the performance of our scheme comparable to the expected performance of some deterministic quantum repeaters.
Shadows Alter Facial Expressions of Noh Masks
Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo
2013-01-01
Background A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers’ recognition of the emotional expressions. Methodology/Principal Findings In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Conclusions/Significance Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa’s smile. They also agree with the aesthetic principle of Japanese traditional art “yugen (profound grace and subtlety)”, which highly appreciates subtle emotional expressions in the darkness. PMID:23940748
Kamikubo, Takashi; Ohnishi, Takayuki; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi; Bai, Shufeng; Wang, Jen-Shiang; Howell, Rafael; Chen, George; Li, Jiangwei; Tao, Jun; Wiley, Jim; Kurosawa, Terunobu; Saito, Yasuko; Takigawa, Tadahiro
2010-09-01
In electron beam writing on EUV mask, it has been reported that CD linearity does not show simple signatures as observed with conventional COG (Cr on Glass) masks because they are caused by scattered electrons form EUV mask itself which comprises stacked heavy metals and thick multi-layers. To resolve this issue, Mask Process Correction (MPC) will be ideally applicable. Every pattern is reshaped in MPC. Therefore, the number of shots would not increase and writing time will be kept within reasonable range. In this paper, MPC is extended to modeling for correction of CD linearity errors on EUV mask. And its effectiveness is verified with simulations and experiments through actual writing test.
Exact Renormalization of Massless QED2
Casana, R; Casana, Rodolfo; Dias, Sebastiao Alves
2001-01-01
We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.
Exact Renormalization of Massless QED2
Casana, Rodolfo; Dias, Sebastião Alves
We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.
AESS: Accelerated Exact Stochastic Simulation
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Exact finite elements for conduction and convection
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Masking the Feeling of Being Stupid.
Smith, Sally L.
1988-01-01
Teaching experience at The Lab School of Washington has shown that learning-disabled children and adults cope with their lack of self-esteem and feelings of stupidity by developing masks to hide their hurt. These include masks of super-competence, helplessness, invisibility, clowning, injustice collecting, indifference, boredom, outrageousness,…
Masked hypertension, a review of the literature.
Verberk, W.J.; Thien, Th.; Leeuw, P.W. de
2007-01-01
Masked hypertension (blood pressure that is normal in the physicians' office but elevated elsewhere) is a common phenomenon as prevalence among studies varies from 8 to 45% and is seen at all ages. large discrepancies, however, exist between studies that have dealt with masked hypertension. It is of
Computing Challenges in Coded Mask Imaging
Skinner, Gerald
2009-01-01
This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.
A facial mask comprising Dead Sea mud.
Abu-Jdayil, Basim; Mohameed, Hazim A
2006-01-01
Many investigators have proved that Dead Sea salt and mud are useful in treating skin disorders and skin diseases. Therefore, the black mud has been extensively used as a base for the preparation of soaps, creams, and unguents for skin care. This study concerns a facial mask made mainly of Dead Sea mud. The effects of temperature and shearing conditions on the rheological behavior of the facial mask were investigated. The mud facial mask exhibited a shear thinning behavior with a yield stress. It was found that the apparent viscosity of the mask has a strong dependence on the shear rate as well as on the temperature. The facial mask exhibited a maximum yield stress and very shear thinning behavior at 40 degrees C, which is attributed to the gelatinization of the polysaccharide used to stabilize the mud particles. On the other hand, the mud mask exhibited a time-independent behavior at low temperatures and shear rates and changed to a thixotropic behavior upon increasing both the temperature and the shear rate. The shear thinning and thixotropic behaviors have a significant importance in the ability of the facial mask to spread on the skin: the Dead Sea mud mask can break down for easy spreading, and the applied film can gain viscosity instantaneously to resist running. Moreover, particle sedimentation, which in this case would negatively affect consumer acceptance of the product, occurs slowly due to high viscosity at rest conditions.
[Use of respiratory masks in healthcare workers].
Ciotti, C; Bouvet, E; Abiteboul, D
2008-08-01
Two different types of filtering respiratory masks are available in healthcare settings. The first ones are used to protect patients from droplets coming from the mouth of healthcare workers (HCW) and the second ones are protective masks. For the moment, we lack information regarding application of Ministry of Health recommendations and on adherence of HCW to mask use. Geres, the HCW exposure risk study group, and the INRS, are now conducting a survey in several hospitals in France to evaluate the use of respiratory masks in healthcare settings. Two phases are planned. Phase I is a self survey using a questionnaire for occupational doctors and hygienists and phase II includes three steps on HCW behavior: evaluation of knowledge and practice concerning respiratory masks, evaluation of respiratory mask use, evaluation of wear and fit test in a context of airborne isolation with a FFP1 and FFP2 respiratory mask. Phase I is finished and phase II is beginning. The first phase I data show that the Ministry's recommendations are observed: respiratory masks are available, written recommendations are present; information and training are organized for healthcare workers. Phase II results are not available yet.
Obtaining exact value by approximate computations
Jing-zhong ZHANG; Yong FENG
2007-01-01
Numerical approximate computations can solve large and complex problems fast. They have the advantage of high efficiency. However they only give approximate results, whereas we need exact results in some fields. There is a gap between approximate computations and exact results.In this paper, we build a bridge by which exact results can be obtained by numerical approximate computations.
Weakly exact categories and the snake lemma
Jafari, Amir
2009-01-01
We generalize the notion of an exact category and introduce weakly exact categories. A proof of the snake lemma in this general setting is given. Some applications are given to illustrate how one can do homological algebra in a weakly exact category.
Obtaining exact value by approximate computations
2007-01-01
Numerical approximate computations can solve large and complex problems fast.They have the advantage of high efficiency.However they only give approximate results,whereas we need exact results in some fields.There is a gap between approximate computations and exact results. In this paper,we build a bridge by which exact results can be obtained by numerical approximate computations.
Exact propagators in harmonic superspace
Kuzenko, Sergei M.
2004-10-01
Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.
Exact propagators in harmonic superspace
Kuzenko, S M
2004-01-01
Within the background field formulation in harmonic superspace for quantum N = 2 super Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super Yang-Mills theory.
Exact Bremsstrahlung and Effective Couplings
Mitev, Vladimir
2015-01-01
We calculate supersymmetric Wilson loops on the ellipsoid for a large class of $\\mathcal{N}=2$ SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the $\\mathcal{N}=4$ SYM ones, we obtain interpolating functions $f(g^2)$ such that a given $\\mathcal{N}=2$ SCFT observable is obtained by replacing in the corresponding $\\mathcal{N}=4$ SYM result the coupling constant by $f(g^2)$. These ``exact effective couplings'' encode the finite, relative renormalization between the $\\mathcal{N}=2$ and the $\\mathcal{N}=4$ gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.
Exact Bremsstrahlung and effective couplings
Mitev, Vladimir; Pomoni, Elli
2016-06-01
We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.
Exact Bremsstrahlung and effective couplings
Mitev, Vladimir [Mainz Univ. (Germany). Inst. fuer Physik, WA THEP; Humboldt-Univ. Berlin (Germany). Inst. fuer Mathematik und Inst. fuer Physik; Pomoni, Elli [DESY Hamburg (Germany). Theory Group; National Technical Univ., Athens (Greece). Physics Div.
2015-11-15
We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These ''exact effective couplings'' encode the finite, relative renormalization between the N = 2 and the N = 4 gluon propagator, they interpolate between the weak and the strong coupling. We discuss the range of their applicability.
Extinction controlled adaptive phase-mask coronagraph
Bourget, P; Mawet, D; Haguenauer, P
2012-01-01
Context. Phase-mask coronagraphy is advantageous in terms of inner working angle and discovery space. It is however still plagued by drawbacks such as sensitivity to tip-tilt errors and chromatism. A nulling stellar coronagraph based on the adaptive phase-mask concept using polarization interferometry is presented in this paper. Aims. Our concept aims at dynamically and achromatically optimizing the nulling efficiency of the coronagraph, making it more immune to fast low-order aberrations (tip-tilt errors, focus, ...). Methods. We performed numerical simulations to demonstrate the value of the proposed method. The active control system will correct for the detrimental effects of image instabilities on the destructive interference. The mask adaptability both in size, phase and amplitude also compensates for manufacturing errors of the mask itself, and potentially for chromatic effects. Liquid-crystal properties are used to provide variable transmission of an annulus around the phase mask, but also to achieve t...
The influence of phase mask position upon EDoF system
Hsieh, Sheng-Hsun; Lian, Zih-Hao; Chang, Chong-Min; Tien, Chung-Hao
2013-09-01
Special types of pupil mask with the appropriate phase and transmission distribution can be used to modify the 3D pointspread function (PSF) in the desired way. Recently, many studies were addressed to extend the depth-of-field (EDoF) of an imaging system via cubic phase pupil engineering. The intermediate image is detected with a digital sensor and the final image formation is restored by post-process algorithms with the help of knowledge of the pupil mask. The EDoF system is operated based on an assumption that the phase mask should be positioned exactly in the pupil of the optical system. Unfortunately, in most practical cases, the exit pupil is not always available due to the complex layout of a compound lens set and results in a limited practical benefit of this type of arrangement. In this paper, we present the influence of the phase mask position upon PSF of an extended depth-of-field system. The characterizations of EDoF in different viewing angles are dissimilar if the phase mask is not placed in the perfect pupil plane. Such properties should be taken into consideration while designing an EDoF system. Finally, we will propose some potential candidate lenses made to alleviate such difficulty.
Upper lip bite test as a predictor of difficult mask ventilation: a prospective study.
Khan, Zahid Hussain; Mofrad, Morteza Kaazempur; Arbabi, Shahriar; Javid, Mihan Jafary; Makarem, Jalil
2009-10-01
Oxygenation and ventilation by means of bag-mask and ambubag play a significant role in maintaining an optimal oxygen saturation of blood and hence the essence of life itself. Predicting difficulty in mask ventilation is again of paramount importance at the time of induction of anesthesia, and in emergency situations. In this study we aimed at evaluating factors that could help in predicting the difficulty of bag-mask ventilation. In a prospective study, 200 patients were allocated into two groups, 100 each. First group with a ULBT class I, and the other group with ULBT class II and III. Factors such as height, weight, gender, past history of snoring, neck circumference, Mallampati class, sternomental and thyromental distances were then evaluated in each of the patients in the two groups in order to arrive at their impact on the incidence of difficult mask ventilation. Data were analyzed using Chi-square, student t-test and Fisher's exact tests depending upon the situation. A p < 0.05 was considered to be statistically significant. The results revealed that negative predictive value (NPV) of ULBT class, history of snoring and neck circumference were 86%, 83%, 81%, respectively. A combination of these three predictors had an NPV of 95%. ULBT class alone was of value in predicting difficulty in mask ventilation, but a combination of the three tests significantly improved the predictive value.
Dry etched SiO2 Mask for HgCdTe Etching Process
Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.
Masking property of quantum random cipher with phase mask encryption
Sohma, Masaki; Hirota, Osamu
2014-10-01
The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.
Holographically Encoded Volume Phase Masks
2015-07-13
Photonics, P.O. Box 162700, Orlando , Florida 32816-2700, United States Abstract. Wepresent here amethod to create spectrally addressable phasemasks by...aperture and consequently it cannot be assumed that this one-dimensional dependence will still hold. In this particular study , we are only interested in...probe beams that exactly satisfy the Bragg condition. In this case , the coupled wave equations become 1 kp kp;x ∂A ∂x þ kp;y ∂A ∂y þ kp;z ∂A ∂z
Space and time in masking and crowding.
Lev, Maria; Polat, Uri
2015-01-01
Masking and crowding are major phenomena associated with contextual modulations, but the relationship between them remains unclear. We have recently shown that crowding is apparent in the fovea when the time available for processing is limited, pointing to the strong relationship between crowding in the spatial and temporal domains. Models of crowding emphasize the size (acuity) of the target and the spacing between the target and flankers as the main determinants that predict crowding. Our model, which is based on lateral interactions, posits that masking and crowding are related in the spatial and temporal domains at the fovea and periphery and that both can be explained by the increasing size of the human perceptive field (PF) with increasing eccentricity. We explored the relations between masking and crowding using letter identification and contrast detection by correlating the crowding effect with the estimated size of the PF and with masking under different spatiotemporal conditions. We found that there is a large variability in PF size and crowding effects across observers. Nevertheless, masking and crowding were both correlated with the estimated size of the PF in the fovea and periphery under a specific range of spatiotemporal parameters. Our results suggest that under certain conditions, crowding and masking share common neural mechanisms that underlie the spatiotemporal properties of these phenomena in both the fovea and periphery. These results could explain the transfer of training gains from spatiotemporal Gabor masking to letter acuity, reading, and reduced crowding.
Intact crowding and temporal masking in dyslexia.
Doron, Adi; Manassi, Mauro; Herzog, Michael H; Ahissar, Merav
2015-01-01
Phonological deficits in dyslexia are well documented. However, there is an ongoing discussion about whether visual deficits limit the reading skills of people with dyslexia. Here, we investigated visual crowding and backward masking. We presented a Vernier (i.e., two vertical bars slightly offset to the left or right) and asked observers to indicate the offset direction. Vernier stimuli are visually similar to letters and are strongly affected by crowding, even in the fovea. To increase task difficulty, Verniers are often followed by a mask (i.e., backward masking). We measured Vernier offset discrimination thresholds for the basic Vernier task, under crowding, and under backward masking, in students with dyslexia (n = 19) and age and intelligence matched students (n = 27). We found no group differences in any of these conditions. Controls with fast visual processing (good backward masking performance), were faster readers. By contrast, no such correlation was found among the students with dyslexia, suggesting that backward masking does not limit their reading efficiency. These findings indicate that neither elevated crowding nor elevated backward masking pose a bottleneck to reading skills of people with dyslexia.
Pupil Masks for Spectrophotometry of Transiting Exoplanets
Itoh, Satoshi; Matsuo, Taro; Goda, Shohei; Shibai, Hiroshi; Sumi, Takahiro
2017-09-01
Spectrophotometric stability, which is crucial in the spectral characterization of transiting exoplanets, is affected by photometric variations arising from field-stop loss in space telescopes with pointing jitter or primary mirror deformation. This paper focuses on a new method for removing slit-loss or field-stop-loss photometric variation through the use of a pupil mask. Two types of pupil function are introduced: the first uses conventional (e.g., Gaussian or hyper-Gaussian) apodizing patterns; whereas the second, which we call a block-shaped mask, employs a new type of pupil mask designed for high photometric stability. A methodology for the optimization of a pupil mask for transit observations is also developed. The block-shaped mask can achieve a photometric stability of 10-5 for a nearly arbitrary field-stop radius when the pointing jitter is smaller than approximately 0.7λ /D and a photometric stability of 10-6 at a pointing jitter smaller than approximately 0.5λ /D. The impact of optical aberrations and mask imperfections upon mask performance is also discussed.
Mask industry assessment trend analysis: 2012
Chan, Y. David
2012-02-01
Microelectronics industry leaders consistently cite the cost and cycle time of mask technology and mask supply among the top critical issues for lithography. A survey was designed by SEMATECH with input from semiconductor company mask technologists and merchant mask suppliers to objectively assess the overall conditions of the mask industry. With the continued support of the industry, this year's assessment was the tenth in the current series of annual reports. This year's survey is basically the same as the 2005 through 2011 surveys. Questions are grouped into six categories: General Business Profile Information, Data Processing, Yields and Yield Loss Mechanisms, Delivery Times, Returns, and Services. Within each category is a multitude of questions that ultimately produce a detailed profile of both the business and technical status of the critical mask industry. We received data from 11 companies this year, which was a record high since the beginning of the series. The responding companies represented more than 96% of the volume shipped and about 90% of the 2011 revenue for the photomask industry. These survey reports are often used as a baseline to gain perspective on the technical and business status of the mask and microelectronics industries. They will continue to serve as a valuable reference to identify strengths and opportunities. Results can also be used to guide future investments in critical path issues.
Neopuff T-piece mask resuscitator: is mask leak related to watching the pressure dial?
Tracy, Mark B; Klimek, J; Shingde, V; Hinder, M; Maheshwari, R; Tracy, S K
2010-09-01
The aim of the study is to compare mask leak and delivered ventilation during Neopuff (NP) mask ventilation in two modes: (i) with NP pressure dial hidden and resuscitator watching chest wall (CW) rise with, (ii) CW movement hidden and resuscitator watching NP pressure dial. Thirty-six participants gave mask ventilation to a modified manikin designed to measure mask leak and delivered ventilation for two minutes in each mode randomly assigned. Paired t-tests were used to analyse differences in mean values. Linear regression was used to determine the association of mask leak with delivered ventilation. Of 7277 inflations analysed, 3621 were observing chest wall mode (CWM) and 3656 observing NP mode (NPM). Mask leak was similar between the groups; 31.6% for CWM and 31.5% (p = 0.56) for NPM. There were no significant differences in airways pressures and expired tidal volumes (TVe) between modes. Mask leak was strongly associated with TVe (R = -0.86 p mask leak is not greater when resuscitators watch the NP pressure dial. Mask leak is related to TVe. Mask ventilation training with manikins should include tidal volume measurements. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.
Ferreira, L. A.; Shnir, Ya.
2017-09-01
We introduce a Skyrme type model with the target space being the sphere S3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those two terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.
Printed shadow masks for organic transistors
Noguchi, Yoshiaki; Sekitani, Tsuyoshi; Someya, Takao
2007-09-01
We have manufactured organic field-effect transistors by using shadow masks that are patterned by a screen printing system. The 50-nm-thick pentacene layer is sublimed as a channel in the vacuum system through the shadow mask on the base film with a multilayer patterned by ink-jet. After the deposition of the pentacene layer, the shadow mask is peeled off from the base film without any mechanical damages to the lower structures. The mobility in the saturation regime is 0.4cm2/Vs and the on-off ratio exceeds 105.
General benchmarks for quantum repeaters
Pirandola, Stefano
2015-01-01
Using a technique based on quantum teleportation, we simplify the most general adaptive protocols for key distribution, entanglement distillation and quantum communication over a wide class of quantum channels in arbitrary dimension. Thanks to this method, we bound the ultimate rates for secret key generation and quantum communication through single-mode Gaussian channels and several discrete-variable channels. In particular, we derive exact formulas for the two-way assisted capacities of the bosonic quantum-limited amplifier and the dephasing channel in arbitrary dimension, as well as the secret key capacity of the qubit erasure channel. Our results establish the limits of quantum communication with arbitrary systems and set the most general and precise benchmarks for testing quantum repeaters in both discrete- and continuous-variable settings.
Tom Pickering as a clinical scientist: masked hypertension.
Eguchi, Kazuo
2010-04-01
Masked hypertension has been 'unmasked' by the use of the out-of-office measurement of blood pressure, as home BP monitoring or ambulatory blood pressure monitoring has become available. The term masked hypertension could be used more widely than the original version of masked hypertension; morning hypertension, stress-induced hypertension, and nocturnal hypertension are all classified as subtypes of masked hypertension. Masked hypertension can also be seen in patients with diabetes, that could change clinical practice in diabetes. Masked hypertension is associated with cardiovascular events, but most of the outcome studies are on antihypertensive medications. Therefore, masked hypertension includes insufficient treatment of hypertension. In Dr Pickering's latest review of masked hypertension, prehypertension or high normal blood pressure was stressed as an associating factor with masked hypertension. The biggest theme in the field of hypertension is how we can detect masked hypertension. I present two interesting cases of possible masked hypertension in this commentary.
Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I.; Nakajima, T.; Kishimoto, M.; Ahn, B.; Kang, I.; Park, J.-O.; Cho, K.; Han, S.-I.; Laursen, T.
2010-03-12
The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.
Polishing Your Transparencies: Mounting, Masking, Overlays.
Jobe, Holly; Cannon, Glenn
This brief guide discusses the mounting of overhead transparencies on frames, the types of mounts, the proper masking for presentation, and the use of overlays. Numerous line drawings provide the reader with a helpful visual reference. (RAO)
Masking of aluminum surface against anodizing
Crawford, G. B.; Thompson, R. E.
1969-01-01
Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.
Exact Solutions in Modified Gravity Models
Valery V. Obukhov
2012-06-01
Full Text Available We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.
Exact Solutions in Modified Gravity Models
Makarenko, Andrey N
2012-01-01
We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.
Ghai B
2001-07-01
Full Text Available AIMS: To evaluate the intraocular pressure and haemodynamic changes subsequent to insertion of laryngeal mask airway and endotracheal tube. SUBJECTS AND METHODS: The study was conducted in 50 adult patients. A standard general anaesthesia was administered to all the patients. After 3 minutes of induction of anaesthesia baseline measurements of heart rate, non-invasive blood pressure and intraocular pressure were taken following which patients were divided into two groups: laryngeal mask airway was inserted in group 1 and tracheal tube in group 2. These measurements were repeated at 15-30 second, every minute thereafter up to 5 minutes after airway instrumentation. RESULTS: A statistically significant rise in heart rate, systolic blood pressure, diastolic blood pressure and intraocular pressure was seen in both the groups subsequent to insertion of laryngeal mask airway or endotracheal tube. Mean maximum increase was statistically more after endotracheal intubation than after laryngeal mask airway insertion. The duration of statistically significant pressure responses was also longer after endotracheal intubation. CONCLUSION: Laryngeal mask airway is an acceptable alternative technique for ocular surgeries, offering advantages in terms of intraocular pressure and cardiovascular stability compared to tracheal intubation.
Role of mask in asian shamanism
POVALYASHKO GALINA; ABAYEVA SABINA
2015-01-01
In the article there is considered a phenomena of shamanism as a cultural universal. Analysis object is a clay mask of National Museum of the Republic of Kazakhstan. It was found in Keder settlement (Kuiryktobe), located in Otrar Oasis at one of the most busy part of the Silk Road. The mask as shamanistic ritual attribute is considered as an obligatory condition for meditative function of shaman.
Exact Surface States in Photonic Superlattices
Xie, Qiongtao
2012-01-01
We develop an analytical method to derive exact surface states in photonic superlattices. In a kind of infinite bichromatic superlattices satisfying some certain conditions, we analytically obtain their in-gap states, which are superpositions of finite numbers of unstable Bloch waves. By using the unstable in-gap states, we construct exactly several stable surface states in various photonic superlattices. We analytically explore the parametric dependence of these exact surface states. Our analysis provides an exact demonstration for the existence of surface states and would be also helpful to understand surface states in other lattice systems.
No masking between test and mask components in perceptually different depth planes.
Hibbeler, Patrick J; Olzak, Lynn A
2011-01-01
2-D cues to perceived depth organization have been used to segregate test and mask stimulus components in a discrimination task. Observers made either spatial-frequency or orientation judgments on a rectangular test component by itself or in the presence of constant rectangular masks. There were two basic masking conditions: same-plane or different-plane. In the same-plane conditions, the test components and masks are perceived as existing in the same depth plane. In the different-plane conditions, the test and mask components are perceived to exist in different depth planes. The perception of different depth planes was achieved by using perceived occlusion, which could place either component closer or further from the observer. The results suggest that when test and mask components are separated into different depth planes they no longer influence one another. This effect could be observed in either depth organization, test components in front of the masks or mask components in front of the test. These results indicate that the figure-ground organization of components is not important. Only the designation as existing in the same or different depth planes affects whether or not a mask is effective.
Phase mask coronagraphy at JPL and Palomar
Serabyn E.
2011-07-01
Full Text Available For the imaging of faint companions, phase mask coronagraphy has the dual advantages of a small inner working angle and high throughput. This paper summarizes our recent work in developing phase masks and in demonstrating their capabilities at JPL. Four-quadrant phase masks have been manufactured at JPL by means of both evaporation and etching, and we have been developing liquid crystal vortex phase masks in partnership with a commercial vendor. Both types of mask have been used with our extreme adaptive optics well-corrected subaperture at Palomar to detect known brown dwarf companions as close as ~ 2.5 λ/D to stars. Moreover, our recent vortex masks perform very well in laboratory tests, with a demonstrated infrared contrast of about 10−6 at 3 λ/D, and contrasts of a few 10−7 with an initial optical wavelength device. The demonstrated performance already meets the needs of ground-based extreme adaptive optics coronagraphy, and further planned improvements are aimed at reaching the 10−10 contrast needed for terrestrial exoplanet detection with a space-based coronagraph.
Claude Levi-Strauss: Mask and Myth
Senka Kovač
2016-02-01
Full Text Available This paper discuss a relationship between mask and myth and how the appropriate analysis by Claude Levi-Strauss may make clearer a complex field of masks in the part of North America. Claude Levi-Strauss stressed the multi- layered character of myth structure. Similar multi-layered character can be seen at the level of expression, content and meaning of Salish, Kwakiutl and other unique masks of this part of North America. Claude Levi-Strauss analysed certain myths trying to explain ‘the path’ of the masks that belong to the people with similar languages, or those who lived nearby. The mythology of Tsimshian, Tlingit and Haïda people have certain common characteristics that point to the similarities with the nearby groups (Kwakiutl. Despite differences that exist at the level of meanings of the masks, there is also common ‘mythological heritage’ of the people who used to live in the Northern Pacific Coast. Claude Levi-Strauss showed that there is no final solution in the myth analysis, and that there is no possibility that the dissection of the problem will reveal some hidden unity. "As mythical though does not want to start clearly somewhere and come somewhere, it never goes through its whole trajectory: there is always something waiting to be fullfield. The same way as rituals, myths are infinite." It seems that Levi-Strauss explanation of the Path of masks goes in that direction.
VSP wave separation by adaptive masking filters
Rao, Ying; Wang, Yanghua
2016-06-01
In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.
Uncertainty and confusion in temporal masking
Formby, C.; Zhang, T.
2001-05-01
In a landmark study, Wright et al. [Nature 387, 176-178 (1997)] reported an apparent backward-masking deficit in language-impaired children. Subsequently, these controversial results have been influential in guiding treatments for childhood language problems. In this study we revisited Wright et al.'s temporal-masking paradigm to evaluate listener uncertainty effects. Masked detection was measured for 20-ms sinusoids (480, 1000, or 1680 Hz) presented at temporal positions before, during, or after a gated narrowband (W=600-1400 Hz) masker. Listener uncertainty was investigated by cueing various stimulus temporal properties with a 6000-Hz sinusoid presented either ipsi- or contra-lateral to the test ear or bilaterally. The primary cueing effect was measured in the backward-masking condition for a contralateral cue gated simultaneously with the on-frequency 1000-Hz signal. The resulting cued masked-detection threshold was reduced to quiet threshold. No significant cueing effects were obtained for other signal temporal positions in the masker nor for any off-frequency signal conditions. These results indicate that (1) uncertainty can be reduced or eliminated for on-frequency backward masking by cueing the signal and (2) the deficit reported by Wright et al. for language-impaired children may reflect uncertainty and confusion rather than a temporal-processing deficit per se. [Research supported by NIDCD.
Clean induced feature CD shift of EUV mask
Nesládek, Pavel; Schedel, Thorsten; Bender, Markus
2016-05-01
EUV developed in the last decade to the most promising Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber
Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram.
Bolduc, Eliot; Bent, Nicolas; Santamato, Enrico; Karimi, Ebrahim; Boyd, Robert W
2013-09-15
A phase-only hologram applies a modal transformation to an optical transverse spatial mode via phase encoding and intensity masking. Accurate control of the optical field crucially depends on the method employed to encode the hologram. In this Letter, we present a method to encode the amplitude and the phase of an optical field into a phase-only hologram, which allows the exact control of spatial transverse modes. Any intensity masking method modulates the amplitude and alters the phase of the optical field. Our method consists in correcting for this unwanted phase alteration by modifying the phase encryption accordingly. We experimentally verify the accuracy of our method by applying it to the generation and detection of transverse spatial modes in mutually unbiased bases of dimension two and three.
Exact Coleman-de Luccia Instantons
Kanno, Sugumi
2011-01-01
We present exact Coleman-de Luccia (CdL) instantons, which describe vacuum decay from Anti de Sitter (AdS) space, de Sitter (dS) space and Minkowski space to AdS space. We systematically obtain these exact solutions by considering deformation of Hawking-Moss (HM) instantons. We analytically calculate decay rates and discuss a subtlety in the interpretation.
Exact Solutions for Einstein's Hyperbolic Geometric Flow
HE Chun-Lei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.
Conjugation-uniqueness of exact Borel subalgebras
张跃辉
1999-01-01
It is proved that the exact Borel subalgebras of a basic quasi-hereditary algebra are conjugate to each other. Moreover, the inner automorphism group of a basic quasi-hereditary algebra acts transitively on the set of its exact Borel subalgebras.
Exact, almost and delayed fault detection
Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.;
1999-01-01
Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems. Th...
An alternative to exact renormalization equations
Alexandre, Jean
2005-01-01
An alternative point of view to exact renormalization equations is discussed, where quantum fluctuations of a theory are controlled by the bare mass of a particle. The procedure is based on an exact evolution equation for the effective action, and recovers usual renormalization results.
Optical inspection of EPL stencil masks
Lee, Po-Tung; Engelstad, Roxann L.; Lovell, Edward G.; Kawata, Shintaro; Hirayanagi, Noriyuki; Sogard, Michael R.
2003-06-01
We are now at a major junction in lithography where non-optical lithographies, such as Electron Projection Lithography (EPL) [1], are being introduced. The mask used in EPL is a non-transparent silicon substrate with a thin silicon (~2μm) membrane with openings for electrons to pass through acting as a scatterer. This must be inspected as defects may cause printable defects. Initial mask inspection work has used SEM inspection to find these defects. However, we have historically used optical mask inspection tools, utilising wavelengths at or above what we are using for imaging, to qualify masks. This technology has been increasingly difficult to sustain as we have moved from imaging using mercury lamp based sources to pulsed excimer laser based sources that are not very suited to the inspection imaging. Indeed, review of defects found has moved from optical microscopes to SEM based tools. Inspection tools have also evolved, with the first SEM based mask inspection tools being developed to find the smallest defects, however these have the penalty of very low throughput. We will show the potential of using optical systems for the transmissive inspection of these EPL masks. The high potential of existing tools will be shown together with the need for a next generation of inspection tools. We will show that simulations indicate that an inspection source with 193nm wavelength would be required for the detection of 50nm defects on a mask used to print 70nm dense lines. It will also be shown how the position of the defect within the membrane greatly influences detection as well as the implications of moving to a thinner silicon membrane.
EXACT2: the semantics of biomedical protocols.
Soldatova, Larisa N; Nadis, Daniel; King, Ross D; Basu, Piyali S; Haddi, Emma; Baumlé, Véronique; Saunders, Nigel J; Marwan, Wolfgang; Rudkin, Brian B
2014-01-01
The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2)protocols. We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.
Quantum repeated games revisited
Frackiewicz, Piotr
2011-01-01
We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games.
The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?
Forster, Kenneth I.
2009-01-01
Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…
An etching mask and a method to produce an etching mask
2016-01-01
The present invention relates to an etching mask comprising silicon containing block copolymers produced by self-assembly techniques onto silicon or graphene substrate. Through the use of the etching mask, nanostructures having long linear features having sub-10 nm width can be produced....
The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?
Forster, Kenneth I.
2009-01-01
Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…
The Benefits of Delayed Primary School Enrollment: Discontinuity Estimates Using Exact Birth Dates
McEwan, Patrick J.; Shapiro, Joseph S.
2008-01-01
The paper estimates the effect of delayed school enrollment on student outcomes, using administrative data on Chilean students that include exact birth dates. Regression-discontinuity estimates, based on enrollment cutoffs, show that a one-year delay decreases the probability of repeating first grade by two percentage points, and increases fourth…
Metrology on phase-shift masks
Roeth, Klaus-Dieter; Maurer, Wilhelm; Blaesing-Bangert, Carola
1992-06-01
In the evaluation of new manufacturing processes, metrology is a key function, beginning with the first step of process development through the final step of everyday mass production at the fabrication floor level. RIM-type phase shift masks are expected to be the first application of phase shift masks in high volume production, since they provide improved lithography process capability at the expense of only moderate complexity in their manufacturing. Measurements of critical dimension (CD) and pattern position (overlay) on experimental rim-type and chromeless phase shift masks are reported. Pattern placement (registration) was measured using the Leitz LMS 2000. The overall design and important components were already described. The pattern placement of the RIM type phase shift structures on the photomask described above was determined within a tolerance of 25 nm (3s); nominal accuracy was within 45 nm (3s). On the chromeless phase shift mask the measurement results were easily obtained using a wafer intensity algorithm available with the system. The measurement uncertainties were less than 25 nm and 50 nm for precision and nominal accuracy respectively. The measurement results from the Leitz CD 200 using transmitted light were: a CD- distribution of 135 nm (3s) on a typical 6 micrometers structure all over the mask; the 0.9 micrometers RIM structure had a distribution of 43 nm (3s). Typical long term precision performance values for the CD 200 on both chrome and phase shift structures have been less than 15 nm.
EUV mask process specifics and development challenges
Nesladek, Pavel
2014-07-01
EUV lithography is currently the favorite and most promising candidate among the next generation lithography (NGL) technologies. Decade ago the NGL was supposed to be used for 45 nm technology node. Due to introduction of immersion 193nm lithography, double/triple patterning and further techniques, the 193 nm lithography capabilities was greatly improved, so it is expected to be used successfully depending on business decision of the end user down to 10 nm logic. Subsequent technology node will require EUV or DSA alternative technology. Manufacturing and especially process development for EUV technology requires significant number of unique processes, in several cases performed at dedicated tools. Currently several of these tools as e.g. EUV AIMS or actinic reflectometer are not available on site yet. The process development is done using external services /tools with impact on the single unit process development timeline and the uncertainty of the process performance estimation, therefore compromises in process development, caused by assumption about similarities between optical and EUV mask made in experiment planning and omitting of tests are further reasons for challenges to unit process development. Increased defect risk and uncertainty in process qualification are just two examples, which can impact mask quality / process development. The aim of this paper is to identify critical aspects of the EUV mask manufacturing with respect to defects on the mask with focus on mask cleaning and defect repair and discuss the impact of the EUV specific requirements on the experiments needed.
OPC aware mask and wafer metrology
Maurer, Wilhelm; Wiaux, Vincent; Jonckheere, Rik M.; Philipsen, Vicky; Hoffmann, Thomas; Verhaegen, Staf; Ronse, Kurt G.; England, Jonathan G.; Howard, William B.
2002-08-01
Lithography at its limit of resolution is a highly non- linear pattern transfer process. Typically the shapes of printed features deviate considerably from their corresponding features in the layout. This deviation is known as Optical Proximity Effect, and its correction Optical Proximity effect Correction or OPC. Although many other so-called optical enhancement technologies are applied to cope with the issues of lithography at its limit of resolution, almost none of these can re-store the linearity of the pattern transfer. Hence fully functional OPC has become a very basic requirement for current and future lithography processes. In general, proximity effects are two-dimensional (2d) effects. Thus any measurement of proximity effects or any characterization of the effectiveness of OPC has to be two- dimensional. As OPC modifies shapes in the data for mask writing in a way to compensate for the expected proximity effects of the following processing steps, parameters describing the particular OPC-mask quality is a major concern. One-dimensional mask specifications, such as linewidth mean-to-target and uniformity, pattern placement, and maximum size of a tolerable defect, are not sufficient anymore to completely describe the functionality of a given mask for OPC. Two-dimensional mask specifications need to be evaluated. We present in this paper a basic concept for 2d metrology. Examples for 2d measurements to assess the effectiveness of OPC are given by the application of an SEM Image Analysis tool to an advanced 130nm process.
Not All Masks Are Created Equal: Masking Success in Clinical Trials of Children and Adolescents.
Jones, Lauren; Black, Sarah R; Arnold, L Eugene; Fristad, Mary A
2017-07-17
The current study assessed the success of masking omega-3 (Ω3) and psychotherapy in clinical trials of youth with depression or bipolar spectrum disorder. Participants were youth ages 7-14 with DSM-IV-TR diagnosed depressive (n = 72) or bipolar spectrum (n = 23) disorders. Inclusion diagnoses were depressive disorder, cyclothymic disorder, or bipolar disorder not otherwise specified. Exclusion diagnoses included bipolar I or II disorder, chronic medical condition or autism. Youth participated in 2 × 2 randomized controlled trials, in which they received Ω3 or placebo (PBO) and psychoeducational psychotherapy (PEP) or active monitoring (AM). Participants and study staff (including independent interviewers) were masked to Ω3/PBO allocation. Besides the masked independent interviewers, one coprincipal investigator (Co-PI) was fully masked to both conditions and completed all consensus conference ratings postrandomization. At the endpoint assessment or last completed interview, interviewers and the masked Co-PI guessed whether each child was assigned to Ω3 or PBO and to PEP or AM. Masking failure was calculated using the degree of correct guesses above chance level using binomial tests across all participants for Ω3 versus PBO and PEP versus AM. For all guessers, Ω3 allocation was guessed correctly approximately half the time (50%-52.5%). Rates of correct guessing were higher for PEP, but only the interviewer guesses were correct significantly more often (58.5%-68.7%) than chance. Reporting of masking success should be an essential element of RCTs. Psychotherapy is generally more difficult to mask, but with attentive masking procedures reasonable masking can be achieved.
Communication masking in marine mammals: A review and research strategy.
Erbe, Christine; Reichmuth, Colleen; Cunningham, Kane; Lucke, Klaus; Dooling, Robert
2016-02-15
Underwater noise, whether of natural or anthropogenic origin, has the ability to interfere with the way in which marine mammals receive acoustic signals (i.e., for communication, social interaction, foraging, navigation, etc.). This phenomenon, termed auditory masking, has been well studied in humans and terrestrial vertebrates (in particular birds), but less so in marine mammals. Anthropogenic underwater noise seems to be increasing in parts of the world's oceans and concerns about associated bioacoustic effects, including masking, are growing. In this article, we review our understanding of masking in marine mammals, summarise data on marine mammal hearing as they relate to masking (including audiograms, critical ratios, critical bandwidths, and auditory integration times), discuss masking release processes of receivers (including comodulation masking release and spatial release from masking) and anti-masking strategies of signalers (e.g. Lombard effect), and set a research framework for improved assessment of potential masking in marine mammals.
Exact Renormalization Group for Point Interactions
Eröncel, Cem
2014-01-01
Renormalization is one of the deepest ideas in physics, yet its exact implementation in any interesting problem is usually very hard. In the present work, following the approach by Glazek and Maslowski in the flat space, we will study the exact renormalization of the same problem in a nontrivial geometric setting, namely in the two dimensional hyperbolic space. Delta function potential is an asymptotically free quantum mechanical problem which makes it resemble non-abelian gauge theories, yet it can be treated exactly in this nontrivial geometry.
Quaternionic formulation of the exact parity model
Brumby, S.P.; Foot, R.; Volkas, R.R.
1996-02-28
The exact parity model (EPM) is a simple extension of the standard model which reinstates parity invariance as an unbroken symmetry of nature. The mirror matter sector of the model can interact with ordinary matter through gauge boson mixing, Higgs boson mixing and, if neutrinos are massive, through neutrino mixing. The last effect has experimental support through the observed solar and atmospheric neutrino anomalies. In the paper it is shown that the exact parity model can be formulated in a quaternionic framework. This suggests that the idea of mirror matter and exact parity may have profound implications for the mathematical formulation of quantum theory. 13 refs.
EXACT RENORMALIZATION GROUP FOR POINT INTERACTIONS
Osman Teoman Turgut Teoman Turgut
2014-04-01
Full Text Available Renormalization is one of the deepest ideas in physics, yet its exact implementation in any interesting problem is usually very hard. In the present work, following the approach by Glazek and Maslowski in the flat space, we will study the exact renormalization of the same problem in a nontrivial geometric setting, namely in the two dimensional hyperbolic space. Delta function potential is an asymptotically free quantum mechanical problem which makes it resemble nonabelian gauge theories, yet it can be treated exactly in this nontrivial geometry.
Coherent Diffractive Imaging Using Randomly Coded Masks
Seaberg, Matthew H; Turner, Joshua J
2015-01-01
Coherent diffractive imaging (CDI) provides new opportunities for high resolution X-ray imaging with simultaneous amplitude and phase contrast. Extensions to CDI broaden the scope of the technique for use in a wide variety of experimental geometries and physical systems. Here, we experimentally demonstrate a new extension to CDI that encodes additional information through the use of a series of randomly coded masks. The information gained from the few additional diffraction measurements removes the need for typical object-domain constraints; the algorithm uses prior information about the masks instead. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments. Diffraction patterns are collected with up to 15 different masks placed between a CCD detector and a single sample. Phase retrieval is performed using a convex relaxation routine known as "PhaseCut" followed by a variation on Fienup's input-output algorit...
Polymer Masks for nanostructuring of graphene
Shvets, Violetta
This PhD project is a part of Center for Nanostructured Graphene (CNG) activities. The aim of the project is to develop a new lithography method for creation of highly ordered nanostructures with as small as possible feature and period sizes. The method should be applicable for graphene...... polymer masks is developed. Mask fabrication is realized by microtoming of 30-60 nm thin sections from pre-aligned polymer monoliths with different morphologies. The resulting polymer masks are then transferred to both silicon and graphene substrates. Hexagonally packed hole patterns with 10 nm hole...... diameter and 20 nm periodicity are successfully transferred to both substrates. The method allowed to realize the first ever transfer of moiré patterns to silicon. Furthermore, in collaboration with CNG, device with nanostructured graphene are fabricated and electrical measurements made on these devices...
Improved Mask Protected DES using RSA Algorithm
Asha Latha S.
2016-01-01
Full Text Available The data encryption standard is a pioneering and farsighted standard which helped to set a new paradigm for encryption standards. But now DES is considered to be insecure for some application. Asymmetric mask protected DES is an advanced encryption method for effectively protecting the advanced DES. There are still probabilities to improve its security. This paper propose a method, which introduce a RSA key generation scheme in mask protected DES instead of plain key, which result in enhancement in the security of present asymmetric mask protected DES. We further propose a Vedic mathematical method of RSA implementation which reduce the complexity of computation in RSA block thereby resulting in reduced delay (four timesthat improves the performance of overall system. The software implementation was performed using Xilinx 13.2 and Model-Sim was used for the simulation environment.
Metacontrast masking is processed before grapheme-color synesthesia.
Bacon, Michael Patrick; Bridgeman, Bruce; Ramachandran, Vilayanur S
2013-01-01
We investigated the physiological mechanism of grapheme-color synesthesia using metacontrast masking. A metacontrast target is rendered invisible by a mask that is delayed by about 60 ms; the target and mask do not overlap in space or time. Little masking occurs, however, if the target and mask are simultaneous. This effect must be cortical, because it can be obtained dichoptically. To compare the data for synesthetes and controls, we developed a metacontrast design in which nonsynesthete controls showed weaker dichromatic masking (i.e., the target and mask were in different colors) than monochromatic masking. We accomplished this with an equiluminant target, mask, and background for each observer. If synesthetic color affected metacontrast, synesthetes should show monochromatic masking more similar to the weak dichromatic masking among controls, because synesthetes could add their synesthetic color to the monochromatic condition. The target-mask pairs used for each synesthete were graphemes that elicited strong synesthetic colors. We found stronger monochromatic than dichromatic U-shaped metacontrast for both synesthetes and controls, with optimal masking at an asynchrony of 66 ms. The difference in performance between the monochromatic and dichromatic conditions in the synesthetes indicates that synesthesia occurs at a later processing stage than does metacontrast masking.
Florian eHutzler
2013-07-01
Full Text Available AbstractThe boundary paradigm, in combination with parafoveal masks, is the main technique for studying parafoveal preprocessing during reading. The rationale is that the masks (e.g., strings of X’s prevent parafoveal preprocessing, but do not interfere with foveal processing. A recent study, however, raised doubts about the neutrality of parafoveal masks. In the present study, we explored this issue by means of fixation-related brain potentials (FRPs. Two FRP conditions presented rows of 5 words. The task of the participant was to judge whether the final word of a list was a new word, or whether it was a repeated (i.e., old word. The critical manipulation was that the final word was X-masked during parafoveal preview in one condition, whereas another condition presented a valid preview of the word. In two additional event-related brain potential (ERP conditions, the words were presented serially with no parafoveal preview available; in one of the conditions with a fixed timing, in the other word presentation was self-paced by the participants. Expectedly, the valid-preview FRP condition elicited the shortest processing times. Processing times did not differ between the two ERP conditions indicating that cognitive readiness during self-paced processing can be ruled out as an alternative explanation for differences in processing times between the ERP and the FRP conditions. The longest processing times were found in the X-mask FRP condition indicating that parafoveal X-masks interfere with foveal word recognition.
Further beyond: registration and overlay control enhancements for optical masks
Gorhad, Kujan; Cohen, Avi; Avizemer, Dan; Dmitriev, Vladimir; Beyer, Dirk; Degel, Wolfgang; Kirsch, Markus
2014-10-01
Mask registration control is one of the key performance specifications during the mask qualification process. It is becoming an important factor for yield improvement with the continuously tightening registration specs driven by tight wafer overlay specs. Understanding the impact of miss classified masks on the final wafer yield is gaining more and more attention, especially with the appearance of Multiple Patterning Technologies, where mask to mask overlay effect on wafer is heavily influenced by mask registration. ZEISS has established a promising closed loop solution implemented in the mask house, where the PROVE® system - a highly accurate mask registration and overlay metrology measurement tool, is being used to feed the RegC® - a registration and mask to mask overlay correction tool that can also accurately predict the correction potential in advance. The well-established RegC® process typically reaches 40-70% improvement of the mask registration/overlay error standard deviation. The PROVE® - RegC® closed loop solution has several advantages over alternative registration control methods apart of the mask re-write saving. Among the advantages is the capability to correct for pellicle mounting registration effects without the need to remove the pellicle. This paper will demonstrate improved method for enhanced mask to mask overlay control based on a new scheme of data acquisition and performance validation by the PROVE®. The mask registration data as well as additional mask information will be used to feed the RegC® correction process. Significantly improved mask to mask overlay correction results will be discussed and presented in details.
Fast Exact Euclidean Distance (FEED) Transformation
Schouten, Theo; Broek, van den Egon; Kittler, J.; Petrou, M.; Nixon, M.
2004-01-01
Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number o
An Exact Black Hole Entropy Bound
Birmingham, Daniel; Birmingham, Danny; Sen, Siddhartha
2001-01-01
We show that a Rademacher expansion can be used to establish an exact bound for the entropy of black holes within a conformal field theory framework. This convergent expansion includes all subleading corrections to the Bekenstein-Hawking term.
High quality mask storage in an advanced Logic-Fab
Jähnert, Carmen; Fritsche, Silvio
2012-02-01
High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like
Advances in mask fabrication and alignment for masked ion-beam lithography
Stumbo, David P.; Damm, George A.; Engler, D. W.; Fong, F. O.; Sen, S.; Wolfe, John C.; Randall, John N.; Mauger, Phillip E.; Shimkunas, Alex R.; Loeschne, Hans
1990-05-01
This paper describes recent developments in three areas ofmasked ion beam lithography (MIBL). These are 1) fabrication oflarge area, low distortion, silicon stencilmasks for demagnifying ion projection lithography, 2) fabrication ofstencil masks with nanometer scale resolution for 1:1 proximity printing, and 3) development of a direct method of alignment using the ion beam induced fluorescence of Si02. These topics are discussed below. Demagnifying ion projection masks: We describe the fabrication of stencil masks in large area, low stress (10 MPa), n-type silicon membranes. The projection masks have a silicon foil area 95 mm in diameter, thicknesses between 1.5-5 and resolution of0.6um. Measured distortion (3a) in the IPL masks ranges between 0.23gm and 0.65,um, with an experimental error of 0.20 1um. Proximity printing masks: A process is described for fabricating stencil masks with 50 nm resolution in low stress, n-type silicon membranes. Membranes less than 0.5 ,ttm thick are shown to be free of the sidewall taper that limits resolution in thicker masks. These thin membranes show a slightly flared profile due to the imperfectly collimated etching ions. Alignment: A direct method of alignment is being developed which uses the ion beam induced fluorescence of Si02 marks. Fluorescence yield is characterized as a function of ion energy and resist coating thickness. The yield for Si02 is in the range between 0.1-1.0 photons/proton, while the yields for Si, Al, and photoresist are negligibly small. Thus, a simple alignment technique can be implemented where registration of a grating in the mask with a corresponding oxide pattern is detected as a fluorescence maximum. A simple model predicts that 50 nm alignment can be accomplished, following a 1 im prealignment, in 2 seconds.
Cosmic Ballet or Devil's Mask?
2004-04-01
Stars like our Sun are members of galaxies, and most galaxies are themselves members of clusters of galaxies. In these, they move around among each other in a mostly slow and graceful ballet. But every now and then, two or more of the members may get too close for comfort - the movements become hectic, sometimes indeed dramatic, as when galaxies end up colliding. ESO PR Photo 12/04 shows an example of such a cosmic tango. This is the superb triple system NGC 6769-71, located in the southern Pavo constellation (the Peacock) at a distance of 190 million light-years. This composite image was obtained on April 1, 2004, the day of the Fifth Anniversary of ESO's Very Large Telescope (VLT). It was taken in the imaging mode of the VIsible Multi-Object Spectrograph (VIMOS) on Melipal, one of the four 8.2-m Unit Telescopes of the VLT at the Paranal Observatory (Chile). The two upper galaxies, NGC 6769 (upper right) and NGC 6770 (upper left), are of equal brightness and size, while NGC 6771 (below) is about half as bright and slightly smaller. All three galaxies possess a central bulge of similar brightness. They consist of elderly, reddish stars and that of NGC 6771 is remarkable for its "boxy" shape, a rare occurrence among galaxies. Gravitational interaction in a small galaxy group NGC 6769 is a spiral galaxy with very tightly wound spiral arms, while NGC 6770 has two major spiral arms, one of which is rather straight and points towards the outer disc of NGC 6769. NGC 6770 is also peculiar in that it presents two comparatively straight dark lanes and a fainter arc that curves towards the third galaxy, NGC 6771 (below). It is also obvious from this new VLT photo that stars and gas have been stripped off NGC 6769 and NGC 6770, starting to form a common envelope around them, in the shape of a Devil's Mask. There is also a weak hint of a tenuous bridge between NGC 6769 and NGC 6771. All of these features testify to strong gravitational interaction between the three galaxies
Exact Mappings in Condensed Matter Physics
Lee, Ching Hua
2016-01-01
Condensed matter systems are complex yet simple. Amidst their complexity, one often find order specified by not more than a few parameters. Key to such a reductionistic description is an appropriate choice of basis, two of which I shall describe in this thesis. The first, an exact mapping known as the Wannier State Representation (WSR), provides an exact Hilbert space correspondence between two intensely-studied topological systems, the Fractional Quantum Hall (FQH) and Fractional Chern Insul...
New exact wave solutions for Hirota equation
M Eslami; M A Mirzazadeh; A Neirameh
2015-01-01
In this paper, we construct the topological or dark solitons of Hirota equation by using the first integral method. This approach provides first integrals in polynomial form with a high accuracy for two-dimensional plane autonomous systems. Exact soliton solution is constructed through the established first integrals. This method is a powerful tool for searching exact travelling solutions of nonlinear partial differential equations (NPDEs) in mathematical physics.
Exactly solvable one-dimensional inhomogeneous models
Derrida, B.; France, M.M.; Peyriere, J.
1986-11-01
The authors present a simple way of constructing one-dimensional inhomogeneous models (random or quasiperiodic) which can be solved exactly. They treat the example of an Ising chain in a varying magnetic field, but their procedure can easily be extended to other one-dimensional inhomogeneous models. For all the models they can construct, the free energy and its derivatives with respect to temperature can be computed exactly at one particular temperature.
Exact Algorithms for Solving Stochastic Games
Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels;
2012-01-01
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games.......Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....
New exact solutions in standard inflationary models
Chervon, S V; Shchigolev, V K
1997-01-01
The exact solutions in the standard inflationary model based on the self-interacting scalar field minimally coupled to gravity are considered. The shape's freedom of the self-interacting potential $V(\\phi)$ is postulated to obtain a new set of the exact solutions in the framework of Friedmann-Robertson-Walker Universes. The general solution was found in the case of power law inflation. We obtained new solutions and compared them with obtained ones earlir for the exponential type inflation.
Reconfigurable multiport EPON repeater
Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio
2009-11-01
An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.
Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng
2014-04-01
Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.
Adaptation to different noninvasive ventilation masks in critically ill patients
Renata Matos da Silva
2013-06-01
Full Text Available OBJECTIVE: To identify which noninvasive ventilation (NIV masks are most commonly used and the problems related to the adaptation to such masks in critically ill patients admitted to a hospital in the city of São Paulo, Brazil. METHODS: An observational study involving patients ≥ 18 years of age admitted to intensive care units and submitted to NIV. The reason for NIV use, type of mask, NIV regimen, adaptation to the mask, and reasons for non-adaptation to the mask were investigated. RESULTS: We evaluated 245 patients, with a median age of 82 years. Acute respiratory failure was the most common reason for NIV use (in 71.3%. Total face masks were the most commonly used (in 74.7%, followed by full face masks and near-total face masks (in 24.5% and 0.8%, respectively. Intermittent NIV was used in 82.4% of the patients. Adequate adaptation to the mask was found in 76% of the patients. Masks had to be replaced by another type of mask in 24% of the patients. Adequate adaptation to total face masks and full face masks was found in 75.5% and 80.0% of the patients, respectively. Non-adaptation occurred in the 2 patients using near-total facial masks. The most common reason for non-adaptation was the shape of the face, in 30.5% of the patients. CONCLUSIONS: In our sample, acute respiratory failure was the most common reason for NIV use, and total face masks were the most commonly used. The most common reason for non-adaptation to the mask was the shape of the face, which was resolved by changing the type of mask employed.
A new approach for defect inspection on large area masks
Scheuring, Gerd; Döbereiner, Stefan; Hillmann, Frank; Falk, Günther; Brück, Hans-Jürgen
2007-02-01
Besides the mask market for IC manufacturing, which mainly uses 6 inch sized masks, the market for the so called large area masks is growing very rapidly. Typical applications of these masks are mainly wafer bumping for current packaging processes, color filters on TFTs, and Flip Chip manufacturing. To expose e.g. bumps and similar features on 200 mm wafers under proximity exposure conditions 9 inch masks are used, while in 300 mm wafer bumping processes (Fig. 1) 14 inch masks are handled. Flip Chip manufacturing needs masks up to 28 by 32 inch. This current maximum mask dimension is expected to hold for the next 5 years in industrial production. On the other hand shrinking feature sizes, just as in case of the IC masks, demand enhanced sensitivity of the inspection tools. A defect inspection tool for those masks is valuable for both the mask maker, who has to deliver a defect free mask to his customer, and for the mask user to supervise the mask behavior conditions during its lifetime. This is necessary because large area masks are mainly used for proximity exposures. During this process itself the mask is vulnerable by contacting the resist on top of the wafers. Therefore a regular inspection of the mask after 25, 50, or 100 exposures has to be done during its whole lifetime. Thus critical resist contamination and other defects, which lead to yield losses, can be recognized early. In the future shrinking feature dimensions will require even more sensitive and reliable defect inspection methods than they do presently. Besides the sole inspection capability the tools should also provide highly precise measurement capabilities and extended review options.
Release from informational masking in children: Effect of multiple signal bursts
Leibold, Lori J.; Bonino, Angela Yarnell
2009-01-01
This study examined the degree to which increasing the number of signal presentations provides children with a release from informational masking. Listeners were younger children (5–7 years), older children (8–10 years), and adults. Detection thresholds were measured for a sequence of repeating 50-ms bursts of a 1000-Hz pure-tone signal embedded in a sequence of 10- and 50-ms bursts of a random-frequency, two-tone masker. Masker bursts were played at an overall level of 60-dB sound pressure level in each interval of a two-interval, forced choice adaptive procedure. Performance was examined for conditions with two, four, five, and six signal bursts. Regardless of the number of signal bursts, thresholds for most children were higher than thresholds for most adults. Despite developmental effects in informational masking, however, masked threshold decreased with additional signal bursts by a similar amount for younger children, older children, and adults. The magnitude of masking release for both groups of children and for adults was inconsistent with absolute energy detection. Instead, increasing the number of signal bursts appears to aid children in the perceptual segregation of the fixed-frequency signal from the random-frequency masker as has been previously reported for adults [Kidd, G., et al. (2003). J. Acoust. Soc. Am. 114, 2835–2845]. PMID:19354396
Defect printability in CPL mask technology
Kuijten, Jan-Pieter; Verhappen, Arjan; Pijnenburg, Wil; Conley, Will; Litt, Lloyd C.; Wu, Wei; Montgomery, Patrick; Roman, Bernard J.; Kasprowicz, Bryan S.; Progler, Christopher J.; Socha, Robert J.; Van Den Broeke, Douglas J.; Schaefer, Erika; Cook, Pat
2004-05-01
Each generation of semiconductor device technology drive new and interesting resolution enhancement technology (RET"s). The race to smaller and smaller geometry"s has forced device manufacturers to k1"s approaching 0.40. The authors have been investigating the use of Chromeless phase-shifting masks (CPL) exposed with ArF, high numerical aperture (NA), and off-axis illumination (OAI) has been shown to produce production worthy sub-100nm resist patterns with acceptable overlapped process window across feature pitch. These new reticle technologies have many issues that are similar to simple binary masks. The authors have investigated the printability of defects in CPL mask technology. Programmed defects of various sizes and types have been simulated and printed for sub 100nm imaging. High resolution scanning electron microscopy has been used to characterize these defects and develop an understanding of size and type that prints. In this paper the authors will focus on image line end shortening and the impact of through dose and focus performance for very high NA ArF imaging. The authors have built a number of test structures that require superior 2D control for SRAM gate structures. Various types of line ends have been evaluated for either straight CPL mask or hybrid type builds.
A new mask exposure and analysis facility
Sligte, E. te; Koster, N.B.; Deutz, A.F.; Staring, W.P.M.
2014-01-01
The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at
The fastest saccadic responses escape visual masking.
Sébastien M Crouzet
Full Text Available Object-substitution masking (OSM occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task, which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference under either OSM or backward masking, as they did under the low-contrast condition. This finding supports the hypothesis that masking interferes mostly with reentrant processing at later stages, while leaving early feedforward processing largely intact.
The laryngeal mask airway at altitude.
Wilson, Grant D; Sittig, Steven E; Schears, Gregory J
2008-02-01
The Laryngeal Mask Airway (LMA) is an accepted adjunct for airway management in emergency patients. There are a number of case reports describing its use in transport medicine for infant to adult patients, including during flight. Although studies of the effect altitude has on air-filled tracheal tubes exists, we were unable to find documentation of the effect of altitude on laryngeal mask airways. Our objective was to assess the effect of altitude on the LMA in both fixed wing and rotary wing models. We performed an in vitro study of the effect of altitude on the LMA cuff. Infant and adult airway trainer mannequins with properly sized and inserted LMA-Classic laryngeal mask airways were monitored for cuff pressure changes while flown at altitudes commonly encountered during air medical transport. Both models demonstrated that LMA cuff pressures may exceed manufacturer recommended levels for safe use even at the relatively low altitudes experienced during rotor wing flight. Properly inserted and inflated laryngeal mask airways at ground level may result in overinflated LMA cuffs when flown to altitudes commonly used for rotor and fixed wing medical transport unless monitored and corrected.
Posleslovije k "Zolotoi maske" / Boris Tuch
Tuch, Boris, 1946-
2005-01-01
Vene draamafestivali "Kuldne mask Eestis" lavastusest : "September.doc", lav. Mihhail Ugarov, I. Võrõpajevi "Hapnik" lav. Viktor Rõzhakov Teatr.doc esituses, Sophoklese "Kuningas Oidipus" lav. Andrei Prikotenko Peterburi Teatri Liteinõi esituses, M. Ugarovi lavastus "OblomOFF"
Testing Tactile Masking between the Forearms.
D'Amour, Sarah; Harris, Laurence R
2016-02-10
Masking, in which one stimulus affects the detection of another, is a classic technique that has been used in visual, auditory, and tactile research, usually using stimuli that are close together to reveal local interactions. Masking effects have also been demonstrated in which a tactile stimulus alters the perception of a touch at a distant location. Such effects can provide insight into how components of the body's representations in the brain may be linked. Occasional reports have indicated that touches on one hand or forearm can affect tactile sensitivity at corresponding contralateral locations. To explore the matching of corresponding points across the body, we can measure the spatial tuning and effect of posture on contralateral masking. Careful controls are required to rule out direct effects of the remote stimulus, for example by mechanical transmission, and also attention effects in which thresholds may be altered by the participant's attention being drawn away from the stimulus of interest. The use of this technique is beneficial as a behavioural measure for exploring which parts of the body are functionally connected and whether the two sides of the body interact in a somatotopic representation. This manuscript describes a behavioural protocol that can be used for studying contralateral tactile masking.
Chromium Contamination in Army Face Masks.
1989-01-01
containing carbon particles by inhalation when wearing face masks. Other potential health effects are chrome allergies and nonneoplastic lesions of...chronic inflammation—have been reported in chrome -platers and other workers exposed to aerosols of chromium (VI) compounds. Chronic pharyngitis...monochromates and dichromates of sodium, potassium , ammonium, lithium, cesium, and rubidium. ACGIH includes chromium in its list of known human
TASTE MASKING IN PHARMACEUTICAL: AN UPDATE
Srivastava Saurabh
2012-08-01
Full Text Available Taste is an important factor in the development of dosage form. Nevertheless it is that arena of product development that has been overlooked and undermined for its importance. The problem of bitter and obnoxious taste of is a challenge to the pharmacist in the present scenario. Taste is an important parameter governing compliance. Several oral pharmaceuticals and bulking agents have unpleasant, bitter-tasting components. In numerous cases, the bitter taste modality is an undesirable trait of the product or formulations and can considerably affect its acceptability by consumers. Bitter characteristics found in such systems have been eliminated or minimized by various known processes, but no universally applicable technology for bitterness inhibition has ever been recognized. The desire of improved palatability in these products has prompted the development of numerous formulations with improved performance and acceptability Taste masking technologies offer a great scope for invention and patents. Several approaches like adding flavors and sweeteners, use of coating polymers for inhibiting bitterness, microencapsulation, prodrug formation, formation of inclusion and molecular complexes, solid dispersion system, addition of effervescent agents and application of ion exchange resins have been tried by the formulators to mask the unpleasant taste of the bitter drugs. The present review attempts to give a brief account of different technologies of taste masking with respect to dosage form and novel methods of evaluation of taste masking effect.
Mask cycle time reduction for foundry projects
Balasinski, A.
2011-11-01
One of key deliverables of foundry based manufacturing is low cycletime. Building new and enhancing existing products by mask changes involves significant logistical effort, which could be reduced by standardizing data management and communication procedures among design house, mask shop, and foundry (fab) [1]. As an example, a typical process of taping out can take up to two weeks in addition to technical effort, for database handling, mask form completion, management approval, PO signoff and JDV review, translating into loss of revenue. In order to reduce this delay, we are proposing to develop a unified online system which should assist with the following functions: database edits, final verifications, document approvals, mask order entries, and JDV review with engineering signoff as required. This would help a growing number of semiconductor products to be flexibly manufactured at different manufacturing sites. We discuss how the data architecture based on a non-relational database management system (NRDMBS) extracted into a relational one (RDMBS) should provide quality information [2], to reduce cycle time significantly beyond 70% for an example 2 week tapeout schedule.
A new mask exposure and analysis facility
Sligte, E. te; Koster, N.B.; Deutz, A.F.; Staring, W.P.M.
2014-01-01
The introduction of ever higher source powers in EUV systems causes increased risks for contamination and degradation of EUV masks and pellicles. Appropriate testing can help to inventory and mitigate these risks. To this end, we propose EBL2: a laboratory EUV exposure system capable of operating at
Pithon, Matheus Melo; Ferraz, Caio Sousa; de Oliveira, Gabriel Couto; Dos Santos, Adrielle Mangabeira; Couto, Felipe Santos; da Silva Coqueiro, Raildo; Dos Santos, Rogério Lacerda
2013-01-01
The purpose was to evaluate the esthetic perception among children from public and private schools regarding the use of different types of face masks. Six different types of orthopedic face masks made from images of the same patient were evaluated. Initially, the images were standardized with the help of Adobe Photoshop software. The variable considered was type of mask: (A) Delaire with facebow; (B) Petit; (C) Delaire; (D)Turley; (E) Hickham; and (F) Sky Hook. The images were printed on photographic paper and incorporated into a specific personalized questionnaire that was distributed to 7- to 10-year-olds attending public and private schools (n=120). The data obtained were compared via chi-square, Fisher's exact tests, Mann-Whitney and Spearman's tests. The proportion of participants who chose image A as the best was significantly higher (P.05). The mean scores between groups were not significantly correlated between private vs public schoolchildren (r=0.32) and between boys and girls (r=0.41). Delaire face mask with facebow was chosen as the most attractive, and the Petit and Sky Hook face masks were voted the least attractive.
Recursive quantum repeater networks
Van Meter, Rodney; Horsman, Clare
2011-01-01
Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layer...
Cotto-Escalera, Brenda L.
1991-01-01
Explores the mask and masquerade traditions, focusing specifically on African culture as a source of exciting and varied materials that can help theater arts teachers and specialists who are in search of culturally diverse materials. Offers a classroom application. (PRA)
Green binary and phase shifting mask
Shy, S. L.; Hong, Chao-Sin; Wu, Cheng-San; Chen, S. J.; Wu, Hung-Yu; Ting, Yung-Chiang
2009-12-01
SixNy/Ni thin film green mask blanks were developed , and are now going to be used to replace general chromium film used for binary mask as well as to replace molydium silicide embedded material for AttPSM for I-line (365 nm), KrF (248 nm), ArF (193 nm) and Contact/Proximity lithography. A bilayer structure of a 1 nm thick opaque, conductive nickel layer and a SixNy layer is proposed for binary and phase-shifting mask. With the good controlling of plasma CVD of SixNy under silane (50 sccm), ammonia (5 sccm) and nitrogen (100 sccm), the pressure is 250 mTorr. and RF frequency 13.56 MHz and power 50 W. SixNy has enough deposition latitude to meet the requirements as an embedded layer for required phase shift 180 degree, and the T% in 193, 248 and 365 nm can be adjusted between 2% to 20% for binary and phase shifting mask usage. Ni can be deposited by E-gun, its sheet resistance Rs is less than 1.435 kΩ/square. Jeol e-beam system and I-line stepper are used to evaluate these thin film green mask blanks, feature size less than 200 nm half pitch pattern and 0.558 μm pitch contact hole can be printed. Transmission spectrums of various thickness of SixNy film are inspected by using UV spectrometer and FTIR. Optical constants of the SixNy film are measured by n & k meter and surface roughness is inspected by using Atomic Force Microscope (AFM).
Lithographic performance evaluation of a contaminated EUV mask after cleaning
George, Simi; Naulleau, Patrick; Okoroanyanwu, Uzodinma; Dittmar, Kornelia; Holfeld, Christian; Wuest, Andrea
2009-11-16
The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of a EUV mask is investigated. SEMATECH's Berkeley micro-field exposure tool (MET) printed 40 nm and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have distinct absorber architectures, optical imaging models and aerial image calculations were completed to determine any expected differences in performance. Measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences in mask performance are shown to be insignificant, indicating that the cleaning process did not appreciably affect mask performance.
Exact solutions for a class of quasi-exactly solvable models: A unified treatment
Hatami, N.; Setare, M. R.
2017-07-01
The exact solution of the Schrödinger equation for the four quasi-exactly solvable potentials is presented using the functional Bethe ansatz method. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the four models in terms of the roots of a set of algebraic Bethe ansatz equations.
An extensive Markov system for ECG exact coding.
Tai, S C
1995-02-01
In this paper, an extensive Markov process, which considers both the coding redundancy and the intersample redundancy, is presented to measure the entropy value of an ECG signal more accurately. It utilizes the intersample correlations by predicting the incoming n samples based on the previous m samples which constitute an extensive Markov process state. Theories of the extensive Markov process and conventional n repeated applications of m-th order Markov process are studied first in this paper. After that, they are realized for ECG exact coding. Results show that a better performance can be achieved by our system. The average code length for the extensive Markov system on the second difference signals was 2.512 b/sample, while the average Huffman code length for the second difference signals was 3.326 b/sample.
Task-Dependent Masked Priming Effects in Visual Word Recognition
Sachiko eKinoshita; Dennis eNorris
2012-01-01
A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal...
LAN Yun-ping; HUANG Zhen-hua; G.Allen Finley; ZUO Yun-xia
2012-01-01
Background Anxiety and fear frequently causes an aversion to applying a face mask and increases difficulty during pediatric induction.There is at present little study of this problem.Therefore,the aim of this study was to investigate the effect of the combination of mask preconditioning and midazolam pretrealment on mask acceptance during pediatric induction and on postoperative mask fear.Methods One hundred and sixty children were randomly assigned into four groups:the mask preconditioning group (MaG),the midazolam pretreatment group (MiG),the mask/midazolam combination group (Ma/MiG),and the saline group (SaG).The Modified Yale Preoperative Anxiety Scale (m-YPAS) was employed to assess the anxiety in the operation room (OR).A Mask Acceptance Score (MAS) was measured during inhalational induction and the incidence of mask fear (MAS ≤2) was evaluated postoperatively.Results The MaG and Ma/MiG groups had the highest mask acceptance scores but there were no differences between these two groups (P ＜0.05).The average anxiety level of children entering the OR was much lower in the MaG and Ma/MiG groups than in the SaG group (P ＜0.05).During induction,the anxiety level increased in the SaG and MaG groups but decreased in the MiG and Ma/MiG groups (P ＜0.05).At the postoperative third day,the incidence of mask fears was as high as 23％ in the SaG group,15％ in the MiG group,but only 2.5％ in the MaG and Ma/MiG groups.Conclusions The single use of mask preconditioning has a better influence than midazolam for increasing mask acceptance during inhalational induction and reducing postoperative mask fear,reducing the anxiety level during induction,improving induction compliance and shortening the total mask time.A mask preconditioning and midazolam combination did not increase mask acceptance during inhalational induction,reduce mask fears postoperatively,improve induction compliance,nor shorten the total mask time.But it can better reduce the anxiety level during
Exact Sequences in Non-Exact Categories (An Application to Semimodules)
Abuhlail, Jawad
2011-01-01
We consider a notion of exact sequences in any -not necessarily exact- pointed category relative to a given (E;M)-factorization structure. We apply this notion to introduce and investigate a new notion of exact sequences of semimodules over semirings relative to the canonical image factorization. Several homological results are proved using the new notion of exactness including some restricted versions of the Short Five Lemma and the Snake Lemma opening the door for introducing and investigating homology objects in such categories. Our results apply in particular to the variety of commutative monoids extending results in homological varieties to relative homological varieties.
Does "Darkness" Lead to "Happiness"? Masked Suffix Priming Effects
Dunabeitia, Jon Andoni; Perea, Manuel; Carreiras, Manuel
2008-01-01
Masked affix priming effects have usually been obtained for words sharing the initial affix (e.g., "reaction"-"REFORM"). However, prior evidence on masked suffix priming effects (e.g., "baker"-"WALKER") is inconclusive. In the present series of masked priming lexical decision experiments, a target word was…
How color, regularity, and good Gestalt determine backward masking.
Sayim, Bilge; Manassi, Mauro; Herzog, Michael
2014-06-18
The strength of visual backward masking depends on the stimulus onset asynchrony (SOA) between target and mask. Recently, it was shown that the conjoint spatial layout of target and mask is as crucial as SOA. Particularly, masking strength depends on whether target and mask group with each other. The same is true in crowding where the global spatial layout of the flankers and target-flanker grouping determine crowding strength. Here, we presented a vernier target followed by different flanker configurations at varying SOAs. Similar to crowding, masking of a red vernier target was strongly reduced for arrays of 10 green compared with 10 red flanking lines. Unlike crowding, single green lines flanking the red vernier showed strong masking. Irregularly arranged flanking lines yielded stronger masking than did regularly arranged lines, again similar to crowding. While cuboid flankers reduced crowding compared with single lines, this was not the case in masking. We propose that, first, masking is reduced when the flankers are part of a larger spatial structure. Second, spatial factors counteract color differences between the target and the flankers. Third, complex Gestalts, such as cuboids, seem to need longer processing times to show ungrouping effects as observed in crowding. Strong parallels between masking and crowding suggest similar underlying mechanism; however, temporal factors in masking additionally modulate performance, acting as an additional grouping cue. © 2014 ARVO.
Exact reliability quantification of highly reliable systems with maintenance
Bris, Radim, E-mail: radim.bris@vsb.c [VSB-Technical University Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Applied Mathematics, 17. listopadu 15, 70833 Ostrava-Poruba (Czech Republic)
2010-12-15
When a system is composed of highly reliable elements, exact reliability quantification may be problematic, because computer accuracy is limited. Inaccuracy can be due to different aspects. For example, an error may be made when subtracting two numbers that are very close to each other, or at the process of summation of many very different numbers, etc. The basic objective of this paper is to find a procedure, which eliminates errors made by PC when calculations close to an error limit are executed. Highly reliable system is represented by the use of directed acyclic graph which is composed from terminal nodes, i.e. highly reliable input elements, internal nodes representing subsystems and edges that bind all of these nodes. Three admissible unavailability models of terminal nodes are introduced, including both corrective and preventive maintenance. The algorithm for exact unavailability calculation of terminal nodes is based on merits of a high-performance language for technical computing MATLAB. System unavailability quantification procedure applied to a graph structure, which considers both independent and dependent (i.e. repeatedly occurring) terminal nodes is based on combinatorial principle. This principle requires summation of a lot of very different non-negative numbers, which may be a source of an inaccuracy. That is why another algorithm for exact summation of such numbers is designed in the paper. The summation procedure uses benefits from a special number system with the base represented by the value 2{sup 32}. Computational efficiency of the new computing methodology is compared with advanced simulation software. Various calculations on systems from references are performed to emphasize merits of the methodology.
Exact exchange plane-wave-pseudopotential calculations for slabs.
Engel, Eberhard
2014-05-14
The exact exchange of density functional theory is applied to both free-standing graphene and a Si(111) slab, using the plane-wave pseudopotential (PWPP) approach and a periodic repetition of the supercell containing the slab. It is shown that (i) PWPP calculations with exact exchange for slabs in supercell geometry are basically feasible, (ii) the width of the vacuum required for a decoupling of the slabs is only moderately larger than in the case of the local-density approximation, and (iii) the resulting exchange potential vx shows an extended region, both far outside the surface of the slab and far from the middle of the vacuum region between the slabs, in which vx behaves as -e(2)/z, provided the width of the vacuum is chosen sufficiently large. This last result is corroborated by an analytical analysis of periodically repeated jellium slabs. The intermediate -e(2)/z behavior of vx can be used for an absolute normalization of vx and the total Kohn-Sham potential, which, in turn, allows the determination of the work function.
Model-based mask data preparation (MB-MDP) for ArF and EUV mask process correction
Hagiwara, Kazuyuki; Bork, Ingo; Fujimura, Aki
2011-05-01
Using Model-Based Mask Data Preparation (MB-MDP) complex masks with complex sub-resolution assist features (SRAFs) can be written in practical write times with today's leading-edge production VSB machines by allowing overlapping VSB shots. This simulation-based approach reduces shot count by taking advantage of the added flexibility in being able to overlap shots. The freedom to overlap shots, it turns out, also increases mask fidelity, CDU on the mask, and CDU on the wafer by writing sub-100nm mask features more accurately, and with better dose margin. This paper describes how overlapping shots enhance mask and wafer quality for various sub-100nm features on ArF masks. In addition, this paper describes how EUV mask accuracy can be enhanced uniquely by allowing overlapping shots.
Classes of exact Einstein Maxwell solutions
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
Exact coherent structures for the turbulent cascade
Eckhardt, Bruno; Zammert, Stefan
2016-11-01
The exact coherent structures that are connected with the transition to turbulence in interior flows usually extend across the full height of the domain. Using exact coherent states that are localized in the shear direction together with scaling ideas for the Navier-Stokes equation that combine length and Reynolds number, we show how such large scale structures can be morphed into smaller scale coherent structures. As the Reynolds number increases, more of these states with ever smaller scales appear, all the way down to the Kolmogorov scale. We present the structure and dynamical properties of several families of exact coherent solution in plane Couette flow, with different degrees of spatial localization: Some of them remain localized in the center and help to built the turbulence cascade, others are localized near the walls and contribute to shaping the boundary layer profile.
Supersymmetric QCD: Exact Results and Strong Coupling
Dine, Michael; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao
2011-01-01
We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is...
Exact solutions in three-dimensional gravity
Garcia-Diaz, Alberto A
2017-01-01
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...
Exact solution of the robust knapsack problem☆
Monaci, Michele; Pferschy, Ulrich; Serafini, Paolo
2013-01-01
We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems. PMID:24187428
Exact two-qubit universal quantum circuit
Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar
2003-01-01
We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit gates. Each block in this circuit is given in a closed form solution. We also analyze the efficiency of different entangling gates, and find that exactly half of all the controlled-unitary gates can be used to implement two-qubit operations as efficiently as the commonly used CNOT gate.
DFT calculations with the exact functional
Burke, Kieron
2014-03-01
I will discuss several works in which we calculate the exact exchange-correlation functional of density functional theory, mostly using the density-matrix renormalization group method invented by Steve White, our collaborator. We demonstrate that a Mott-Hubard insulator is a band metal. We also perform Kohn-Sham DFT calculations with the exact functional and prove that a simple algoritm always converges. But we find convergence becomes harder as correlations get stronger. An example from transport through molecular wires may also be discussed. Work supported by DOE grant DE-SC008696.
Exact Classical Correspondence in Quantum Cosmology
John, Moncy V
2014-01-01
We find a Friedmann model with appropriate matter/energy density such that the solution of the Wheeler-DeWitt equation exactly corresponds to the classical evolution. The well-known problems in quantum cosmology disappear in the resulting coasting evolution. The exact quantum-classical correspondence is demonstrated with the help of the de Broglie-Bohm and modified de Broglie-Bohm approaches to quantum mechanics. It is reassuring that such a solution leads to a robust model for the universe, which agrees well with cosmological expansion indicated by SNe Ia data.
Exact Results for the BTZ Black Hole
Birmingham, Daniel; Sen, S; Birmingham, Danny; Sachs, Ivo; Sen, Siddhartha
2001-01-01
In this review, we summarize exact results for the three-dimensional BTZ black hole. We use rigorous mathematical results to clarify the general structure and properties of this black hole spacetime and its microscopic description. In particular, we study the formation of the black hole by point particle collisions, leading to an exact analytic determination of the Choptuik scaling parameter. We also show that a `No Hair Theorem' follows immediately from a mathematical theorem of hyperbolic geometry, due to Sullivan. A microscopic understanding of the Bekenstein-Hawking entropy, and decay rate for massless scalars, is shown to follow from standard results of conformal field theory.
Exact analysis of bi-periodic structures
Cai, C W; Chan, H C
2002-01-01
By using the U-transformation method, it is possible to uncouple linear simultaneous equations, either algebraic or differential, with cyclic periodicity. This book presents a procedure for applying the U-transformation technique twice to uncouple the two sets of unknown variables in a doubly periodic structure to achieve an analytical exact solution. Explicit exact solutions for the static and dynamic analyses for certain engineering structures with doubly periodic properties - such as a continuous truss with any number of spans, cable network and grillwork on supports with periodicity, and g
Exact Chern-Simons / Topological String duality
Krefl, Daniel
2015-01-01
We invoke universal Chern-Simons theory to analytically calculate the exact free energy of the refined topological string on the resolved conifold. In the unrefined limit we reproduce non-perturbative corrections for the resolved conifold found elsewhere in the literature, thereby providing strong evidence that the Chern-Simons / topological string duality is exact, and in particular holds at arbitrary N as well. In the refined case, the non-perturbative corrections we find are novel and appear to be non-trivial. We show that non-perturbatively special treatment is needed for rational valued deformation parameter. Above results are also extend to refined Chern-Simons with orthogonal groups.
Necessity of Exact Calculation for Transition Probability
LIU Fu-Sui; CHEN Wan-Fang
2003-01-01
This paper shows that exact calculation for transition probability can make some systems deviate fromFermi golden rule seriously. This paper also shows that the corresponding exact calculation of hopping rate inducedby phonons for deuteron in Pd-D system with the many-body electron screening, proposed by Ichimaru, can explainthe experimental fact observed in Pd-D system, and predicts that perfection and low-dimension of Pd lattice are veryimportant for the phonon-induced hopping rate enhancement in Pd-D system.
The Pentapeptide Repeat Proteins
Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.
2006-01-01
The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.
ILT Approach for Compensating 3-D Mask Effects
XIONG Wei; ZHANG Jinyu; MinChun; WANG Yan; YU Zhiping
2009-01-01
As mask features scale to smaller dimensions,the so-called "3-D mask effects" which have mostly been neglected before,become important.This paper properly models the 3-D thick mask effects,and then analyses the object-based inverse lithography technique using a simulated annealing algorithm to determine the mask shapes that produce the desired on-wafer results.Evaluations against rigorous simulations show that the synthesized masks provide good image fidelity up to 0.94,and this approach gives improved accuracy and faster results than existing methods.
The Fastest Saccadic Responses Escape Visual Masking
M. Crouzet, Sébastien; Overgaard, Morten; Busch, Niko A.
2014-01-01
, which gives access to very early stages of visual processing, target visibility was reduced either by OSM, conventional backward masking, or low stimulus contrast. A general reduction of performance was observed in all three conditions. However, the fastest saccades did not show any sign of interference......Object-substitution masking (OSM) occurs when a briefly presented target in a search array is surrounded by small dots that remain visible after the target disappears. The reduction of target visibility occurring after OSM has been suggested to result from a specific interference with reentrant...... visual processing while the initial feedforward processing is thought to be left intact. We tested a prediction derived from this hypothesis: the fastest responses, being triggered before the beginning of reentrant processing, should escape the OSM interference. In a saccadic choice reaction time task...
Multi-part mask for implanting workpieces
Webb, Aaron P.; Carlson, Charles T.
2016-05-10
A multi-part mask has a pattern plate, which includes a planar portion that has the desired aperture pattern to be used during workpiece processing. The multi-part mask also has a mounting frame, which is used to hold the pattern plate. Prior to assembly, the pattern plate has an aligning portion, which has one or more holes through which reusable alignment pins are inserted. These alignment pins enter kinematic joints disposed on the mounting frame, which serve to precisely align the pattern plate to the mounting frame. After the pattern plate has been secured to the mounting frame, the aligning portion can be detached from the pattern plate. The alignment pins can be reused at a later time. In some embodiments, the pattern plate can later be removed from the mounting frame, so that the mounting frame may be reused.
Masking mediated print defect visibility predictor
Jing, Xiaochen; Nachlieli, Hila; Shaked, Doron; Shiffman, Smadar; Allebach, Jan P.
2012-01-01
Banding is a well-known artifact produced by printing systems. It usually appears as lines perpendicular to the process direction of the print. Therefore, banding is an important print quality issue which has been analyzed and assessed by many researchers. However, little literature has focused on the study of the masking effect of content for this kind of print quality issue. Compared with other image and print quality research, our work is focused on the print quality of typical documents printed on a digital commercial printing press. In this paper, we propose a Masking Mediated Print Defect Visibility Predictor (MMPDVP) to predict the visibility of defects in the presence of customer content. The parameters of the algorithm are trained from ground-truth images that have been marked by subjects. The MMPDVP could help the press operator decide whether the print quality is acceptable for specific customer requirements. Ultimately, this model can be used to optimize the print-shop workflow.
Latent inhibition in human adults without masking.
Escobar, Martha; Arcediano, Francisco; Miller, Ralph R
2003-09-01
Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.
Contrast Gain Control Model Fits Masking Data
Watson, Andrew B.; Solomon, Joshua A.; Null, Cynthia H. (Technical Monitor)
1994-01-01
We studied the fit of a contrast gain control model to data of Foley (JOSA 1994), consisting of thresholds for a Gabor patch masked by gratings of various orientations, or by compounds of two orientations. Our general model includes models of Foley and Teo & Heeger (IEEE 1994). Our specific model used a bank of Gabor filters with octave bandwidths at 8 orientations. Excitatory and inhibitory nonlinearities were power functions with exponents of 2.4 and 2. Inhibitory pooling was broad in orientation, but narrow in spatial frequency and space. Minkowski pooling used an exponent of 4. All of the data for observer KMF were well fit by the model. We have developed a contrast gain control model that fits masking data. Unlike Foley's, our model accepts images as inputs. Unlike Teo & Heeger's, our model did not require multiple channels for different dynamic ranges.
Moore, John W.
1998-05-01
As part of the celebration of the Journal 's 75th year, we are scanning each Journal issue from 25, 50, and 74 years ago. Many of the ideas and practices described are so similar to present-day "innovations" that George Santayana's adage (1) "Those who cannot remember the past are condemned to repeat it" comes to mind. But perhaps "condemned" is too strong - sometimes it may be valuable to repeat something that was done long ago. One example comes from the earliest days of the Division of Chemical Education and of the Journal.
Extreme ultraviolet lithography: reflective mask technology
Walton, Christopher C.; Kearney, Patrick A.; Mirkarimi, Paul B.; Bowers, Joel M.; Cerjan, Charles J.; Warrick, Abbie L.; Wilhelmsen, Karl C.; Fought, Eric R.; Moore, Craig E.; Larson, Cindy C.; Baker, Sherry L.; Burkhart, Scott C.; Hector, Scott D.
2000-07-01
EUVL mask blanks consist of a distributed Bragg reflector made of 6.7 nm-pitch bi-layers of Mo and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150 mm substrates, it was upgraded in July 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects > 100 nm below 0.05/cm2. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross- platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank
Nablus mask-like facial syndrome
Allanson, Judith; Smith, Amanda; Hare, Heather
2012-01-01
Nablus mask-like facial syndrome (NMLFS) has many distinctive phenotypic features, particularly tight glistening skin with reduced facial expression, blepharophimosis, telecanthus, bulky nasal tip, abnormal external ear architecture, upswept frontal hairline, and sparse eyebrows. Over the last few...... heterozygous deletions significantly overlapping the region associated with NMLFS. Notably, while one mother and child were said to have mild tightening of facial skin, none of these individuals exhibited reduced facial expression or the classical facial phenotype of NMLFS. These findings indicate...
2007-08-07
Lecture Notes in Computer Science , pages 309–18, 2001. [2] D. Canright. A very compact S-box for AES. In CHES2005, volume 3659 of Lecture Notes in Computer Science , pages...et al., editor, CHES2003, volume 2779 of Lecture Notes in Computer Science , pages 319–333. Springer, 2003. [4] Jovan Dj. Golić and Christophe Tymen...Multiplicative masking and power analysis of AES. In CHES 2002, volume 2523 of Lecture
Extreme Ultraviolet Lithography - Reflective Mask Technology
Walton, C.C.; Kearney, P.A.; Mirkarimi, P.B.; Bowers, J.M.; Cerjan, C.; Warrick, A.L.; Wilhelmsen, K.; Fought, E.; Moore, C.; Larson, C.; Baker, S.; Burkhart, S.C.; Hector, S.D.
2000-05-09
EUVL mask blanks consist of a distributed Bragg reflector made of 6.7nm-pitch bi-layers of MO and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150mm substrates, it was upgraded in July, 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects >100nm below 0.05/cm{sup 2}. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross-platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank
Mask image position correction for double patterning lithography
Saito, Masato; Itoh, Masamitsu; Ikenaga, Osamu; Ishigo, Kazutaka
2008-05-01
Application of double patterning technique has been discussed for lithography of HP 3X nm device generation. In this case, overlay budget for lithography becomes so hard that it is difficult to achieve it with only improvement of photomask's position accuracy. One of the factors of overlay error will be induced by distortion of photomask after chucking on the mask stage of exposure tool, because photomasks are bended by the force of vacuum chucking. Recently, mask flatness prediction technique was developed. This technique is simulating the surface shape of mask when it is on the mask stage by using the flatness data of free-standing state blank and the information of mask chucking stage. To use this predicted flatness data, it is possible to predict a pattern position error after exposed and it is possible to correct it on the photomask. A blank supplier developed the flatness data transfer system to mask vender. Every blanks are distinguished individually by 2D barcode mark on blank which including serial number. The flatness data of each blank is linked with this serial number, and mask vender can use this serial number as a key code to mask flatness data. We developed mask image position correction system by using 2D barcode mark linked to predicted flatness data, and position accuracy assurance system for these masks. And with these systems, we made some masks actually.
Dose masking feature for BNCT radiotherapy planning
Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.
2000-01-01
A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.
EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION
无
2011-01-01
In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.
Exact Optimum Design of Segmented Thermoelectric Generators
M. Zare
2016-01-01
Full Text Available A considerable difference between experimental and theoretical results has been observed in the studies of segmented thermoelectric generators (STEGs. Because of simplicity, the approximate methods are widely used for design and optimization of the STEGs. This study is focused on employment of exact method for design and optimization of STEGs and comparison of exact and approximate results. Thus, using new highly efficient thermoelectric materials, four STEGs are proposed to operate in the temperature range of 300 to 1300 kelvins. The proposed STEGs are optimally designed to achieve maximum efficiency. Design and performance characteristics of the optimized generators including maximum conversion efficiency and length of elements are calculated through both exact and approximate methods. The comparison indicates that the approximate method can cause a difference up to 20% in calculation of some design characteristics despite its appropriate results in efficiency calculation. The results also show that the maximum theoretical efficiency of 23.08% is achievable using the new proposed STEGs. Compatibility factor of the selected materials for the proposed STEGs is also calculated using both exact and approximate methods. The comparison indicates a negligible difference in calculation of compatibility factor, despite the considerable difference in calculation of reduced efficiency (temperature independence efficiency.
Exactly solvable models of baryon structure
Bijker, R
1998-01-01
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study.
Exactly solvable models of baryon structure
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico. Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University. Jerusalem 91904, Israel (Israel)
1998-12-31
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)
BSA - exact algorithm computing LTS estimate
Klouda, Karel
2010-01-01
The main result of this paper is a new exact algorithm computing the estimate given by the Least Trimmed Squares (LTS). The algorithm works under very weak assumptions. To prove that, we study the respective objective function using basic techniques of analysis and linear algebra.
Exact Vacuum Solutions to the Einstein Equation
无
2007-01-01
In this paper, the author presents a framework for getting a series of exact vacuum solutions to the Einstein equation. This procedure of resolution is based on a canonical form of the metric. According to this procedure, the Einstein equation can be reduced to some 2-dimensional Laplace-like equations or rotation and divergence equations,which are much convenient for the resolution.
Solitons in nonlocal nonlinear media: Exact solutions
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Gorensteinness and Tate Cohomology in Exact Categories
WANG Zhi-cheng
2015-01-01
Motivated by the classical Gorenstein homological theory and structure of Tate cohomology, we develop a theory of Gorenstein projective objects and Tate cohomology in an exact category A with enough projectives. We study some properties of Gorenstein projective objects and establish Tate cohomology of objects with finite Gorenstein projective dimension.
Exact internal controllability for shallow shells
FENG Shaoji; FENG Dexing
2006-01-01
The internal control problem is considered, based on the linear displacement equations of shallow shell. It is shown, with some checkable geometric conditions on control region, that the undergoing shallow shell is exactly controllable by using Hilbert uniqueness method (HUM), piecewise multiplier method and Riemannian geometry method. Then some examples are given to show the assumed geometric conditions.
Spectral geometry: two exactly solvable models
Kuperin, Yu.A. (International Solvay Institutes for Physics and Chemistry, C.P. 231, Boulevard du Triomphe, 1050, Brussels (Belgium) Department of Mathematical and Computational Physics, Saint Petersburg State University, 198904, Saint Petersburg (Russian Federation) Institute for Physical Research and Technology, Saint Petersburg (Russian Federation)); Pavlov, B.S. (International Solvay Institutes for Physics and Chemistry, C.P. 231, Boulevard du Triomphe, 1050, Brussels (Belgium) Department of Mathematical and Computational Physics, Saint Petersburg State University, 198904, Saint Petersburg (Russian Federation)); Rudin, G.E. (Department of Mathematical and Computational Physics, Saint Petersburg State University, 198904, Saint Petersburg (Russian Federation)); Vinitsky, S.I. (International Solvay Institutes for Physics and Chemistry, C.P. 231, Boulevard du Triomphe, 1050, Brussels (Belgium) Institute for Physical Research and Technology, Saint Petersburg (Russian Federation) Joi
1994-10-24
Two exactly solvable models illustrating the links between spectral properties of Hamiltonians, connections on the induced Hilbert bundles and topological characteristics of the basis spaces are considered. The first of them is based on the extension theory for symmetric operators and the second on the one-dimensional Laplace operator with parametrical boundary conditions. ((orig.))
Exact Solutions in Nonlocal Linear Models
Vernov, S. Yu.
2008-01-01
A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.
On Exact and Inexact Differentials and Applications
Cortez, L. A. B.; de Oliveira, E. Capelas
2017-01-01
Considering the important role played by mathematical derivatives in the study of physical-chemical processes, this paper discusses the different possibilities and formulations of this concept and its application. In particular, in Chemical Thermodynamics, we study exact differentials associated with the so-called state functions and inexact…
Direct 3D printed shadow mask on Silicon
Rahiminejad, S.; Köhler, E.; Enoksson, P.
2016-10-01
A 3D printed shadow mask method is presented. The 3D printer prints ABS plastic directly on the wafer, thus avoiding gaps between the wafer and the shadow mask, and deformation during the process. The wafer together with the 3D printed shadow mask was sputtered with Ti and Au. The shadow mask was released by immersion in acetone. The sputtered patches through the shadow mask were compared to the opening of the 3D printed shadow mask and the design dimensions. The patterned Au patches were larger than the printed apertures, however they were smaller than the design widths. The mask was printed in 4 min, the cost is less than one euro cent, and the process is a low temperature process suitable for temperature sensitive components.
Mask design rules (45 nm): time for standardization
Mason, Mark; Progler, Christopher J.; Martin, Patrick; Ham, Young-Mog; Dillon, Brian; Pack, Robert; Heins, Mitch; Gookassian, John; Garcia, John; Boksha, Victor
2005-11-01
Time-to-mask (ttm) has been growing exponentially in the subwavelength era with the increased application of advanced RET's (Resolution Enhancement Technology). Not only are a greater number of design/mask layers impacted but more-and-more layers also have more severe restrictions on critical dimension uniformity (CDU) despite operating at a very low k1 factors necessitating rigorous but practical tolerancing. Furthermore, designs are also more complex, may be built up from blocks spanning different design styles, and occupy increasingly-large Rayleigh field areas. Given these factors and scales, it's no wonder that the cycle time for verification of a design following RET, is growing however it is doing so exponentially and that this is a critical factor impeding ttm. Until an unambiguously interprable and standard Mask Design Rule (MaskDR) set is created, neither the designer nor the mask supplier can reliably verify manufacturability of the mask for the simple reason that ambiguity and inter-rule conflict are at the source of the problem and that the problem increasingly requires cooperation spanning a large ecosystem of tool, IP, and mask suppliers all needing to essentially speak the same language. Since the 130 nm node, Texas Instruments has enforced a strict set of mask rule checks (MRCs) in their mask data preparation (MDP) flow based on MaskDRs negotiated with their mask suppliers. The purpose of this effort has been to provide an a-priori guarantee that the data shipped to the mask shop can be used to manufacture a mask reliably and with high yield both from a mask standpoint and from the silicon standpoint. As has been reported earlier, mask manufacturing rules are usually determined from assumed or experimentally acquired/validated mask-manufacturing limits. These rules are then applied during RET/MDP data treatment to guide and/or limit pattern correction strategies. With increasing RET and low-k1 lithography challenges, the importance of MRCs
Contact printed masks for 3D microfabrication in negative resists
Häfliger, Daniel; Boisen, Anja
2005-01-01
We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...
Combined analysis of tunable phase mask within spatial and frequency domain%可调谐相位板空域频域联合分析∗
周亮; 刘朝晖; 折文集
2015-01-01
derived in spatial domain. Simulations indicate that the positions of PSF translate in the image plane with the displacements of phase mask profile and the position of each component with respect to the pupil center. By analyzing the oscillations of PSF, the effective bandwidth is obtained. Through the expression, we can conclude that the effective bandwidth can be changed by the position, mask profile of each component and defocus. Only when the addition of two mask profiles is large enough, can the effective bandwidth be simplified without adding the influence of defocus. In addition, though the approximate expression of magnitude transfer of function (MTF) has been given by adopting stationary phase method in the appendix of previous work, it cannot give an intuitive grasp of the effective bandwidth in MTF map. Unlike the MTF expression derived before, the exact optical transfer function (OTF) expression is derived by adopting Fresnel integral in frequency domain. Exact MTF and phase transfer function (PTF) can be derived from OTF. Based on the exact MTF expression, simulations give an intuitive effective bandwidth in MTF map. Simulations also show the nonlinear property of PTF. The effective bandwidth and MTF can be changed by different phase mask profiles and positions, which indicate that the effective bandwidth and defocus sensitivity can be tuned. Analyses are conducted both in spatial domain and in frequency domain to verify the tunable property of the proposed phase mask, which provides theoretical foundation for tunable wavefront coding system design.
Silberberg, Y
1986-06-01
An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.
Bidirectional Manchester repeater
Ferguson, J.
1980-01-01
Bidirectional Manchester repeater is inserted at periodic intervals along single bidirectional twisted pair transmission line to detect, amplify, and transmit bidirectional Manchester 11 code signals. Requiring only 18 TTL 7400 series IC's, some line receivers and drivers, and handful of passive components, circuit is simple and relatively inexpensive to build.
The masked priming toolbox: an open-source MATLAB toolbox for masked priming researchers.
Wilson, Andrew D; Tresilian, James; Schlaghecken, Friederike
2011-03-01
The Masked Priming Toolbox is an open-source collection of MATLAB functions that utilizes the free third-party PsychToolbox-3 (PTB3: Brainard, Spatial Vision, 10, 433-436, 1997; Kleiner, Brainard & Pelli, Perception, 36, 2007; Pelli, Spatial Vision, 10, 437-442, 1997). It is designed to allow a researcher to run masked (and unmasked) priming experiments using a variety of response devices (including keyboards, graphics tablets and force transducers). Very little knowledge of MATLAB is required; experiments are generated by creating a text file with the required parameters, and raw and analyzed data are output to Excel (as well as MATLAB) files for further analysis. The toolbox implements a variety of stimuli for use as primes and targets, as well as a variety of masks. Timing, size, location, and orientation of stimuli are all parameterizable. The code is open-source and made available on the Web under a Creative Commons License.
Mistraletti, Giovanni; Giacomini, Matteo; Sabbatini, Giovanni; Pinciroli, Riccardo; Mantovani, Elena S; Umbrello, Michele; Palmisano, Debora; Formenti, Paolo; Destrebecq, Anne L L; Iapichino, Gaetano
2013-02-01
The performances of 2 noninvasive CPAP systems (high flow and low flow air-entrainment masks) were compared to the Boussignac valve in 3 different scenarios. Scenario 1: pneumatic lung simulator with a tachypnea pattern (tidal volume 800 mL at 40 breaths/min). Scenario 2: Ten healthy subjects studied during tidal breaths and tachypnea. Scenario 3: Twenty ICU subjects enrolled for a noninvasive CPAP session. Differences between set and effective CPAP level and F(IO(2)), as well as the lowest airway pressure and the pressure swing around the imposed CPAP level, were analyzed. The lowest airway pressure and swing were correlated to the pressure-time product (area of the airway pressure curve below the CPAP level) measured with the simulator. P(aO(2)) was a subject's further performance index. Lung simulator: Boussignac F(IO(2)) was 0.54, even if supplied with pure oxygen. The air-entrainment masks had higher swing than the Boussignac (P = .007). Pressure-time product correlated better with pressure swing (Spearman correlation coefficient [ρ] = 0.97) than with lowest airway pressure (ρ = 0.92). In healthy subjects, the high-flow air-entrainment mask showed lower difference between set and effective F(IO(2)) (P high-flow mask had lower swing than the Boussignac valve (P = .03) with similar P(aO(2)) increase. High-flow air-entrainment mask showed the best performance in human subjects. During high flow demand, the Boussignac valve delivered lower than expected F(IO(2)) and showed higher dynamic hyper-pressurization than the air-entrainment masks. © 2013 Daedalus Enterprises.
Strategy optimization for mask rule check in wafer fab
Yang, Chuen Huei; Lin, Shaina; Lin, Roger; Wang, Alice; Lee, Rachel; Deng, Erwin
2015-07-01
Photolithography process is getting more and more sophisticated for wafer production following Moore's law. Therefore, for wafer fab, consolidated and close cooperation with mask house is a key to achieve silicon wafer success. However, generally speaking, it is not easy to preserve such partnership because many engineering efforts and frequent communication are indispensable. The inattentive connection is obvious in mask rule check (MRC). Mask houses will do their own MRC at job deck stage, but the checking is only for identification of mask process limitation including writing, etching, inspection, metrology, etc. No further checking in terms of wafer process concerned mask data errors will be implemented after data files of whole mask are composed in mask house. There are still many potential data errors even post-OPC verification has been done for main circuits. What mentioned here are the kinds of errors which will only occur as main circuits combined with frame and dummy patterns to form whole reticle. Therefore, strategy optimization is on-going in UMC to evaluate MRC especially for wafer fab concerned errors. The prerequisite is that no impact on mask delivery cycle time even adding this extra checking. A full-mask checking based on job deck in gds or oasis format is necessary in order to secure acceptable run time. Form of the summarized error report generated by this checking is also crucial because user friendly interface will shorten engineers' judgment time to release mask for writing. This paper will survey the key factors of MRC in wafer fab.
Gender difference in mask ventilation training of anesthesia residents.
Koga, Tomomichi; Kawamoto, Masashi
2009-05-01
To investigate whether gender difference has an effect on an anesthesia resident's ability to perform successful mask ventilation. Cohort study. Surgical operation theater of a university-affiliated hospital. 839 ASA physical status I, II, and III patients undergoing general anesthesia performed by residents. Mask ventilation was performed by 21 different anesthesia residents. Difficult mask ventilation was defined as the inability of an unassisted resident to maintain oxygen saturation, significant gas flow leakage beneath the face mask, need to increase gas flow, no perceptible chest movement, assistance required using a two-handed mask ventilation technique, or use of the oxygen flush valve more than twice. Instances of difficult mask ventilation were observed in 210 patients (25.0%), though all were adequately ventilated with a face mask. Difficult mask ventilation was observed significantly more often with female (29.8%) than male (20.0%) residents. Residents' gender was shown to be an independent risk factor for difficult mask ventilation. Gender difference has an effect on the mask ventilation learning process, as it was more difficult for female residents to provide a tight air seal in the early stage of training.
Mask data volume: historical perspective and future requirements
Spence, Chris; Goad, Scott; Buck, Peter; Gladhill, Richard; Cinque, Russell; Preuninger, Jürgen; Griesinger, Üwe; Blöcker, Martin
2006-06-01
Mask data file sizes are increasing as we move from technology generation to generation. The historical 30% linear shrink every 2-3 years that has been called Moore's Law, has driven a doubling of the transistor budget and hence feature count. The transition from steppers to step-and-scan tools has increased the area of the mask that needs to be patterned. At the 130nm node and below, Optical Proximity Correction (OPC) has become prevalent, and the edge fragmentation required to implement OPC leads to an increase in the number of polygons required to define the layout. Furthermore, Resolution Enhancement Techniques (RETs) such as Sub-Resolution Assist Features (SRAFs) or tri-tone Phase Shift Masks (PSM) require additional features to be defined on the mask which do not resolve on the wafer, further increasing masks volumes. In this paper we review historical data on mask file sizes for microprocessor, DRAM and Flash memory designs. We consider the consequences of this increase in file size on Mask Data Prep (MDP) activities, both within the Integrated Device Manufacturer (IDM) and Mask Shop, namely: computer resources, storage and networks (for file transfer). The impact of larger file sizes on mask writing times is also reviewed. Finally we consider, based on the trends that have been observed over the last 5 technology nodes, what will be required to maintain reasonable MDP and mask manufacturing cycle times.
Source mask optimization using 3D mask and compact resist models
El-Sewefy, Omar; Chen, Ao; Lafferty, Neal; Meiring, Jason; Chung, Angeline; Foong, Yee Mei; Adam, Kostas; Sturtevant, John
2016-03-01
Source Mask Optimization (SMO) has played an important role in technology setup and ground rule definition since the 2x nm technology node. While improvements in SMO algorithms have produced higher quality and more consistent results, the accuracy of the overall solution is critically linked to how faithfully the entire patterning system is modeled, from mask down to substrate. Fortunately, modeling technology has continued to advance to provide greater accuracy in modeling 3D mask effects, 3D resist behavior, and resist phenomena. Specifically, the Domain Decomposition Method (DDM) approximates the 3D mask response as a superposition of edge-responses.1 The DDM can be applied to a sectorized illumination source based on Hybrid-Hopkins Abbe approximation,2 which provides an accurate and fast solution for the modeling of 3D mask effects and has been widely used in OPC modeling. The implementation of DDM in the SMO flow, however, is more challenging because the shape and intensity of the source, unlike the case in OPC modeling, is evolving along the optimization path. As a result, it gets more complicated. It is accepted that inadequate pupil sectorization results in reduced accuracy in any application, however in SMO the required uniformity and density of pupil sampling is higher than typical OPC and modeling cases. In this paper, we describe a novel method to implement DDM in the SMO flow. The source sectorization is defined by following the universal pixel sizes used in SMO. Fast algorithms are developed to enable computation of edge signals from each fine pixel of the source. In this case, each pixel has accurate information to describe its contribution to imaging and the overall objective function. A more continuous angular spectrum from 3D mask scattering is thus captured, leading to accurate modeling of 3D mask effects throughout source optimization. This method is applied on a 2x nm middle-of-line layer test case. The impact of the 3D mask model accuracy on
Women and trauma: transformation of self through mask making and action-based mask work
Birch, June Elizabeth
2011-01-01
This secondary analysis study examined the stories of six women who were impacted by trauma. These women attended a ten-week counselling group in which they participated in the construction of masks and in action-based mask work as a means of expressing and working through their trauma experiences. Based on a constructivist approach, the methodology employed in this study was a narrative inquiry centred on the work of Lieblich, Tuval-Mashiach, and Zilber (1998). The data were generated from o...
Exact solutions for nonlinear foam drainage equation
Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani
2016-09-01
In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G) -expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.
Exact solutions for nonlinear foam drainage equation
Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani
2017-02-01
In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.
Sampling exactly from the normal distribution
Karney, Charles F F
2013-01-01
An algorithm for sampling exactly from the normal distribution is given. The algorithm reads some number of uniformly distributed random digits in a given base and generates an initial portion of the representation of a normal deviate in the same base. Thereafter, uniform random digits are copied directly into the representation of the normal deviate. Thus, in constrast to existing methods, it is possible to generate normal deviates exactly rounded to any precision with a mean cost that scales linearly in the precision. The method performs no arbitrary precision arithmetic, calls no transcendental functions, and, indeed, uses no floating point arithmetic whatsoever; it uses only simple integer operations. The algorithm is inspired by von Neumann's algorithm for sampling from the exponential distribution; an improvement to von Neumann's algorithm is also given.
Exact cosmological solutions from Hojman conservation quantities
Capozziello, Salvatore, E-mail: capozzie@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Roshan, Mahmood, E-mail: rowshan@alumni.ut.ac.ir [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2013-10-07
We present a new approach to find exact solutions for cosmological models. By requiring the existence of a symmetry transformation vector for the equations of motion of the given cosmological model (without using either Lagrangian or Hamiltonian), one can find corresponding Hojman conserved quantities. With the help of these conserved quantities, the analysis of the cosmological model can be simplified. In the case of quintessence scalar–tensor models, we show that the Hojman conserved quantities exist for a wide range of V(ϕ)-potentials and allow to find exact solutions for the cosmic scale factor and the scalar field. Finally, we investigate the general cosmological behavior of solutions by adopting a phase-space view.
Exact cosmological solutions from Hojman conservation quantities
Capozziello, Salvatore
2013-01-01
We present a new approach to find exact solutions for cosmological models. By requiring the existence of a symmetry transformation vector for the equations of motion of the given cosmological model (without using either Lagrangian or Hamiltonian), one can find corresponding Hojman conserved quantities. With the help of these conserved quantities, the analysis of the cosmological model can be simplified. In the case of quintessence scalar-tensor models, we show that the Hojman conserved quantities exist for a wide range of V(\\phi)-potentials and allow to find exact solutions for the cosmic scale factor and the scalar field. Finally, we investigate the general cosmological behavior of solutions by adopting a phase-space view.
Representing exact number visually using mental abacus.
Frank, Michael C; Barner, David
2012-02-01
Mental abacus (MA) is a system for performing rapid and precise arithmetic by manipulating a mental representation of an abacus, a physical calculation device. Previous work has speculated that MA is based on visual imagery, suggesting that it might be a method of representing exact number nonlinguistically, but given the limitations on visual working memory, it is unknown how MA structures could be stored. We investigated the structure of the representations underlying MA in a group of children in India. Our results suggest that MA is represented in visual working memory by splitting the abacus into a series of columns, each of which is independently stored as a unit with its own detailed substructure. In addition, we show that the computations of practiced MA users (but not those of control participants) are relatively insensitive to verbal interference, consistent with the hypothesis that MA is a nonlinguistic format for exact numerical computation.
Remarks on Exactly Solvable Noncommutative Quantum Field
WANG Ning
2007-01-01
We study exactly the solvable noncommutative scalar quantum Geld models of (2n) or (2n + 1) dimensions. By writing out an equivalent action of the noncommutative field, it is shown that the special condition B·θ =±I in field theoretic context means the full restoration of the maximal U(∞) gauge symmetries broken due to kinetic term. It is further shown that the model can be obtained by dimensional reduction of a 2n- dimensional exactly solvable noncommutative φ4 quantum field model closely related to the 1+1- dimensional Moyal/ matrix-valued nonlinear Schr(o)dinger (MNLS) equation. The corresponding quantum fundamental commutation relation of the MNLS model is also given explicitly.
Exact four-spinon dynamical correlation function
Abada, A; Si-Lakhal, B; Seba, S; Abada, As
1998-01-01
We discuss some properties of the exact four-spinon dynamical correlation function in the antiferromagnetic spin 1/2 XXX-model the expression of which we derived recently. We show that the region in which it is not identically zero is different from and larger than the spin-wave continuum. We discuss its behavior as a function of the neutron momentum transfer $k$ for fixed values of the neutron energy $\\omega$ and compare it to the one corresponding to the exact two-spinon dynamical correlation function. We show that the overall shapes are quite similar but there are differences that we discuss. Particular is the fact that the symmetry about the axis $k=\\pi$ present in the two-spinon case seems to be lost in the four-spinon one. We finish with concluding remarks.
Exact solution to fractional logistic equation
West, Bruce J.
2015-07-01
The logistic equation is one of the most familiar nonlinear differential equations in the biological and social sciences. Herein we provide an exact solution to an extension of this equation to incorporate memory through the use of fractional derivatives in time. The solution to the fractional logistic equation (FLE) is obtained using the Carleman embedding technique that allows the nonlinear equation to be replaced by an infinite-order set of linear equations, which we then solve exactly. The formal series expansion for the initial value solution of the FLE is shown to be expressed in terms of a series of weighted Mittag-Leffler functions that reduces to the well known analytic solution in the limit where the fractional index for the derivative approaches unity. The numerical integration to the FLE provides an excellent fit to the analytic solution. We propose this approach as a general technique for solving a class of nonlinear fractional differential equations.
Exact Relativistic Magnetized Haloes around Rotating Disks
Antonio C. Gutiérrez-Piñeres
2015-01-01
Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.
Compiling Relational Bayesian Networks for Exact Inference
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Exact BPS bound for noncommutative baby Skyrmions
Domrin, Andrei, E-mail: domrin@mi.ras.ru [Department of Mathematics and Mechanics, Moscow State University, Leninskie gory, 119992, GSP-2, Moscow (Russian Federation); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover (Germany); Linares, Román, E-mail: lirr@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México D.F. (Mexico); Maceda, Marco, E-mail: mmac@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México D.F. (Mexico)
2013-11-25
The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory.
NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
LIU KE-JIA; HE LI; ZHOU GUO-LI; WU YU-JIAO
2001-01-01
Using the formalism of supersymmetric quantum mechanics, we give an exact solution for a family of onedimensional periodic potentials, which are the supersymmetric partners of the potential proportional to the trigonometric function cos(2x) such that the Schrodinger equation for this potential is named the Mathieu equation mathematically.We show that the new potentials are distinctly different from their original ones. However, both have the same energy band structure. All the potentials obtained in this paper are free of singularities.
EXACT SOLUTIONS OF A DIPOLAR FLUID FLOW
T. HAYAT
2003-01-01
Exact solutions for three canonical flow problems of a dipolar fluid are obtained: (i)The flow of a dipolar fluid due to a suddenly accelerated plate, (ii) The flow generated by periodic oscillation of a plate, (iii) The flow due to plate oscillation in the presence of a transverse magnetic field. The solutions of some interesting flows caused by an arbitrary velocity of the plate and of certain special oscillations are also obtained.
Introduction to Hubbard model and exact diagonalization
S. Akbar Jafari
2008-06-01
Full Text Available Hubbard model is an important model in the theory of strongly correlated electron systems. In this contribution we introduce this model and the concepts of electron correlation by building on a tight binding model. After enumerating various methods of tackling the Hubbard model, we introduce the numerical method of exact diagonalization in detail. The book keeping and practical implementation aspects are illustrated with analytically solvable example of two-site Hubbard model.
Exact plane gravitational waves and electromagnetic fields
Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)
2000-01-01
The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...
Exact axisymmetric Taylor states for shaped plasmas
Cerfon, Antoine J., E-mail: cerfon@cims.nyu.edu; O' Neil, Michael, E-mail: oneil@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-06-15
We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.
Exact solution of phantom dark energy model
Wang Wen-Fu; Shui Zheng-Wei; Tang Bin
2010-01-01
We investigate the phantom dark energy model derived from the scalar field with a negative kinetic term. By assuming a particular relation between the time derivative of the phantom field and the Hubble function, an exact solution of the model is constructed. Absence of the 'big rip' singularity is shown explicitly. We then derive special features of phantom dark energy model and show that its predictions are consistent with all astrophysical observations.
Coherent states for exactly solvable potentials
Shreecharan, T.; Panigrahi, Prasanta. K.; Banerji, J.
2003-01-01
A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials e.g., Morse and P{\\"o}schl-Teller, is given. The method, {\\it a priori}, is potential independent and connects with earlier developed ones, including the oscillator based approaches for coherent states and their generalizations. This approach can be straightforwardly extended to construct more general coherent states for the quantum mechanical potential problems, like the nonlinear co...
Stripe Ansatzs from Exactly Solved Models
2001-01-01
Using the Boltzmann weights of classical Statistical Mechanics vertex models we define a new class of Tensor Product Ansatzs for 2D quantum lattice systems, characterized by a strong anisotropy, which gives rise to stripe like structures. In the case of the six vertex model we compute exactly, in the thermodynamic limit, the norm of the ansatz and other observables. Employing this ansatz we study the phase diagram of a Hamiltonian given by the sum of XXZ Hamiltonians along the legs coupled by...
Exact quantization conditions for cluster integrable systems
Franco, Sebastián; Hatsuda, Yasuyuki; Mariño, Marcos
2016-06-01
We propose exact quantization conditions for the quantum integrable systems of Goncharov and Kenyon, based on the enumerative geometry of the corresponding toric Calabi-Yau manifolds. Our conjecture builds upon recent results on the quantization of mirror curves, and generalizes a previous proposal for the quantization of the relativistic Toda lattice. We present explicit tests of our conjecture for the integrable systems associated to the resolved {{{C}}3}/{{{Z}}5} and {{{C}}3}/{{{Z}}6} orbifolds.
Exact quantization conditions for cluster integrable systems
Franco, Sebastian; Marino, Marcos
2015-01-01
We propose exact quantization conditions for the quantum integrable systems of Goncharov and Kenyon, based on the enumerative geometry of the corresponding toric Calabi-Yau manifolds. Our conjecture builds upon recent results on the quantization of mirror curves, and generalizes a previous proposal for the quantization of the relativistic Toda lattice. We present explicit tests of our conjecture for the integrable systems associated to the resolved C^3/Z_5 and C^3/Z_6 orbifolds.
On exact solutions of the Bogoyavlenskii equation
Yan-Ze Peng; Ming Shen
2006-09-01
Exact solutions for the Bogoyavlenskii equation are studied by the travelling wave method and the singular manifold method. It is found that the linear superposition of the shock wave solution and the complex solitary wave solution for the physical field is still a solution of the equation of interest, except for a phase-shift. The dromion-like structures with elastic and nonelastic interactions are found.
PCR-free digital minisatellite tandem repeat genotyping.
Chen, Yuchao; Seo, Tae Seok
2011-06-01
We demonstrated a proof-of-concept for novel minisatellite tandem repeat typing, called PCR-free digital VNTR (variable number tandem repeat) typing, which is composed of three steps: a ligation reaction instead of PCR thermal cycling, magnetic bead-based solid-phase capture for purification, and an elongated sample stacking microcapillary electrophoresis (μCE) for sensitive digital coding of repeat number. We designed a 16-bp fluorescently labeled ligation probe which is complementary to a repeat unit of a biotinylated synthetic template mimicking the human D1S80 VNTR locus and is randomly hybridized with the minisatellite tandem repeats. A quick isothermal ligation reaction was followed to link the adjacent ligation probes on the DNA templates, and then the ligated products were purified by streptavidin-coated magnetic beads. After a denaturing step, a large amount of ligated products whose size difference was equivalent to the repeat unit were released and recovered. Through the elongated sample stacking μCE separation on a microdevice, the fluorescence signal of the ligated products was generated in the electropherogram and the peak number was directly counted which was exactly matched with the repeat number of VNTR locus. We could successfully identify the minisatellite tandem repeat number with only 5 fmol of DNA template in 30 min.
Duct Leakage Repeatability Testing
Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2014-01-01
Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.
Exact tests for Hardy-Weinberg proportions.
Engels, William R
2009-12-01
Exact conditional tests are often required to evaluate statistically whether a sample of diploids comes from a population with Hardy-Weinberg proportions or to confirm the accuracy of genotype assignments. This requirement is especially common when the sample includes multiple alleles and sparse data, thus rendering asymptotic methods, such as the common chi(2)-test, unreliable. Such an exact test can be performed using the likelihood ratio as its test statistic rather than the more commonly used probability test. Conceptual advantages in using the likelihood ratio are discussed. A substantially improved algorithm is described to permit the performance of a full-enumeration exact test on sample sizes that are too large for previous methods. An improved Monte Carlo algorithm is also proposed for samples that preclude full enumeration. These algorithms are about two orders of magnitude faster than those currently in use. Finally, methods are derived to compute the number of possible samples with a given set of allele counts, a useful quantity for evaluating the feasibility of the full enumeration procedure. Software implementing these methods, ExactoHW, is provided.
Stochastic TDHF in an exactly solvable model
Lacombe, Lionel; Suraud, Eric; Dinh, Phuong Mai
2016-01-01
We apply in a schematic model a theory beyond mean-field, namely Stochastic Time-Dependent Hartree-Fock (STDHF), which includes dynamical electron-electron collisions on top of an incoherent ensemble of mean-field states by occasional 2-particle-2-hole ($2p2h$) jumps. The model considered here is inspired by a Lipkin-Meshkov-Glick model of $\\Omega$ particles distributed into two bands of energy and coupled by a two-body interaction. Such a model can be exactly solved (numerically though) for small $\\Omega$. It therefore allows a direct comparison of STDHF and the exact propagation. The systematic impact of the model parameters as the density of states, the excitation energy and the bandwidth is presented and discussed. The time evolution of the STDHF compares fairly well with the exact entropy, as soon as the excitation energy is sufficiently large to allow $2p2h$ transitions. Limitations concerning low energy excitations and memory effects are also discussed.
Exact and Approximate Sizes of Convex Datacubes
Nedjar, Sébastien
In various approaches, data cubes are pre-computed in order to efficiently answer Olap queries. The notion of data cube has been explored in various ways: iceberg cubes, range cubes, differential cubes or emerging cubes. Previously, we have introduced the concept of convex cube which generalizes all the quoted variants of cubes. More precisely, the convex cube captures all the tuples satisfying a monotone and/or antimonotone constraint combination. This paper is dedicated to a study of the convex cube size. Actually, knowing the size of such a cube even before computing it has various advantages. First of all, free space can be saved for its storage and the data warehouse administration can be improved. However the main interest of this size knowledge is to choose at best the constraints to apply in order to get a workable result. For an aided calibrating of constraints, we propose a sound characterization, based on inclusion-exclusion principle, of the exact size of convex cube as long as an upper bound which can be very quickly yielded. Moreover we adapt the nearly optimal algorithm HyperLogLog in order to provide a very good approximation of the exact size of convex cubes. Our analytical results are confirmed by experiments: the approximated size of convex cubes is really close to their exact size and can be computed quasi immediately.
Exact Eigenfunctions of a Chaotic System
Ausländer, O M
1997-01-01
The interest in the properties of quantum systems, whose classical dynamics are chaotic, derives from their abundance in nature. The spectrum of such systems can be related, in the semiclassical approximation (SCA), to the unstable classical periodic orbits, through Gutzwiller's trace formula. The class of systems studied in this work, tiling billiards on the pseudo-sphere, is special in this correspondence being exact, via Selberg's trace formula. In this work, an exact expression for Green's function (GF) and the eigenfunctions (EF) of tiling billiards on the pseudo-sphere, whose classical dynamics are chaotic, is derived. GF is shown to be equal to the quotient of two infinite sums over periodic orbits, where the denominator is the spectral determinant. Such a result is known to be true for typical chaotic systems, in the leading SCA. From the exact expression for GF, individual EF can be identified. In order to obtain a SCA by finite series for the infinite sums encountered, resummation by analytic contin...
Theoretical modeling of masking DNA application in aptamer-facilitated biomarker discovery.
Cherney, Leonid T; Obrecht, Natalia M; Krylov, Sergey N
2013-04-16
In aptamer-facilitated biomarker discovery (AptaBiD), aptamers are selected from a library of random DNA (or RNA) sequences for their ability to specifically bind cell-surface biomarkers. The library is incubated with intact cells, and cell-bound DNA molecules are separated from those unbound and amplified by the polymerase chain reaction (PCR). The partitioning/amplification cycle is repeated multiple times while alternating target cells and control cells. Efficient aptamer selection in AptaBiD relies on the inclusion of masking DNA within the cell and library mixture. Masking DNA lacks primer regions for PCR amplification and is typically taken in excess to the library. The role of masking DNA within the selection mixture is to outcompete any nonspecific binding sequences within the initial library, thus allowing specific DNA sequences (i.e., aptamers) to be selected more efficiently. Efficient AptaBiD requires an optimum ratio of masking DNA to library DNA, at which aptamers still bind specific binding sites but nonaptamers within the library do not bind nonspecific binding sites. Here, we have developed a mathematical model that describes the binding processes taking place within the equilibrium mixture of masking DNA, library DNA, and target cells. An obtained mathematical solution allows one to estimate the concentration of masking DNA that is required to outcompete the library DNA at a desirable ratio of bound masking DNA to bound library DNA. The required concentration depends on concentrations of the library and cells as well as on unknown cell characteristics. These characteristics include the concentration of total binding sites on the cell surface, N, and equilibrium dissociation constants, K(nsL) and K(nsM), for nonspecific binding of the library DNA and masking DNA, respectively. We developed a theory that allows the determination of N, K(nsL), and K(nsM) based on measurements of EC50 values for cells mixed separately with the library and masking DNA
Generic hierarchical engine for mask data preparation
Kalus, Christian K.; Roessl, Wolfgang; Schnitker, Uwe; Simecek, Michal
2002-07-01
Electronic layouts are usually flattened on their path from the hierarchical source downstream to the wafer. Mask data preparation has certainly been identified as a severe bottleneck since long. Data volumes are not only doubling every year along the ITRS roadmap. With the advent of optical proximity correction and phase-shifting masks data volumes are escalating up to non-manageable heights. Hierarchical treatment is one of the most powerful means to keep memory and CPU consumption in reasonable ranges. Only recently, however, has this technique acquired more public attention. Mask data preparation is the most critical area calling for a sound infrastructure to reduce the handling problem. Gaining more and more attention though, are other applications such as large area simulation and manufacturing rule checking (MRC). They all would profit from a generic engine capable to efficiently treat hierarchical data. In this paper we will present a generic engine for hierarchical treatment which solves the major problem, steady transitions along cell borders. Several alternatives exist how to walk through the hierarchy tree. They have, to date, not been thoroughly investigated. One is a bottom-up attempt to treat cells starting with the most elementary cells. The other one is a top-down approach which lends itself to creating a new hierarchy tree. In addition, since the variety, degree of hierarchy and quality of layouts extends over a wide range a generic engine has to take intelligent decisions when exploding the hierarchy tree. Several applications will be shown, in particular how far the limits can be pushed with the current hierarchical engine.
Early diagnosis of masked hypertension in adolescents
Ledyaev M.Ya.
2016-12-01
Full Text Available Objective: to improve diagnosis of latent arterial hypertension by studying the characteristics of hemodynamics and the rigidity of the vascular walls of the arteries in adolescents with this phenomenon. Material and Methods. The study involved 147 children aged 11 to 18 years who did not have heart rhythm disorders, congenital heart defects, endocrine diseases and diseases of the kidneys. They were divided into three groups on the basis of blood pressure values (BP obtained during three measurements of blood pressure according to the method of N. S. Korotkov and when conducting 24-hours ambulatory blood pressure monitoring (ABPM. Group 1 included children with blood pressure values in the range from 5 to 95 percentile. Group 2 was composed children with masked hypertension (values of office blood pressure in the range from 5 to 95 percentile but indicators of ABPM of blood pressure is greater than 95 percentile. Group 3 included children with stable arterial hypertension (blood pressure values exceeded the 95 percentile. The study was a comparative analysis of the hemodynamic and rigidity (stiffness of the arteries. Results: Most hemodynamic parameters in children with masked hypertension were higher than in children of group 1. However, these figures were lower than in children with stable arterial hypertension. Among the indicators of the rigidity of the arteries, the most sensitive indicator (dP/dt max was maximum rate of pressure rise. Children with masked hypertension had increased arterial stiffness, however it was lower than in children with stable arterial hypertension. Conclusion: The use of BPLab monitor with technology Vasotens allows physicians to evaluate the daily profile of arterial pressure, the hemodynamics and stiffness of blood vessels, which is an important step for early diagnostics of latent arterial hypertension in children
Masking properties of ceramics for veneer restorations.
Skyllouriotis, Andreas L; Yamamoto, Hideo L; Nathanson, Dan
2017-10-01
The translucency and opacity of ceramics play a significant role in emulating the natural color of teeth, but studies of the masking properties and limitations of dental ceramics when used as monolayer restorations are lacking. The purpose of this in vitro study was to determine the translucency of 6 materials used for veneer restorations by assessing their translucency parameters (TPs), contrast ratios (CRs), and potential to mask dark tooth colors. Ten square- or disk-shaped specimens (0.5-mm thickness, shade A2) were fabricated from Vitablocks Mark II (VMII; Vita Zahnfabrik), IPS e.max CAD LT (EMXC LT; Ivoclar Vivadent AG), IPS e.max CAD HT (EMXC HT; Ivoclar Vivadent AG), IPS Empress CAD LT (EMP LT; Ivoclar Vivadent AG), IPS e.max Press LT (EMXP LT; Ivoclar Vivadent AG), and CZR (CZR; Kuraray Noritake Dental Inc). Their luminance (Y) values over black and over white tiles were measured, followed by their color (CIELab) over black tiles and white tiles and shaded A2 (control group), A3.5, A4, and B4 acrylic resin blocks. All measurements were performed using a spectrophotometer in 2 different areas on each specimen. Then CRs, TPs, and color differences (over shaded backgrounds) were determined. Data were subjected to 1-way and 2-way ANOVA (α=.05) for analysis. Mean CR values of EMXP LT were significantly higher than those of the other tested materials, whereas VMII and EMXC HT had the lowest values (Pceramic materials, whereas shade B4 demonstrated the lowest mean background effect (Pceramics were revealed (Pceramics exhibited poor masking properties against the A4 background. The color differences of most tested ceramics were more acceptable when tested against the B4 background (ΔE*≤3.3). Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Crowding is unlike ordinary masking: distinguishing feature integration from detection.
Pelli, Denis G; Palomares, Melanie; Majaj, Najib J
2004-12-30
A letter in the peripheral visual field is much harder to identify in the presence of nearby letters. This is "crowding." Both crowding and ordinary masking are special cases of "masking," which, in general, refers to any effect of a "mask" pattern on the discriminability of a signal. Here we characterize crowding, and propose a diagnostic test to distinguish it from ordinary masking. In ordinary masking, the signal disappears. In crowding, it remains visible, but is ambiguous, jumbled with its neighbors. Masks are usually effective only if they overlap the signal, but the crowding effect extends over a large region. The width of that region is proportional to signal eccentricity from the fovea and independent of signal size, mask size, mask contrast, signal and mask font, and number of masks. At 4 deg eccentricity, the threshold contrast for identification of a 0.32 deg signal letter is elevated (up to six-fold) by mask letters anywhere in a 2.3 deg region, 7 times wider than the signal. In ordinary masking, threshold contrast rises as a power function of mask contrast, with a shallow log-log slope of 0.5 to 1, whereas, in crowding, threshold is a sigmoidal function of mask contrast, with a steep log-log slope of 2 at close spacing. Most remarkably, although the threshold elevation decreases exponentially with spacing, the threshold and saturation contrasts of crowding are independent of spacing. Finally, ordinary masking is similar for detection and identification, but crowding occurs only for identification, not detection. More precisely, crowding occurs only in tasks that cannot be done based on a single detection by coarsely coded feature detectors. These results (and observers' introspections) suggest that ordinary masking blocks feature detection, so the signal disappears, while crowding (like "illusory conjunction") is excessive feature integration - detected features are integrated over an inappropriately large area because there are no smaller integration
Pack, Robert C.; Standiford, Keith; Lukanc, Todd; Ning, Guo Xiang; Verma, Piyush; Batarseh, Fadi; Chua, Gek Soon; Fujimura, Akira; Pang, Linyong
2014-10-01
A methodology is described wherein a calibrated model-based `Virtual' Variable Shaped Beam (VSB) mask writer process simulator is used to accurately verify complex Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) mask designs prior to Mask Data Preparation (MDP) and mask fabrication. This type of verification addresses physical effects which occur in mask writing that may impact lithographic printing fidelity and variability. The work described here is motivated by requirements for extreme accuracy and control of variations for today's most demanding IC products. These extreme demands necessitate careful and detailed analysis of all potential sources of uncompensated error or variation and extreme control of these at each stage of the integrated OPC/ MDP/ Mask/ silicon lithography flow. The important potential sources of variation we focus on here originate on the basis of VSB mask writer physics and other errors inherent in the mask writing process. The deposited electron beam dose distribution may be examined in a manner similar to optical lithography aerial image analysis and image edge log-slope analysis. This approach enables one to catch, grade, and mitigate problems early and thus reduce the likelihood for costly long-loop iterations between OPC, MDP, and wafer fabrication flows. It moreover describes how to detect regions of a layout or mask where hotspots may occur or where the robustness to intrinsic variations may be improved by modification to the OPC, choice of mask technology, or by judicious design of VSB shots and dose assignment.
Emoto, Keiji; Sakai, Fumio; Sato, Chiaki; Takabayashi, Yukio; Nakano, Hitoshi; Takabayashi, Tsuneo; Yamamoto, Kiyohito; Hattori, Tadashi; Hiura, Mitsuru; Ando, Toshiaki; Kawanobe, Yoshio; Azuma, Hisanobu; Iwanaga, Takehiko; Choi, Jin; Aghili, Ali; Jones, Chris; Irving, J. W.; Fletcher, Brian; Ye, Zhengmao
2016-03-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made in the reduction of particle adders in an imprint tool and introduce the new mask replication tool that will enable the fabrication of replica masks with added residual image placement errors suitable for memory devices with half pitches smaller than 15nm. Hard particles on a wafer or mask create the possibility of creating a permanent defect on the mask that can impact device yield and mask life. By using material methods to reduce particle shedding and by introducing an air curtain system, test stand results demonstrate the potential for extending mask life to better than 1000 wafers. Additionally, a new replication tool, the FPA-1100 NR2 is introduced. Mask chuck flatness simulation results were also performed and demonstrate that residual image placement errors can be reduced to as little as 1nm.
EBM-9000: EB mask writer for product mask fabrication of 16nm half-pitch generation and beyond
Takekoshi, Hidekazu; Nakayama, Takahito; Saito, Kenichi; Ando, Hiroyoshi; Inoue, Hideo; Nakayamada, Noriaki; Kamikubo, Takashi; Nishimura, Rieko; Kojima, Yoshinori; Yashima, Jun; Anpo, Akihito; Nakazawa, Seiichi; Iijima, Tomohiro; Ohtoshi, Kenji; Anze, Hirohito; Katsap, Victor; Golladay, Steven; Kendall, Rodney
2014-10-01
In the half pitch (hp) 16nm generation, the shot count on a mask is expected to become bipolar. The multi-patterning technology in lithography seems to maintain the shot count around 300G shots instead of increase in the number of masks needed for one layer. However, as a result of mask multiplication, the better positional accuracy would be required especially in Mask-to-Mask overlay. On the other hand, in complex OPC, the shot count on a mask is expected to exceed 1T shots. In addition, regardless of the shot count forecast, the resist sensitivity needs to be lower to reduce the shot noise effect so as to get better LER. In other words, slow resist would appear on main stream, in near future. Hence, such trend would result in longer write time than that of the previous generations. At the same time, most mask makers request masks to be written within 24 hours. Thus, a faster mask writer with better writing accuracy than those of previous generations is needed. With this background, a new electron beam mask writing system, EBM- 9000, has been developed to satisfy such requirements of the hp 16nm generation. The development of EBM-9000 has focused on improving throughput for larger shot counts and improving the writing accuracy.
Revolution with and without the mask
Milanko Vladan
2010-01-01
Full Text Available This paper is an attempt to provide a certain “second reading” of those commonplaces which imply that a particular, personal interest always lies behind the mask of objectivity, necessity and truth. As a paradigmatic example of this kind of structure that implies “hidden truths”, here will be taken that of a revolution, whether it is a fascist, a liberal-democratic or a communist revolution. By reexamining how this motif of “truth-behind-the-mask” figures in those regimes, we will try to say something about each of them, and also about the specific kind of subject that is produced under them.
Computer-assisted area detector masking.
Wright, Christopher J; Zhou, Xiao Dong
2017-03-01
Area detectors have become the predominant type of detector for the rapid acquisition of X-ray diffraction, small-angle scattering and total scattering. These detectors record the scattering for a large area, giving each shot good statistical significance to the resulting scattered intensity I(Q) pattern. However, many of these detectors have pixel level defects, which cause error in the resulting one-dimensional patterns. In this work, new software to automatically find and mask these dead pixels and other defects is presented. This algorithm is benchmarked with both ideal simulated and experimental datasets.
Silicon germanium mask for deep silicon etching
Serry, Mohamed
2014-07-29
Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.
On the relations between crowding and visual masking.
Huckauf, Anke; Heller, Dieter
2004-05-01
To study the question of which processes contribute to crowding and whether these are comparable to those of visual temporal masking, we varied the stimulus onset asynchrony (SOA) between target and flankers in a crowding setting. Monotonically increasing Type A masking functions observedfor small spacings and large eccentricities indicate that the integration of information from target and flankers underlies crowding. Decreasing masking functions obtained for large spacings and small eccentricities relate processes of crowding to those contributing to Type B masking. In addition, Type B masking was more frequent with letter-like nonletter flankers than with letter flankers, suggesting that Type B masking, just like crowding over large areas, is due to higher level interactions. The rapid decrease of the effects of interletter spacing and eccentricity with increasing SOA indicates that positional information is transient.
Constellation-masked secure communication technique for OFDM-PON.
Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Yu, Jianjun
2012-10-22
This paper proposes a novel secure communication technique using constellation masking for applications in orthogonal frequency division multiplexing passive optical network (OFDM-PON). The constellation masking is applied both on each subcarrier and among different subcarriers. The Arnold mapping is utilized as the parameter function for the mask factors. A interleave length is employed to provide a scalable masking granularity for different ONUs. A 15.54 Gb/s constellation-masked 32QAM-OFDM signal has been successfully transmitted over 25-km single mode fiber in the experiment. Experimental results show that the proposed scheme can effectively protect the system from illegal ONU without wasting the bandwidth. The constellation-masked technique suggests an effective solution for the physical secure communication in future OFDM access network.
Characterizing the monaural and binaural processes underlying reflection masking
Buchholz, Jörg
2007-01-01
Reflection masked thresholds (RMTs) for the simple scenario of a test reflection masked by the direct sound (200 ms long broadband noise) were measured as a function of reflection delay for diotic and dichotic stimulus presentations. In order to discriminate between contributions to reflection...... masking from simultaneous versus forward masking, the simultaneous RMT was measured in addition to the traditional RMT. Simultaneous RM was realized by truncating the offset of the test reflection such that the test reflection and the direct sound had a common offset. By comparing the experimental results...... for the two RMTs, it is shown that forward masking effects only have a significant effect on reflection masking for delays above 7–10 ms. Moreover, binaural mechanisms were revealed which deteriorate auditory detection of test reflections for delays below 7–10 ms and enhance detection for larger delays...
Mask manufacturing improvement through capability definition and bottleneck line management
Strott, Al
1994-02-01
In 1989, Intel's internal mask operation limited itself to research and development activities and re-inspection and pellicle application of externally manufactured masks. Recognizing the rising capital cost of mask manufacturing at the leading edge, Intel's Mask Operation management decided to offset some of these costs by manufacturing more masks internally. This was the beginning of the challenge they set to manufacture at least 50% of Intel's mask volume internally, at world class performance levels. The first step in responding to this challenge was the completion of a comprehensive operation capability analysis. A series of bottleneck improvements by focus teams resulted in an average cycle time improvement to less than five days on all product and less than two days on critical products.
Sub-visual cirrus LIDAR measurements for satellite masking improvement
Landulfo, Eduardo; Larroza, Eliane G.; Lopes, Fábio J. S.; de Jesus, Wellington C.; Bottino, Marcus; Nakaema, Walter M.; Steffens, Juliana
2008-10-01
Understanding the impact of cirrus cloud on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds have a warming effect on our climate. However, the satellites as GOES from the NOAA series are limited to the cloud top and its reflectivity or brightness temperature, without assessing accurately the optical depth or physical thickness. Other more recent sensors as MODIS are able to determine optical depths for aerosols and clouds but when related to cirrus they are still inaccurate. Research programs as First ISCCP, FIRE, HOIST, ECLIPS and ARM have concentrated efforts in the research of cirrus, being based mainly on the observations of combined terrestrial remote sensing and airplanes instruments. LIDARs are able to detect sub-visual cirrus cloud (SVCs) in altitudes above 15 km and estimate exactly their height, thickness and optical depth, contributing with information for satellites sensors and radiative transfer models. In order to research characteristics of SVCs, the LIDAR system at Instituto de Pesquisas Energeticas e Nucleares has as objective to determine such parameters and implement a cirrus cloud mask that could be used in the satellite images processing as well as in the qualitative improvement of the radiative parameters for numerical models of climate changes. The first preliminary study shows where we compare the data lidar with Brightness temperature differences between the split-window data from GOES-10 (DSA/INPE) and CALIPSO.
Balasubramanian, Kunjithapatha; White, Victor; Yee, Karl; Echternach, Pierre; Muller, Richard; Dickie, Matthew; Cady, Eric; Mejia Prada, Camilo; Ryan, Daniel; Poberezhskiy, Ilya;
2015-01-01
Star light suppression technologies to find and characterize faint exoplanets include internal coronagraph instruments as well as external star shade occulters. Currently, the NASA WFIRST-AFTA mission study includes an internal coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host star light to about 10 -9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, achromaticity, etc. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed (HCIT) at JPL and from the High Contrast Imaging Lab (HCIL) at Princeton University. We also present briefly the technologies applied to fabricate laboratory scale star shade masks.
Volume Phase Masks in Photo-Thermo-Refractive Glass
2014-10-06
2014 Approved for public release; distribution is unlimited. Volume phase masks in photo- thermo -refractive glass The views, opinions and/or findings...in photo- thermo -refractive glass Report Title In many applications such as beam shaping, mode conversion, and phase encoding it is necessary to alter...requiring a new means of producing phase masks. In this dissertation a method for producing robust phase masks in the bulk of photo- thermo - refractive
Electron optical mask projector with a photocathode for miniaturization
Moellenstedt, G.; Speidel, R.; Dostmann, M.; Martin, F.; Mayr, M.
1981-06-01
The projector was developed with an image converter consisting of a masked photocathode and a plane anode grid. The mask structure to be demagnified is on a quartz glass plate in a thin layer of Ti02 strongly absorbing ultraviolet light. A photoemissive layer is deposited by evaporation on the whole front side of the plate. For the demagnification of the electron image of the mask, a system is used consisting of two geometrically similar magnetic lenses in a telescopic arrangement.
Airflow-Restricting Mask Reduces Acute Performance in Resistance Exercise
Yuri L. Motoyama; Gustavo B. Joel; Paulo E. A. Pereira; Gilmar J. Esteves; Azevedo, Paulo H.S.M.
2016-01-01
Background: The aim of this study was to compare the number of repetitions to volitional failure, the blood lactate concentration, and the perceived exertion to resistance training with and without an airflow-restricting mask. Methods: Eight participants participated in a randomized, counterbalanced, crossover study. Participants were assigned to an airflow-restricting mask group (MASK) or a control group (CONT) and completed five sets of chest presses and parallel squats until failure at 75%...
OSIRIS Multi-Object Spectroscopy: Mask Design Process
Gómez-Velarde, G.; García-Alvarez, D.; Cabrerra-Lavers, A.
2016-10-01
The OSIRIS (Optical System for Imaging and Low-Intermediate Resolution Integrated Spectroscopy) instrument at the 10.4 m GTC has offered a multi-object spectroscopic mode since March 2014. In this paper we describe the detailed process of designing a MOS mask for OSIRIS by using the Mask Designer Tool, and give some numbers on the accuracy of the mask manufacture achievable at the telescope for its scientific use.
Quality enhancement of parallel MDP flows with mask suppliers
Deng, Erwin; Lee, Rachel; Lee, Chun Der
2013-06-01
For many maskshops, designed parallel mask data preparation (MDP) flows accompanying with a final data comparison are viewed as a reliable method that could reduce quality risks caused by mis-operation. However, in recent years, more and more mask data mistakes have shown that present parallel MDP flows could not capture all mask data errors yet. In this paper, we will show major failure models of parallel MDP flows from analyzing MDP quality accidents and share our approaches to achieve further improvement with mask suppliers together.
Thermal management of masks for deep x-ray lithography.
Khounsary, A.; Chojnowski, D.; Mancini, D.C.; Lai, B.; Dejus, R.
1997-11-18
This paper addresses some options and techniques in the thermal management of masks used in deep x-ray lithography. The x-ray masks are thin plates made of low-atomic-number materials on which a patterned thin film of a high-atomic-number metal has been deposited. When they are exposed to an x-ray beam, part of the radiation is transmitted to replicate the pattern on a downstream photoresist, and the remainder is absorbed in the mask in the form of heat. This heat load can cause deformation of the mask and thus image distortion in the lithography process. The mask geometry considered in the present study is 100 mm x 100 mm in area, and about 0.1 to 2 mm thick. The incident radiation is a bending magnet x-ray beam having a footprint of 60 mm x 4 mm at the mask. The mask is scanned vertically about {+-} 30 mm so that a 60 mm x 60 mm area is exposed. the maximum absorbed heat load in the mask is 80 W, which is significantly greater than a few watts encountered in previous systems. In this paper, cooling techniques, substrate material selection, transient and steady state thermal and structural behavior, and other thermo-mechanical aspects of mask design are discussed. It is shown that, while diamond and graphite remain attractive candidates, at present beryllium is a more suitable material for this purpose and, when properly cooled, can provide the necessary dimensional tolerance.
Practical mask inspection system with printability and pattern priority verification
Tsuchiya, Hideo; Ozaki, Fumio; Takahara, Kenichi; Inoue, Takafumi; Kikuiri, Nobutaka
2011-05-01
Through the four years of study in Association of Super-Advanced Electronics Technologies (ASET) on reducing mask manufacturing Turn Around Time (TAT) and cost, we have been able to establish a technology to improve the efficiency of the review process by applying a printability verification function that utilizes computational lithography simulations to analyze defects detected by a high-resolution mask inspection system. With the advent of Source-Mask Optimization (SMO) and other technologies that extend the life of existing optical lithography, it is becoming extremely difficult to judge a defect only by the shape of a mask pattern, while avoiding pseudo-defects. Thus, printability verification is indispensable for filtering out nuisance defects from high-resolution mask inspection results. When using computational lithography simulations to verify printability with high precision, the image captured by the inspection system must be prepared with extensive care. However, for practical applications, this preparation process needs to be simplified. In addition, utilizing Mask Data Rank (MDR) to vary the defect detection sensitivity according to the patterns is also useful for simultaneously inspecting minute patterns and avoiding pseudo-defects. Combining these two technologies, we believe practical mask inspection for next generation lithography is achievable. We have been improving the estimation accuracy of the printability verification function through discussion with several customers and evaluation of their masks. In this report, we will describe the progress of these practical mask verification functions developed through customers' evaluations.
Estimation of the Ideal Binary Mask using Directional Systems
Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind
2008-01-01
and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results.......The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...
Recent advances in CZT strip detectors and coded mask imagers
Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.
1999-09-01
The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.
Recent patents and patented technology platforms for pharmaceutical taste masking.
Kaushik, Deepak; Dureja, Harish
2014-04-01
Taste masking is an important factor in the development of oral dosage forms containing bitter active pharmaceutical ingredients. Currently numerous techniques are being applied to overcome this problem. Realizing this, several researchers and pharmaceutical companies are now engaged in developing novel techniques to address the problem of taste masking evident by numerous patents filed in this area in recent times. In this review the most recent patents for taste masking are discussed and how these patents overcome the limitations of conventional approaches of taste masking is also highlighted. Novel techniques based on some recent patents such as nanohybrid, melt extrusion, non-complex cyclodextrin compositions and off taste masking are providing new realms to taste masking of bitter drugs. The present article also provides an overview of various patented platform technologies based on different techniques/mechanisms employed for taste masking. The unique features and principles of taste-masking approaches used in various patented technologies are also discussed. A better understanding of these new patents and patented technologies will help researchers and pharmaceutical industries to select the appropriate platform, or to develop innovative products with improved taste masking properties.
Repeatability of Cryogenic Multilayer Insulation
Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.
2017-01-01
Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.
Compiling Relational Bayesian Networks for Exact Inference
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
2006-01-01
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Exact diagonalization of quantum-spin models
Lin, H. Q.
1990-10-01
We have developed a technique to replace hashing in implementing the Lanczös method for exact diagonalization of quantum-spin models that enables us to carry out numerical studies on substantially larger lattices than previously studied. We describe the algorithm in detail and present results for the ground-state energy, the first-excited-state energy, and the spin-spin correlations on various finite lattices for spins S=1/2, 1, 3/2, and 2. Results for an infinite system are obtained by extrapolation. We also discuss the generalization of our method to other models.
Maxwell Optics II. An Exact Formalism
Khan, S A
2002-01-01
We present a formalism for light optics starting with the Maxwell equations and casting them into an exact matrix form taking into account the spatial and temporal variations of the permittivity and permeability. This $8 \\times 8$ matrix representation is used to construct the optical Hamiltonian. This has a close analogy with the algebraic structure of the Dirac equation, enabling the use of the rich machinery of the Dirac electron theory. We get interesting wavelength-dependent contributions which can not be obtained in any of the traditional approaches.
Exact solutions for Weyl fermions with gravity
Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano [Universita di Genova, DIME Sez. Metodi e Modelli Matematici, Genoa (Italy)
2015-10-15
We consider the single-handed spinor field in interaction with its own gravitational field described by the set of field equations given by the Weyl field equations written in terms of derivatives that are covariant with respect to the gravitational connection plus Einstein field equations soured with the energy tensor of the spinor: for the Weyl spinor and the ensuing spacetime of Weyl-Lewis-Papapetrou structure, we find all exact solutions. The obtained solution for the metric tensor is that of a PP-wave spacetime, while the spinor field is a flag-dipole. (orig.)
Exact Topological Twistons in Crystalline Polyethylene
Ventura, E; Bazeia, D
2000-01-01
We investigate the presence of topological twistons in crystalline polyethylene. We describe crystalline polyethylene with a model that couples the torsional and longitudinal degrees of freedom of the polymeric chain by means of a system of two real scalar fields. This model supports topological twistons, which are described by exact and stable topological solutions that appear when the interaction between torsional and longitudinal fields is polynomial, containing up to the sixth power in the fields. We calculate the energy of the topological twiston, and the result is in very good agreement with the value obtained via molecular simulation.
The Exact Limit of Some Cubic Towers
Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut
2016-01-01
Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as good...... as Zink’s bound; i.e. λ(BBGS/Fq3 ) ≥ 2(q2 - 1)/(q + 2). In this paper, the exact value of λ(BBGS/Fq3 ) is computed. We also settle a question stated by Ihara....
Exact probability distribution functions for Parrondo's games
Zadourian, Rubina; Saakian, David B.; Klümper, Andreas
2016-12-01
We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.
Nonuniform Braneworld Stars: AN Exact Solution
Ovalle, J.
In this paper the first exact interior solution to Einstein's field equations for a static and nonuniform braneworld star with local and nonlocal bulk terms is presented. It is shown that the bulk Weyl scalar U(r) is always negative inside the stellar distribution, and in consequence it reduces both the effective density and the effective pressure. It is found that the anisotropy generated by bulk gravity effect has an acceptable physical behavior inside the distribution. Using a Reissner-Nördstrom-like exterior solution, the effects of bulk gravity on pressure and density are found through matching conditions.
Exact formulas in noncommutative gauge theories
Wallet, Jean-Christophe
2016-01-01
The noncommutative space $\\mathbb{R}^3_\\lambda$, a deformation of $\\mathbb{R}^3$, supports a $3$-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of $\\mathbb{R}^3_\\lambda$. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
An exact approach for aggregated formulations
Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan
optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem.......Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...
Actinic inspection of multilayer defects on EUV masks
Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O
2005-03-24
The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.
An Exactly Solvable Many-Fermion Model
Zettili, Nouredine
2001-04-01
We deal with the construction of a simple many-body model that can be solved exactly. This model serves as a tool for testing the validity and accuracy of many-body approximation methods. The model consists of a system of two distinguishable, one-dimensional sets of fermions interacting via a schematic two-body force. We construct the Hamiltonian of the model by means of vector operators that satisfy a Lie algebra and which are the generators of an SO(2,1) group. The Hamiltonian depends on an adjustable parameter which regulates the strength of the two-body interaction. The size of the Hamiltonian's matrix is rendered finite by means of a built-in symmetry: the Hamiltonian is represented by a five-diagonal square matrix of finite size. The energy spectrum of the model is obtained by diagonalizing this matrix. The energy eigenvalues obtained from this diagonalization are exact, for we don't resort to any approximation in the diagonalization. This model offers a rich and flexible platform for testing quantitatively the various many-body approximation methods especially those that deal with nuclear collective motion.
An Exactly Solvable Many-Body Model
Zettili, Nouredine; Boukahil, Abdelkrim
2012-03-01
We deal here with the construction of a simple many-body model that can be solved exactly. This model serves as a tool for testing the validity and accuracy of many-body approximation methods, most notably those encountered in nuclear theory. The model consists of a system of two distinguishable, one-dimensional sets fermions interacting via a schematic two-body force. We construct the Hamiltonian of the model by means of vector operators that satisfy a Lie algebra and which are the generators of an SO(2,1) group. The Hamiltonian depends on an adjustable parameter which regulates the strength of the two-body interaction. The size of the Hamiltonian's matrix is rendered finite by means of a built-in symmetry: the Hamiltonian is represented by a five-diagonal square matrix of finite size. The energy spectrum of the model is obtained by diagonalizing this matrix. The energy eigenvalues obtained from this diagonalization are exact, for we don't need to resort to any approximation in the diagonalization. This model offers a rich and flexible platform for testing quantitatively the various many-body approximation methods especially those that deal with nuclear collective motion.
Explicitly broken supersymmetry with exactly massless moduli
Dong, Xi; Freedman, Daniel Z.; Zhao, Yue
2016-06-01
The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a super-gravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.
Exact collisional moments for plasma fluid theories
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.
Exact renormalization group and Sine Gordon theory
Oak, Prafulla; Sathiapalan, B.
2017-07-01
The exact renormalization group is used to study the RG flow of quantities in field theories. The basic idea is to write an evolution operator for the flow and evaluate it in perturbation theory. This is easier than directly solving the differential equation. This is illustrated by reproducing known results in four dimensional ϕ 4 field theory and the two dimensional Sine-Gordon theory. It is shown that the calculation of beta function is somewhat simplified. The technique is also used to calculate the c-function in two dimensional Sine-Gordon theory. This agrees with other prescriptions for calculating c-functions in the literature. If one extrapolates the connection between central charge of a CFT and entanglement entropy in two dimensions, to the c-function of the perturbed CFT, then one gets a value for the entanglement entropy in Sine-Gordon theory that is in exact agreement with earlier calculations (including one using holography) in arXiv:1610.04233.
Multivariate refinement equation with nonnegative masks
无
2006-01-01
This paper is concerned with multivariate refinement equations of the type ψ = ∑α∈Zs a(α)ψ(Mx - α),where ψ is the unknown function defined on the s-dimensional Euclidean space Rs, a is a finitely supported nonnegative sequence on Zs, and M is an s × s dilation matrix with m := |detM|. We characterize the existence of L2-solution of refinement equation in terms of spectral radius of a certain finite matrix or transition operator associated with refinement mask a and dilation matrix M. For s = 1 and M = 2, the sufficient and necessary conditions are obtained to characterize the existence of continuous solution of this refinement equation.
Predicting masking release of lateralized speech
Chabot-Leclerc, Alexandre; MacDonald, Ewen; Dau, Torsten
2016-01-01
al., 2013, J. Acoust. Soc. Am. 130], which uses a short-term equalization-cancellation process to model binaural unmasking. In the conditions where informational masking (IM) was involved, the predicted SRTs were lower than the measured values because the model is blind to confusions experienced......Locsei et al. (2015) [Speech in Noise Workshop, Copenhagen, 46] measured ˝ speech reception thresholds (SRTs) in anechoic conditions where the target speech and the maskers were lateralized using interaural time delays. The maskers were speech-shaped noise (SSN) and reversed babble with 2, 4, or 8...... talkers. For a given interferer type, the number of maskers presented on the target’s side was varied, such that none, some, or all maskers were presented on the same side as the target. In general, SRTs did not vary significantly when at least one masker was presented on the same side as the target...
Coherent diffractive imaging using randomly coded masks
Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu [CNRS and D.I., UMR 8548, École Normale Supérieure, 45 Rue d' Ulm, 75005 Paris (France); Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); D' Aspremont, Alexandre [CNRS and D.I., UMR 8548, École Normale Supérieure, 45 Rue d' Ulm, 75005 Paris (France); Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)
2015-12-07
We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments.
Bunch Profiling Using a Rotating Mask
Miller, Mitchell; /SLAC /IIT, Chicago
2012-08-24
The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.
Masked emotional priming beyond global valence activations.
Rohr, Michaela; Degner, Juliane; Wentura, Dirk
2012-01-01
An immense body of research demonstrates that emotional facial expressions can be processed unconsciously. However, it has been assumed that such processing takes place solely on a global valence-based level, allowing individuals to disentangle positive from negative emotions but not the specific emotion. In three studies, we investigated the specificity of emotion processing under conditions of limited awareness using a modified variant of an affective priming task. Faces with happy, angry, sad, fearful, and neutral expressions were presented as masked primes for 33 ms (Study 1) or 14 ms (Studies 2 and 3) followed by emotional target faces (Studies 1 and 2) or emotional adjectives (Study 3). Participants' task was to categorise the target emotion. In all three studies, discrimination of targets was significantly affected by the emotional primes beyond a simple positive versus negative distinction. Results indicate that specific aspects of emotions might be automatically disentangled in addition to valence, even under conditions of subjective unawareness.
GABAa agonist reduces visual awareness: a masking-EEG experiment
van Loon, A.M.; Scholte, H.S.; van Gaal, S.; van der Hoort, B.J.J.; Lamme, V.A.F.
2012-01-01
Consciousness can be manipulated in many ways. Here, we seek to understand whether two such ways, visual masking and pharmacological intervention, share a common pathway in manipulating visual consciousness. We recorded EEG from human participants who performed a backward-masking task in which they
Mechanisms of Masked Priming: Testing the Entry Opening Model
Wu, Hongmei
2012-01-01
Since it was introduced in Forster and Davis (1984), masked priming has been widely adopted in the psycholinguistic research on visual word recognition, but there has been little consensus on its actual mechanisms, i.e. how it occurs and how it should be interpreted. This dissertation addresses two different interpretations of masked priming, one…
Prevalence and persistence of masked hypertension in treated hypertensive patients
Verberk, Willem J.; Thien, Theo; Kroon, Abraham A.; Lenders, Jacques W. M.; van Montfrans, Gert A.; Smit, Andries J.; de Leeuw, Peter W.
2007-01-01
Background: Masked hypertension (MH) is defined as a normal blood pressure in the physician's office and an elevated blood pressure when measured out-of-office. The cause of MH may be termed the masked hypertension effect (MHE), and is not restricted to blood-pressure (BP) values around the threshol
General Projective Synchronization and Fractional Order Chaotic Masking Scheme
Shi-Quan Shao
2008-01-01
In this paper, a fractional order chaotic masking scheme used for secure communication is introduced. Based on the general projective synchronization of two coupled fractional Chert systems, a popular masking scheme is designed. Numerical example is given to demonstrate the effectiveness of the proposed method.
Optical vortex coronagraphy from soft spin-orbit masks
Aleksanyan, Artur
2016-01-01
We report on a soft route towards optical vortex coronagraphy based on self-engineered electrically tunable vortex masks based on liquid crystal topological defects. These results suggest that a Nature-assisted technological approach to the fabrication of complex phase masks could be useful in optical imaging whenever optical phase singularities are at play.
3D Rigorous simulation of mask induced polarization
Wei, X.; Urbach, H.P.; Wachters, A.; Aksenov, Y.
2005-01-01
The polarization induced by the mask is studied by using a 3D rigorous model, wich solves Maxwell equations using the finite element method. Teh aerial image depends strongly on the change of polarization induced by the materials, thickness of the layer and pitch of the periodic masks.
Mask Design for the Space Interferometry Mission Internal Metrology
Marx, David; Zhao, Feng; Korechoff, Robert
2005-01-01
This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design
Silver-palladium braze alloy recovered from masking materials
Cierniak, R.; Colman, G.; De Carlo, F.
1966-01-01
Method for recovering powdered silver-palladium braze alloy from an acrylic spray binder and rubber masking adhesive used in spray brazing is devised. The process involves agitation and dissolution of masking materials and recovery of suspended precious metal particles on a filter.
Mask Making: The Use of Expressive Arts with Leadership Development.
Jones, Angela Thomas
The process of making one's own mask and having one's mask made was offered as an experiential exercise for a group of Outward Bound students training to be Outward Bound instructors. The integration of expressive arts with outdoor experiential education was an attempt to encourage balance between the technical and interpersonal skill development…
Respiratory Protection Provided by Five New Contagion Masks
Guyton, H. Gerald; Decker, Herbert M.
1963-01-01
The effectiveness of five recently developed contagion masks in filtering air-borne particles (1 to 5 μ diam) has been reported. One mask, available in four sizes, was 99% efficient. This mask can be reused after sterilization. The other four masks are available in only one size and are intended to be used one time only. Two of these four disposable types were more than 90% efficient but the variability of their respective test results was much greater than that for the reusable mask. The two remaining disposable types were less than 80% efficient. Two of these contagion-mask types were worn by hospital personnel for periods of up to 8 hr to determine the effect of such prolonged use on aerosol filtration efficiency. No significant decrease in filtration efficiency was noted. Physicians, nurses, and other hospital personnel who wear masks will benefit from the increased individual respiratory protection afforded by improved contagion masks. Concurrently, the incidence of hospital patient air-borne infections should be greatly reduced. Images FIG. 1 PMID:13951516
Masking interrupts figure-ground signals in V1
Lamme, V.A.F.; Zipser, K.; Spekreijse, H.
2002-01-01
In a backward masking paradigm, a target stimulus is rapidly (<100 msec) followed by a second Stimulus. This typically results in a dramatic decrease in the visibility of the target stimulus. It has been shown that masking reduces responses in V1. It is not known, however, which process in V1 is aff
Mechanisms of Masked Priming: Testing the Entry Opening Model
Wu, Hongmei
2012-01-01
Since it was introduced in Forster and Davis (1984), masked priming has been widely adopted in the psycholinguistic research on visual word recognition, but there has been little consensus on its actual mechanisms, i.e. how it occurs and how it should be interpreted. This dissertation addresses two different interpretations of masked priming, one…
Li, Guang; Lovelock, D Michael; Mechalakos, James; Rao, Shyam; Della-Biancia, Cesar; Amols, Howard; Lee, Nancy
2013-09-06
To provide an alternative device for immobilization of the head while easing claustrophobia and improving comfort, an "open-face" thermoplastic mask was evaluated using video-based optical surface imaging (OSI) and kilovoltage (kV) X-ray radiography. A three-point thermoplastic head mask with a precut opening and reinforced strips was developed. After molding, it provided sufficient visible facial area as the region of interest for OSI. Using real-time OSI, the head motion of ten volunteers in the new mask was evaluated during mask locking and 15minutes lying on the treatment couch. Using a nose mark with reference to room lasers, forced head movement in open-face and full-head masks (with a nose hole) was compared. Five patients with claustrophobia were immobilized with open-face masks, set up using OSI and kV, and treated in 121 fractions, in which 61 fractions were monitored during treatment using real-time OSI. With the open-face mask, head motion was found to be 1.0 ± 0.6 mm and 0.4° ± 0.2° in volunteers during the experiment, and 0.8 ± 0.3 mm and 0.4° ± 0.2° in patients during treatment. These agree with patient motion calculated from pre-/post-treatment OSI and kV data using different anatomical landmarks. In volunteers, the head shift induced by mask-locking was 2.3 ± 1.7 mm and 1.8° ± 0.6°, and the range of forced movements in the open-face and full-head masks were found to be similar. Most (80%) of the volunteers preferred the open-face mask to the full-head mask, while claustrophobic patients could only tolerate the open-face mask. The open-face mask is characterized for its immobilization capability and can immobilize patients sufficiently (< 2 mm) during radiotherapy. It provides a clinical solution to the immobilization of patients with head and neck (HN) cancer undergoing radiotherapy, and is particularly beneficial for claustrophobic patients. This new open-face mask is readily adopted in radiotherapy clinic as a superior alternative to
Antireflective surface patterned by rolling mask lithography
Seitz, Oliver; Geddes, Joseph B.; Aryal, Mukti; Perez, Joseph; Wassei, Jonathan; McMackin, Ian; Kobrin, Boris
2014-03-01
A growing number of commercial products such as displays, solar panels, light emitting diodes (LEDs and OLEDs), automotive and architectural glass are driving demand for glass with high performance surfaces that offer anti-reflective, self-cleaning, and other advanced functions. State-of-the-art coatings do not meet the desired performance characteristics or cannot be applied over large areas in a cost-effective manner. "Rolling Mask Lithography" (RML™) enables highresolution lithographic nano-patterning over large-areas at low-cost and high-throughput. RML is a photolithographic process performed using ultraviolet (UV) illumination transmitted through a soft cylindrical mask as it rolls across a substrate. Subsequent transfer of photoresist patterns into the substrate is achieved using an etching process, which creates a nanostructured surface. The current generation exposure tool is capable of patterning one-meter long substrates with a width of 300 mm. High-throughput and low-cost are achieved using continuous exposure of the resist by the cylindrical photomask. Here, we report on significant improvements in the application of RML™ to fabricate anti-reflective surfaces. Briefly, an optical surface can be made antireflective by "texturing" it with a nano-scale pattern to reduce the discontinuity in the index of refraction between the air and the bulk optical material. An array of cones, similar to the structure of a moth's eye, performs this way. Substrates are patterned using RML™ and etched to produce an array of cones with an aspect ratio of 3:1, which decreases the reflectivity below 0.1%.
Task-Dependent Masked Priming Effects in Visual Word Recognition
Kinoshita, Sachiko; Norris, Dennis
2012-01-01
A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access. PMID:22675316
Task-dependent masked priming effects in visual word recognition.
Kinoshita, Sachiko; Norris, Dennis
2012-01-01
A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access.
Optical image encryption using Kronecker product and hybrid phase masks
Kumar, Ravi; Bhaduri, Basanta
2017-10-01
In this paper, we propose a new technique for security enhancement in optical image encryption system. In this technique we have used the Kronecker product of two random matrices along with the double random phase encoding (DRPE) scheme in the Fresnel domain for optical image encryption. The phase masks used here are different than the random masks used in conventional DRPE scheme. These hybrid phase masks are generated by using the combination of random phase masks and a secondary image. For encryption, the input image is first randomized and then the DRPE in the Fresnel domain is performed using the hybrid phase masks. Secondly, the Kronecker product of two random matrices is multiplied with the DRPE output to get the final encoded image for transmission. The proposed technique consists of more unknown keys for enhanced security and robust against various attacks. The simulation results along with effects under various attacks are presented in support of the proposed technique.
Masked Hypertension: How to Identify and When to Treat?
Rizzoni, Damiano
2016-09-01
Approximately one out of 7-8 individuals with normal blood pressure (BP) in the clinic or doctor's office and one third of patients with chronic kidney disease with normal clinic BP have elevated ambulatory BP (masked hypertension). Patients with masked hypertension have an increased risk for target organ damage and a two-fold increased risk for cardiovascular events compared to patients with normal clinic and ambulatory BP. Despite this elevated risk for adverse outcomes, patients with masked hypertension have been excluded from hypertension trials because of their normal clinic BP. It is still unknown whether the reduction in target organ damage and adverse cardiovascular outcomes associated with treatment of hypertension extends to patients with masked hypertension. Ongoing and planned interventional studies will provide an answer to this crucial question in a few years. At present, it seems reasonable to follow the suggestion of current European guidelines, that lifestyle measures and drug treatment should be considered in the presence of masked hypertension.
Ajay Bilandi
2013-08-01
Full Text Available The purpose of this review is to cover various aspects related with the use of ion exchange resins for taste masking of bitter drugs and for formulating sustained release dosage form. Ion exchange resins are water insoluble cross-linked polymers containing a salt-forming group at repeating positions on the polymer chain and have the ability to exchange counter-ions within aqueous solutions surrounding them. The bitterness of pharmaceutical medicines plays a critical role in patient compliance, as the oral administration of bitter drugs is often hampered by their unpleasant taste which leads to non-compliance and further worsening of diseased condition. One of the popular approaches in the taste masking of bitter drugs is based on IER. For taste masking purpose weak cation exchange or weak anion exchange resins are used, depending on the nature of drug. The drug resin complex is absolutely tasteless with no after taste, and at the same time, its bioavailability is not affected. Sustained release dosage forms are designed to release a drug at a pre determined rate in order to maintain a constant drug concentration for a specific period of time with minimum side effects. The usage of IER during the development of sustained release formulations plays a significant role because of their drug retarding properties. In this review also incorporates various patents related to taste masking and sustained release formulations using IER.
An exact exponential time algorithm for counting bipartite cliques
Kutzkov, Konstantin
2012-01-01
We present a simple exact algorithm for counting bicliques of given size in a bipartite graph on n vertices. We achieve running time of O(1.249^n), improving upon known exact algorithms for finding and counting bipartite cliques.......We present a simple exact algorithm for counting bicliques of given size in a bipartite graph on n vertices. We achieve running time of O(1.249^n), improving upon known exact algorithms for finding and counting bipartite cliques....
Submerged Landau jet: exact solutions, their meaning and application
Broman, Goran I [Blekinge Institute of Technology, Karlskrona (Sweden); Rudenko, Oleg V [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)
2010-01-31
Exact hydrodynamic solutions generalizing the Landau submerged jet solution are reviewed. It is shown how exact inviscid solutions can be obtained and how boundary layer viscosity can be included by introducing parabolic coordinates. The use of exact solutions in applied hydrodynamics and acoustics is discussed. A historical perspective on the discovery of a class of exact solutions and on the analysis of their physical meaning is presented. (methodological notes)
Exact Controllability and Asymptotic Analysis for Shallow Shells
S. KAIZU; N. SABU
2007-01-01
The authors consider the exact controllability of the vibrations of a thin shallow shell, of thickness 2ε with controls imposed on the lateral surface and at the top and bottom of the shell. Apart from proving the existence of exact controls, it is shown that the solutions of the three dimensional exact controllability problems converge, as the thickness of the shell goes to zero, to the solution of an exact controllability problem in two dimensions.
[Clark's head tent or "small mask"? Value of high oxygen flows administered through a mask].
Landrieu, J P; Milhaud, A; Brille, P; Hermant, A; Tinturier, F
1991-01-01
The measurement of transcutaneous PtcO2 in eight normal adults prove a comparable efficacy of 50 l.min-1 O2 through facial "small mask" (61.5 kPa; 463 mmHg) and 20 l.min-1 O2 through head tent (65.1 kPa; 490 mmHg). First procedure, inexpensive, is very simple to use.
The influence of masked hypertension on the right ventricle: is everything really masked?
Tadic, Marijana; Cuspidi, Cesare; Vukomanovic, Vladan; Celic, Vera; Pavlovic, Tatjana; Kocijancic, Vesna
2016-04-01
We sought to investigate right ventricular (RV) structure, function, and mechanics in subjects with masked hypertension (MH), normotensive, and sustained hypertensive patients. This cross-sectional study included 186 untreated subjects who underwent 24-hour ambulatory blood pressure (BP) monitoring and complete two-dimensional echocardiographic (2DE) examination including multilayer strain analysis. MH was diagnosed if clinic BP was normal (subjects with sustained hypertension. RV structure, function, and deformation are significantly changed in subjects with MH and sustained hypertension.
A prototype erodible mask delivery system for the excimer laser.
Maloney, R K; Friedman, M; Harmon, T; Hayward, M; Hagen, K; Gailitis, R P; Waring, G O
1993-04-01
The authors developed an erodible mask delivery system for the argon-fluoride 193-nm excimer laser, which offers the possibility of correcting hyperopia and astigmatism as well as myopia. Masks were made of polymethylmethacrylate on a quartz window, with intended corrections for myopia and hyperopia of 2.5 and 5 diopters (D). Ablations using the mask and control ablations using an expanding diaphragm were performed in 30 eyes of 15 pigmented rabbits with an Excimed UV200 laser (Summit Technology, Inc, Waltham, MA). The rabbits were followed for 134 days with regular biomicroscopy and retinoscopic examination by two observers. Ablations with the mask to correct myopia were successful and produced stable corrections, although the higher-power mask produced undercorrections. Hyperopic masks produced paradoxic myopic corrections, possibly due to the lack of a transition zone at the edge of the mask. Corneas ablated with the mask had less sub-epithelial haze than those ablated with the diaphragm at all examinations. Results of histopathologic examination showed epithelial hyperplasia over the ablation zone in all eyes. Dichlorotriazinyl aminofluorescein collagen staining showed subepithelial new collagen in all eyes, but there was no relation between the depth of ablation at any point on the cornea and the amount of new collagen deposited there. Myopic ablations are feasible with the erodible mask, although additional calibration is needed. Hyperopic ablations were unsuccessful with the current design. Corneas ablated with the mask may be clearer than corneas ablated with the diaphragm, possibly due to a smoother ablated surface. Regression of effect after laser ablation in the rabbit model is likely due more to epithelial hyperplasia than to stromal remodeling.
New method of 2-dimensional metrology using mask contouring
Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka
2008-10-01
We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.
Plausibility functions and exact frequentist inference
Martin, Ryan
2012-01-01
In the frequentist program, inferential methods with exact control on error rates are a primary focus. Methods based on asymptotic distribution theory may not be suitable in a particular problem, in which case, a numerical method is needed. This paper presents a general, Monte Carlo-driven framework for the construction of frequentist procedures based on plausibility functions. It is proved that the suitably defined plausibility function-based tests and confidence regions have desired frequentist properties. Moreover, in an important special case involving likelihood ratios, conditions are given such that the plausibility function behaves asymptotically like a consistent Bayesian posterior distribution. An extension of the proposed method is also given for the case where nuisance parameters are present. A number of examples are given which illustrate the method and demonstrate its strong performance compared to other popular existing methods.
Exact fermionic Green's functions from holograpny
Fan, ZhongYing
2014-01-01
We construct a series of charged dilatonic black holes which share zero entropy in the zero temperature limit using Einstein-Maxwell-Dilaton theories. In these black holes, the wave functions and the Green's functions of massless fermions can be solved exactly in terms of special functions in the phase space of $(\\omega,k)$. We observe that for sufficiently large charge, there are many poles in the Green's function with vanishing $\\omega$, which strongly signifies that Fermi surfaces exist in these holographic systems. The new distinguishing properties of the Green's function arising in these systems were illustrated with great details. We also study the poles motion of the Green's function for arbitrary (complex) frequency. Our analytic results provide a more realistic and elegant approach to study strongly correlated fermionic systems using gauge/gravity duality.
Exact Solution and Exotic Fluid in Cosmology
Phillial Oh
2012-09-01
Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.
Exact linear modeling using Ore algebras
Schindelar, Kristina; Zerz, Eva
2010-01-01
Linear exact modeling is a problem coming from system identification: Given a set of observed trajectories, the goal is find a model (usually, a system of partial differential and/or difference equations) that explains the data as precisely as possible. The case of operators with constant coefficients is well studied and known in the systems theoretic literature, whereas the operators with varying coefficients were addressed only recently. This question can be tackled either using Gr\\"obner bases for modules over Ore algebras or by following the ideas from differential algebra and computing in commutative rings. In this paper, we present algorithmic methods to compute "most powerful unfalsified models" (MPUM) and their counterparts with variable coefficients (VMPUM) for polynomial and polynomial-exponential signals. We also study the structural properties of the resulting models, discuss computer algebraic techniques behind algorithms and provide several examples.
An exact accelerated stochastic simulation algorithm
Mjolsness, Eric; Orendorff, David; Chatelain, Philippe; Koumoutsakos, Petros
2009-04-01
An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present "ER-leap" algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 2/3 power of the number of reaction events in a Galton-Watson process.
Exactly solvable cellular automaton traffic jam model.
Kearney, Michael J
2006-12-01
A detailed study is undertaken of the v{max}=1 limit of the cellular automaton traffic model proposed by Nagel and Paczuski [Phys. Rev. E 51, 2909 (1995)]. The model allows one to analyze the behavior of a traffic jam initiated in an otherwise freely flowing stream of traffic. By mapping onto a discrete-time queueing system, itself related to various problems encountered in lattice combinatorics, exact results are presented in relation to the jam lifetime, the maximum jam length, and the jam mass (the space-time cluster size or integrated vehicle waiting time), both in terms of the critical and the off-critical behavior. This sets existing scaling results in their natural context and also provides several other interesting results in addition.
Exact Description of Decoherence in Optical Cavities
Romero, K M F
2002-01-01
The exact reduced dynamics for the independent oscillator model in the RWA approximation at zero and finite temperatures is derived. It is shown that the information about the interaction and the environment is encapsulated into three time dependent coefficients of the master equation, one of which vanishes in the zero temperature case. In currently used optical cavities all the information about the field dynamics is contained into {\\it two} (or three) experimentally accesible and physically meaningful real functions of time. From the phenomenological point of view it suffices then to carefully measure two ({\\it three}) adequate observables in order to map the evolution of any initial condition, as shown with several examples: (generalized) coherent states, Fock states, Schr\\"odinger cat states, and squeezed states.
Exact eigenfunctions and the open topological string
Mariño, Marcos; Zakany, Szabolcs
2017-08-01
Mirror curves to toric Calabi-Yau threefolds can be quantized and lead to trace class operators on the real line. The eigenvalues of these operators are encoded in the BPS invariants of the underlying threefold, but much less is known about their eigenfunctions. In this paper, we first develop methods in spectral theory to compute these eigenfunctions. We also provide an integral matrix representation which allows them to be studied in a ’t Hooft limit, where they are described by standard topological open string amplitudes. Based on these results, we propose a conjecture for the exact eigenfunctions, which involves both the WKB wavefunction and the standard topological string wavefunction. This conjecture can be made completely explicit in the maximally supersymmetric, or self-dual case, which we work out in detail for local \
Exactly soluble model of boundary degeneracy
Ganeshan, Sriram; Gorshkov, Alexey V.; Gurarie, Victor; Galitski, Victor M.
2017-01-01
We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as "boundary degeneracy") does not require superconducting proximity effect and can be created by simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016), 10.1103/PhysRevB.93.075118]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme is experimentally reasonable.
Remarks on exactness notions pertaining to pushouts
Garner, Richard
2012-01-01
We call a finitely complete category diexact if every Mal'cev relation admits a pushout which is stable under pullback and itself a pullback. We prove three results relating to diexact categories: firstly, that a category is a pretopos if and only if it is diexact with a strict initial object; secondly, that a category is diexact if and only if it is Barr-exact, and every pair of monomorphisms admits a pushout which is stable and a pullback; and thirdly, that a small category with finite limits and pushouts of Mal'cev spans is diexact if and only if it admits a full structure-preserving embedding into a Grothendieck topos.
Exact entanglement bases and general bound entanglement
Zhong, Z Z
2004-01-01
In this paper, we give the more general bound entangled states associated with the unextendible product bases (UPB), i.e. by using of the exact entanglement bases (EEB) and the complete basis with unextendible product bases (CBUPB), we prove that the arbitrary convex sums of the uniform mixtures (bound entangled states) associated with UPBs are still bound entangled states. Further, we discuss the equivalent transformation group and classification of the CBUPBs, and by using this classification, we prove that in the meaning of indistinguishability, the set of the above all possible bound entangled states can be reduced to the set of all possible mixtures of some fixed basic bound entangled states. At last, we prove that every operating of the partial transposition (PT) map acting upon a density matrix under any bipartite partitioning induces a mapping from the above reduced set of bound entangled states to oneself, which corresponds to a non-identical permutation of the basic bound entangled states.
Exact observability, square functions and spectral theory
Haak, Bernhard Hermann
2011-01-01
In the first part of this article we introduce the notion of a backward-forward conditioning (BFC) system that generalises the notion of zero-class admissibiliy introduced in [Xu,Liu,Yung]. We can show that unless the spectum contains a halfplane, the BFC property occurs only in siutations where the underlying semigroup extends to a group. In a second part we present a sufficient condition for exact observability in Banach spaces that is designed for infinite-dimensional output spaces and general strongly continuous semigroups. To obtain this we make use of certain weighted square function estimates. Specialising to the Hilbert space situation we obtain a result for contraction semigroups without an analyticity condition on the semigroup.
Exact Power Constraints in Smart Grid Control
Trangbæk, K; Petersen, Mette Højgaard; Bendtsen, Jan Dimon
2011-01-01
This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The objective is to accommodate load variations on the grid, arising from varying consumption and natural variations in the power production e.g. from wind turbines. This balancing between supply and demand...... is performed by distributing power to consumers in an optimal manner, subject to the requirement that each consumer receives the specific amount of energy the consumer is entitled to within a specific time horizon. However, in order to do so, the high-level controller requires knowledge of how much energy...... consumer models. The example illustrates that the exact bounds computed by the proposed method leads to a better power distribution than a conventional, conservative approach in case of fast changes in the load....
Coinductive Formal Reasoning in Exact Real Arithmetic
Niqui, Milad
2008-01-01
In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations -- of which field operations are special cases-- on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of M\\"obius maps and form the basis of the Edalat--Potts exact real arithmetic. We use the machinery of the Coq proof assistant for the coinductive types to present the formalisation. The formalised algorithms are only partially productive, i.e., they do not output provably infinite streams for all possible inputs. We show how to deal with this partiality in the presence of syntactic restrictions posed by the constructive type theory of Coq. Furthermore we show that the type theoretic techniques that we develop are compatible with the semantics of the algorithms as continuous maps on real numbers. The resulting Coq formalisation is available for public download.
An exact algorithm for graph partitioning
Hager, William; Zhang, Hongchao
2009-01-01
An exact algorithm is presented for solving edge weighted graph partitioning problems. The algorithm is based on a branch and bound method applied to a continuous quadratic programming formulation of the problem. Lower bounds are obtained by decomposing the objective function into convex and concave parts and replacing the concave part by an affine underestimate. It is shown that the best affine underestimate can be expressed in terms of the center and the radius of the smallest sphere containing the feasible set. The concave term is obtained either by a constant diagonal shift associated with the smallest eigenvalue of the objective function Hessian, or by a diagonal shift obtained by solving a semidefinite programming problem. Numerical results show that the proposed algorithm is competitive with state-of-the-art graph partitioning codes.
Symmetric Morse potential is exactly solvable
Sasaki, Ryu
2016-01-01
Morse potential $V_M(x)= g^2\\exp (2x)-g(2h+1)\\exp(x)$ is defined on the full line, $-\\infty
Exact relativistic theory of geoid's undulation
Kopeikin, Sergei; Karpik, Alexander
2014-01-01
Precise determination of geoid is one of the most important problem of physical geodesy. The present paper extends the Newtonian concept of the geoid to the realm of Einstein's general relativity and derives an exact relativistic equation for the unperturbed geoid and level surfaces under assumption of axisymmetric distribution of background matter in the core and mantle of the Earth. We consider Earth's crust as a small disturbance imposed on the background distribution of matter, and formulate the master equation for the anomalous gravity potential caused by this disturbance. We find out the gauge condition that drastically simplifies the master equation for the anomalous gravitational potential and reduces it to the form closely resembling the one in the Newtonian theory. The master equation gives access to the precise calculation of geoid's undulation with the full account for relativistic effects not limited to the post-Newtonian approximation. The geoid undulation theory, given in the present paper, uti...
Exactly isochoric deformations of soft solids
Biggins, John S.; Wei, Z.; Mahadevan, L.
2014-12-01
Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in two-dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid.
Exact Timing of Returned Molecular Wavepacket
ZHANG Zhe; WANG Ting-Ying; ZHANG Gui-Zhong; W.T. Hill Ⅲ
2006-01-01
An ionizing wavepacket of electron will re-visit its parent molecular ion during photoionization by strong laser field. This scenario is associated with physical concepts such as molecular re-scattering/collision, interference,diffraction, molecular clock, and generation of XUV light via high-order harmonic generation. On the workbench of a reduced dimensionality model of molecular hydrogen ions irradiated by laser pulse of 0.01-10.0 a.u. intensities, one-cycle pulsewidth, and 800 nm wavelength, by deploying a momentum operator on the time-dependent wavefunction of an ionizing wavepacket, we can determine, in a precise manner, the exact time instant for the re-visiting electron to come back to the cation position. The time value is 57.6% of an optical cycle of the exciting laser pulse. This result may be useful in attosecond pump-probe experiments or molecular clock applications.
Exact Spherically Symmetric Solutions in Massive Gravity
Berezhiani, Z; Nesti, F; Pilo, L
2008-01-01
A phase of massive gravity free from pathologies can be obtained by coupling the metric to an additional spin-two field. We study the gravitational field produced by a static spherically symmetric body, by finding the exact solution that generalizes the Schwarzschild metric to the case of massive gravity. Besides the usual 1/r term, the main effects of the new spin-two field are a shift of the total mass of the body and the presence of a new power-like term, with sizes determined by the mass and the shape (the radius) of the source. These modifications, being source dependent, give rise to a dynamical violation of the Strong Equivalence Principle. Depending on the details of the coupling of the new field, the power-like term may dominate at large distances or even in the ultraviolet. The effect persists also when the dynamics of the extra field is decoupled.
Homological Pisot Substitutions and Exact Regularity
Barge, Marcy; Jones, Leslie; Sadun, Lorenzo
2010-01-01
We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and where the first rational Cech cohomology is d-dimensional. We construct examples of such "homological Pisot" substitutions that do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide a power of the norm of the dilatation. To support this conjecture, we show that homological Pisot substitutions exhibit an Exact Regularity Property (ERP), in which the number of occurrences of a patch for a return length is governed strictly by the length. The ERP puts strong constraints on the measure of any cylinder set in the corresponding tiling space.
Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.
2013-01-01
The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...
An exact formulation of hyperdynamics simulations
Chen, L. Y.; Horing, N. J. M.
2007-06-01
We introduce a new formula for the acceleration weight factor in the hyperdynamics simulation method, the use of which correctly provides an exact simulation of the true dynamics of a system. This new form of hyperdynamics is valid and applicable where the transition state theory (TST) is applicable and also where the TST is not applicable. To illustrate this new formulation, we perform hyperdynamics simulations for four systems ranging from one degree of freedom to 591 degrees of freedom: (1) We first analyze free diffusion having one degree of freedom. This system does not have a transition state. The TST and the original form of hyperdynamics are not applicable. Using the new form of hyperdynamics, we compute mean square displacement for a range of time. The results obtained agree perfectly with the analytical formula. (2) Then we examine the classical Kramers escape rate problem. The rate computed is in perfect agreement with the Kramers formula over a broad range of temperature. (3) We also study another classical problem: Computing the rate of effusion out of a cubic box through a tiny hole. This problem does not involve an energy barrier. Thus, the original form of hyperdynamics excludes the possibility of using a nonzero bias and is inappropriate. However, with the new weight factor formula, our new form of hyperdynamics can be easily implemented and it produces the exact results. (4) To illustrate applicability to systems of many degrees of freedom, we analyze diffusion of an atom adsorbed on the (001) surface of an fcc crystal. The system is modeled by an atom on top of a slab of six atomic layers. Each layer has 49 atoms. With the bottom two layers of atoms fixed, this system has 591 degrees of freedom. With very modest computing effort, we are able to characterize its diffusion pathways in the exchange-with-the-substrate and hop-over-the-bridge mechanisms.
Hector, Scott
2005-11-01
The extension of optical projection lithography through immersion to patterning features with half pitch cash flow models to predict the affordable R&D while maintaining industry accepted internal rates of return. The results have been compared to estimates of the total R&D cost to bring a new generation of mask equipment to market for various types of tools. The analysis revealed that affordability of the required R&D is a significant problem for many suppliers of mask-making equipment. Consortia such as SEMATECH and Selete have played an important role in cost sharing selected mask equipment and material development projects. Governments in the United States, in Europe and in Japan have also helped equipment suppliers with support for R&D. This paper summarizes the challenging business model for mask equipment suppliers and highlight government support for mask equipment and materials development.
Challenges of the mask manufacturing approaching physical limits
Nesladek, Pavel
2007-05-01
Over the past 25 years, following the International Technology Roadmap for Semiconductors , 2006 [1], the main feature size of integrated circuits has decreased from approximately 3 μm to 70 nm. With feature sizes well below the exposure wavelength of the stepper, resolution enhancement features such as serifs, scatter-bars, and hammer heads are added to the mask design. Given a 4:1 reduction from mask to wafer, the resolution enhancement features, such as scatter bars, are roughly the same size as main features on the wafer. Recently, with the reduction of mask feature size, mask-manufacturing technology faces several problems in satisfying customer needs for resolution, CD uniformity, and CD linearity. The problems result, in part, as the legacy of material and process choices made in the early days of mask making. For example, the use of chrome as an absorber was suitable material choice for wet etch binary mask processes, but this material is now seen as problematic current dry etch process. Another general source of problems for the mask industry is its small size relative to wafer manufacturing. As a result, vendors focus material and equipment development efforts on wafer, and then make adaptations to fit mask-making requirements. Nowadays the patterns of high-end lithographic masks are written by variable shaped beam 50 kV e-beam writers with minimum beam size of as little as few nm. However, the latent pattern after writing differs significantly from the final pattern on the mask due to interactions during post exposure bake, resist development, and etch processes so the final pattern is a convolution of these effects. The parameters of interest are resolution, critical dimension uniformity (CDU), pattern fidelity, CD linearity, iso-dense as well as clear-dark bias, transmission of the transparent substrate and absorber, and birefringence. Besides these requirements, there are implicit, not specified, expectations that the mask has to fulfill. To this
Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P
2015-01-01
Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.
Exact Permutation Algorithm for Paired Observations: The Challenge of R. A. Fisher
J. I. Odiase
2007-01-01
Full Text Available The major handicap of permutation test is the logical and computational requirement necessary to develop and implement the exact permutation scheme. This study provides an algorithm that systematically enumerates all the distinct permutations of the paired observations in an experiment without the possibility of repeating any of the permutations. The permutation algorithm presented completely breaks down the permutation problem for ease of implementation and analysis. The algorithm was illustratively implemented in Intel Visual Fortran to recreate Fishers manual compilation of 32,768 permutations of Charles Darwins data on heights of cross-fertilized and self-fertilized plants. The algorithm provides exact p-values for any experiment involving paired observations and exposes the danger in using asymptotic or parametric distributions such as the t-test to analyze small data sets when the exact functional form of the distribution is not explicitly known. This becomes more obvious especially when the experiment leads to a p-value close to the threshold level of significance. The exact distribution and the graphical presentation provided in this study give credence to the use of the permutation test.
Computational techniques for determining printability of real defects in EUV mask pilot line
Morgan, Paul; Rost, Daniel; Price, Daniel; Li, Ying; Peng, Daniel; Chen, Dongxue; Hu, Peter; Corcoran, Noel; Son, Donghwan; Yonenaga, Dean; Tolani, Vikram
2014-04-01
With EUV lithography on the ITRS roadmap for sub-2X half-pitch patterning, it has become increasingly essential to ramp up efforts in being able to manufacture defect-free reticles or at least ones with minimal defects initially. For this purpose, much of the focus in recent years has been in finding ways to adequately detect, characterize, and reduce defects on both EUV blanks and patterned masks. For detection purposes, the current high-resolution DUV or e-beam inspection platforms are being extended to inspect EUV blanks and patterned masks but being non-actinic, make it very challenging to assess the real impact of the detected defects on EUV plane. Even with the realization of the EUV beta AIMS™ aerial-image based metrology in 2014-2015, the exact nature of each critical defect needs to be determined in order to be able to come up with an appropriate repair strategy. In this paper, we demonstrate the application of computational techniques to non-actinic supplemental metrology data collected on EUV mask defects to effectively determine the nature and also predict printability of these defects. The fundamental EUV simulation engine used in this approach is the EUV Defect Printability Simulator (DPS), which uses simulation and modeling methods designed specifically for the individual EUV mask components, and achieves runtimes several orders of magnitude faster than rigorous FDTD and RCWA methods while maintaining adequate accuracy. The EUV DPS simulator is then coupled with supplemental inspection and metrology measurements of real defects to effectively predict wafer printability of these defects. Several sources of such supplementary data are explored here, and may sometimes be dependent on the actual nature of defect. These sources include AFM height-profile data, SEM top-down images, and 193nm high-NA inspection images of single or multiple focus plane capture. From each of these supplemental data sources, the mask pattern and defect information is first
Supercrowding: weakly masking a target expands the range of crowding.
Vickery, Timothy J; Shim, Won Mok; Chakravarthi, Ramakrishna; Jiang, Yuhong V; Luedeman, Robert
2009-02-10
Crowding is impairment of peripheral object identification by nearby objects. Critical spacing (the minimum target-flanker distance that does not produce crowding) scales with target eccentricity and is consistently reported as roughly equal to or less than 50% of target eccentricity (0.5e). This study demonstrates that crowding occurs far beyond the typical critical spacing when the target is weakly masked by a surrounding contour or backwards pattern mask. A target was presented at a peripheral location on every trial and participants reported its orientation. Flankers appeared at target-flanker distances of 0.3-0.7e, or were absent. The target was presented with or without a mask. When flankers were absent, the masks only mildly impaired performance. When flankers were present but the mask was absent, target identification was nearly perfect at wide target-flanker distances (0.5e-0.7e). However, when flankers were present and the target was masked, performance dropped significantly, even when target-flanker distances far exceeded the typical crowding range. This phenomenon ("supercrowding") shares critical features with standard crowding: flankers similar to the target impair performance more than dissimilar flankers, and the characteristic anisotropic profile of crowding is preserved. Supercrowding may reflect a general interaction between crowding and other forms of masking.
Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy
Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan
2013-01-01
Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.
Application of DBM tool for detection of EUV mask defect
Yoo, Gyun; Kim, Jungchan; Park, Chanha; Lee, Taehyeong; Ji, Sunkeun; Yang, Hyunjo; Yim, Donggyu; Park, Byeongjun; Maruyama, Kotaro; Yamamoto, Masahiro
2013-04-01
Extreme ultraviolet lithography (EUVL) is one of the most leading lithography technologies for high volume manufacturing. The EUVL is based on reflective optic system therefore critical patterning issues are arisen from the surface of photomask. Defects below and inside of the multilayer or absorber of EUV photomask is one of the most critical issues to implement EUV lithography in mass production. It is very important to pick out and repair printable mask defects. Unfortunately, however, infrastructure for securing the defect free photomask such as inspection tool is still under development furthermore it does not seem to be ready soon. In order to overcome the lack of infrastructures for EUV mask inspection, we will discuss an alternative methodology which is based on wafer inspection results using DBM (Design Based Metrology) tool. It is very challenging for metrology to quantify real mask defect from wafer inspection result since various sources are possible contributor. One of them is random defect comes from poor CD uniformity. It is probable that those random defects are majority of a defect list including real mask defects. It is obvious that CD uniformity should be considered to pick out only a real mask defect. In this paper, the methodology to determine real mask defect from the wafer inspection results will be discussed. Experiments are carried out on contact layer and on metal layer using mask defect inspection tool, Teron(KLA6xx) and DBM (Design Based Metrology) tool, NGR2170™.
Airflow-Restricting Mask Reduces Acute Performance in Resistance Exercise
Yuri L. Motoyama
2016-09-01
Full Text Available Background: The aim of this study was to compare the number of repetitions to volitional failure, the blood lactate concentration, and the perceived exertion to resistance training with and without an airflow-restricting mask. Methods: Eight participants participated in a randomized, counterbalanced, crossover study. Participants were assigned to an airflow-restricting mask group (MASK or a control group (CONT and completed five sets of chest presses and parallel squats until failure at 75% one-repetition-maximum test (1RM with 60 s of rest between sets. Ratings of perceived exertion (RPEs, blood lactate concentrations (Lac−, and total repetitions were taken after the training session. Results: MASK total repetitions were lower than those of the CONT, and (Lac− and MASK RPEs were higher than those of the CONT in both exercises. Conclusions: We conclude that an airflow-restricting mask in combination with resistance training increase perceptions of exertion and decrease muscular performance and lactate concentrations when compared to resistance training without this accessory. This evidence shows that the airflow-restricting mask may change the central nervous system and stop the exercise beforehand to prevent some biological damage.
Masked areas in shear peak statistics. A forward modeling approach
Bard, D.; Kratochvil, J. M.; Dawson, W.
2016-03-09
The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance.
Leak and obstruction with mask ventilation during simulated neonatal resuscitation.
Schilleman, Kim; Witlox, Ruben S; Lopriore, Enrico; Morley, Colin J; Walther, Frans J; te Pas, Arjan B
2010-11-01
To evaluate mask technique during simulated neonatal resuscitation and test the effectiveness of training in optimal mask handling. Seventy participants(consultants, registrars and nurses) from neonatal units were asked to administer positive pressure ventilation at a flow of 8 l/min and a frequency of 40-60/min to a modified leak free, term newborn manikin (lung compliance 0.5 ml/cm H(2)O) using a Neopuff T-piece device. Recordings were made (1) before training, (2) after training in mask handling and (3) 3 weeks later. Leak was calculated. Obstruction (tidal volume training, 10% (5-37%) directly after training and 15% (4-33%) 3 weeks later (ptraining and 3 weeks later in 46%, 42% and 37% of inflations, respectively. Severe obstruction did not occur. Mask ventilation during simulated neonatal resuscitation was often hampered by large leaks at the face mask. Moderate airway obstruction occurred frequently when effort was taken to minimise leak. Training in mask ventilation reduced mask leak but should also focus on preventing airway obstruction.
GUSTATORY SYSTEM AND MASKING THE TASTE OF BITTER HERBS
Vinita Kale, Chetan Tapre and Abhay Ittadwar
2013-11-01
Full Text Available The oral route is the most easy and favorable route of drug administration. The development of oral formulations containing bitter herbs has widely been required in pharmaceutical and herbal industry. The human gustatory system is capable of identifying five major taste qualities: sweet, sour, salty, bitter and umami (savory. Different receptors and transduction mechanisms are involved in the detection of each taste quality. Many efforts have been focused to improve the palatability in these products that has prompted in the development of numerous techniques of taste masking. Once a method for taste masking is adopted, it becomes apparent to evaluate the effectiveness of the taste masked product. The major hurdle in evaluation of measuring the effectiveness of taste masking is that the taste is a highly subjective property and it varies demographically and with the age and gender. This communication gives a brief account of gustatory system, the receptor and transduction mechanism of bitter taste and various techniques used in taste masking of the bitters. The review also reveals the in-vitro and in-vivo methods for evaluating taste masked efficiency of developed product. Finally, the review concludes that proper choice of method for taste masking method is essential and it might depend on the properties of the herbs.
Do Plant-Bound Masked Mycotoxins Contribute to Toxicity?
Silvia W. Gratz
2017-02-01
Full Text Available Masked mycotoxins are plant metabolites of mycotoxins which co-contaminate common cereal crops. Since their discovery, the question has arisen if they contribute to toxicity either directly or indirectly through the release of the parent mycotoxins. Research in this field is rapidly emerging and the aim of this review is to summarize the latest knowledge on the fate of masked mycotoxins upon ingestion. Fusarium mycotoxins are the most prevalent masked mycotoxins and evidence is mounting that DON3Glc and possibly other masked trichothecenes are stable in conditions prevailing in the upper gut and are not absorbed intact. DON3Glc is also not toxic per se, but is hydrolyzed by colonic microbes and further metabolized to DOM-1 in some individuals. Masked zearalenone is rather more bio-reactive with some evidence on gastric and small intestinal hydrolysis as well as hydrolysis by intestinal epithelium and components of blood. Microbial hydrolysis of ZEN14Glc is almost instantaneous and further metabolism also occurs. Identification of zearalenone metabolites and their fate in the colon are still missing as is further clarification on whether or not masked zearalenone is hydrolyzed by mammalian cells. New masked mycotoxins continuously emerge and it is crucial that we gain detailed understanding of their individual metabolic fate in the body before we can assess synergistic effects and extrapolate the additive risk of all mycotoxins present in food.
New method of contour-based mask-shape compiler
Matsuoka, Ryoichi; Sugiyama, Akiyuki; Onizawa, Akira; Sato, Hidetoshi; Toyoda, Yasutaka
2007-10-01
We have developed a new method of accurately profiling a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, it is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method for a DFM solution in which two dimensional data are extracted for an error free practical simulation by precise reproduction of a real mask shape in addition to the mask data simulation. The flow centering around the design data is fully automated and provides an environment where optimization and verification for fully automated model calibration with much less error is available. It also allows complete consolidation of input and output functions with an EDA system by constructing a design data oriented system structure. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.
Potential of mask production process for finer pattern fabrication
Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kobayashi, Yoshihito; Motokawa, Takeharu; Hagihara, Kazuki; Saito, Masato; Itoh, Masamitsu
2013-09-01
Photomask used for optical lithography has been developed for purpose of fabrication a pattern along with finer designed rules and increase the productivity. With regard to pattern fabrication on mask, EB (Electron beam) mask writer has been used because it has high resolution beam. But in producing photomask, minimum pattern size on mask is hits a peak around 40nm by the resolution limit of ArF immersion systems. This value is easy to achieve by current EB writer. So, photomask process with EB writer has gotten attached to increase turnaround time. In next generation lithography such as EUV (Extreme ultraviolet) lithography and Nano-imprint lithography, it is enable to fabricate finer pattern beyond the resolution limit of ArF immersion systems. Thereby the pattern on a mask becomes finer rapidly. According to ITRS 2012, fabrication of finer patterns less than 20nm will be required on EUV mask and on NIL template. Especially in NIL template, less than 15nm pattern will be required half a decade later. But today's development of EB writer is aiming to increase photomask's productivity, so we will face a difficulty to fabricate finer pattern in near future. In this paper, we examined a potential of mask production process with EB writer from the view of finer pattern fabrication performances. We succeeded to fabricate hp (half-pitch) 17nm pattern on mask plate by using VSB (Variable Shaped Beam) type EB mask writer with CAR (Chemically Amplified Resist). This result suggests that the photomask fabrication process has the potential for sub-20nm generation mask production.
LanZhong; KunlinZhang; XiangangHuang; PeixiangNi; YujunHan; KaiWang; JunWang; SonggangLi
2003-01-01
The large amount of repeats,especially high copy repeats,in the genomes of higher animals and plants makes whole genome assembly(WGA)quite difficult.In order to solve this problem,we tried to identify repeats and mask them prior to assembly even at the stage of genome survey.It is known that repeats of different copy number have different probabilities of appearance in shotgun data,so based on this principle,we constructed a statistical model and inferred criteria for mathematically defined repeats(MDRs)at different shotgun coverages.According to these criteria,we developed software MDRmasker to identify and mask MDRs in shotgun data.With repeats masked prior to assembly,the speed of as sembly was increased with lower error probability.In addition,clone-insert size affects the accuracy of repeat assembly and scaffold construction.We also designed length distribution of clone-inserts using our model.In our simulated genomes of human and rice,the length distribution of repeats in different,so their optimal length distributions of clone-inserts were not the same.Thus with optimal length distribution of clone-inserts,a given genome could be assembled better at lower coverage.
Lan Zhong; Kunlin Zhang; Xiangang Huang; Peixiang Ni; Yujun Han; Kai Wang; Jun Wang; Songgang Li
2003-01-01
The large amount of repeats, especially high copy repeats, in the genomes of higher animals and plants makes whole genome assembly (WGA) quite difficult. In order to solve this problem, we tried to identify repeats and mask them prior to assembly even at the stage of genome survey. It is known that repeats of different copy number have different probabilities of appearance in shotgun data, so based on this principle, we constructed a statistical model and inferred criteria for mathematically defined repeats (MDRs) at different shotgun coverages. According to these criteria, we developed software MDRmasker to identify and mask MDRs in shotgun data. With repeats masked prior to assembly, the speed of assembly was increased with lower error probability. In addition, clone-insert size affects the accuracy of repeat assembly and scaffold construction. We also designed length distribution of clone-inserts using our model. In our simulated genomes of human and rice, the length distribution of repeats is different, so their optimal length distributions of clone-inserts were not the same. Thus with optimal length distribution of clone-inserts, a given genome could be assembled better at lower coverage.
Integration of mask and silicon metrology in DFM
Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka
2009-03-01
We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based
Comodulation masking release in bit-rate reduction systems
Vestergaard, Martin D.; Rasmussen, Karsten Bo; Poulsen, Torben
1999-01-01
It has been suggested that the level dependence of the upper masking slopebe utilised in perceptual models in bit-rate reduction systems. However,comodulation masking release (CMR) phenomena lead to a reduction of themasking effect when a masker and a probe signal are amplitude modulated withthe...... same frequency. In bit-rate reduction systems the masker would be theaudio signal and the probe signal would represent the quantization noise.Masking curves have been determined for sinusoids and 1-Bark-wide noisemaskers in order to investigate the risk of CMR, when quantizing depths arefixed...
DWI Repeaters and Non-Repeaters: A Comparison.
Weeber, Stan
1981-01-01
Discussed how driving-while-intoxicated (DWI) repeaters differed signigicantly from nonrepeaters on 4 of 23 variables tested. Repeaters were more likely to have zero or two dependent children, attend church frequently, drink occasionally and have one or more arrests for public intoxication. (Author)
To Repeat or Not to Repeat a Course
Armstrong, Michael J.; Biktimirov, Ernest N.
2013-01-01
The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…
Dongxu Ren
2016-04-01
Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.
Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye
2016-04-14
A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.
Rheumatic masks of plasma cell dyscrasias
Vladimir Ivanovich Vasilyev
2012-01-01
Full Text Available Objective: to consider clinical practice problems in the differential diagnosis of different types of plasma cell dyscrasias (PCD. Subjects and methods. Fourteen patients (8 men and 6 women aged 52±12 years, in whom rheumatic diseases (RD were ruled out and who were diagnosed as having primary PCD: different types of myeloma in 7 patients, myeloma + AL-amyloidosis in 2, AL-amyloidosis in 3, and Waldenstrom’s macroglobulinemia in 2, were examined. Results and discussion. The most common maldiagnosed RDs in patients with PCD were seronegative rheumatoid arthritis (RA, systemic lupus erythematosus, Sjogren’s disease, and different forms of vasculitis. The most frequent masks of RD were kidney (78% and osteoarticular system (64% lesions, vascular disorders (36%, peripheral polyneuropathies (36%, and enlarged salivary glands with xerostomia (28.5%. Serum and urine immunochemical study should be performed in all patients who have clinical manifestations of seropositive RA, spondyloarthritis, intensive bone pain syndrome, ulceronecrotic vasculitis, enlarged submandibular salivary glands with macroglossia in the absence of markers of autoimmune disease for the timely diagnosis of PCD and the exclusion of RD. The paper estimates the sensitivity and specificity of main methods used to diagnose different types of PCD.
Surround-Masking Affects Visual Estimation Ability
Jastrzebski, Nicola R.; Hugrass, Laila E.; Crewther, Sheila G.; Crewther, David P.
2017-01-01
Visual estimation of numerosity involves the discrimination of magnitude between two distributions or perceptual sets that vary in number of elements. How performance on such estimation depends on peripheral sensory stimulation is unclear, even in typically developing adults. Here, we varied the central and surround contrast of stimuli that comprised a visual estimation task in order to determine whether mechanisms involved with the removal of unessential visual input functionally contributes toward number acuity. The visual estimation judgments of typically developed adults were significantly impaired for high but not low contrast surround stimulus conditions. The center and surround contrasts of the stimuli also differentially affected the accuracy of numerosity estimation depending on whether fewer or more dots were presented. Remarkably, observers demonstrated the highest mean percentage accuracy across stimulus conditions in the discrimination of more elements when the surround contrast was low and the background luminance of the central region containing the elements was dark (black center). Conversely, accuracy was severely impaired during the discrimination of fewer elements when the surround contrast was high and the background luminance of the central region was mid level (gray center). These findings suggest that estimation ability is functionally related to the quality of low-order filtration of unessential visual information. These surround masking results may help understanding of the poor visual estimation ability commonly observed in developmental dyscalculia.
STELLAR: fast and exact local alignments
Weese David
2011-10-01
Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.
Exact electromagnetic response of Landau level electrons
Nguyen, Dung Xuan; Gromov, Andrey
2017-02-01
We present a simple method that allows us to calculate the electromagnetic response of noninteracting electrons in a strong magnetic field to arbitrary order in the gradients of external electric and magnetic fields. We illustrate the method on both nonrelativistic and massless Dirac electrons filling N Landau levels. First, we derive an exact relation between the electromagnetic response of the nonrelativistic and Dirac electrons in the lowest Landau level. Next, we obtain a closed form expression for the polarization operator in the large-N (or weak magnetic field) limit. We explicitly show that in the large-N limit the random phase approximation (RPA) computation of the polarization tensor agrees—in leading and subleading order in N —with a Fermi liquid computation to all orders in the gradient expansion and for arbitrary value of the g factor. Finally, we show that in the large-N limit the nonrelativistic polarization tensor agrees with Dirac's in the leading and subleading orders in N , provided that the Berry phase of the Dirac cone is taken into account via replacement N ⟶N +1 /2 .
Explicitly Broken Supersymmetry with Exactly Massless Moduli
Dong, Xi; Zhao, Yue
2014-01-01
There is an avatar of the little hierarchy problem of the MSSM in 3-dimensional supersymmetry. We propose a solution to this problem in AdS$_3$ based on the AdS/CFT correspondence. The bulk theory is a supergravity theory in which U(1) $\\times$ U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. Since the R-charges of scalar and spinor differ, this generates a SUSY breaking shift of their masses. The Ward identity facilitates the calculation of these mass shifts to any desired order in the strength of the deformation. Moduli fields are massless $R$-neutral bulk scalars with vanishing potential in the undeformed theory. These properties are maintained to all orders in the deformation despite the fact that moduli couple in the bulk to loops of R-char...
Exact Electromagnetic Response of Landau Level Electrons
Nguyen, Dung Xuan
2016-01-01
We present a simple method that allows to calculate the electromagnetic response of non-interacting electrons in strong magnetic field to arbitrary order in the gradients of external electric and magnetic fields. We illustrate the method on both non-relativistic and massless Dirac electrons filling $N$ Landau levels. First, we derive an exact relation between the electromagnetic response of the non-relativistic and Dirac electrons in the lowest Landau level. Next, we obtain a closed form expression for the polarization operator in the large $N$ (or weak magnetic field) limit. We explicitly show that in the large $N$ limit the random phase approximation (RPA) computation of the polarization tensor agrees - in leading and sub-leading order in $N$ - with a Fermi liquid computation to {\\it all} orders in the gradient expansion and for arbitrary value of the $\\mathrm{g}$-factor. Finally, we show that in the large $N$ limit the non-relativistic polarization tensor agrees with Dirac's in the leading and sub-leading ...
The Manifestly Gauge Invariant Exact Renormalisation Group
Rosten, O J
2005-01-01
We construct a manifestly gauge invariant Exact Renormalisation Group (ERG) whose form is suitable for computation in SU(N) Yang-Mills theory, beyond one-loop. An effective cutoff is implemented by embedding the physical SU(N) theory in a spontaneously broken SU(N|N) Yang-Mills theory. To facilitate computations within this scheme, which proceed at every step without fixing the gauge, we develop a set of diagrammatic techniques. As an initial test of the formalism, the one-loop SU(N) Yang-Mills beta-function, beta_1, is computed, and the standard, universal answer is reproduced. It is recognised that the computational technique can be greatly simplified. Using these simplifications, a partial proof is given that, to all orders in perturbation theory, the explicit dependence of perturbative $\\beta$-function coefficients, beta_n, on certain non-universal elements of the manifestly gauge invariant ERG cancels out. This partial proof yields an extremely compact, diagrammatic form for the surviving contributions t...
A closer look at four-dot masking of a foveated target
Marwan Daar
2016-06-01
Full Text Available Four-dot masking with a common onset mask was recently demonstrated in a fully attended and foveated target (Filmer, Mattingley & Dux, 2015. Here, we replicate and extend this finding by directly comparing a four-dot mask with an annulus mask while probing masking as a function of mask duration, and target-mask separation. Our results suggest that while an annulus mask operates via spatially local contour interactions, a four-dot mask operates through spatially global mechanisms. We also measure how the visual system’s representation of an oriented bar is impacted by a four-dot mask, and find that masking here does not degrade the precision of perceived targets, but instead appears to be driven exclusively by rendering the target completely invisible.
Exact Hypothesis Tests for Log-linear Models with exactLoglinTest
Brian Caffo
2006-11-01
Full Text Available This manuscript overviews exact testing of goodness of fit for log-linear models using the R package exactLoglinTest. This package evaluates model fit for Poisson log-linear models by conditioning on minimal sufficient statistics to remove nuisance parameters. A Monte Carlo algorithm is proposed to estimate P values from the resulting conditional distribution. In particular, this package implements a sequentially rounded normal approximation and importance sampling to approximate probabilities from the conditional distribution. Usually, this results in a high percentage of valid samples. However, in instances where this is not the case, a Metropolis Hastings algorithm can be implemented that makes more localized jumps within the reference set. The manuscript details how some conditional tests for binomial logit models can also be viewed as conditional Poisson log-linear models and hence can be performed via exactLoglinTest. A diverse battery of examples is considered to highlight use, features and extensions of the software. Notably, potential extensions to evaluating disclosure risk are also considered.
Comparison of Supreme Laryngeal Mask Airway and ProSeal Laryngeal Mask Airway during Cholecystectomy
2012-01-01
Objective: This study compared the safety and efficacy of the Supreme Laryngeal Mask Airway (S-LMA) with that of the ProSeal-LMA (P-LMA) in laparoscopic cholecystectomy. Material and Methods: Sixty adults were randomly allocated. Following anaesthesia induction, experienced LMA users inserted the airway devices. Results: Oropharyngeal leak pressure was similar in groups (S-LMA, 27.8±2.9 cmH20; P-LMA, 27.0±4.7 cmH20; p=0.42) and did not change...
Comparison of Supreme Laryngeal Mask Airway and ProSeal Laryngeal Mask Airway during Cholecystectomy
2012-01-01
Objective: This study compared the safety and efficacy of the Supreme Laryngeal Mask Airway (S-LMA) with that of the ProSeal-LMA (P-LMA) in laparoscopic cholecystectomy.Material and Methods: Sixty adults were randomly allocated. Following anaesthesia induction, experienced LMA users inserted the airway devices. Results: Oropharyngeal leak pressure was similar in groups (S-LMA, 27.8±2.9 cmH20; P-LMA, 27.0±4.7 cmH20; p=0.42) and did not change during the induction of and throughout pneumoperit...
Comparison of differences between MODIS 250 m and 1 km cloud masks
Kotarba, Andrzej Z.
2016-11-01
The spatial resolution of remote sensing instruments installed onboard satellites is one of the key factors for accurate estimations of cloud amount. In general terms, the larger the instantaneous field of view (IFOV), the greater the overestimation of cloud amount - assuming that data are collected with exactly the same methodology, and processed with exactly the same algorithms. While most meteorological imagers collect data at a spatial resolution of 1 km, the Moderate Resolution Imaging Spectroradiometer (MODIS) offers cloud amount estimates at both 1 km (the standard product) and 250 m (additional, high-resolution products). However, these datasets are produced using different methodological approaches, which impacts the quality and reliability of the product. This study compared 250 m data with 1 km data over elevated terrain with complex orography. Results showed significant discrepancies between the datasets, with 250 m data reporting mean seasonal (June-August) cloud amount 15.8% lower, than 1 km dataset. This was not related to the presence of snow, or to the increased spatial resolution of the cloud mask. On the other hand, both 1 km and 250 m data described similar spatial variability in mean monthly cloud amount (correlation coefficients of 0.85-0.98, p < 0.01).
Nifty Nines and Repeating Decimals
Brown, Scott A.
2016-01-01
The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…
Nifty Nines and Repeating Decimals
Brown, Scott A.
2016-01-01
The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…
Phase retrieval from multiple binary masks generated speckle patterns
Gong, Hai; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb
2016-04-01
We present a reference-less and time-multiplexing phase retrieval method by making use of the digital micromirror device (DMD). In this method, the DMD functions not only as a flexible binary mask which modulates the optical field, but also as a sampling mask for measuring corresponding phases, which makes the whole setup simple and robust. The DMD reflection forms a sparse intensity mask in the pupil which produces speckle pattern after propagation. With the recorded intensity on the camera and the binary pattern on the DMD, the phase in all the `on' pixels can be reconstructed at once by solving inverse problems with iterative methods, for instance using Gerchberg-Saxton algorithm. Then the phase of the whole pupil can be reconstructed from a series of binary patterns and speckle patterns. Numerical experiments show the feasibility of this phase retrieval method and the importance of sparse binary masks in the improving of convergence speed.
MISR radiometric camera-by-camera Cloud Mask V004
National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter has...
A Binary Shaped Mask Coronagraph for a Segmented Pupil
Enya, K
2011-01-01
We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by \\citet{Kasdin2005} and \\citet{Vanderbei1999}. Solutions with multi-barcode masks which "skip over" the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360$^{\\circ}$ continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.
A Precise-Mask-Based Method for Enhanced Image Inpainting
Wanxu Zhang
2016-01-01
Full Text Available Mask of damage region is the pretreatment step of the image inpainting, which plays a key role in the ultimate effect. However, state-of-the-art methods have attached significance to the inpainting model, and the mask of damage region is usually selected manually or by the conventional threshold-based method. Since manual method is time-consuming and the threshold-based method does not have the same precision for different images, we herein report a new method for automatically constructing the precise mask by the joint filtering of guided filtering and L0 smoothing. It can accurately locate the boundary of damaged region in order to effectively segment the damage region and then greatly improves the ultimate effect of image inpainting. The experimental results show that the proposed method is superior to state-of-the-art methods in the step of constructing inpainting mask, especially for the damaged region with inconspicuous boundary.
Reproductive biology of the masked triggerfish Sufflamen fraenatus
Sahayak, S.
The reproductive biology of the masked triggerfish Sufflamen fraenatus was studied. Three distinct stages, viz. immature, maturing and mature were identified based on the external appearance of the ovary and the ova diameter studies. The fish...
Kuldne Mask Tallinnasssssss! / Sergei Zhenovatsh ; interv. Hellar Bergmann
Zhenovatsh, Sergei
2008-01-01
Lavastaja Sergei Zhenovatsh oma Teatrikunsti Stuudiost, noortest näitlejatest, Eestist. Lavastaja on Eestis teatrifestivali "Kuldne mask Eestis" raames. 10.-11. okt. etendus Tallinnas, Salme Kultuurikeskuses Nikolai Gogoli näidend "Mängurid"
Open-loop frequency response for a chaotic masking system
Huang Xian-Gao; Yu Pei; Huang Wei
2006-01-01
In this paper, a new numerical simulation approach is proposed for the study of open-loop frequency response of a chaotic masking system. Using Chua's circuit and the Lorenz system as illustrative examples, we have shown that one can employ chaos synchronization to separate the feedback network from a chaotic masking system, and then use numerical simulation to obtain the open-loop synchronization response, the phase response, and the amplitude response of a chaotic masking system. Based on the analysis of the frequency response, we have also proved that changing the amplitude of the exciting (input) signal within normal working domain does not influence the frequency response of the chaotic masking system. The new numerical simulation method developed in this paper can be extended to consider the open-loop frequency response of other systems described by differential or difference equations.
Mask roughness induced LER: a rule of thumb -- paper
McClinton, Brittany; Naulleau, Patrick
2010-03-12
Much work has already been done on how both the resist and line-edge roughness (LER) on the mask affect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and currently factor into LER limits. Here, we propose a 'rule-of-thumb' simplified solution that provides a fast and powerful method to obtain mask roughness induced LER. We present modeling data on an older generation mask with a roughness of 230 pm as well as the ultimate target roughness of 50 pm. Moreover, we consider feature sizes of 50 nm and 22 nm, and show that as a function of correlation length, the LER peaks at the condition that the correlation length is approximately equal to the resolution of the imaging optic.
Backward Masked Snakes and Guns Modulate Spatial Attention
Joshua M. Carlson
2009-10-01
Full Text Available Fearful faces are important social cues that alert others of potential threat. Even backward masked fearful faces facilitate spatial attention. However, visual stimuli other than fearful faces can signal potential threat. Indeed, unmasked snakes and spiders modulate spatial attention. Yet, it is unclear if the rapid threat-related facilitation of spatial attention to backward masked stimuli is elicited by non-face threat cues. Evolutionary theories claim that phylogenetic threats (i.e. snakes and spiders should preferentially elicit an automatic fear response, but it is untested as to whether this response extends to enhancements in spatial attention under restricted processing conditions. Thirty individuals completed a backward masking dot-probe task with both evolutionary relevant and irrelevant threat cues. The results suggest that backward masked visual fear stimuli modulate spatial attention. Both evolutionary relevant (snake and irrelevant (gun threat cues facilitated spatial attention.
Comodulation masking release in bit-rate reduction systems
Vestergaard, Martin David; Rasmussen, Karsten Bo; Poulsen, Torben
1999-01-01
It has been suggested that the level dependence of the upper masking slope be utilized in perceptual models in bit-rate reduction systems. However, comodulation masking release (CMR) phenomena lead to a reduction of the masking effect when a masker and a probe signal are amplitude modulated...... with the same frequency. In bit-rate reduction systems the masker would be the audio signal and the probe signal would represent the quantization noise. Masking curves have been determined for sinusoids and 1-Bark-wide noise maskers in order to investigate the risk of CMR, when quantizing depths are fixed.......75. A CMR of up to 10 dB was obtained at a distance of 6 Bark above the masker. The amount of CMR was found to depend on the presentation level of the masker; a higher masker level leads to a higher CMR effect. Hence, the risk of CMR affecting the subjective performance of bit-rate reduction systems cannot...
Comparison of three methods in improving bag mask ventilation
Samad EJ Golzari
2014-01-01
Conclusions: Leaving dentures in place in edentulous patients after inducing anesthesia improves bag-mask ventilation. However, placing folded compressed gauze in buccal space leads to more significant improvement in BMV compared to leaving dentures in place.
Normal Blood Pressure in Clinic May Mask Hypertension
... https://medlineplus.gov/news/fullstory_162363.html Normal Blood Pressure in Clinic May Mask Hypertension Young, lean patients can have high blood pressure that's not caught during regular exams, study finds ...
Lithographic performance of a new "low-k" mask
Adachi, Takashi; Tani, Ayako; Fujimura, Yukihiro; Hayano, Katsuya; Morikawa, Yasutaka; Miyashita, Hiroyuki; Inazuki, Yukio; Kawai, Yoshio
2016-05-01
We have been researching new mask blank materials for the next generation lithography (NGL) and developed a new mask blank with low-k phase shifter [1] [2]. The low-k phase shifter consists of only Si and N. In our previous work, we reported the advantages of developed SiN phase shift mask (PSM) [2]. It showed high lithographic performance and high durability against ArF excimer laser as well as against cleaning. In this report, we further verified its high lithographic performance on several types of device pattern. The SiN PSM had high lithographic performance compared with conventional 6% MoSi PSM. Exposure latitude (EL) and mask enhancement factor (MEEF) were especially improved on originally designed Gate, Metal and Via patterns.
Coronagraph-Integrated Wavefront Sensing with a Sparse Aperture Mask
Subedi, Hari; Kasdin, N Jeremy; Cavanagh, Kathleen; Riggs, A J Eldorado
2015-01-01
Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both non-redundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing. Here we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order, differential phase aberrations. Starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree $n=5$, with amplitude up to $\\lambda/20$ RM...
Kuldne Mask Tallinnasssssss! / Sergei Zhenovatsh ; interv. Hellar Bergmann
Zhenovatsh, Sergei
2008-01-01
Lavastaja Sergei Zhenovatsh oma Teatrikunsti Stuudiost, noortest näitlejatest, Eestist. Lavastaja on Eestis teatrifestivali "Kuldne mask Eestis" raames. 10.-11. okt. etendus Tallinnas, Salme Kultuurikeskuses Nikolai Gogoli näidend "Mängurid"
The effect of masking in the attentional dwell time paradigm
Petersen, Anders
2009-01-01
A temporary functional blindness to the second of two spatially separated targets has been identified in numerous studies of temporal visual attention. This effect is known as attentional dwell time and is maximal 200 to 500 ms after presentation of the first target (e.g. Duncan, Ward, Shapiro......, 1994). In most studies of attentional dwell time, two masked targets have been used. Moore et al. (1996) have criticised the masking of the first target when measuring the attentional dwell time, finding a shorter attentional dwell time when the first mask was omitted. In the presented work, the effect...... an impairment of the second target. Hence, the attentional dwell time may be a combined effect arising from attending to both the first target and its mask....
Improve mask inspection capacity with Automatic Defect Classification (ADC)
Wang, Crystal; Ho, Steven; Guo, Eric; Wang, Kechang; Lakkapragada, Suresh; Yu, Jiao; Hu, Peter; Tolani, Vikram; Pang, Linyong
2013-09-01
As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The adoption of RET techniques like aggressive OPC, sub-resolution assist features combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for mask inspection operators and engineers. Therefore a comprehensive approach is required in handling defects post-inspections by correctly identifying and classifying the real killer defects impacting the printability on wafer, and ignoring nuisance defect and false defects caused by inspection systems. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at the SMIC mask shop for the 40nm technology node. Traditionally, each defect is manually examined and classified by the inspection operator based on a set of predefined rules and human judgment. At SMIC mask shop due to the significant total number of detected defects, manual classification is not cost-effective due to increased inspection cycle time, resulting in constrained mask inspection capacity, since the review has to be performed while the mask stays on the inspection system. Luminescent Technologies Automated Defect Classification (ADC) product offers a complete and systematic approach for defect disposition and classification offline, resulting in improved utilization of the current mask inspection capability. Based on results from implementation of ADC in SMIC mask production flow, there was around 20% improvement in the inspection capacity compared to the traditional flow. This approach of computationally reviewing defects post mask-inspection ensures no yield loss by qualifying reticles without the errors associated with operator mis-classification or human error. The ADC engine retrieves the high resolution inspection images and uses a decision-tree flow to classify a given defect. Some identification mechanisms adopted by ADC to
All-photonic quantum repeaters
Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong
2015-01-01
Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153
Exact sampling hardness of Ising spin models
Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.
2017-09-01
We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.
Bubble masks for time-encoded imaging of fast neutrons.
Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.
[Prospective therapeutic trial of masking treatment in patients with tinnitus].
Hernández Moñiz, F; Barrio, A; Pérez, A; Pertierra, M A; Salafranca, J M; González, M
1998-01-01
We report the results of a therapeutic trial of patients with tinnitus of different characteristics that was unresponsive to other medical or surgical treatments. Treatment was based on a combination of biofeedback training designed to reduce stress and either pure masking therapy or masking therapy consisting of a hearing aid and masker. The results showed an improvement in subjective perceptions and in the audiometric parameter of pitch in a significant percentage of patients.
Phase shifting mask modulated laser patterning on graphene
Gao, Fan; Liu, Fengyuan; Ye, Ziran; Sui, Chenghua; Yan, Bo; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Zheng, Youdou; Shi, Yi
2017-01-01
A one-step graphene patterning method is developed in this paper. A phase shifting mask is used to modulate incident laser beam spatially and generate graphene patterns by laser heating. Periodic graphene nanoribbon and nanomesh structures are fabricated by employing 1D and 2D phase shifting masks, respectively. The noncontact, simple procedure, easy handling and economic properties of this method make it promising towards graphene-based device fabrication.