WorldWideScience

Sample records for martian polar environments

  1. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    Science.gov (United States)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  2. The Martian polar caps: Stability and water transport at low obliquities

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  3. Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession

    Science.gov (United States)

    Brown, A. J.; McGuire, P.; Wolff, M. J.

    2008-03-01

    We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.

  4. IR SPECTRAL MAPPING OF THE MARTIAN SOUTH POLAR RESIDUAL CAP USING CRISM

    Directory of Open Access Journals (Sweden)

    J. Campbell

    2016-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are considered to be important in theories of abiogenesis (Allamandola, 2011 . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS on the Cassini spacecraft (Cruikshank et al., 2007. The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012. This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC structural evolution (Thomas et al., 2009 that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called “Swiss Cheese Terrain”, a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009. We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, on board NASA’s Mars Reconnaissance Orbiter (MRO. CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  5. North-Polar Martian Cap as Habitat for Elementary Life

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, J. T.; Wickramasinghe, N. C.

    2008-09-01

    North-polar cap over millenia Atmospheric water in Mars tends currently as for the past millenia to distil onto the polar caps and be buried under dust deposits. Diffusive release from ground-ice (and its excavation in meteorite impacts [1]) replenishes atmospheric water, allowing the gradual build up of polar ice-dust deposits. When sunlit, this warmed and sublimating ice-dust mix has interest as a potential habitat for micro-organisms. Modelling shows precipitable vapour at 10-50μm/yr, varying sensitively with small changes in orbitable obliquity around the present 25° [2]. The modelling applies to a globe with regionally uniform albedo, unlike the steep topography and dark layering of the north polar cap whose upper 300m have accumulated over the last 500 kyr [3]. The cliffs and ravines of the north-polar cap are thought to form through south-facing slopes sublimating and gaining a dirt-encrusted surface, while horizontal surfaces brighten through frost deposits. The two-phase surface derives from the dust and frost feedback on surface albedo [4] and the resulting terrain develops over diurnal cycles of frosting and sublimation, and over annual seasonal cycles. The steep south-facing sides of observed ravines when unshadowed would see for a few hours the full intensity of sunlight at near normal incidence, without the atmospheric dimming at similar inclinations on Earth. As exposed ice sublimates at T > 200K (partial pressure exceeds typical martian 0.1 Pa), a crust of dirt develops to maintain quasi-stability. The dirt crust's main function is to buffer the ice against diurnal temperature fluctuations, but it also slows down vapour diffusion - analogous to south polar ice sublimation [5] and the growth of ground-ice [6]. We envisage 1-10 mm/yr as the net sublimation rate, compatible with the 100 kyr life and scales of the north polar ravines. Modelling of icy-dirt crusts in the polar cap Plane-parallel layers have been used to model the changing temperature

  6. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  7. Martian Environment Electrostatic Precipitator

    Science.gov (United States)

    McDougall, Michael Owen

    2016-01-01

    As part of the planned manned mission to Mars, NASA has noticed that shipping oxygen as a part of life support to keep the astronauts alive continuously is overly expensive, and impractical. As such, noting that the Martian atmosphere is 95.37% CO2, NASA chemists noted that one could obtain oxygen from the Martian atmosphere. The plan, as part of a larger ISRU (in-situ resource utilization) initiative, would extract water from the regolith, or the Martian soil which can be electrolyzed by solar panel produced voltage into hydrogen and oxygen. The hydrogen can then be used in the Sabatier reaction with carbon dioxide to produce methane and water producing a net reaction that does not lose water and outputs methane and oxygen for use as rocket fuel and breathing.

  8. Martian North Polar Water-Ice Clouds During the Viking Era

    Science.gov (United States)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  9. On to Mars! chronicles of Martian simulations

    CERN Document Server

    PLETSER, Vladimir

    2018-01-01

    This book introduces the Martian simulations, one installed on Devon Island, an uninhabited island in the Canadian Arctic, well within the polar circle, and two in the desert of Utah, several hundreds of kilometers South of Salt Lake City. The book is based on the diaries during the simulations, held by Vladimir Pletser, a physicist-engineer, who was selected to attend these simulations. It relates the details of everyday life in these Martian habitats and of the scientific and exploratory work conducted in these extreme environments in preparation for future manned missions to Mars. Through the real experiences described in the book, readers will find space explorations and living on Mars more tangible. .

  10. Modeling of the Martian environment for radiation analysis

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  11. The Martian surface radiation environment – a comparison of models and MSL/RAD measurements

    Directory of Open Access Journals (Sweden)

    Matthiä Daniel

    2016-01-01

    Full Text Available Context: The Radiation Assessment Detector (RAD on the Mars Science Laboratory (MSL has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle

  12. An Electrostatic Precipitator System for the Martian Environment

    Science.gov (United States)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  13. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  14. Laser induced breakdown spectroscopy library for the Martian environment

    International Nuclear Information System (INIS)

    Cousin, A.; Forni, O.; Maurice, S.; Gasnault, O.

    2011-01-01

    The NASA Mars Science Laboratory rover will carry the first Laser Induced Breakdown Spectroscopy experiment in space: ChemCam. We have developed a laboratory model which mimics ChemCam's main characteristics. We used a set of target samples relevant to Mars geochemistry, and we recorded individual spectra. We propose a data reduction scheme for Laser Induced Breakdown Spectroscopy data incorporating de-noising, continuum removal, and peak fitting. Known effects of the Martian atmosphere are confirmed with our experiment: better Signal-to-Noise Ratio on Mars compared to Earth, narrower peak width, and essentially no self-absorption. The wavelength shift of emission lines from air to Mars pressure is discussed. The National Institute of Standards and Technology vacuum database is used for wavelength calibration and to identify the elemental lines. Our Martian database contains 1336 lines for 32 elements: H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ar, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb, Sr, Cs, Ba, and Pb. It is a subset of the National Institute of Standards and Technology database to be used for Martian geochemistry. Finally, synthetic spectra can be built from the Martian database. Correlation calculations help to distinguish between elements in case of uncertainty. This work is used to create tools and support data for the interpretation of ChemCam results. - Highlights: ► Chemcam: first Laser Induced Breakdown Spectroscopy technique on Mars. ► Creation of a LIBS specific database to ChemCam on Mars. ► Data reduction scheme is proposed. ► Best signal under Martian conditions. ► LIBS emission lines database: subset of NIST database for Martian geochemistry.

  15. Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment

    Science.gov (United States)

    Peeters, Z.; Vos, D.; ten Kate, I. L.; Selch, F.; van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; Stan-Lotter, H.; van Loosdrecht, M. C. M.; Ehrenfreund, P.

    2010-11-01

    Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.

  16. MetNet - In situ observational Network and Orbital platform to investigate the Martian environment

    Science.gov (United States)

    Harri, Ari-Matti; Leinonen, Jussi; Merikallio, Sini; Paton, Mark; Haukka, Harri; Polkko, Jouni

    2007-09-01

    MetNet Mars Mission is an in situ observational network and orbital platform mission to investigate the Martian environment and it has been proposed to European Space Agency in response to Call for proposals for the first planning cycle of Cosmic Vision 2015-2025 D/SCI/DJS/SV/val/21851. The MetNet Mars Mission is to be implemented in collaboration with ESA, FMI, LA, IKI and the payload providing science teams. The scope of the MetNet Mission is to deploy 16 MetNet Landers (MNLs) on the Martian surface by using inflatable descent system structures accompanied by an atmospheric sounder and data relay onboard the MetNet Orbiter (MNO), which is based on ESA Mars Express satellite platform. The MNLs are attached on the three sides of the satellite and most of the MNLs are deployed to Mars separately a few weeks prior to the arrival to Mars. The MetNet Orbiter will perform continuous atmospheric soundings thus complementing the accurate in situ observations at the Martian ground produced by the MetNet observation network, as well as the orbiter will serve as the primary data relay between the MetNet Landers and the Earth. The MNLs are equipped with a versatile science payload focused on the atmospheric science of Mars. Detailed characterisation of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatological cycles, as well as interior investigations, require simultaneous in situ meteorological, seismic and magnetic measurements from networks of stations on the Martian surface. MetNet Mars Mission will also provide a crucial support for the safety of large landing missions in general and manned Mars missions in particular. Accurate knowledge of atmospheric conditions and weather data is essential to guarantee safe landings of the forthcoming Mars mission elements.

  17. Antarctic Martian Meteorites at Johnson Space Center

    Science.gov (United States)

    Funk, R. C.; Satterwhite, C. E.; Righter, K.; Harrington, R.

    2018-01-01

    This past year marked the 40th anniversary of the first Martian meteorite found in Antarctica by the ANSMET Antarctic Search for Meteorites) program, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET program making for a total of 15 Martian meteorites in the U. S. Antarctic meteorite collection at Johnson Space Center (JSC). Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate samples. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottite in 1982. This meteorite has been allocated to 137 scientists for research and there are 180.934 g remaining at JSC. Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain noble gas and nitrogen compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 205 scientists for research and 5,298.435 g of sample is available.

  18. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  19. Hyperspectral characterisation of the Martian south polar residual cap using CRISM

    Science.gov (United States)

    Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.

    2017-09-01

    We present our research on hyperspectral characterization of the Martian South Polar Residual Cap (SPRC), with a focus on the detection of organic signatures within the dust content of the ice. The SPRC exhibits unique CO2 ice sublimation features known colloquially as 'Swiss Cheese Terrain' (SCT). These flat floored, circular depressions are highly dynamic, and may expose dust particles previously trapped within the ice in the depression walls and partially on the floors. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to assess whether ther might be signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 and H2O ice. Whilst no conclusive evidence for PAHs has been found, depression rims are shown to have higher water content than regions of featureless ice, and there are indications of magnesium carbonate within the dark, dusty regions.

  20. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  1. Where to search for martian biota?

    Science.gov (United States)

    Tasch, Paul

    1997-07-01

    Martian Salt. Terrestrial halite containing negative crystals which entrapped drops of viscous fluid yielded viable bacteria. The fluid has a Br/Mg ratio which chemist W.T. Holser characterized as a `Permian bittern.' All relevant salt on Mars should be inspected for negative crystals and possible ancient bacterial tenants. Martian Water. Moist soil in the regolith, cooled hydrothermal fluids, sediments of recurrent oceanic water, and related to inferred strand lines, even limited water in future SNC-type meteorites, upper atmosphere liquid water or water vapor, and North Polar liquid water or ice--all liquid water in any form, wherever, should be collected for microbiological analysis. Vent Fauna. Living or fossil thermophiles as trace fossils, or fauna metallicized in relation to sulphide ores. Iron Bacteria. Limonitized magnetite ore (USSR) in thin section showed structures attributed to iron bacteria. Biogenic magnetite, produced by both aerobic and anaerobic bacteria and its significance. Carbonaceous chondrites (non martian) (Ivuna and Orgueil) yielded apparent life forms that could not be attributed to contamination during the given study. Are they extraterrestrial?

  2. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  3. Survival of microorganisms in smectite clays: Implications for Martian exobiology

    Science.gov (United States)

    Moll, Deborah M.; Vestal, J. Robie

    1992-08-01

    Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe 3+-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe 3+-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe 3+-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.

  4. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Science.gov (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  5. Sublimation and transport of water from the north residual polar cap on Mars

    Science.gov (United States)

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  6. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  7. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  8. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-10-13

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  9. Wind tunnel simulation of Martian sand storms

    Science.gov (United States)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  10. Life on Mars: Evidence from Martian Meteorites

    Science.gov (United States)

    McKay, David S.; Thomas-Keptra, Katie L.; Clemett, Simon J.; Gibson, Everett K., Jr.; Spencer, Lauren; Wentworth, Susan J.

    2009-01-01

    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features.

  11. Clouds in the Martian Atmosphere

    Science.gov (United States)

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  12. Experimental Demonstration of the Formation of Liquid Brines under Martian Polar Conditions in the Michigan Mars Environmental Chamber

    Science.gov (United States)

    Fischer, Erik; Martinez, German; Elliott, Harvey; Borlina, Caue; Renno, Nilton

    2014-05-01

    Liquid water is one of the necessary ingredients for the development of life as we know it. The behavior of various liquid states of H2O such as liquid brine, undercooled liquid interfacial water, subsurface melt water and ground water [1] needs to be understood in order to address the potential habitability of Mars for microbes and future human exploration. It has been shown thermodynamically that liquid brines can exist under Martian polar conditions [2, 3]. We have developed the Michigan Mars Environmental Chamber (MMEC) to simulate the entire range of Martian surface and shallow subsurface conditions with respect to temperature, pressure, relative humidity, solar radiation and soil wetness at equatorial and polar latitudes. Our experiments in the MMEC show that deliquescence of NaClO4, Mg(ClO4)2 and Ca(ClO4)2 occurs diurnally under the environmental conditions of the Phoenix landing site when these salts get in contact with water ice. Since Phoenix detected these salts and water ice at the landing site, including frost formation, it is extremely likely that deliquescence occurs at the Phoenix landing site. By layering NaClO4, Mg(ClO4)2 or Ca(ClO4)2 on top of a pure water ice slab at 800 Pa and 190 K and raising the temperature stepwise across the eutectic temperature of the perchlorate salts, we observe distinct changes in the Raman spectra of the samples when deliquescence occurs. When crossing the eutectic temperatures of NaClO4 (236 K), Mg(ClO4)2 (205 K) and Ca(ClO4)2 (199 K) [4, 5], the perchlorate band of the Raman spectrum shows a clear shift from 953 cm-1 to 936 cm-1. Furthermore, the appearance of a broad O-H vibrational stretching spectrum between 3244 cm-1 and 3580 cm-1 is another indicator of deliquescence. This process of deliquescence occurs on the order of seconds when the perchlorate salt is in contact with water ice. On the contrary, when the perchlorate salt is only subjected to water vapor in the Martian atmosphere, deliquescence was not

  13. Martian Gullies: H2O or CO2 snow?

    Science.gov (United States)

    Yolanda, C.; Durand-Manterola, H. J.

    2007-05-01

    The theories proposed to try to explain the origin of the Martian gullies involve either liquid water, liquid carbon dioxide or flows of dry granular material. We propose another processes that can be favorable for the origin of the Martian gullies, with our model by gaseous fluidification of CO2. We propose that on the Martian slopes, CO2 snow and dust transported by winds, are accumulate. During the Martian spring, sublimation of carbonic snow starts because of heat and weigth of the frezze layer, causing that the material mixed its fluidifized and slide downslope by gravity. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air inside the granular material. We also present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compared them with some Martian gullies, to identify possible processes evolved in its formation. We measured the lengths of those Martian gullies and the range was from 24 meters to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material and our field trip to Nevado de Toluca Volcano.

  14. Viking orbiter imaging observations of dust in the Martian atmosphere

    International Nuclear Information System (INIS)

    Briggs, G.A.; Baum, W.A.; Barnes, J.

    1979-01-01

    More than 20 local Martian dust clouds and two global dust storms were observed with the Viking orbiter camera. Sixteen of the local clouds were imaged in two colors or were observed with other instruments confirming their identification as dust clouds. These Viking results are compared with earth-based observations of Martian dust storms and with Mariner 9 data. Most of the dust activity seen by Viking occurred during southern hemisphere spring and early summer, when Mars was near perihelion and isolation was near maximum. About half the local clouds occurred near the edge of the southern polar cap, where winds are presumably enhanced by a strong regional temperature gradient. The other half occurred mainly in the southern hemisphere near regions where circulation models incorporating topography predict positive vertical velocities. Although dust clouds observed from earth show a similar partial correlation with models, some ambiguity exists concerning interpretation of regions near Hellespontus that have spawned the most spectacular Martian dust storms on record

  15. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  16. Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment

    Directory of Open Access Journals (Sweden)

    N. J. T. Edberg

    2009-12-01

    Full Text Available We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during ~24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.

  17. Polar Environment and Climate. The Challenges

    International Nuclear Information System (INIS)

    Cardinal, D.; Lipiatou, E.

    2007-01-01

    This publication summarises the presentations and discussions held during the title symposium. It includes session reports by chairs and short papers from attendees who were also invited to contribute. The report follows the structure of this multidisciplinary symposium: General session on the International Polar Year (IPY); Past, present and future climate; Human and wildlife health; Natural and socioeconomics impacts of climate change and finally, Public outreach, education and policy makers. The publication illustrates the importance and diversity of European research in the Polar Regions. It also identifies gaps in our current understanding of these particularly complex and vulnerable environments and the related research needs

  18. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    Science.gov (United States)

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70° N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of j”kulhlaup flooding events), possible

  19. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  20. The Electric Environment of Martian Dust Devils

    Science.gov (United States)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  1. Martian Gullies: Formation by CO2 Fluidification

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2006-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried explain its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We propose that the mechanism of formation of the gullies is as follows: In winter CO2 snow mixed with sand falls in the terrain. In spring the CO2 snow sublimate and gaseous CO2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air in the granular material. We present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compare them with Martian gullies choose from four different areas, to target goal recognize or to distinguish, (to identify) possible processes evolved in its formation. Also, we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material.

  2. Trajectories of martian habitability.

    Science.gov (United States)

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  3. Survival of microorganisms in smectite clays - Implications for Martian exobiology

    Science.gov (United States)

    Moll, Deborah M.; Vestal, J. R.

    1992-01-01

    The survival of Baccillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 has been examined in clays representing terrestrial (Wyoming type montmorillonite) and Martian (Fe3+ montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric composition and pressure. An important finding is that MS2 survived simulated Mars conditions better than the terrestrial environment, probably owing to stabilization of the virus caused by the cold and dry conditions of the simulated Mars environment. This finding, the first published indication that viruses may be able to survive in Mars-type soils, may have important implications for future missions to Mars.

  4. Polarization Of Light In The Natural Environment

    Science.gov (United States)

    Coulson, Kinsell L.

    1990-01-01

    This paper provides a characterization of the fields of light polarization with which the optical designer or user of optical devices in the natural environment must be concerned. After a brief historical outline of the principal developments in polarization theory and observations during the last two centuries, the main emphasis is on the two primary processes responsible for the polarization of light in nature--scattering of light by particles of the atmosphere and reflection from soils, vegetation, snow, and water at the earth's surface. Finally, a seven minute film on polarization effects which can be seen in everyday surroundings will be shown. Scattering by atmospheric particles is responsible for high values of polarization in various atmospheric conditions and at certain scattering geometries. Such scattering particles include molecules of the atmospheric gases, aerosols of dust, haze, and air pollution, water droplets of fog and clouds, and the ice crystals of cirrus. It is seen that development of the theory of scattering by such particles has outstripped the measurements necessary for validation of the theory, a fact which points up the importance of symposia such as the present one. The reverse is true, however, for the polarizing properties of natural surfaces. Only in the case of still water is the theory of reflection adequate to characterize in a quantitative fashion the polarizing effects produced by the reflection of light from such natural surfaces. Polarization of light by reflection from vegetation is of prime importance in a remote sensing context, but much further work is needed to characterize vegetative reflectance for the purpose. The short film on polarization effects provides a good visualization technique and training aid for students interested in the field.

  5. Evidence for a Heterogeneous Distribution of Water in the Martian Interior

    Science.gov (United States)

    McCubbin, Francis; Boyce, Jeremy W.; Srinvasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-01-01

    The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has

  6. Martian Neutron Energy Spectrometer (MANES)

    Science.gov (United States)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  7. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  8. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  9. Earth – Mars Similarity Criteria for Martian Vehicles

    Directory of Open Access Journals (Sweden)

    Octavian TRIFU

    2010-09-01

    Full Text Available In order to select the most efficient kind of a martian exploring vehicle, the similarity criteria are deduced from the equilibrium movement in the terrestrial and martian conditions. Different invariants have been obtained for the existing (entry capsules, parachutes and rovers and potential martian exploring vehicles (lighter-than-air vehicle, airplane, helicopter and Mars Jumper. These similarity criteria, as non dimensional numbers, allow to quickly compare if such a kind of vehicles can operate in the martian environment, the movement performances, the necessary geometrical dimensions and the power consumption. Following this way of study it was concluded what vehicle is most suitable for the near soil Mars exploration. “Mars Rover” has less power consumption on Mars, but due to the rugged terrain the performances are weak. A vacuumed rigid airship is possible to fly with high performances and endurance on Mars, versus the impossibility of such a machine on the Earth. Due to very low density and the low Reynolds numbers in the Mars atmosphere, the power consumption for the martian airplane or helicopter, is substantial higher. The most efficient vehicle for the Mars exploration it seems to be a machine using the in-situ non-chemical propellants: the 95% CO2 atmosphere and the weak solar radiation. A small compressor, electrically driven by photovoltaics, compresses the gas in a storage tank, in time. If the gas is expanded through a nozzle, sufficient lift and control forces are obtained for a VTOL flight of kilometers over the martian soil, in comparison with tens of meters of the actual Mars rovers.

  10. South Polar Polygons

    Science.gov (United States)

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  11. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    Science.gov (United States)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  12. Variable g- Mars environmental chamber: a small window of the martian environment for life science investigations

    Science.gov (United States)

    Sgambati, Antonella; Slenzka, Klaus; Schmeyers, Bernd; Di Capua, Massimiliano; Harting, Benjamin

    Human exploration and permanent settlement on the Martian surface is the one of the most attractive and ambitious endeavors mankind has ever faced. As technology and research progress, solutions and information that were before unavailable are slowly making the dream become everyday more feasible. In the past years a huge amount of knowledge was gathered by the Mars Exploration Rovers Spirit and Opportunity and now, even more insight is being gathered through the latest rover of the family, Curiosity. In this work, data from the various missions will be used to define and reproduce on Earth the characteristic Martian atmospheric conditions. A small Mars environmental chamber has been designed and built with the objective of studying the effects of the Martian environment on biological systems. The Variable gravity Mars Environmental Chamber (VgMEC) will allow researchers to replicate atmospheric pressure, gas composition, temperature and UVA/B exposure typical of the equatorial regions of Mars. By exposing biological systems to a controllable set of stressor it will be possible to identify both multi and single stressor effects on the system of interest. While several Mars environment simulation facilities exist, due to their size and mass, all are confined to floor-fixed laboratory settings. The VgMEC is an OHB funded project that wishes to bring together the scientific community and the industry. Collaborations will be enabled by granting low cost access to cutting-edge instrumentation and services. Developed at OHB System AG, VgMEC has been designed from the ground up to be a 28L, compact and lightweight test volume capable of being integrated in existing centrifuges (such as the ESA-ESTEC LCD), gimbal systems and parabolic flight aircraft. The VgMEC support systems were designed to accommodate continuous operations of virtually unlimited duration through the adoption of solutions such as: hot swappable gas/liquid consumables bottles, low power requirements, an

  13. Topography and stratigraphy of Martian polar layered deposits

    Science.gov (United States)

    Blasius, K. R.; Cutts, J. A.; Howard, A. D.

    1982-01-01

    The first samples of high resolution Viking Orbiter topographic and stratigraphic data for the layered polar deposits of Mars are presented, showing that these deposits are with respect to both slopes and angular relief similar to those in the south. It is also demonstrated that, in conjunction with stereophotogrammetry, photoclinometry holds promise as a tool for detailed layered deposit studies. The spring season photography, which lends itself to photoclinometric analysis, covers the entire area of the north polar deposits. Detailed tests of layered terrain evolution hypotheses will be made, upon refinement of the data by comparison with stereo data. A more promising refining technique will make use of averaging perpendicular to selected sections to enhance SNR. Local reliefs of 200-800 m, and slopes of 1-8 deg, lead to initial calculations of average layer thickness which yields results of 14-46 m, linearly correlated with slope.

  14. Martian gullies: possible formation mechanism by dry granular material..

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material

  15. Polar warming in the middle atmosphere of Mars

    Science.gov (United States)

    Deming, D.; Mumma, M. J.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1986-01-01

    During the 1984 Mars opposition, ground-based laser heterodyne spectroscopy was obtained for the nonthermal core emission of the 10.33-micron R(8) and 10.72-micron P(32) lines of C-12(O-16)2 at 23 locations on the Martian disk. It is deduced on the basis of these data that the temperature of the middle Martian atmosphere varies with latitude, and a meridional gradient of 0.4-0.9 K/deg latitude is indicated. The highest temperatures are noted to lie at high latitudes in the winter hemisphere; as in the terrestrial case of seasonal effects at the menopause, this winter polar warming in the Martian middle atmosphere requires departures from radiative equilibrium. Two-dimensional circulation model comparisons with these results indicate that atmospheric dust may enhance this dynamical heating at high winter latitudes.

  16. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements.

    Science.gov (United States)

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.

  17. Frequency and Polarization Diversity Jamming of Communications in Urban Environments

    National Research Council Canada - National Science Library

    Ulama, Tuncay

    2005-01-01

    The purpose of this research is to investigate how to exploit frequency and polarization techniques in reducing the effects of jamming against UAV relay communication links in an urban warfare environment...

  18. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  19. Martian meteorites and Martian magnetic anomalies: a new perspective from NWA 7034 (Invited)

    Science.gov (United States)

    Gattacceca, J.; Rochette, P.; Scozelli, R. B.; Munayco, P.; Agee, C. B.; Quesnel, Y.; Cournede, C.; Geissman, J. W.

    2013-12-01

    The magnetic anomalies observed above the Martian Noachian crust [1] require strong crustal remanent magnetization in the 15-60 A/m range over a thickness of 20-50 km [2,3]. The Martian rocks available for study in the form of meteorites do contain magnetic minerals (magnetite and/or pyrrhotite) but in too small amount to account for such strong remanent magnetizations [4]. Even though this contradiction was easily explained by the fact that Martian meteorites (mostly nakhlites and shergottites) are not representative of the Noachian Martian crust, we were left with no satisfactory candidate lithology to account for the Martian magnetic anomalies. The discovery in the Sahara of a new type of Martian meteorite (NWA 7034 [5] and subsequent paired stones which are hydrothermalized volcanic breccia) shed a new light on this question as it contains a much larger amount of ferromagnetic minerals than any other Martian meteorite. We present here a study of the magnetic properties of NWA 7034, together with a review of the magnetic properties of thirty other Martian meteorites. Magnetic measurements (including high and low temperature behavior and Mössbauer spectroscopy) show that NWA 7034 contains about 15 wt.% of magnetite with various degrees of substitution and maghemitization up to pure maghemite, in the pseudo-single domain size range. Pyrrhotite, a common mineral in other Martian meteorites is not detected. Although it is superparamagnetic and cannot carry remanent magnetization, nanophase goethite is present in significant amounts confirming that NWA 7034 is the most oxidized Martian meteorite studied so far, as already indicated by the presence of maghemite (this study) and pyrite [5]. These magnetic properties show that a kilometric layer of a lithology similar to NWA 7034 magnetized in a dynamo field would be enough to account for the strongest Martian magnetic anomalies. Although the petrogenesis of NWA 7034 is still debated, as the brecciation could be either

  20. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  1. Lava Tubes as Martian Analog sites on Hawaii Island

    Science.gov (United States)

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  2. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    Science.gov (United States)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  3. Extended survival of several organisms and amino acids under simulated martian surface conditions

    Science.gov (United States)

    Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.; Radtke, K.; Chan, E.; Tronick, S.; Borgonie, G.; Mancinelli, R. L.; Rothschild, L. J.; Rogoff, D. A.; Horikawa, D. D.; Onstott, T. C.

    2011-02-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms' survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical

  4. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    Science.gov (United States)

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  5. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    Science.gov (United States)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent

  6. Backscattering Moessbauer spectroscopy of Martian dust

    International Nuclear Information System (INIS)

    Bertelsen, P.; Madsen, M. B.; Binau, C. S.; Goetz, W.; Gunnlaugsson, H. P.; Hviid, S. F.; Kinch, K. M.; Klingelhoefer, G.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Squyres, S. W.

    2005-01-01

    We report on the determination of the mineralogy of the atmospherically suspended Martian dust particles using backscattering 57 Fe Moessbauer spectroscopy on dust accumulated onto the magnets onboard the Mars Exploration Rovers. The spectra can be interpreted in terms of minerals of igneous origin, and shows only limited, if any, amounts of secondary minerals that may have formed in the presence of liquid water. These findings suggest that the dust has formed in a dry environment over long time in the history of the planet.

  7. Variation of linear and circular polarization persistence for changing field of view and collection area in a forward scattering environment

    Science.gov (United States)

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; Kemme, Shanalyn A.; Dereniak, Eustace L.

    2016-05-01

    We present experimental and simulation results for a laboratory-based forward-scattering environment, where 1 μm diameter polystyrene spheres are suspended in water to model the optical scattering properties of fog. Circular polarization maintains its degree of polarization better than linear polarization as the optical thickness of the scattering environment increases. Both simulation and experiment quantify circular polarization's superior persistence, compared to that of linear polarization, and show that it is much less affected by variations in the field of view and collection area of the optical system. Our experimental environment's lateral extent was physically finite, causing a significant difference between measured and simulated degree of polarization values for incident linearly polarized light, but not for circularly polarized light. Through simulation we demonstrate that circular polarization is less susceptible to the finite environmental extent as well as the collection optic's limiting configuration.

  8. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  9. Relative chronology of Martian volcanoes

    International Nuclear Information System (INIS)

    Landheim, R.; Barlow, N.G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

  10. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  11. Photovoltaic array for Martian surface power

    Science.gov (United States)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  12. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life.

    Science.gov (United States)

    Westall, Frances; Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Loizeau, Damien; Vago, Jorge L; Kminek, Gerhard; Gaboyer, Frédéric; Campbell, Kathleen A; Bréhéret, Jean-Gabriel; Gautret, Pascale; Cockell, Charles S

    2015-11-01

    The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. Mars-Early Earth-Anaerobic chemotrophs

  13. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  14. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    Science.gov (United States)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica

  15. The ultraviolet environment of Mars: biological implications past, present, and future.

    Science.gov (United States)

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  16. The ultraviolet environment of Mars: biological implications past, present, and future

    Science.gov (United States)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  17. Yamato 980459: Crystallization of Martian Magnesian Magma

    Science.gov (United States)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  18. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    Science.gov (United States)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  19. Low computation vision-based navigation for a Martian rover

    Science.gov (United States)

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  20. What is the Time Scale for Orbital Forcing of the Martian Water Cycle?

    Science.gov (United States)

    Hecht, M. H.

    2003-01-01

    Calculation of the periodic variations in the martian orbital parameters by Ward and subsequent refinements to the theory have inspired numerous models of variation of the martian water cycle. Most of these models have focused on variations in planetary obliquity on a both a short-term (110 kyr) time scale as well as larger oscillations occuring over millions of years. To a lesser extent, variations in planetary eccentricity have also been considered. The third and fastest mode of variation, the precession of the longitude of perihelion, has generally been deemphasized because, among the three parameters, it is the only one that does not change the integrated annual insolation. But as a result of this precession, the asymmetry in peak summer insolation between the poles exceeds 50%, with the maximum cycling between poles every 25.5 kyrs. The relative contribution of these different elements to orbital forcing of climate takes on particular importance in the context of apparently recent waterrelated features such as gullies or polar layered deposits (PLD). Christensen, for example, recently indentified mantling of heavily gullied crater walls as residual dust-covered snow deposits that were responsible for the formation of the gullies in a previous epoch. Christensen assumed that the snow was originally deposited at a period of high obliquity which was stabilized against sublimation by a lag deposit of dust. It is suggested here that not obliquity, but the shortterm oscillations associated with precession of the perihelion may play the dominant role in the formation of gullies, major strata in the polar layered deposits (PLD), and other water-related features.

  1. Hydrological and Climatic Significance of Martian Deltas

    Science.gov (United States)

    Di Achille, G.; Vaz, D. A.

    2017-10-01

    We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.

  2. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; International Dreams Team

    2018-07-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and

  3. The physics of Martian weather and climate: a review

    International Nuclear Information System (INIS)

    Read, P L; Mulholland, D P; Lewis, S R

    2015-01-01

    The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO 2 . These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist’s viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies. (review)

  4. The Mojave Desert: A Martian Analog Site for Future Astrobiology Themed Missions

    Science.gov (United States)

    Salas, E.; Abbey, W.; Bhartia, R.; Beegle, L. W.

    2011-01-01

    Astrobiological interest in Mars is highlighted by evidence that Mars was once warm enough to have liquid water present on its surface long enough to create geologic formations that could only exist in the presense of extended fluvial periods. These periods existed at the same time life on Earth arose. If life began on Mars as well during this period, it is reasonable to assume it may have adapted to the subsurface as environments at the surface changed into the inhospitable state we find today. If the next series of Mars missions (Mars Science Laboratory, the ExoMars Trace Gas Orbiter proposed for launch in 2016, and potential near surface sample return) fail to discover either extinct or extant life on Mars, a subsurface mission would be necessary to attempt to "close the book" on the existence of martian life. Mars is much colder and drier than Earth, with a very low pressure CO2 environment and no obvious habitats. Terrestrial regions with limited precipitation, and hence reduced active biota, are some of the best martian low to mid latitude analogs to be found on Earth, be they the Antarctic dry valleys, the Atacama or Mojave Deserts. The Mojave Desert/Death Valley region is considered a Mars analog site by the Terrestrial Analogs Panel of the NSF-sponsored decadal survey; a field guide was even developed and a workshop was held on its applicability as a Mars analog. This region has received a great deal of attention due to its accessibility and the variety of landforms and processes observed relevant to martian studies.

  5. Eddy transport of water vapor in the Martian atmosphere

    Science.gov (United States)

    Murphy, J. R.; Haberle, Robert M.

    1993-01-01

    Viking orbiter measurements of the Martian atmosphere suggest that the residual north polar water-ice cap is the primary source of atmospheric water vapor, which appears at successively lower northern latitudes as the summer season progresses. Zonally symmetric studies of water vapor transport indicate that the zonal mean meridional circulation is incapable of transporting from north polar regions to low latitudes the quantity of water vapor observed. This result has been interpreted as implying the presence of nonpolar sources of water. Another possibility is the ability of atmospheric wave motions, which are not accounted for in a zonally symmetric framework, to efficiently accomplish the transport from a north polar source to the entirety of the Northern Hemisphere. The ability or inability of the full range of atmospheric motions to accomplish this transport has important implications regarding the questions of water sources and sinks on Mars: if the full spectrum of atmospheric motions proves to be incapable of accomplishing the transport, it strengthens arguments in favor of additional water sources. Preliminary results from a three dimensional atmospheric dynamical/water vapor transport numerical model are presented. The model accounts for the physics of a subliming water-ice cap, but does not yet incorporate recondensation of this sublimed water. Transport of vapor away from this water-ice cap in this three dimensional framework is compared with previously obtained zonally symmetric (two dimensional) results to quantify effects of water vapor transport by atmospheric eddies.

  6. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  7. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  8. Rover's Wheel Churns Up Bright Martian Soil

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  9. Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean

    Science.gov (United States)

    Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.

    2015-10-01

    The existance of a large Martian cryolitozone consisting of different cryogenic formations both on the surface- polar caps ice and in subsurface layer (and probably overcooled salt solutions in lower horizons) is conditioned mostly by the planet's geological history and atmosphere evolution. The very structure of the cryolitozone with its strongly pronounced zone character owing to drying up of 0 to 200 m thick surface layer in the equatorial latitudes ranging from + 30 to - 300 was formed in the course of long-periodic climatic variations and at present is distincly heterogeneous both depthward and in latitudinal and longtudinal dimensions. The dryed up region of Martian frozen rocks is estimated to have been developing during more than 3.5 bln years, so the upper layer boundary of permafrost can serve as a sort of indicator reflecting the course of Martian climatic evolution. Since the emount of surface moisture and its distribition character are conditioned by the cryolitozone scale structure its investigation is considered to be an important aspect of the forthcoming Martian projects. In order to create Martian climate and atmosphere circulation models the whole complex information on surface provided by optical and infrared ranges observations, regional albedo surface measurements, ground layer thermal flow investigations, etc. must be carefully studed. The investigation of permafrost formation global distribution and their appearance in h ≤1 m thick subsurface layer may be provided successfully by using active-passive microwave remote sensing techniques [1]. Along with optical and infrared observations the method of orbital panoramic microwave radiometry in centi- and decimeter ranges would contribute to the mapping of the cryolitozone global surface distribution. This proposal discusses methodical and experimental possibilities of this global observation of Martian cryolitozone as the additional way for investigation subsurface of Mars. The main idea of

  10. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  11. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    Science.gov (United States)

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric

  12. An extensive phase space for the potential martian biosphere.

    Science.gov (United States)

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  13. Magnesium Based Rockets for Martian Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop Mg rockets for Martian ascent vehicle applications. The propellant can be acquired in-situ from MgO in the Martian regolith (5.1% Mg by mass)...

  14. Manganese, Metallogenium, and Martian Microfossils

    Science.gov (United States)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  15. Practical polarization maintaining optical fibre temperature sensor for harsh environment application

    Science.gov (United States)

    Yang, Yuanhong; Xia, Haiyun; Jin, Wei

    2007-10-01

    A reflection spot temperature sensor was proposed based on the polarization mode interference in polarization maintaining optical fibre (PMF) and the phenomenon that the propagation constant difference of the two orthogonal polarization modes in stressing structures PMF is sensitive to temperature and the sensing equation was obtained. In this temperature sensor, a broadband source was used to suppress the drift due to polarization coupling in lead-in/lead-out PMF. A characteristic and performance investigation proved this sensor to be practical, flexible and precise. Experimental results fitted the theory model very well and the noise-limited minimum detectable temperature variation is less than 0.01 °C. The electric arc processing was investigated and the differential propagation constant modifying the PMF probe is performed. For the demand of field hot-spot monitoring of huge power transformers, a remote multi-channel temperature sensor prototype has been made and tested. Specially coated Panda PMF that can stand high temperatures up to 250 °C was fabricated and used as probe fibres. The sensor probes were sealed within thin quartz tubes that have high voltage insulation and can work in a hot oil and vapour environment. Test results show that the accuracy of the system is better than ±0.5 °C within 0 °C to 200 °C.

  16. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    Science.gov (United States)

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component

  17. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd; Köhler, Jan; Appel, Jan K.; Böhm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Lohf, Henning; Martin, Cesar [Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel (Germany); Zeitlin, Cary [Southwest Research Institute, Earth, Oceans and Space Department, Durham, NH (United States); Rafkin, Scot; Hassler, Donald M.; Ehresmann, Bent [Southwest Research Institute, Space Science and Engineering Division, Boulder, CO (United States); Posner, Arik [NASA Headquarters, Science Mission Directorate, Washington, DC (United States); Brinza, David E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Kahanpää, H. [Finnish Meteorological Institute, Helsinki (Finland); Reitz, Günther, E-mail: guo@physik.uni-kiel.de [Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt, Köln (Germany)

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.

  18. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Science.gov (United States)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  19. MetNet Network Mission for Martian Atmospheric Investigations

    Science.gov (United States)

    Harri, A.-M.; Alexashkin, S.; Arrugeo, I.; Schmidt, W.; Vazquez, L.; Genzer, M.; Haukka, H.

    2014-07-01

    A new kind of planetary exploration mission for Mars called MetNet is being developed for martian atmospheric investigations. The eventual scope of the MetNet Mission is to deploy tens of small landers on the martian surface.

  20. Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation▿ †

    Science.gov (United States)

    Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri

    2008-01-01

    Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857

  1. Advanced concept for a crewed mission to the martian moons

    Science.gov (United States)

    Conte, Davide; Di Carlo, Marilena; Budzyń, Dorota; Burgoyne, Hayden; Fries, Dan; Grulich, Maria; Heizmann, Sören; Jethani, Henna; Lapôtre, Mathieu; Roos, Tobias; Castillo, Encarnación Serrano; Schermann, Marcel; Vieceli, Rhiannon; Wilson, Lee; Wynard, Christopher

    2017-10-01

    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.

  2. Do Martian Blueberries Have Pits? -- Artifacts of an Early Wet Mars

    Science.gov (United States)

    Lerman, L.

    2005-03-01

    Early Martian weather cycles would have supported organic chemical self-organization, the assumed predecessor to an independent "origin" of Martian life. Artifacts of these processes are discussed, including the possibility that Martian blueberries nucleated around organic cores.

  3. TDEM for Martian in situ resource prospecting missions

    Directory of Open Access Journals (Sweden)

    G. Tacconi

    2003-06-01

    Full Text Available This paper presents a TDEM (Time Domain Electromagnetic Methods application, addressed to the search for water on Mars. In this context, the opportunities for a TDEM system as payload in a future mission are investigated for different in situ exploration scenarios. The TDEM sounding capability is evaluated with respect to the expected Martian environment, and some considerations are made about the many unknown variables (above all the background EM noise and the subsoil composition altogether with the limited resources availability (mission constraints in mass, time and power and the way they could represent an obstacle for operations and measurements.

  4. Layering extraction from subsurface radargrams over Greenland and the Martian NPLD by combining wavelet analysis with Hough transforms

    Science.gov (United States)

    Xiong, Si-Ting; Muller, Jan-Peter

    2017-04-01

    Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts

  5. Proceedings of the sixth circumpolar symposium on remote sensing of polar environments. CD-ROM ed.

    International Nuclear Information System (INIS)

    Taylor, D.

    2000-09-01

    This international conference focused on the application of remote sensing to monitor morphological and environmental changes in polar environments to better understand the impacts of climatic change. Remote sensing included the use of satellite image mapping, LANDSAT imagery, and digitized aerial photography. The conference was divided into several sessions entitled: (1) techniques, (2) wildlife habitat, (3) regional mapping, (4) environment and climate, (5) geographical information systems (GIS) modeling, (6) geology and geomorphology, (7) snow and ice, and (8) monitoring. The work presented at this conference indicates that remote sensing, photogrammetry, GIS and cartography are cost-effective means to monitor hard to reach polar regions. A total of 27 papers were presented at this conference. Four have been processed separately for inclusion on the database. refs., tabs,. figs

  6. The Search for Ammonia in Martian Soils with Curiosity's SAM Instrument

    Science.gov (United States)

    Wray, James J.; Archer, P. D.; Brinckerhoff, W. B.; Eigenbrode, J. L.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; McKay, C. P.; Navarro-Gonzalez, R.; hide

    2013-01-01

    Nitrogen is the second or third most abundant constituent of the Martian atmosphere [1,2]. It is a bioessential element, a component of all amino acids and nucleic acids that make up proteins, DNA and RNA, so assessing its availability is a key part of Curiosity's mission to characterize Martian habitability. In oxidizing desert environments it is found in nitrate salts that co-occur with perchlorates [e.g., 3], inferred to be widespread in Mars soils [4-6]. A Mars nitrogen cycle has been proposed [7], yet prior missions have not constrained the state of surface N. Here we explore Curiosity's ability to detect N compounds using data from the rover's first solid sample. Companion abstracts describe evidence for nitrates [8] and for nitriles (C(triple bond)N) [9]; we focus here on nonnitrile, reduced-N compounds as inferred from bonded N-H. The simplest such compound is ammonia (NH3), found in many carbonaceous chondrite meteorites in NH4(+) salts and organic compounds [e.g., 10].

  7. Solubility of C-O-H volatiles in graphite-saturated martian basalts and application to martian atmospheric evolution

    Science.gov (United States)

    Stanley, B. D.; Hirschmann, M. M.; Withers, A. C.

    2012-12-01

    The modern martian atmosphere is thin, leading to surface conditions too cold to support liquid water. Yet, there is evidence of liquid surface water early in martian history that is commonly thought to require a thick CO2 atmosphere. Our previous work follows the analysis developed by Holloway and co-workers (Holloway et al. 1992; Holloway 1998), which predicts a linear relationship between CO2 and oxygen fugacity (fO2) in graphite-saturated silicate melts. At low oxygen fugacity, the solubility of CO2 in silicate melts is therefore very low. Such low calculated solubilities under reducing conditions lead to small fluxes of CO2 associated with martian magmatism, and therefore production of a thick volcanogenic CO2 atmosphere could require a prohibitively large volume of mantle-derived magma. The key assumption in these previous calculations is that the carbonate ion is the chief soluble C-O-H species. The results of the calculations would not be affected appreciably if molecular CO2, rather than carbonate ion, were an important species, but could be entirely different if there were other appreciable C-species such as CO, carbonyl (C=O) complexes, carbide (Si-C), or CH4. Clearly, graphite-saturated experiments are required to explore how much volcanogenic C may be degassed by reduced martian lavas. A series of piston-cylinder experiments were performed on synthetic martian starting materials over a range of oxygen fugacities (IW+2.3 to IW-0.9), and at pressures of 1-3 GPa and temperatures of 1340-1600 °C in Pt-graphite double capsules. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and range from 0.0026-0.50 wt%. CO2 solubilities change by one order of magnitude with an order of magnitude change in oxygen fugacity, as predicted by previous work. Secondary ion mass spectrometry (SIMS) determinations of C contents in glasses range from 0.0131-0.2626 wt%. C contents determined by SIMS are consistently higher

  8. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    Science.gov (United States)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  9. Habitable periglacial landscapes in martian mid-latitudes

    Science.gov (United States)

    Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.

    2012-05-01

    Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).

  10. Laser-powered Martian rover

    Science.gov (United States)

    Harries, W. L.; Meador, W. E.; Miner, G. A.; Schuster, Gregory L.; Walker, G. H.; Williams, M. D.

    1989-01-01

    Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived.

  11. Martian dust storms as a possible sink of atmospheric methane

    Science.gov (United States)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  12. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    Science.gov (United States)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  13. Physical and chemical properties of the Martian soil: Review of resources

    Science.gov (United States)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  14. Rover's Wheel Churns Up Bright Martian Soil (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  15. Evidence for methane in Martian meteorites.

    Science.gov (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  16. Comparision of the Martian Gullies With Terrestrial Ones

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2005-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried to explained its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We present the characteristics of some terrestrial gullies formed at cold enviroment, sited at the Nevado de Toluca volcanoe near Toluca City, Mexico. We compare them with Martian gullies, choisen from four different areas, to recognize possible processes evolved in its formation. Also, we measured the lenghts of those Martian gullies and their range was from 24 m 1775 m.

  17. Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere

    Science.gov (United States)

    Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.

  18. Planetary geomorphology research: FY 1990-1991

    Science.gov (United States)

    Malin, M. C.

    1991-01-01

    Progress in the following research areas is discussed: (1) volatile ice sublimation in a simulated Martian polar environment; (2) a global synthesis of Venusian tectonics; (3) a summary of nearly a decade of field studies of eolian processes in cold volcanic deserts; and (4) a model for interpretation of Martian sediment distribution using Viking observations. Some conclusions from the research are presented.

  19. Martian Mixed Layer during Pathfinder Mission

    Science.gov (United States)

    Martinez, G. M.; Valero, F.; Vazquez, L.

    2008-09-01

    In situ measurements of the Martian Planetary Boundary Layer (MPBL) encompass only the sur- face layer. Therefore, in order to fully address the MPBL, it becomes necessary to simulate somehow the behaviour of the martian mixed layer. The small-scale processes that happen in the MPBL cause GCM's ([1], [2]) to describe only partially the turbulent statistics, height, convective scales, etc, of the surface layer and the mixed layer. For this reason, 2D and 3D martian mesoscale models ([4], [5]), and large eddy simulations ([4], [6], [7], [8]) have been designed in the last years. Although they are expected to simulate more accurately the MPBL, they take an extremely expensive compu- tational time. Alternatively, we have derived the main turbu- lent characteristics of the martian mixed layer by using surface layer and mixed layer similarity ([9], [10]). From in situ temperature and wind speed measurements, together with quality-tested simu- lated ground temperature [11], we have character- ized the martian mixed layer during the convective hours of Pathfinder mission Sol 25. Mean mixed layer turbulent statistics like tem- perature variance , horizontal wind speed variance , vertical wind speed variance , viscous dissipation rate , and turbu- lent kinetic energy have been calculated, as well as the mixed layer height zi, and the convective scales of wind w? and temperature θ?. Our values, obtained with negligible time cost, match quite well with some previously obtained results via LES's ([4] and [8]). A comparisson between the above obtained mar- tian values and the typical Earth values are shown in Table 1. Convective velocity scale w doubles its counterpart terrestrial typical value, as it does the mean wind speed variances and . On the other hand, the temperature scale θ? and the mean temperature variance are virtually around one order higher on Mars. The limitations of these results concern the va- lidity of the convective mixed layer similarity. This theory

  20. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    Science.gov (United States)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  1. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.

  2. Magnesium isotope systematics in Martian meteorites

    Science.gov (United States)

    Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus

    2017-09-01

    Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current

  3. Chemical evolution of the early Martian hydrosphere

    International Nuclear Information System (INIS)

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  4. Curation of US Martian Meteorites Collected in Antarctica

    Science.gov (United States)

    Lindstrom, M.; Satterwhite, C.; Allton, J.; Stansbury, E.

    1998-01-01

    To date the ANSMET field team has collected five martian meteorites (see below) in Antarctica and returned them for curation at the Johnson Space Center (JSC) Meteorite Processing Laboratory (MPL). ne meteorites were collected with the clean procedures used by ANSMET in collecting all meteorites: They were handled with JSC-cleaned tools, packaged in clean bags, and shipped frozen to JSC. The five martian meteorites vary significantly in size (12-7942 g) and rock type (basalts, lherzolites, and orthopyroxenite). Detailed descriptions are provided in the Mars Meteorite compendium, which describes classification, curation and research results. A table gives the names, classifications and original and curatorial masses of the martian meteorites. The MPL and measures for contamination control are described.

  5. Rover's Wheel Churns Up Bright Martian Soil (Stereo)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.

  6. Opportunity's Surroundings on Sol 1818 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  7. Electrodynamics of the Martian Ionosphere

    Science.gov (United States)

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  8. Water in Pyroxene and Olivine from Martian Meteorites

    Science.gov (United States)

    Peslier, A. H.

    2012-01-01

    Water in the interior of terrestrial planets can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) like olivine, pyroxene, or feldspar [1-3]. Although these minerals contain only tens to hundreds of ppm H2O, this water can amount to at least one ocean in mass when added at planetary scales because of the modal dominance of NAM in the mantle and crust [4]. Moreover these trace amounts of water can have drastic effects on melting temperature, rheology, electrical and heat conductivity, and seismic wave attenuation [5]. There is presently a debate on how much water is present in the martian mantle. Secondary ionization mass spectrometry (SIMS) studies of NAM [6], amphiboles and glass in melt inclusions [7-10], and apatites [11, 12] from Martian meteorites report finding as much water as in the same phases from Earth's igneous rocks. Most martian hydrous minerals, however, generally have the relevant sites filled with Cl and F instead of H [13, 14], and experiments using Cl [15] in parent melts can reproduce Martian basalt compositions as well as those with water [16]. We are in the process of analyzing Martian meteorite minerals by Fourier transform infrared spectrometry (FTIR) in order to constrain the role of water in this planet s formation and magmatic evolution

  9. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  10. Sediment volume in the north polar sand seas of Mars

    International Nuclear Information System (INIS)

    Lancaster, N.; Greeley, R.

    1990-01-01

    Data from studies of the cross-sectional area of terrestrial transverse dunes have been combined with maps of dune morphometry derived from Viking orbiter images to generate new estimates of sediment thickness and dune sediment volume in the north polar sand seas of Mars. A relationship between dune spacing and equivalent sediment thickness (EST) was developed from field data on Namibian and North American dunes and was applied to data on dune spacing and dune cover measured on Viking orbiter images to generate maps of dune sediment thickness for Martian north polar sand seas. There are four major sand seas in the north polar region of Mars, covering an area of 6.8 x 10 5 km 2 . Equivalent sediment thickness ranges between 0.5 and 6.1 m with a mean of 1.8 m. The sand seas contain a total of 1158 km 3 of dune sediment, which may have been derived by erosion of polar layered deposits and concentrated in its present location by winds that change direction seasonally

  11. Introduction: The 6th special issue of Mars Polar Science

    Science.gov (United States)

    Sori, Michael M.; Brown, Adrian J.

    2018-07-01

    Polar science at Mars has the ability to elucidate outstanding problems in the planet's history. The long-lived, kilometers-thick deposits at both poles hold a climate record that is still being steadily deciphered (e.g., Becerra et al., 2017), seasonal volatiles are important drivers of geomorphological change (e.g., Pilorget and Forget, 2015), and there is a growing recognition that water ice at lower latitudes is an important piece of the story in understanding polar processes (e.g., Bramson et al., 2015). Additionally, the icy volatiles trapped in the mid-latitudes will be an important resource for future human explorers (e.g., Viola et al., 2015). One task of this generation of Martian polar explorers is to understand the evolution of water as it cycles through the polar and mid-latitudes on geologic timescales in anticipation of its eventual utilization by the next generation of human and robotic explorers. To address these and other topics, the 6th International Mars Polar Science Conference was held in September 2016 in Reykjavik, Iceland (Smith et al., 2018). This special issue represents 16 papers presented at that conference.

  12. The provenance, formation, and implications of reduced carbon phases in Martian meteorites

    Science.gov (United States)

    Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.

    2016-11-01

    This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.

  13. Martian surface

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    The surface of Mars is characterized on the basis of reformatted Viking remote-sensing data, summarizing results published during the period 1983-1986. Topics examined include impact craters, ridges and faults, volcanic studies (modeling of surface effects on volcanic activity, description and interpretation of volcanic features, and calculations on lava-ice interactions), the role of liquid water on Mars, evidence for abundant ground ice at high latitudes, water-cycle modeling, and the composition and dynamics of Martian dust

  14. The Martian Water Cycle Based on 3-D Modeling

    Science.gov (United States)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  15. Martian sub-surface ionising radiation: biosignatures and geology

    Directory of Open Access Journals (Sweden)

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  16. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    Science.gov (United States)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  17. Martian extratropical cyclones

    Science.gov (United States)

    Hunt, G. E.; James, P. B.

    1979-01-01

    Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.

  18. Australian and Canadian perspectives and regulations for protecting the polar marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Donald R.

    1997-12-31

    The report compares Australian and Canadian responses for protecting polar marine environments. Vast areas of the polar seas fall within their potential combined EEZ/continental shelf jurisdiction. The Antarctic Treaty provisions, doubts on the status of the Northwest Passage waters and the capacity to enforce legislative initiatives against foreign vessels have been constraints. Australia`s enactment of legislation prohibiting mining within the AAT continental shelf and whaling within the AAT EEZ has tested the Antarctic Treaty. Canada`s reaction to the Manhattan and the enactment of the Arctic Waters Pollution Prevention Act is an example of unilateral action. While the countries have made noteworthy initiatives to enhance the protection of their polar marine environments, doubts remain in some instances on their capacity to give effect to the initiatives. However, sovereignty remains at the heart of their response. Failure to address Antarctic marine environmental issues will rebound on the environment and reflect poorly upon Australia`s sovereignty claim to the AAT. For Canada it is a sovereignty issue and has directly impact upon its citizens inhabiting the islands and coastal areas of the Canadian Arctic. The Madrid Protocol provides the strongest legal basis for the Antarctic Treaty parties to enact laws and regulations in Antarctica. Conservation measures adopted under the Convention for the Conservation of Antarctic Marine Living Resources focuses increasingly on environmental concerns. The most significant regional initiative adopted by Arctic states is the AEPS which does not have a legal foundation. It`s co-operative programs provide basis for co-operation in dealing with environmental problems. It clearly recognises that only co-operative responses will achieve significant outcomes. The 1990s have posed new challenges for marine environmental protection such as ship-based tourism in Antarctica and the growing pressure to use the Northwest Passage on a

  19. Iron Redox Systematics of Shergottites and Martian Magmas

    Science.gov (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  20. Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  1. Martian Ionospheric Observation and Modeling

    Science.gov (United States)

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  2. Mars polar cap: a habitat for elementary life1

    Science.gov (United States)

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  3. Opportunity's Surroundings on Sol 1798 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  4. Opportunity's Surroundings on Sol 1687 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a polar projection with geometric seam correction.

  5. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    Science.gov (United States)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  6. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  7. The Martian Oasis Detector

    Science.gov (United States)

    Smith, P. H.; tomasko, M. G.; McEwen, A.; Rice, J.

    2000-07-01

    The next phase of unmanned Mars missions paves the way for astronauts to land on the surface of Mars. There are lessons to be learned from the unmanned precursor missions to the Moon and the Apollo lunar surface expeditions. These unmanned missions (Ranger, Lunar Orbiter, and Surveyor) provided the following valuable information, useful from both a scientific and engineering perspective, which was required to prepare the way for the manned exploration of the lunar surface: (1) high resolution imagery instrumental to Apollo landing site selection also tremendously advanced the state of Nearside and Farside regional geology; (2) demonstrated precision landing (less than two kilometers from target) and soft landing capability; (3) established that the surface had sufficient bearing strength to support a spacecraft; and (4) examination of the chemical composition and mechanical properties of the surface. The search for extinct or extant life on Mars will follow the water. However, geomorphic studies have shown that Mars has had liquid water on its surface throughout its geologic history. A cornucopia of potential landing sites with water histories (lakes, floodplains, oceans, deltas, hydrothermal regions) presently exist. How will we narrow down site selection and increase the likelihood of finding the signs of life? One way to do this is to identify 'Martian oases.' It is known that the Martian surface is often highly fractured and some areas have karst structures that support underground caves. Much of the water that formed the channels and valley networks is thought to be frozen underground. All that is needed to create the potential for liquid water is a near surface source of heat; recent lava flows and Martian meteorites attest to the potential for volcanic activity. If we can locate even one spot where fracturing, ice, and underground heat are co-located then we have the potential for an oasis. Such a discovery could truly excite the imaginations of both the

  8. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    Science.gov (United States)

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  9. Nature of Reduced Carbon in Martian Meteorites

    Science.gov (United States)

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.

    2012-01-01

    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  10. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

    Science.gov (United States)

    James, P. B.

    1985-01-01

    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  11. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  12. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    Science.gov (United States)

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

  13. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  14. Unusual Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  15. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    International Nuclear Information System (INIS)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V.

    2003-01-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO 2 ). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer, a

  16. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V

    2003-07-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO{sub 2}). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer

  17. Martian regolith geochemistry and sampling techniques

    Science.gov (United States)

    Clark, B. C.

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  18. Martian regolith geochemistry and sampling techniques

    Science.gov (United States)

    Clark, B. C.

    1988-01-01

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  19. SNC meteorites: Clues to martian petrologic evolution

    International Nuclear Information System (INIS)

    McSween, H.Y. Jr.

    1985-01-01

    The shergottites, nakhlites, and Chassigny (SNC meteorites) are apparently cumulate mafic and ultramafic rocks that crystallized at shallow levels in the crust of their parent body. The mineralogy and chemistry of these meteorites are remarkably like equivalent terrestrial rocks, although their ratios of Fe/(Fe+Mg) and certain incompatible elements and their oxygen isotopic compositions are distinctive. All have crystallization ages of 1.3 b.y. or younger and formed from magmas produced by partial melting of previously fractionated source regions. Isotope systematics suggest that the SNC parent body had a complex and protracted thermal history spanning most of geologic time. Some meteorites have been severely shock metamorphosed, and all were ejected from their parent body at relatively recent times, possibly in several impact events. Late crystallization ages, complex petrogenesis, and possible evidence for a large gravitational field suggest that these meteorites are derived from a large planet. Trapped gases in shergottite shock melts have compositions similar to the composition measured in the Martian atmosphere. Ejection of Martian meteorites may have been accomplished by acceleration of near-surface spalls or other mechanisms not fully understood. If SNC meteorites are of Martian origin, they provide important information on planetary composition and evolution. The bulk composition and redox state of the Martian mantle, as constrained by shergottite phase equilibria, must be more earthlike than most current models. Planetary thermal models should benefit from data on the abundances of radioactive heat sources, the melting behavior of the mantle, and the timing of planetary differentiation

  20. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  1. Earth analogs for Martian life - Microbes in evaporites, a new model system for life on Mars

    Science.gov (United States)

    Rothschild, Lynn J.

    1990-01-01

    It is suggested that 'oases' in which life forms may persist on Mars could occur, by analogy with terrestrial cases, in (1) rocks, as known in endolithic microorganisms, (2) polar ice caps, as seen in snow and ice algae, and (3) volcanic regions, as witnessed in the chemoautotrophs which live in ocean-floor hydrothermal vents. Microorganisms, moreover, have been known to survive in salt crystals, and it has even been shown that organisms can metabolize while encrusted in evaporites. Evaporites which may occur on Mars would be able to attenuate UV light, while remaining more transparent to the 400-700 nm radiation useful in photosynthesis. Suggestions are made for the selection of Martian exobiological investigation sites.

  2. MAVEN observations of magnetic reconnection in the Martian magnetotail

    Science.gov (United States)

    Harada, Y.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C. X.; Connerney, J. E. P.; Espley, J. R.; Larson, D. E.; Brain, D. A.; Andersson, L.; DiBraccio, G. A.; Collinson, G.; Livi, R.; Hara, T.; Ruhunusiri, S.; Jakosky, B. M.

    2015-12-01

    Magnetic reconnection is a fundamental process that changes magnetic field topology and converts magnetic energy into particle energy. Although reconnection may play a key role in controlling ion escape processes at Mars, the fundamental properties of local physics and global dynamics of magnetic reconnection in the Martian environment remain unclear owing to the lack of simultaneous measurements of ions, electrons, and magnetic fields by modern instrumentation. Here we present comprehensive MAVEN observations of reconnection signatures in the near-Mars magnetotail. The observed reconnection signatures include (i) Marsward bulk flows of H+, O+, and O2+ ions, (ii) counterstreaming ion beams along the current sheet normal direction, (iii) Hall magnetic fields, and (iv) trapped electrons with two-sided loss cones. The measured velocity distribution functions of different ion species exhibit mass-dependent characteristics which are qualitatively consistent with previous multi-species kinetic simulations and terrestrial tail observations. The MAVEN observations demonstrate that the near-Mars magnetotail provides a unique environment for studying multi-ion reconnection.

  3. Mars Surface Ionizing Radiation Environment: Need for Validation

    Science.gov (United States)

    Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.

    1999-01-01

    Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from

  4. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    Science.gov (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  5. Periglacial and glacial analogs for Martian landforms

    Science.gov (United States)

    Rossbacher, Lisa A.

    1992-01-01

    The list of useful terrestrial analogs for Martian landforms has been expanded to include: features developed by desiccation processes; catastrophic flood features associated with boulder-sized materials; and sorted ground developed at a density boundary. Quantitative analytical techniques developed for physical geography have been adapted and applied to planetary studies, including: quantification of the patterns of polygonally fractured ground to describe pattern randomness independent of pattern size, with possible correlation to the mechanism of origin and quantification of the relative area of a geomorphic feature or region in comparison to planetary scale. Information about Martian geomorphology studied in this project was presented at professional meetings world-wide, at seven colleges and universities, in two interactive televised courses, and as part of two books. Overall, this project has expanded the understanding of the range of terrestrial analogs for Martian landforms, including identifying several new analogs. The processes that created these terrestrial features are characterized by both cold temperatures and low humidity, and therefore both freeze-thaw and desiccation processes are important. All these results support the conclusion that water has played a significant role in the geomorphic history of Mars.

  6. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    Science.gov (United States)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or

  7. Prediction of Lunar- and Martian-Based Intra- and Site-to-Site Task Performance.

    Science.gov (United States)

    Ade, Carl J; Broxterman, Ryan M; Craig, Jesse C; Schlup, Susanna J; Wilcox, Samuel L; Warren, Steve; Kuehl, Phillip; Gude, Dana; Jia, Chen; Barstow, Thomas J

    2016-04-01

    This study aimed to investigate the feasibility of determining the physiological parameters associated with the ability to complete simulated exploration type tasks at metabolic rates which might be expected for lunar and Martian ambulation. Running V̇O2max and gas exchange threshold (GET) were measured in 21 volunteers. Two simulated extravehicular activity field tests were completed in 1 G in regular athletic apparel at two intensities designed to elicit metabolic rates of ∼20.0 and ∼30.0 ml · kg(-1) · min(-1), which are similar to those previously reported for ambulation in simulated lunar- and Martian-based environments, respectively. All subjects were able to complete the field test at the lunar intensity, but 28% were unable to complete the field test at the Martian intensity (non-Finishers). During the Martian field test there were no differences in V̇O2 between Finishers and non-Finishers, but the non-Finishers achieved a greater %V̇O2max compared to Finishers (78.4 ± 4.6% vs. 64.9 ± 9.6%). Logistic regression analysis revealed fitness thresholds for a predicted probability of 0.5, at which Finishing and non-Finishing are equally likely, and 0.75, at which an individual has a 75% chance of Finishing, to be a V̇O2max of 38.4 ml · kg(-1) · min(-1) and 40.0 ml · kg(-1) · min(-1) or a GET of 20.1 ml · kg(-1) · min(-1) and 25.1 ml · kg(-1) · min(-1), respectively (χ(2) = 10.2). Logistic regression analysis also revealed that the expected %V̇O2max required to complete a field test could be used to successfully predict performance (χ(2) = 19.3). The results of the present investigation highlight the potential utility of V̇O2max, particularly as it relates to the metabolic demands of a surface ambulation, in defining successful completion of planetary-based exploration field tests.

  8. Iron snow in the Martian core?

    Science.gov (United States)

    Davies, Christopher J.; Pommier, Anne

    2018-01-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  9. Pb evolution in the Martian mantle

    Science.gov (United States)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.; Roszjar, J.

    2018-03-01

    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm-Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4-4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted

  10. Chemical composition of Martian fines

    Science.gov (United States)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  11. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses.

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    Full Text Available The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.

  12. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    Science.gov (United States)

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  13. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  14. The Martian climate and energy balance models with CO2/H2O atmospheres

    Science.gov (United States)

    Hoffert, M. I.

    1986-01-01

    The analysis begins with a seasonal energy balance model (EBM) for Mars. This is used to compute surface temperature versus x = sin(latitude) and time over the seasonal cycle. The core model also computes the evolving boundaries of the CO2 icecaps, net sublimational/condensation rates, and the resulting seasonal pressure wave. Model results are compared with surface temperature and pressure history data at Viking lander sites, indicating fairly good agreement when meridional heat transport is represented by a thermal diffusion coefficient D approx. 0.015 W/sq. m/K. Condensational wind distributions are also computed. An analytic model of Martian wind circulation is then proposed, as an extension of the EMB, which incorporates vertical wind profiles containing an x-dependent function evaluated by substitution in the equation defining the diffusion coefficient. This leads to a parameterization of D(x) and of the meridional circulation which recovers the high surface winds predicted by dynamic Mars atmosphere models (approx. 10 m/sec). Peak diffusion coefficients, D approx. 0.6 w/sq m/K, are found over strong Hadley zones - some 40 times larger than those of high-latitude baroclinic eddies. When the wind parameterization is used to find streamline patterns over Martian seasons, the resulting picture shows overturning hemispheric Hadley cells crossing the equator during solstices, and attaining peak intensities during the south summer dust storm season, while condensational winds are most important near the polar caps.

  15. On the chemistry of the Martian surface

    International Nuclear Information System (INIS)

    Keil, K.

    1978-01-01

    Analyses of 13 smaples of Martian surface materials with the Viking X-ray fluorescence spectrometers show SiO 2 similar to that of terrestrial mafic rocks, whereas Fe 2 O 3 , Cl, and S are higher and Al 2 O 3 , K 2 O, Rb, Sr, Y, and Zr are lower. Low totals suggest presence of CO 2 , H 2 O, and Na 2 O. Duricrust fragments are higher in S than fines, but samples from both landing sites are surprisingly similar. We suggest that Martian surface materials are aeolian deposits of complex mixtures of weathering products of mafic-ultramafic rocks, possibly consisting of iron-rich clays, sulfates, iron oxides, carbonates, and chlorides. (orig.) 891 HK [de

  16. Paloma-radon: Atmospheric radon-222 as a geochemical probe for water in the Martian subsoil.

    Science.gov (United States)

    Sabroux, J.-C.; Michielsen, N.; Voisin, V.; Ferry, C.; Richon, P.; Pineau, J.-F.; Le Roulley, J.-C.; Chassefière, E.

    2003-04-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon-222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES-supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m^3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO_2). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option (already on board the Mars Pathfinder Rover and other platforms). In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a

  17. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    Science.gov (United States)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  18. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.

    2013-11-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  19. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.; Szunyogh, Istvan; Gyarmati, Gyorgyi; Wilson, R. John

    2013-01-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  20. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  1. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    Directory of Open Access Journals (Sweden)

    Victoria J. Orphan

    2011-11-01

    Full Text Available On Earth, marine anaerobic methane oxidation (AOM can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2 found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to

  2. MEMS-based gradiometer for the complete characterization of Martian magnetic environment

    Science.gov (United States)

    Mesa, Jose Luis; Ciudad, David; McHenry, Michael E.; Aroca, Claudio; Díaz-Michelena, Marina

    2013-04-01

    The in-situ determination of the Martian magnetic field is one of the most important and ambitious objectives in Mars exploration, because its implications in paleomagnetism, tectonics and mineral determination. To place sensors on Mars is a complicated task, due to the extreme conditions of the planet surface and also because of the relative low budget devoted to this kind of instrument: low power, mass, volume and the need to operate in a magnetically noise environment. A complete and accurate measurement of the magnetic environment includes the determination of both magnitude and gradient of the magnetic field (B). There are many developments of magnetometers with the characteristics mentioned before [2], but the question about gradient is not that well solved and most gradient sensors are based on a couple of magnetometers separated a certain distance [2, 3]. The aim of this abstract is to introduce a new MEMS based robust gradiometer for the point measurement of the field gradient with the ultimate goal to perform in situ measurement on Mars and shed some light in the magnetic anomalies explanation of the Red Planet. Since in some conditions ?ׯB = 0, we assume knowing six of the nine components is sufficient to reconstruct entirely the magnetic field gradient. The device proposed consists of a set of six cantilevers to measure these six components (with resolution in the order of 1 nT/mm) combined either with another miniaturized and more accurate magnetometer (with resolution below the nT) for the measurement of the field vector. Every component system consists of a cantilever with an appropriate geometry, an excitation coil and a mechanism to generate a field gradient. The cantilevers are made of piezoelectric material (bimorph, with two piezoelectric layers) covered by a soft ferromagnetic material (of Iron-Nickel base). Is explained below the working principle for one component. When the excitation system generates an alternating magnetic field (enough

  3. Martian Cryogenic Carbonate Formation: Stable Isotope Variations Observed in Laboratory Studies

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K. Jr.

    2014-01-01

    The history of water on Mars is tied to the formation of carbonates through atmospheric CO2 and its control of the climate history of the planet. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms easily from freezing solutions when carbon dioxide degasses quickly from Ca-bicarbonate-rich water, a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lake beds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. A series of laboratory experiments were conducted that simulated cryogenic carbonate formation on Mars in order to understand their isotopic systematics. The results indicate that carbonates grown under martian conditions show variable enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values.

  4. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    Science.gov (United States)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  5. Curiosity analyzes Martian soil samples

    Science.gov (United States)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  6. Origin of giant Martian polygons

    Science.gov (United States)

    Mcgill, George E.; Hills, L. S.

    1992-01-01

    Extensive areas of the Martian northern plains in Utopia and Acidalia planitiae are characterized by 'polygonal terrane'. Polygonal terrane consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on earth. However, the Martian polygons are orders of magnitude larger than these potential earth analogues, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Plate-bending and finite element models indicate that shrinkage of desiccating sediment or cooling volcanics accompanied by differential compaction over buried topography can account for the stresses responsible for polygon troughs as well as the large size of the polygons. Although trough widths and depths relate primarily to shrinkage, the large scale of the polygonl pattern relates to the spacing between topographic elevations on the surface buried beneath polygonal terrane material. Geological relationships favor a sedimentary origin for polygonal terrane material, but our model is not dependent on the specific genesis. Our analysis also suggests that the polygons must have formed at a geologically rapid rate.

  7. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  8. Chemical and Physical Interactions of Martian Surface Material

    Science.gov (United States)

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  9. Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.

    2016-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. Such electrical activity poses serious risks to any Human exploration of the planet and the lack of sufficient data to characterize any such activity has been identified by NASA's MEPAG as a key human safety knowledge gap. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, frequency of occurrence, and the strength of the generated electric fields. We will describe a recently deployed detection engine using NASA's Deep Space Network (DSN) to carry out a long term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The resulting knowledge of Mars electrical activity would allow NASA to plan risk mitigation measures to ensure human safety during Mars exploration. In addition, these measurements will also allow us to place limits on presence of oxidants such as H2O2 that may be produced by such discharges, providing another measurement point for models describing Martian atmospheric chemistry and habitability. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the DSN is the only instrument in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity at Mars from the ground.

  10. Remote Sensing Studies Of The Current Martian Climate

    Science.gov (United States)

    Taylor, F. W.; McCleese, D. J.; Schofield, J. T.; Calcutt, S. B.; Moroz, V. I.

    A systematic and detailed experimental study of the Martian atmosphere remains to be carried out, despite many decades of intense interest in the nature of the Martian climate system, its interactions, variability and long-term stability. Such a study is planned by the 2005 Mars Reconnaissance Orbiter, using limb-scanning infrared radiometric techniques similar to those used to study trace species in the terrestrial stratosphere. For Mars, the objectives are temperature, humidity, dust and condensate abundances with high vertical resolution and global coverage in the 0 to 80 km height range. The paper will discuss the experiment and its methodology and expectations for the results.

  11. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  12. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  13. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies.

    Science.gov (United States)

    Sodt, Alexander J; Mei, Ye; König, Gerhard; Tao, Peng; Steele, Ryan P; Brooks, Bernard R; Shao, Yihan

    2015-03-05

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton-Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin-luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.

  14. Sleep stability and cognitive function in an Arctic Martian analogue.

    Science.gov (United States)

    Gríofa, Marc O; Blue, Rebecca S; Cohen, Kenneth D; O'Keeffe, Derek T

    2011-04-01

    Human performance is affected by sleep disruption and sleep deprivation can critically affect mission outcome in both spaceflight and other extreme environments. In this study, the seven-person crew (four men, three women) lived a Martian sol (24.65 h) for 37 d during a long-term stay at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada. Crewmembers underwent cardiopulmonary monitoring for signs of circadian disruption and completed a modified Pittsburgh Sleep Diary to monitor subjective fatigue. Crewmembers underwent cognitive testing to identify the effects, if any, of sleep disruption upon cognitive skill. A Martian sol was implemented for 37 d during the Arctic mission. Each crewmember completed an adapted version of the Pittsburgh Sleep Diary in tandem with electrocardiograph (ECG) cardiopulmonary monitoring of sleep by the Cardiac Adapted Sleep Parameters Electrocardiogram Recorder (CASPER). Crewmembers also underwent cognitive testing during this time period. Sleep diary data indicate improvement in alertness with the onset of the sol (fatigue decreasing from 5.1 to 4.0, alertness increasing from 6.1 to 7.0). Cardiopulmonary data suggest sleep instability, though trends were not statistically significant. Crewmember decision speed time scores improved from pre-Mars to Mars (average improving from 66.5 to 84.0%), though the remainder of cognitive testing results were not significant. While subjective data demonstrate improved sleep and alertness during the sol, objective data demonstrate no significant alteration of sleep patterns. There was no apparent cognitive decline over the course of the mission.

  15. Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface

    Science.gov (United States)

    De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team

    2017-07-01

    The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.

  16. Post-Viking view of Martian geologic evolution

    International Nuclear Information System (INIS)

    Arvidson, R.E.; Goettel, K.A.; Hohenberg, C.M.

    1980-01-01

    The mean density, 3.393 g/cm 3 , and the estimated moment of inertia factor constrain the density distribution within Mars but do not define it uniquely. For plausible core density, core radii can range from approx. 1350 to approx. 2200 km, with the core constituting from approx. 13 to approx. 35% of the planet's mass. Possible extremes for the zero-pressure density of the Martian mantle could be as high as 3.6 g/cm 3 or as low as 3.3 g/cm 3 . The Martian mantle is probably denser than the terrestrial mantle. The dominant Martian lavas are probably mafic or ultramafic. Martian surface materials probably consist of variable proportions of mafic igneous minerals and weathering products, the latter primarily oxides and carbonates. A major geologic dichotomy exists between the complex northern plains and the ancient southern cratered terrain. The Tharsis plateau, which dominates the low-degree harmonics of the gravity field, appears to be only partially compensated; Olympus Mons appears to be completely uncompensated. Substantial stresses must be supported, either statically by a thick, rigid lithosphere, or dynamically. Mean crustal thicknesses from 23 to 40 km have been obtained from modeling of Bouguer gravity data. Lithospheric thicknesses from 25 to 50 km under volcanoes in the Tharsis and Elysium provinces to >150 km under olympus Mons have been obtained from consideration of the effects of mass loading by volcanic constructs. Many of the compressional and extensional features on Mars have orientations consistent with formation by fracturing in response to loading by the Tharsis plateau. The deficiency of small craters within cratered terrain is attributed to obliteration by volcanism. The maximum resurfacing rate due to volcanism occurred between 1.0 and 1.5 b.y. ago if a constant cratering flux is assumed and between 3.5 and 4.0 b.y. ago if the lunar cratering flux (scaled to Mars) is assumed

  17. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  18. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  19. PREFACE: Ocean and climate changes in polar and sub-polar environments: proceedings from the 2010 IODP-Canada/ECORD summer school

    Science.gov (United States)

    St-Onge, Guillaume; Veiga-Pires, Cristina; Solignac, Sandrine

    2011-05-01

    IODP logoECORD logo The European Consortium for Ocean Drilling Program (ECORD), the Canadian Consortium for Ocean Drilling (CCOD), the Network of the Universités du Québec (UQ), the Université du Québec à Montréal (UQAM) and GEOTOP sponsored, in 2010, a summer school entitled 'Ocean and climate changes in polar and sub-polar environments'. This summer school took place from 27 June to 12 July in Rimouski, Québec city and Montréal (Quebec, Canada) and was attended by nineteen students and postdoctoral fellows from seven countries: Canada, France, Germany, UK, Serbia, Portugal and the USA. Lectures, hands-on laboratory exercises and laboratory visits were conducted at the Institut des Sciences de la Mer de Rimouski (ISMER), Institut National de la Recherche Scientifique - Centre Eau Terre Environnement (INRS-ETE) and UQAM, in addition to two field trips and a short geological and geophysical cruise on board the R/V Coriolis II in the St Lawrence Estuary and Saguenay Fjord. During the summer school, more than twenty researchers gave lectures on the use of several paleoceanographic and geophysical techniques to reconstruct ocean and climate changes in polar and sub-polar environments. Some of these lectures are presented as short review papers in this volume. They are intended to portray a brief, but state-of-the-art overview of an array of techniques applied to Arctic and sub-Arctic environments, as well as the geological background information needed by the summer school participants to put the scientific expedition and fieldwork into context. The volume begins with a view on the great challenges and key issues to be addressed in the Arctic Ocean (Stein) in the forthcoming years and is followed by a review (O'Regan) on Late Cenozoic paleoceanography of the Central Arctic. The two subsequent papers (St-Onge et al and de Vernal et al) deal with the oceanographic, paleoceanographic and geological context of the Saguenay Fjord, and St Lawrence Estuary and Gulf

  20. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a polar projection with geometric seam correction.

  1. Nonlinear MHD waves and discontinuities in the Martian magnetosheath. Observations and 2D bi-ion MHD simulations

    Science.gov (United States)

    Sauer, K.; Dubinin, E.; Baumgärtel, K.

    1998-09-01

    The characteristic scale of the Martian magnetosheath is less than the pick-up gyroradius of oxygen ions. This leads to admissible differential motion of protons and heavies and a strong coupling between both ion fluids. 2D bi-ion MHD simulations reveal many new interesting features in such Large Larmour Radius systems. The formation of an ion-composition boundary, which separates both plasmas, and structuring of the transition from proton dominated plasma of the solar wind origin to massive planetary plasma are the main features of the interaction. A comprehensive multi-instrument study of Martian plasma environment and the comparison with theoretical modelling initiated in the framework of the Visiting Science Programme of the International Space Science Institute (ISSI) in Bern (Switzerland) gives confirmation that Mars interacts with the solar wind like a comet which has a outgassing rate near to that of Grigg-Skjellerup. The results may also be relevant for small bodies which are surrounded by a neutral gas atmosphere (icy moons, asteroids, Mercury).

  2. Microwave Palaeointensity Experiments On Terrestrial and Martian Material

    Science.gov (United States)

    Shaw, J.; Hill, M.; Gratton, M.

    The microwave palaeointensity technique was developed in Liverpool University (Walton et al 1996) and has successfully been applied to archaeological ceramics and recent lavas (Shaw et al 1996, 1999.; Hill et al 1999,2000). These published results show that microwave analysis provides accurate palaeointensity determinations com- bined with a very high success rate. Most recently the technique has been successfully applied to Martian material (Shaw et al, 2001) to look for the existence of an internal Martian dynamo early in Martian history. New experiments have been carried out us- ing microwaves to demagnetise synthetic muti-component TRM's and new palaeoin- tensity experiments providing a comparison between microwave analysis of laboratory TRM's and conventional thermal Thellier analysis of microwave generated mTRM's. These experiments demonstrate the equivalence of microwave and thermally gener- ated TRM's. D. Walton, S Snape, T.C. Rolph, J. Shaw and J.A. Share, Application of ferromagnetic resonance heating to palaeointensity determinations.1996, Phys Earth Planet Int,94, 183-186. J. Shaw, D. Walton, S Yang, T.C.Rolph, and J.A. Share. Microwave Archaeointensities from Peruvian Ceramics. 1996, Geophys. J. Int,124,241-244 J. Shaw, S. Yang, T. C. Rolph, and F. Y. Sun. A comparison of archaeointensity results from Chinese ceramics using Microwave and conventional ThellierSs and ShawSs methods.,1999, G J Int.136, 714-718 M. Hill, and J. Shaw, 1999, Palaeointensity results for Historic Lavas from Mt. Etna using microwave demagnetisation/remagnetisation in a modified Thellier type exper- iment. G. J. Int, 139, 583-590 M. J. Hill, and J. Shaw, 2000. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique, Geophys. J. Int., 142, 487-504. J. Shaw, M. Hill, and S. J. Openshaw, 2001, Investigating the ancient Martian magnetic field using microwaves, Earth and Planetary Science Letters 190 (2001) 103-109

  3. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  4. Opportunity's Surroundings After Sol 1820 Drive (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.

  5. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism

    Science.gov (United States)

    Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J.; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi

    2016-03-01

    Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.

  6. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources

    Directory of Open Access Journals (Sweden)

    Denise Kölbl

    2017-10-01

    Full Text Available The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0 and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52 as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

  7. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources.

    Science.gov (United States)

    Kölbl, Denise; Pignitter, Marc; Somoza, Veronika; Schimak, Mario P; Strbak, Oliver; Blazevic, Amir; Milojevic, Tetyana

    2017-01-01

    The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

  8. Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

    Directory of Open Access Journals (Sweden)

    Eojin Kim

    2011-03-01

    Full Text Available Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.

  9. Dark material in the polar layered deposits and dunes on Mars

    Science.gov (United States)

    Herkenhoff, Ken E.; Vasavada, Ashwin R.

    1999-07-01

    Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245-280Jm-2s-1/2K-1(5.9-6.7×10-3calcm-2s-1/2K-1) for the Proctor dune field and 25-150Jm-2s-1/2K-1(0.6-3.6×10-3calcm-2s-1/2K-1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near-infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent with the dark material being composed of basaltic ash or filamentary sublimate residue (FSR) particles derived from erosion of the layered deposits. Dark dust may be preferentially concentrated at the surface of the layered deposits by the formation of FSR particles upon sublimation of water ice. Further weathering and erosion of these areas of exposed layered deposits may form the dark, saltating material that is found in both polar regions. Dark FSR particles may saltate for great distances before eventually breaking down into dust grains, re-mixing with the global dust reservoir, and being recycled into the polar layered deposits via atmospheric suspension.

  10. Global positioning method based on polarized light compass system

    Science.gov (United States)

    Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong

    2018-05-01

    This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.

  11. The chemical reactivity of the Martian soil and implications for future missions

    Science.gov (United States)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  12. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    Science.gov (United States)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  13. Discrimination of coastal wetland environments in the Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery

    Science.gov (United States)

    Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.

    2011-11-01

    This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.

  14. Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum

    Science.gov (United States)

    Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.

  15. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Directory of Open Access Journals (Sweden)

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  16. Some aspects of composition of the lower Martian atmosphere: input for MIRA

    Science.gov (United States)

    Moroz, V.; Korablev, O.; Krasnopolsky, V.; Rorin, A.

    Recent spacecraft missions and high-resolution spectroscopic observations from the Earth-based, airborne and spaceborne observatories have justified the chemical contents of the Martian atmosphere at a new level of confidence. Both the lower and middle atmosphere of Mars reveal very limited chemical activity, while the variations of the abundance of minor constituents may be attributed to phase transitions of volatiles. Water vapor, which mixing ratio is controlled by complex hydrological cycle in the lower atmosphere and at the surface of the planet, affects seasonally varying depletion of ozone. Measured ratio of D/H can be explained with general models of the early evolution of the planet, though this estimate in the bulk atmosphere may not be ultimately representative due to altitude dependant fractionation of water isotopes. CO, as a chemically passive nonvolatile component, reveals increase of mixing ratio in the vicinity of winter polar caps during active condensation of the bulk CO2 atmosphere. No reliable evidence o any organicf matter in the atmosphere of Mars has been obtained.

  17. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  18. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  19. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  20. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.

    Science.gov (United States)

    Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra

    2012-05-01

    In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.

  1. Organic and inorganic interpretations of the martian UV-IR reflectance spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Pang, K D; Ajello, J M [Jet Propulsion Lab., Pasadena, CA (USA); Chun, S F.S. [California Univ., San Francisco (USA). School of Medicine; Nansheng, Z [Beijing Planetarium (China); Minji, L [Beijing Glass Institute (China)

    1982-01-07

    The Viking gas chromatography-mass spectrometer analysis of martian soil samples are discussed, in particular why no organic molecules were detected at the landing sites, whether the sterility of the two sites is representative of the entire planet and if there are locations on Mars more conducive to the formation and preservation of organics. The destruction of organic compounds has been simulated in Mars-like laboratory conditions and the possible planetwide destructive mechanism considered. The UV and IR reflectance spectra of Mars has been re-examined for any evidence of organic molecules and an upper limit on the organic carbon content of average martian soil has been set. The results reveal that the average martian soil is organic-poor, makes an unfavourable habitat for life forms based on carbon chemistry, and there is no reason to believe that organic molecules are preferentially preserved anywhere on the planet.

  2. Organic and inorganic interpretations of the martian UV-IR reflectance spectrum

    International Nuclear Information System (INIS)

    Pang, K.D.; Ajello, J.M.; Chun, S.F.S.; Minji, L.

    1982-01-01

    The Viking gas chromatography-mass spectrometer analysis of martian soil samples are discussed, in particular why no organic molecules were detected at the landing sites, whether the sterility of the two sites is representative of the entire planet and if there are locations on Mars more conducive to the formation and preservation of organics. The destruction of organic compounds has been simulated in Mars-like laboratory conditions and the possible planetwide destructive mechanism considered. The UV and IR reflectance spectra of Mars has been re-examined for any evidence of organic molecules and an upper limit on the organic carbon content of average martian soil has been set. The results reveal that the average martian soil is organic-poor, makes an unfavourable habitat for life forms based on carbon chemistry, and there is no reason to believe that organic molecules are preferentially preserved anywhere on the planet. (U.K.)

  3. Polygons in Martian Frost

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-428, 21 July 2003This June 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygonal pattern developed in seasonal carbon dioxide frost in the martian southern hemisphere. The frost accumulated during the recent southern winter; it is now spring, and the carbon dioxide frost is subliming away. This image is located near 80.4oS, 200.2oW; it is illuminated by sunlight from the upper left, and covers an area 3 km (1.9 mi) across.

  4. Martian Methane From a Cometary Source: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  5. Terrestrial Permafrost Models of Martian Habitats and Inhabitants

    Science.gov (United States)

    Gilichinsky, D.

    2011-12-01

    Martian permafrost is still 100 times older. Only one terrestrial environment is close to Mars in age - volcanoes in permafrost areas. The age of volcanic deposits frozen after eruption is much younger than the age of surrounding permafrost. Culture- and culture-independent methods show the presence of viable thermophiles and their genes within pyroclastic frozen material on Deception Island, Antarctica and Kamchatka peninsula. These bacteria and archeae have not been found in permafrost outside the volcanic areas. The only way for thermophiles to get into frozen soil is through deposition during eruption, i.e. the catastrophic geological events transport microbes from the depths to the surface and they survive at subzero temperatures. The past activity of Martian volcanoes periodically burned through the frozen strata and products of eruptions rose from the depths to the surface and froze. Images taken by the Stereo Camera on board the Mars Express discovered volcanoes 2-15Myr old that date back to ages close to permafrost on Earth. Terrestrial communities might serve as a model of inhabitants for these young volcanoes. 3. The only opportunity for free water on Mars is the overcooled water brines, and halo/psychrophilc community of Arctic cryopegs, sandwiched within permafrost, represents a plausible prototype for Martian microbial life.

  6. Fractal analysis of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.

  7. Exploring Science Through Polar Exploration

    Science.gov (United States)

    Pfirman, S. L.; Bell, R. E.; Zadoff, L.; Kelsey, R.

    2003-12-01

    Exploring the Poles is a First Year Seminar course taught at Barnard College, Columbia University. First Year Seminars are required of incoming students and are designed to encourage critical analysis in a small class setting with focused discussion. The class links historical polar exploration with current research in order to: introduce non-scientists to the value of environmental science through polar literature; discuss issues related to venturing into the unknown that are of relevance to any discipline: self-reliance, leadership, preparation, decisions under uncertainty; show students the human face of science; change attitudes about science and scientists; use data to engage students in exploring/understanding the environment and help them learn to draw conclusions from data; integrate research and education. These goals are met by bringing analysis of early exploration efforts together with a modern understanding of the polar environment. To date to class has followed the efforts of Nansen in the Fram, Scott and Amundsen in their race to the pole, and Shackleton's Endurance. As students read turn-of-the-century expedition journals, expedition progress is progressively revealed on an interactive map showing the environmental context. To bring the exploration process to life, students are assigned to expedition teams for specific years and the fates of the student "expeditions" are based on their own decisions. For example, in the Arctic, they navigate coastal sea ice and become frozen into the ice north of Siberia, re-creating Nansen's polar drift. Fates of the teams varied tremendously: some safely emerged at Fram Strait in 4 years, while others nearly became hopelessly lost in the Beaufort Gyre. Students thus learn about variability in the current polar environment through first hand experience, enabling them to appreciate the experiences, decisions, and, in some cases, the luck, of polar explorers. Evaluation by the Columbia Center for New Media, Teaching

  8. A massive hydrogen-rich Martian greenhouse recorded in D/H

    Science.gov (United States)

    Pahlevan, K.; Schaefer, L. K.; Desch, S. J.; Elkins-Tanton, L. T.

    2017-12-01

    The deuterium-to-hydrogen (D/H) ratio in Martian atmospheric water ( 6x standard mean ocean water, SMOW) [1,2] is higher than that of known sources [3,4] alluding to a planetary enrichment process. A recent measurement by the Curiosity rover of Hesperian clays yields a D/H value 3x higher than SMOW [5], demonstrating that most enrichment occurred early in planetary history, buttressing the conclusions of Martian meteorite studies [6,7]. Extant models of the isotopic evolution of the Martian hydrosphere have not incorporated primordial H2, despite its likely abundance on early Mars. Here, we report the first 1D climate calculations with an atmospheric composition determined via degassing from a reducing magma ocean to study Martian climate during an early water ocean stage. A reducing Martian magma ocean is expected based on experimental petrology [8], the degassing of which gives rise to an H2-rich steam atmosphere [9] with strong attendant greenhouse warming [10,11] even after the removal of steam via condensation. At the pressures and temperatures prevailing in such a degassed greenhouse, we find that isotopic exchange in the fluid envelope is rapid, strongly concentrating deuterium in water molecules over molecular hydrogen [12]. The subsequent loss of the isotopically light H2-rich atmosphere results in a 2x D/H enrichment in the oceans via isotopic equilibration alone. These calculations suggest that most of the D/H enrichment observed in the first billion years of Martian history is produced by the evolution of a massive ( 100 bar) H2-rich greenhouse in the aftermath of magma ocean crystallization. The proposed link between early planetary process and modern isotopic observable opens a new window into the earliest history of Mars. [1] Owen, T. et al. Science 240, 1767-1770 (1988). [2] Webster, C. R. et al. Science 341, 260-263 (2013). [3] Lunine, J. I. et al. Icarus 165, 1-8, (2003). [4] Marty, B. et al. EPSL 441, 91-102, (2016). [5] Mahaffy, P. et al

  9. Simulation of Martian surface-atmosphere interaction in a space-simulator: Technical considerations and feasibility

    Science.gov (United States)

    Moehlmann, D.; Kochan, H.

    1992-01-01

    The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.

  10. Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Krisanova, Natalia; Nazarova, Anastasia; Borisova, Tatiana

    2017-02-01

    Carbon is the most abundant dust-forming element in the interstellar medium. Tremendous amount of meteorites containing plentiful carbon and carbon-enriched dust particles have reached the Earth daily. National Institute of Health panel accumulates evidences that nano-sized air pollution components may have a significant impact on the central nervous system (CNS) in health and disease. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the CNS. Based on above facts, here we present the study, the aims of which were: 1) to upgrade inorganic Martian dust simulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds and carbon dots; 2) to analyse acute effects of upgraded simulant on key characteristics of synaptic neurotransmission; and 3) to compare above effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogues resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) and [3H]GABA (the main inhibitory neurotransmitter) by isolated rat brain nerve terminals. The extracellular level of both neurotransmitters increased in the presence of carbon-containing Martian dust analogues. These effects were associated with action of carbon components of upgraded Martian dust simulant, but not with its inorganic constituent. This fact indicates that carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission disballansing exitation and inhibition.

  11. Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.

    2017-12-01

    The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5

  12. Sedimentological Investigations of the Martian Surface using the Mars 2001 Robotic Arm Camera and MECA Optical Microscope

    Science.gov (United States)

    Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.

    1999-01-01

    The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.

  13. Methylated silicates may explain the release of chlorinated methane from Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  14. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Science.gov (United States)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  15. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  16. A Martian origin for the Mars Trojan asteroids

    Science.gov (United States)

    Polishook, D.; Jacobson, S. A.; Morbidelli, A.; Aharonson, O.

    2017-08-01

    Seven of the nine known Mars Trojan asteroids belong to an orbital cluster1,2 named after its largest member, (5261) Eureka. Eureka is probably the progenitor of the whole cluster, which formed at least 1 Gyr ago3. It has been suggested3 that the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect spun up Eureka, resulting in fragments being ejected by the rotational-fission mechanism. Eureka's spectrum exhibits a broad and deep absorption band around 1 μm, indicating an olivine-rich composition4. Here we show evidence that the Trojan Eureka cluster progenitor could have originated as impact debris excavated from the Martian mantle. We present new near-infrared observations of two Trojans ((311999) 2007 NS2 and (385250) 2001 DH47) and find that both exhibit an olivine-rich reflectance spectrum similar to Eureka's. These measurements confirm that the progenitor of the cluster has an achondritic composition4. Olivine-rich reflectance spectra are rare amongst asteroids5 but are seen around the largest basins on Mars6. They are also consistent with some Martian meteorites (for example, Chassigny7) and with the material comprising much of the Martian mantle8,9. Using numerical simulations, we show that the Mars Trojans are more likely to be impact ejecta from Mars than captured olivine-rich asteroids transported from the main belt. This result directly links specific asteroids to debris from the forming planets.

  17. Correlations Between Surficial Sulfur and a REE Crustal Assimilation Signature in Martian Shergottites

    Science.gov (United States)

    Jones, J. H.; Franz, H. B.

    2015-01-01

    Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.

  18. The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars

    International Nuclear Information System (INIS)

    Brown, Adrian J.; Michaels, Timothy I.; Byrne, Shane; Sun, Wenbo; Titus, Timothy N.; Colaprete, Anthony; Wolff, Michael J.; Videen, Gorden; Grund, Christian J.

    2015-01-01

    We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, potentially revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars. Such an instrument will address the following three major science themes, which we address in this paper: Science Theme 1. Surface. This would include global, night and day mapping of H 2 O and CO 2 surface ice properties. Science Theme 2. Ice Clouds. This would including unambiguous discrimination and seasonal mapping of CO 2 and H 2 O ice clouds. Science Theme 3. Dust Aerosols. This theme would include multiwavelength polarization measurements to infer dust grain shapes and size distributions. - Highlights: • We present the scientific rationale for a multi-wavelength, polarization sensitive lidar to be placed in orbit around Mars. • Scientific questions focus on the Martian climate and modern-day interactions between surface, ice clouds and dust aerosols. • What we would learn about volatile transport and deposition has implications for past, present and future life on Mars

  19. Biological life support systems for martian missions: some problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lasseur, C.

    Taking into account the experience of scientific researches obtained during experiments in the BIOS - 3 of the Institute of Biophysics of Siberian Branch of Russian Academy of Science (IBP SB RAS) and the MELISSA program (ESA), approaches in creation biological life support systems for a flight period and a fixed-site base of Martian mission are considered. Various alternate variants of designing of elements of BLSS based on use of Chlorella and/or Spirulina, and also greenhouses with higher plants for the flight period of Martian mission are analyzed. For this purpose construction of BLSS ensuring full closure of matter turnover according to gas exchange and water and partial closure on the human's exometabolites is supposed. For the fixed site Martian station BLSS based on use of higher plants with a various degree of closure of internal mass exchange are suggested. Various versions of BLSS configuration and degree of closure of mass exchange depending on duration of Martian mission, the diet type of a crew and some other conditions are considered. Special attention is given to problems of reliability and tolerance of matter turnover processes in BLSS which maintenance is connected, in particular, with additional oxygen reproduction inside a system. Technologies for realization of BLSS of various configurations are offered and justified. The auxiliary role of the physicochemical methods in BLSS functioning both for the flight period and for the crew stay on Mars is justified.

  20. Assessment of the turbulence parameterization schemes for the Martian mesoscale simulations

    Science.gov (United States)

    Temel, Orkun; Karatekin, Ozgur; Van Beeck, Jeroen

    2016-07-01

    Turbulent transport within the Martian atmospheric boundary layer (ABL) is one of the most important physical processes in the Martian atmosphere due to the very thin structure of Martian atmosphere and super-adiabatic conditions during the diurnal cycle [1]. The realistic modeling of turbulent fluxes within the Martian ABL has a crucial effect on the many physical phenomena including dust devils [2], methane dispersion [3] and nocturnal jets [4]. Moreover, the surface heat and mass fluxes, which are related with the mass transport within the sub-surface of Mars, are being computed by the turbulence parameterization schemes. Therefore, in addition to the possible applications within the Martian boundary layer, parameterization of turbulence has an important effect on the biological research on Mars including the investigation of water cycle or sub-surface modeling. In terms of the turbulence modeling approaches being employed for the Martian ABL, the "planetary boundary layer (PBL) schemes" have been applied not only for the global circulation modeling but also for the mesoscale simulations [5]. The PBL schemes being used for Mars are the variants of the PBL schemes which had been developed for the Earth and these schemes are either based on the empirical determination of turbulent fluxes [6] or based on solving a one dimensional turbulent kinetic energy equation [7]. Even though, the Large Eddy Simulation techniques had also been applied with the regional models for Mars, it must be noted that these advanced models also use the features of these traditional PBL schemes for sub-grid modeling [8]. Therefore, assessment of these PBL schemes is vital for a better understanding the atmospheric processes of Mars. In this framework, this present study is devoted to the validation of different turbulence modeling approaches for the Martian ABL in comparison to Viking Lander [9] and MSL [10] datasets. The GCM/Mesoscale code being used is the PlanetWRF, the extended version

  1. Control parameters of the martian dune field positions at planetary scale: tests by the MCD

    Science.gov (United States)

    allemand, pascal

    2016-04-01

    The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.

  2. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai

    2017-09-01

    The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.

  3. Flank tectonics of Martian volcanoes

    International Nuclear Information System (INIS)

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    1990-01-01

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are ∼250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults

  4. Crater size-frequency distributions and a revised Martian relative chronology

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    A relative plotting technique is applied to Viking 1:2M photomosaics of 25,826 Martian craters of diameter greater than 8 km and age younger than that of the Martian surface. The size-frequency distribution curves are calculated and analyzed in detail, and the results are presented in extensive tables and maps. It is found that about 60 percent of the crater-containing lithologic units, including many small volcanoes and the ridged planes, were formed during the heavy-bombardment period (HBP), while 40 percent arose after the HBP. Wide region-to-region variation in the crater density is noted, and localized age estimates are provided. 42 references

  5. Anodic polarization behavior and film breakdown potential of pure copper in the simulated geological environment containing carbonate

    International Nuclear Information System (INIS)

    Kawasaki, Manabu; Taniguchi, Naoki; Naito, Morimasa

    2009-01-01

    In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80degC. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl - ]/[HCO 3 - ] and [SO 4 2- ]/[HCO 3 - ], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic polarization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve. (author)

  6. Design of reproducible polarized and non-polarized edge filters using genetic algorithm

    International Nuclear Information System (INIS)

    Ejigu, Efrem Kebede; Lacquet, B M

    2010-01-01

    Recent advancement in optical fibre communications technology is partly due to the advancement of optical thin film technology. The advancement of optical thin film technology includes the development of new and existing optical filter design methods. The genetic algorithm is one of the new design methods that show promising results in designing a number of complicated design specifications. It is the finding of this study that the genetic algorithm design method, through its optimization capability, can give more reliable and reproducible designs of any specifications. The design method in this study optimizes the thickness of each layer to get to the best possible solution. Its capability and unavoidable limitations in designing polarized and non-polarized edge filters from absorptive and dispersive materials is well demonstrated. It is also demonstrated that polarized and non-polarized designs from the genetic algorithm are reproducible with great success. This research has accomplished the great task of formulating a computer program using the genetic algorithm in a Matlab environment for the design of a reproducible polarized and non-polarized filters of any sort from any kind of materials

  7. Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.

    2012-01-01

    A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the

  8. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    Science.gov (United States)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  9. The analysis of water in the Martian regolith.

    Science.gov (United States)

    Anderson, D M; Tice, A R

    1979-12-01

    One of the scientific objectives of the Viking Mission to Mars was to accomplish an analysis of water in the Martian regolith. The analytical scheme originally envisioned was severely compromised in the latter stages of the Lander instrument package design. Nevertheless, a crude soil water analysis was accomplished. Samples from each of the two widely separated sites yielded roughly 1 to 3% water by weight when heated successively to several temperatures up to 500 degrees C. A significant portion of this water was released in the 200 degrees to 350 degrees C interval indicating the presence of mineral hydrates of relatively low thermal stability, a finding in keeping with the low temperatures generally prevailing on Mars. The presence of a duricrust at one of the Lander sites is taken as possible evidence for the presence of hygroscopic minerals on Mars. The demonstrated presence of atmospheric water vapor and thermodynamic calculations lead to the belief that adsorbed water could provide a relatively favorable environment for endolithic organisms on Mars similar to types recently discovered in the dry antarctic deserts.

  10. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  11. DREAMS: a payload on-board the ExoMars EDM Schiaparelli for the characterization of Martian environment during the statistical dust storm season

    Science.gov (United States)

    Molfese, Cesare; Esposito, Francesca; Debei, Stefano; Bettanini, Carlo; Arruego Rodríguez, Ignacio; Colombatti, Giacomo; Harri, Ari-Matty.; Montmessin, Franck; Wilson, Colin; Aboudan, Alessio; Mugnuolo, Raffaele; Pirrotta, Simone; Marchetti, Ernesto; Witasse, Olivier

    2015-04-01

    F. Esposito1, S. Debei2, C. Bettanini2, C. Molfese1, I. Arruego Rodríguez3, G. Colombatti2, A-M. Harri4, F. Montmessin5, C. Wilson6, A. Aboudan2, S. Abbaki5, V. Apestigue3, G. Bellucci7, J-J. Berthelier5, J. R. Brucato8, S. B. Calcutt6, F. Cortecchia1, F. Cucciarrè2, G. Di Achille1, F. Ferri2, F. Forget9, E. Friso2, M. Genzer4, P. Gilbert5, H. Haukka4, J. J. Jiménez3, S. Jiménez10, J-L. Josset11, O. Karatekin12, G. Landis13, R. Lorenz14, J. Martinez3, L. Marty1, V. Mennella1, D. Möhlmann15, D. Moirin5, R. Molinaro1, E. Palomba7, M. Patel16, J-P. Pommereau5, C.I. Popa1, S. Rafkin17, P. Rannou18, N.O. Renno19, P. Schipani1, W. Schmidt4, E. Segato2, S. Silvestro1, F. Simoes20, A. Spiga9, F. Valero21, L. Vázquez21, F. Vivat5, O. Witasse22, R. Mugnuolo23, S. Pirrotta23, E.Marchetti23 1INAF - Osservatorio Astronomico di Capodimonte, Napoli, Italy, 2CISAS - Università degli Studi di Padova, Padova, Italy, 3INTA, Spain, 4Finnish Meteorological Institute (FMI),Helsinki, Finland, 5LATMOS - CNRS/UVSQ/IPSL, France, 6Oxford University, Oxford, United Kingdom, 7INAF - Istituto di Fisica dello Spazio Interplanetario (IFSI), 8INAF-Osservatorio Astrofisico di Arcetri, 9CNRS, LMD, France, 10Universidad Politécnica de Madrid, Spain, 11Space Exploration Institute, Switzerland, 12Royal Observatory of Belgium,Belgium, 13NASA, GRC, USA, 14JHU Applied Physics Lab (JHU-APL), USA, 15DLR PF Leitungsbereich, Berlin, Germany, 16Open University, UK, 17SwRL, Switzerland, 18GSMA, France, 19University of Michigan, USA, 20NASA, GSFC, USA, 21Universidad Complutense de Madrid (UCM), Spain, 22ESA-ESTEC, Noordwijk, The Netherlands, 23Italian Space Agency, Italy DREAMS (Dust characterization, Risk assessment and Environment Analyzer on the Martian Surface) package is an integrated multi-sensor scientific payload dedicated to characterizing the landing site environment in dusty conditions. It will measure pressure, wind speed and direction, relative humidity, temperature, the solar irradiance

  12. Martian crustal dichotomy: product of accretion and not a specific event?

    International Nuclear Information System (INIS)

    Frey, H.; Schultz, R.A.; Maxwell, T.A.

    1987-01-01

    Attempts to explain the fundamental crustal dichotomy on Mars range from purely endogenic to extreme exogenic processes, but to date no satisfactory theory has evolved. What is accepted is: (1) the dichotomy is an ancient feature of the Martian crust, and (2) the boundary between the cratered highlands and northern plains which marks the dichotomy in parts of Mars has undergone significant and variable modification during the observable parts of Martian history. Some ascribe it to a single mega-impact event, essentially an instantaneous rearrangement of the crustal structures (topography and lithospheric thickness). Others prefer an internal mechanism: a period of vigorous convection subcrustally erodes the northern one third of Mars, causing foundering and isostatic lowering of that part of Mars. The evidence for each theory is reviewed, with the conclusion that there is little to recommend either. An alternative is suggested: the formation of the crustal dichotomy on Mars was not a specific tectonic event but a byproduct of the accretionary process and therefore a primordial characteristic of the Martian crust, predating the oldest recognizable landforms

  13. Orbital evolution and origin of the Martian satellites

    International Nuclear Information System (INIS)

    Szeto, A.M.K.

    1983-01-01

    The orbital evolution of the Martian satellites is considered from a dynamical point of view. Celestial mechanics relevant to the calculation of satellite orbital evolution is introduced and the physical parameters to be incorporated in the modeling of tidal dissipation are discussed. Results of extrapolating the satellite orbits backward and forward in time are presented and compared with those of other published work. Collision probability calculations and results for the Martian satellite system are presented and discussed. The implications of these calculations for the origin scenarios of the satellites are assessed. It is concluded that Deimos in its present form could not have been captured, for if it had been, it would have collided with Phobos at some point. An accretion model is therefore preferred over capture, although such a model consistent with the likely carbonaceous chondritic composition of the satellites has yet to be established. 91 references

  14. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  15. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    Science.gov (United States)

    Mustard, John F.

    1999-01-01

    Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.

  16. Lunar true polar wander inferred from polar hydrogen.

    Science.gov (United States)

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  17. Plasma Extraction of Oxygen from Martian Atmosphere, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is...

  18. Infrared Spectroscopic Analyses of Sulfate, Nitrate, and Carbonate-bearing Atacama Desert Soils: Analogs for the Interpretation of Infrared Spectra from the Martian Surface

    Science.gov (United States)

    Dalton, J. B.; Dalton, J. B.; Ewing, S. A.; Amundson, R.; McKay, C. P.

    2005-01-01

    The Atacama Desert of northern Chile is the driest desert on Earth, receiving only a few mm of rain per decade. The Mars climate may, in the past, have been punctuated by short-lived episodes of aqueous activity. The paleo-Martian environment may have had aqueous conditions similar to the current conditions that exist in the Atacama, and Mars soils may have formed with soil chemistry and mineralogy similar to those found in the Atacama. Remote and in-situ analysis of the Martian surface using infrared technology has a long heritage. Future investigations of the subsurface mineralogy are likely to build upon this heritage, and will benefit from real life lessons to be learned from terrestrial analog studies. To that end, preliminary results from a near- and mid-infrared spectroscopic study of Atacama soil profiled at a range of depths are presented.

  19. Saltation under Martian gravity and its influence on the global dust distribution

    Science.gov (United States)

    Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard

    2018-05-01

    Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.

  20. Origin and Reactivity of the Martian Soil: A 2003 Micromission

    Science.gov (United States)

    Yen, Albert S.; Kim, S. Sam; Marshall, John; Murray, Bruce C.

    1999-01-01

    The role of water in the development of the martian surface remains a fundamental scientific question. Did Mars have one or more "warm and wet" climatic episodes where liquid water was stable at the surface? If so, the mineral phases present in the soils should be consistent with a history of aqueous weathering. More generally, the formation of hydrated mineral phases on Mars is a strong indicator of past habitable surface environments. The primary purpose of this investigation is to help resolve the question of whether such aqueous indicators are present on Mars by probing the upper meter for diagnostic mineral species. According to Burns [1993], the formation of the ferric oxides responsible for the visible color of Mars are the result of dissolution of Fe (+2) phases from basalts followed by aqueous oxidation and precipitation of Fe" mineral assemblages. These precipitates likely included iron oxyhydroxides such as goethite (a-FeOOH) and lepidocrocite (g-FeOOH), but convincing evidence for these phases at the surface is still absent. The stability of these minerals is enhanced beneath the surface, and thus we propose a subsurface search for hydroxylated iron species as a test for a large-scale chemical weathering process based on interactions with liquid water. It is also possible that the ferric minerals on Mars are not aqueous alteration products of the rocks. A chemical study of the Pathfinder landing site concluded that the soils are not directly derived from the surrounding rocks and are enhanced in Mg and Fe. The additional source of these elements might be from other regions of Mars and transported by winds, or alternatively, from exogenic sources. Gibson [1970] proposed that the spectral reflectivity of Mars is consistent with oxidized meteoritic material. Yen and Murray [1998] further extend Gibson's idea and show, in the laboratory, that metallic iron can be readily oxidized to maghemite and hematite under present-day martian surface conditions (in the

  1. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry

    International Nuclear Information System (INIS)

    Oyama, V.I.; Berdahl, B.J.; Carle, G.C.

    1977-01-01

    It is stated that O 2 and CO 2 were evolved from humidified Martian soil in the gas exchange experiment on Viking Lander 1. Small changes in N 2 gas were also recorded. A model of the morphology and a hypothesis of the mechanistics of the Martian surface are proposed. (author)

  2. The Licancabur Project: Exploring the Limits of Life in the Highest Lake on Earth as an Analog to Martian Paleolakes

    Science.gov (United States)

    Cabrol, N. A.; Grin, E. A.; McKay, C. P.; Friedmann, I.; Diaz, G. Chong; Demergasso, C.; Kisse, K.; Grigorszky, I.; Friedmann, R. Ocampo; Hock, A.

    2003-01-01

    The Licancabur volcano (6017 m) hosts the highest and one of the least explored lakes in the world in its summit crater. It is located 22 deg.50 min. South / 67 deg.53 min. West at the boundary of Chile and Bolivia in the High-Andes. In a freezing environment, the lake located in volcano-tectonic environment combines low-oxygen, low atmospheric pressure due to altitude, and high-UV radiation (see table). However, its bottom water temperature remains above 0 C year-round. These conditions make Licancabur a unique analog to Martian paleolakes considered high-priority sites for the search for life on Mars.

  3. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  4. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    Science.gov (United States)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  5. MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere

    Science.gov (United States)

    DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya

    2015-04-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which

  6. Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034

    Science.gov (United States)

    McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain

    2015-01-01

    Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been

  7. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Science.gov (United States)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  8. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  9. Near-opposition martian limb-darkening: Quantification and implication for visible-near-infrared bidirectional reflectance studies.

    Science.gov (United States)

    de Grenier, Muriel; Pinet, Patrick C.

    1995-06-01

    A nearly global coverage of the martian eastern hemisphere, acquired under small phase angles and varying observational geometries conditions, has been produced from 1988 opposition by spectral (0.5-1 μm) imaging data obtained at the Pic du Midi Observatory in France. From this data set, the methodology presented here permits a systematic analysis of martian photometric behavior at a regional scale of 100-300 km in the visible and near-infrared. The quantification of limb-darkening as a function of wavelength and surface albedo gives access in martian regional properties as a function of wavelength and surface albedo and results in the production of visible and near-infrared geometric albedo maps. A linear relation between the limb darkening parameter k and geometric albedo exists in the near infrared. Based on laboratory studies, it suggests a spectral response of particulate type for the martian soil. Conversely, in the visible, the value of k parameter is 0.6 independent of albedo and is consistent with a single scattering photometric behavior in the surface layer. However, the observed change in the martian photometry from single to multiple scattering may be partially due to a large contribution of atmospheric scattering above 0.7 μm. In the absence of a multitemporal dataset analysis, it must be emphasized that the present results are a priori only pertinent to the atmospheric and surface conditions existing on Mars at the time of observation. However, this analysis may contribute to characterize some physical properties, such as surface roughness. In the near-infrared, for bright terrains, k tends to 0.8 and agrees with the presence of very fine particulate materials. Photometry of dark areas is more irregular (0.48 duricrust. Finally, we evaluate the influence of reflectance geometrical effects on the multispectral and spectroscopic data of the martian surface.

  10. An investigation of Martian and terrestrial dust devils

    Science.gov (United States)

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  11. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    Science.gov (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  12. Martian Pyroxenes in the Shergottite Meteorites; Zagami, SAU005, DAG476 and EETA79001

    Science.gov (United States)

    Stephen, N.; Benedix, G. K.; Bland, P.; Hamilton, V. E.

    2010-12-01

    The geology and surface mineralogy of Mars is characterised using remote sensing techniques such as thermal emission spectroscopy (TES) from instruments on a number of spacecraft currently orbiting Mars or gathered from roving missions on the Martian surface. However, the study of Martian meteorites is also important in efforts to further understand the geological history of Mars or to interpret mission data as they are believed to be the only available samples that give us direct clues as to Martian igneous processes [1]. We have recently demonstrated that the spectra of Martian-specific minerals can be determined using micro-spectroscopy [2] and that these spectra can be reliably obtained from thin sections of Martian meteorites [3]. Accurate modal mineralogy of these meteorites is also important [4]. In this study we are using a variety of techniques to build upon previous studies of these particular samples in order to fully characterise the nature of the 2 common pyroxenes found in Martian Shergottites; pigeonite and augite [5], [6]. Previous studies have shown that the Shergottite meteorites are dominated by pyroxene (pigeonite and augite in varying quantities) [4], [5], commonly but not always olivine, plagioclase or maskelynite/glass and also hydrous minerals, which separate the Martian meteorites from other achondrites [7]. Our microprobe study of meteorites Zagami, EETA79001, SAU005 and DAG476 in thin-section at the Natural History Museum, London shows a chemical variability within both the pigeonite and augite composition across individual grains in all thin sections; variation within either Mg or Ca concentration varies from core to rim within the grains. This variation can also be seen in modal mineralogy maps using SEM-derived element maps and the Photoshop® technique previously described [4], and in new micro-spectroscopy data, particularly within the Zagami meteorite. New mineral spectra have been gathered from the Shergottite thin-sections by

  13. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  15. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    Science.gov (United States)

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  16. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  17. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  18. The new polarizer devices at RESEDA

    International Nuclear Information System (INIS)

    Repper, J; Häußler, W; Ostermann, A; Kredler, L; Chacón, A; Böni, P

    2012-01-01

    In the neutron resonance spin echo method the information about sample dynamics is encoded in the neutron beam polarization measured in the analyzer-detector unit. Thus, the method is not applicable for sample systems and environments, which depolarize the neutron beam strongly. To over come this draw back a neutron analyzer directly before the sample position may be installed to perform MIEZE-I experiments. We compared the performance of a transmission polarizer and a solid-state bender at this position for the neutron resonance spin echo spectrometer RESEDA by Monte Carlo simulations. It turned out, that the polarization as well as the intensity transmitted to the sample position is more advantageous for the transmission polarizer as for the bender. In addition, we present measurements of the polarization and intensity performance of the transmission polarizer already installed at RESEDA to polarize the neutron beam coming from the reactor FRM II. The measurements are in good agreement with Monte Carlo simulations.

  19. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  20. Thermal Evolution and Crystallisation Regimes of the Martian Core

    Science.gov (United States)

    Davies, C. J.; Pommier, A.

    2015-12-01

    Though it is accepted that Mars has a sulfur-rich metallic core, its chemical and physical state as well as its time-evolution are still unconstrained and debated. Several lines of evidence indicate that an internal magnetic field was once generated on Mars and that this field decayed around 3.7-4.0 Gyrs ago. The standard model assumes that this field was produced by a thermal (and perhaps chemical) dynamo operating in the Martian core. We use this information to construct parameterized models of the Martian dynamo in order to place constraints on the thermochemical evolution of the Martian core, with particular focus on its crystallization regime. Considered compositions are in the FeS system, with S content ranging from ~10 and 16 wt%. Core radius, density and CMB pressure are varied within the errors provided by recent internal structure models that satisfy the available geodetic constraints (planetary mass, moment of inertia and tidal Love number). We also vary the melting curve and adiabat, CMB heat flow and thermal conductivity. Successful models are those that match the dynamo cessation time and fall within the bounds on present-day CMB temperature. The resulting suite of over 500 models suggest three possible crystallization regimes: growth of a solid inner core starting at the center of the planet; freezing and precipitation of solid iron (Fe- snow) from the core-mantle boundary (CMB); and freezing that begins midway through the core. Our analysis focuses on the effects of core properties that are expected to be constrained during the forthcoming Insight mission.

  1. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  2. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  3. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  4. Membrane Transport across Polarized Epithelia.

    Science.gov (United States)

    Garcia-Castillo, Maria Daniela; Chinnapen, Daniel J-F; Lencer, Wayne I

    2017-09-01

    Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Scheme of adaptive polarization filtering based on Kalman model

    Institute of Scientific and Technical Information of China (English)

    Song Lizhong; Qi Haiming; Qiao Xiaolin; Meng Xiande

    2006-01-01

    A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering.

  6. Tracking the Martian Mantle Signature in Olivine-Hosted Melt Inclusions of Basaltic Shergottites Yamato 980459 and Tissint

    Science.gov (United States)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R.; Schmitt, A.; McKeegan, K.

    2014-01-01

    The Martian shergottite meteorites are basaltic to lherzolitic igneous rocks that represent a period of relatively young mantle melting and volcanism, approximately 600-150 Ma (e.g. [1,2]). Their isotopic and elemental composition has provided important constraints on the accretion, evolution, structure and bulk composition of Mars. Measurements of the radiogenic isotope and trace element concentrations of the shergottite meteorite suite have identified two end-members; (1) incompatible trace element enriched, with radiogenic Sr and negative epsilon Nd-143, and (2) incompatible traceelement depleted, with non-radiogenic Sr and positive epsilon 143-Nd(e.g. [3-5]). The depleted component represents the shergottite martian mantle. The identity of the enriched component is subject to debate, and has been proposed to be either assimilated ancient martian crust [3] or from enriched domains in the martian mantle that may represent a late-stage magma ocean crystallization residue [4,5]. Olivine-phyric shergottites typically have the highest Mg# of the shergottite group and represent near-primitive melts having experienced minimal fractional crystallization or crystal accumulation [6]. Olivine-hosted melt inclusions (MI) in these shergottites represent the most chemically primitive components available to understand the nature of their source(s), melting processes in the martian mantle, and origin of enriched components. We present trace element compositions of olivine hosted melt inclusions in two depleted olivinephyric shergottites, Yamato 980459 (Y98) and Tissint (Fig. 1), and the mesostasis glass of Y98, using Secondary Ionization Mass Spectrometry (SIMS). We discuss our data in the context of understanding the nature and origin of the depleted martian mantle and the emergence of the enriched component.

  7. Cosmogenic nuclides in the Martian surface: constraints for sample recovery and transport

    International Nuclear Information System (INIS)

    Englert, P.A.J.

    1988-01-01

    Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques

  8. Looking for a Source of Water in Martian Basltic Breccia NWA 7034

    Science.gov (United States)

    Muttik, N.; Agee, C. B.; McCubbin, F. M.; McCuttcheon, W. A.; Provencio, P. P.; Keller, L. P.; Santos, A. R..; Shearer, C. K.

    2014-01-01

    The recently described martian meteorite NWA 7034 has high water content compared to other SNC meteorites. Deuterium to hydrogen isotope ratio measurements indicates that there are two distinct delta-D components in NWA 7034, a low temperature (150-500degC) light component around -100per mille and a high temperature (300-1000degC) heavy component around +300per mille. NWA 7034 contains iron-rich phases that are likely secondary aqueous alteration products. They are commonly found as spheroidal objects of various sizes that are often rich in Fe-Ti oxides and possibly iron hydroxides. Iron oxides and oxyhydroxides are very common in weathered rocks and soils on Earth and Mars and they are important components of terrestrial and Martian dust. In NWA 7034 iron-rich phases are found throughout the fine-grained basaltic groundmass of the meteorite. The total amount of martian H2O in NWA 7034 is reported to be 6000 ppm, and in this study we attempt to determine the phase distribution of this H2O by texturally describing and characterizing hydrous phases in NWA 7034, using Fourier transform infrared spectrometry (FTIR) and transmission electron microscopy (TEM).

  9. Spirit Near 'Stapledon' on Sol 1802 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a polar projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  10. Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism

    OpenAIRE

    Fritz,Jorg; Greshake,Ansgar; Stoffler,Dieter

    2005-01-01

    We present the first systematic Micro-Raman spectroscopic investigation of plagioclase of different degree of shock metamorphism in Martian meteorites. The equilibrium shock pressure of all plagioclase phases of seventeen unpaired Martian meteorites was determined by measuring the shock-induced reduction of the refractive index. Systematic variations in the recorded Raman spectra of the plagioclase phases correlate with increasing shock pressure. In general, the shock induced deformation of t...

  11. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  12. Visible and Near-IR Reflectance Spectra for Smectite, Sulfate And Perchlorate under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, R.V.; Ming, W.; Golden, D.C.; Arvidson, R.E.; Wiseman, S.M.; Lichtenberg, K.A.; Cull, S.; Graff, T.G.

    2009-01-01

    Visible and near-IR (VNIR) spectral data for the martian surface obtained from orbit by the MRO-CRISM and OMEGA instruments are interpreted as having spectral signatures of H2O/OH-bearing phases, including smectites and other phyllosilicates, sulfates, and high-SiO2 phases [e.g., 1-4]. Interpretations of martian spectral signatures are based on and constrained by spectra that are obtained in the laboratory on samples with known mineralogical compositions and other physicochemical characteristics under, as appropriate, Mars-like environmental conditions (e.g., temperature, pressure, and humidity). With respect to environmental conditions, differences in the absolute concentration of atmospheric H2O can effect the hydration state and therefore the spectra signatures of smectite phyllosilicates (solvation H2O) and certain sulfates (hydration H2O) [e.g., 5-7]. We report VNIR spectral data acquired under humid (laboratory air) and dry (dry N2 gas) environments for two natural smectites (nontronite API-33A and saponite SapCa-1) to characterize the effect of solvation H2O on spectral properties. We also report spectral data for the thermal dehydration products of (1) melanterite (FeSO4.7H2O) in both air and dry N2 gas and (2) Mg-perchlorate (Mg(ClO4)2.6H2O) in dry N2 environments. Spectral measurements for samples dehydrated in dry N2 were made without exposing them to humid laboratory air.

  13. Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole

    Science.gov (United States)

    Brown, A. J.; Wolff, M. J.

    2009-03-01

    We have used CRISM Emission Phase Function gimballed observations to investigate atmospheric dust/ice opacity and surface albedo in the south polar region for the first Mars year of MRO operations. This covers the MY28 "dust event" and cap recession.

  14. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    International Nuclear Information System (INIS)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished. 40 references

  15. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    Science.gov (United States)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  16. An Examination of "The Martian" Trajectory

    Science.gov (United States)

    Burke, Laura

    2015-01-01

    This analysis was performed to support a request to examine the trajectory of the Hermes vehicle in the novel "The Martian" by Andy Weir. Weir developed his own tool to perform the analysis necessary to provide proper trajectory information for the novel. The Hermes vehicle is the interplanetary spacecraft that shuttles the crew to and from Mars. It is notionally a Nuclear powered vehicle utilizing VASIMR engines for propulsion. The intent of this analysis was the determine whether the trajectory as it was outlined in the novel is consistent with the rules of orbital mechanics.

  17. Martian Surface as Seen by Phoenix

    Science.gov (United States)

    2008-01-01

    This anaglyph, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 36, the 36th Martian day of the mission (July 1, 2008), shows a stereoscopic 3D view of a trench informally called 'Snow White' dug by Phoenix's Robotic Arm. Phoenix's solar panel is seen in the bottom right corner of the image. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  19. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data.

    Science.gov (United States)

    Matthiä, Daniel; Hassler, Donald M; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R; Slaba, Tony C; Smith, Michael; Stoffle, Nicholas N; Townsend, Lawrence W; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  20. JAWS: Just Add Water System - A device for detection of nucleic acids in Martian ice caps

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, Eske; Mørk, Søren

    2002-01-01

    with a regulation of pH and salt concentrations e.g. the MOD systems and could be installed on a planetary probe melting its way down the Martian ice caps e.g. the NASA Cryobot. JAWS can be used for detection of remains of ancient life preserved in the Martian ice as well as for detection of contamination brought...... to the planet from Earth....

  1. Seasonal cycle of Martian climate : Experimental data and numerical simulation

    NARCIS (Netherlands)

    Rodin, A. V.; Willson, R. J.

    2006-01-01

    The most adequate theoretical method of investigating the present-day Martian climate is numerical simulation based on a model of general circulation of the atmosphere. First and foremost, such models encounter the greatest difficulties in description of aerosols and clouds, which in turn

  2. Ethical Considerations Regarding the Biological Contamination of Climatically Recurrent Special Regions.

    Science.gov (United States)

    Clifford, S. M.

    2014-04-01

    With the dawn of planetary exploration, the international science community expressed concerns regarding the potential contamination of habitable planetary environments by the introduction of terrestrial organisms on robotic spacecraft. The initial concern was that such contamination would confound our efforts to find unambiguous evidence of life elsewhere in the Solar System, although, more recently, this concern has been expanded to include ethical considerations regarding the need to protect alien biospheres from potentially harmful and irreversible contamination. The international agreements which address this concern include the UN Space Treaty of 1967 and the Planetary Protection Policy of the International Council for Science's Committee on Space Research (COSPAR). In the context of Mars exploration, COSPAR calls a potentially habitable environment a 'Special Region', which it defines as: "A region within which terrestrial organisms are likely to propagate, or a region which is interpreted to have a high potential for the existence of extant Martian life forms." Specifically included in this definition are regions where liquid water is present or likely to occur and the Martian polar caps. Over the years, scientists have debated the level of cleanliness required for robotic spacecraft to investigate such environments with the goal of defining international standards that are strict enough to ensure the integrity of life-detection efforts during the period of 'biological exploration', which has been somewhat arbitrarily defined as 50 years from the arrival date of any given mission. More recently, NASA and ESA have adopted a definition of Special Regions as any Martian environment where liquid water is likely to exist within the next 500 years. While this appears to be a more conservative interpretation of the original COSPAR definition, it specifically excludes some environments where there is a high probability of liquid water on timescales greater than 500

  3. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    Science.gov (United States)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    HIRISE image processing in the existing data processing pipeline and improve it at the same time. Currently the workflow is not finished: DEM units are relative and are not in elevation. We have been able to derive successful DEMs from CTX data Becquerel [14] and Crommelin craters as well as for some areas in the North Polar Layered Terrain. Due to its tremendous resolution HIRISE data showing great surface detail, hence allowing better correlation than other sensors considered in this work. In all cases DEM were showing considerable potential for exploration of terrain characteristics. Next steps include cross validation results with DEM produced by other teams and sensors (HRSC [6], HIRISE [7]) and providing elevation in terms of absolute height over a MOLA areoid. MRO imaging data allows us an unprecedented look at Martian terrain. This work provides a step forward derivation of DEM from HIRISE and CTX datasets and currently undergoing validation vs. other existing datasets. We will present our latest results for layering structures in both North and South Polar Layered deposits as well as layered structures inside Becquerel and Crommelin craters. Digital Elevation models derived from the CTX sensor can also be utilized effectively as a input for clutter reduction models, which are in turn used for the ground penetrating SHARAD instrument [13]. References. [1] R. Arvidson, et al. Mars exploration program 2007 phoenix landing site selection and characteristics. Journal of Geophysical Research-Planets, 113, JUN 19 2008. [2] M. Golombek, et al. Assessment of mars exploration rover landing site predictions. Nature, 436(7047):44-48, JUL 7 2005. [3] K. E. Herkenhoff, et al. Meter-scale morphology of the north polar region of mars. Science, 317(5845):1711-1715, SEP 21 2007. [4] A. B. Ivanov. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions. volume 34 of Lunar and Planetary Inst. Technical Report, pages 2084-+, Mar

  4. Leveraging scientific credibility about Arctic sea ice trends in a polarized political environment.

    Science.gov (United States)

    Jamieson, Kathleen Hall; Hardy, Bruce W

    2014-09-16

    This work argues that, in a polarized environment, scientists can minimize the likelihood that the audience's biased processing will lead to rejection of their message if they not only eschew advocacy but also, convey that they are sharers of knowledge faithful to science's way of knowing and respectful of the audience's intelligence; the sources on which they rely are well-regarded by both conservatives and liberals; and the message explains how the scientist arrived at the offered conclusion, is conveyed in a visual form that involves the audience in drawing its own conclusions, and capsulizes key inferences in an illustrative analogy. A pilot experiment raises the possibility that such a leveraging-involving-visualizing-analogizing message structure can increase acceptance of the scientific claims about the downward cross-decade trend in Arctic sea ice extent and elicit inferences consistent with the scientific consensus on climate change among conservatives exposed to misleadingly selective data in a partisan news source.

  5. Confirmation of Soluble Sulfate at the Phoenix Landing Site: Implications for Martian Geochemistry and Habitability

    Science.gov (United States)

    Kounaves, S. P.; Hecht, M. H.; Kapit, J.; Quinn, R. C.; Catling, D. C.; Clark, B. C.; Ming, D. W.; Gospodinova, K.; Hredzak, P.; McElhoney, K.; hide

    2010-01-01

    Over the past several decades, elemental sulfur in martian soils and rocks has been detected by a number of missions using X-ray spectroscopy [1-3]. Optical spectroscopy has also provided evidence for widespread sulfates on Mars [4,5]. The ubiquitous presence of sulfur in soils has been interpreted as a widely distributed sulfate mineralogy [6]. However, direct confirmation as to the identity and solubility of the sulfur species in martian soil has never been obtained. One goal of the Wet Chemistry Laboratory (WCL) [7] on board the 2007 Phoenix Mars Lander [8] was to determine soluble sulfate in the martian soil. The WCL received three primary samples. Each sample was added to 25 mL of leaching solution and analysed for solvated ionic species, pH, and conductivity [9,10]. The analysis also showed a discrepancy between charge balance, ionic strength, and conductivity, suggesting unidentified anionic species.

  6. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  7. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  8. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry

    Science.gov (United States)

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.

  9. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  10. Probing the Martian Exosphere and Neutral Escape Using Pickup Ions Measured by MAVEN

    Science.gov (United States)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; Dunn, P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    Soon after the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft started orbiting Mars in September 2014, the SEP (Solar Energetic Particle), SWIA (Solar Wind Ion Analyzer), and STATIC (Supra-Thermal and Thermal Ion Composition) instruments onboard the spacecraft started detecting planetary pickup ions. SEP can measure energetic (>50 keV) oxygen pickup ions, the source of which is the extended hot oxygen exosphere of Mars. Model results show that these pickup ions originate from tens of Martian radii upstream of Mars and are energized by the solar wind motional electric field as they gyrate back towards Mars. SEP is blind to pickup hydrogen, as the low energy threshold for detection of hydrogen in SEP is 20 keV; well above the maximum pickup hydrogen energy, which is four times the solar wind proton energy. SWIA and STATIC, on the other hand, can detect both pickup oxygen and pickup hydrogen with energies below 30 keV and created closer to Mars. During the times when MAVEN is outside the Martian bow shock and in the upstream undisturbed solar wind, the solar wind velocity measured by SWIA and the solar wind (or interplanetary) magnetic field measured by the MAG (magnetometer) instrument can be used to model pickup oxygen and hydrogen fluxes near Mars. Solar wind flux measurements of the SWIA instrument are used in calculating charge-exchange frequencies, and data from the EUVM (Extreme Ultraviolet Monitor) and SWEA (Solar Wind Electron Analyzer) instruments are also used in calculating photo-ionization and electron impact frequencies of neutral species in the Martian exosphere. By comparing SEP, SWIA, and STATIC measured pickup ion fluxes with model results, the Martian thermal hydrogen and hot oxygen neutral densities can be probed outside the bow shock, which would place constraints on estimates of oxygen and hydrogen neutral escape rates. We will present model-data comparisons of pickup ions measured outside the Martian bow shock. Our analysis reveals an

  11. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    Science.gov (United States)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2004-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.

  12. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    Science.gov (United States)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.

  13. Microbial Diversity in Surface Iron-Rich Aqueous Environments: Implications for Seeking Signs of Life on Mars

    Science.gov (United States)

    Brown, I. I.; Allen, C. C.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2010-01-01

    The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.

  14. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter

    Science.gov (United States)

    Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; Arvidson, R. E.; Wray, J.J.; Swayze, G.; Clark, R.N.; Des Marais, D.J.; McEwen, A.S.; Bibring, J.-P.

    2009-01-01

    Martian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4-3.9 ??m wavelength range, coordinated with higher-spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Min??ralogie, L'Eau, les Glaces et l'Activiti?? on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9-10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life. Copyright 2009 by the American

  15. ispace's Polar Ice Explorer: Commerically Exploring the Poles of the Moon

    Science.gov (United States)

    Calzada-Diaz, A.; Acierno, K.; Rasera, J. N.; Lamamy, J.-A.

    2018-04-01

    This work provides the background, rationales, and scientific objectives for the ispace Polar Ice Explorer Project, an ISRU exploratory mission that aims to provide data about the lunar polar environment.

  16. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  17. Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps

    Science.gov (United States)

    Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.

    2017-12-01

    The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.

  18. Wisdom of the martians of science in their own words with commentaries

    CERN Document Server

    Hargittai, Balazs

    2016-01-01

    Wisdom of the Martians of Science refers to five scientists whose brilliance contributed to shaping the modern world. John von Neumann was a pioneer of the modern computer; Theodore von Kármán was the scientist behind the US Air Force; Leo Szilard initiated the development of nuclear weapons; the Nobel laureate Eugene P Wigner was the world's first nuclear engineer; and Edward Teller was the father of the hydrogen bomb. They were born and raised in Budapest, were forced out of Hungary and then from Germany, they became Americans, and devoted themselves to the defense of the United States and the Free World. They contributed significant discoveries to fundamental science ranging from the properties of materials to the application of the symmetry principle in physics, to creating information theory, to game theory. The areas in which we can learn about their wisdom include applications of science to past, present and future real-world needs; defense; education; environment; human nature; humor; politics; rel...

  19. Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith Under Simulated Martian Atmosphere and UV Flux

    Science.gov (United States)

    Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela

    2016-06-01

    The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our

  20. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    Science.gov (United States)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would

  1. Investigating Deliquescence of Mars-like Soils from the Atacama Desert and Implications for Liquid Water Near the Martian Surface

    Science.gov (United States)

    Van Alstyne, A. M.; Tolbert, M. A.; Gough, R. V.; Primm, K.

    2017-12-01

    Recent images obtained from orbiters have shown that the Martian surface is more dynamic than previously thought. These images, showing dark features that resemble flowing water near the surface, have called into question the habitability of the Mars today. Recurring slope lineae (RSL), or the dark features seen in these images, are characterized as narrow, dark streaks that form and grow in the warm season, fade in the cold season, and recur seasonally. It is widely hypothesized that the movement of liquid water near the surface is what causes the appearance of RSL. However, the origin of the water and the potential for water to be stable near the surface is a question of great debate. Here, we investigate the potential for stable or metastable liquid water via deliquescence and efflorescence. The deliquescent properties of salts from the Atacama Desert, a popular terrestrial analog for Martian environments, were investigated using a Raman microscope outfitted with an environmental cell. The salts were put under Mars-relevant conditions and spectra were obtained to determine the presence or absence of liquid phases. The appearance of liquid phases under Mars-relevant conditions would demonstrate that liquid water could be available to cause or play a role in the formations of RSL.

  2. A cryogenic optical feedthrough using polarization maintaining fibers.

    Science.gov (United States)

    Nelson, M J; Collins, C J; Speake, C C

    2016-03-01

    Polarization maintaining optical fibers can be used to transmit linearly polarized light over long distances but their use in cryogenic environments has been limited by their sensitivity to temperature changes and associated mechanical stress. We investigate experimentally how thermal stresses affect the polarization maintaining fibers and model the observations with Jones matrices. We describe the design, construction, and testing of a feedthrough and fiber termination assembly that uses polarization maintaining fiber to transmit light from a 633 nm HeNe laser at room temperature to a homodyne polarization-based interferometer in a cryogenic vacuum. We report on the efficiency of the polarization maintaining properties of the feedthrough assembly. We also report that, at cryogenic temperatures, the interferometer can achieve a sensitivity of 8 × 10(-10) rad/√Hz at 0.05 Hz using this feedthrough.

  3. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Sumner, D. Y.; Kah, L. C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; Milliken, R.; Conrad, P. G.; DesMarais, D.; Farmer, J.; Siebach, K.; Calef, F.; Hurowitz, J.; McLennan, S. M.; Ming, D.; Vaniman, D.; Crisp, J.; Vasavada, A.; Edgett, K. S.; Malin, M.; Blake, D.; Gellert, R.; Mahaffy, P.; Wiens, R. C.; Maurice, S.; Grant, J. A.; Wilson, S.; Anderson, R. C.; Beegle, L.; Arvidson, R.; Hallet, B.; Sletten, R. S.; Rice, M.; Bell, J.; Griffes, J.; Ehlmann, B.; Anderson, R. B.; Bristow, T. F.; Dietrich, W. E.; Dromart, G.; Eigenbrode, J.; Fraeman, A.; Hardgrove, C.; Herkenhoff, K.; Jandura, L.; Kocurek, G.; Lee, S.; Leshin, L. A.; Leveille, R.; Limonadi, D.; Maki, J.; McCloskey, S.; Meyer, M.; Minitti, M.; Newsom, H.; Oehler, D.; Okon, A.; Palucis, M.; Parker, T.; Rowland, S.; Schmidt, M.; Squyres, S.; Steele, A.; Stolper, E.; Summons, R.; Treiman, A.; Williams, R.; Yingst, A.; MSL Science Team; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Cremers, David; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Farley, Kenneth; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Posner, Arik; Voytek, Mary; Aubrey, Andrew; Behar, Alberto; Blaney, Diana; Brinza, David; Christensen, Lance; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Jun, Insoo; Keymeulen, Didier; Mischna, Michael; Morookian, John Michael; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

  4. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    Science.gov (United States)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  5. Describing the Components of the Water Transport in the Martian Atmosphere

    Science.gov (United States)

    Montmessin, F.; Haberle, R. M.; forget, F.; Rannou, P.; Cabane, M.

    2003-01-01

    In this paper, we examine the meteorological components driving water transport in the Martian atmosphere. A particular emphasis is given to the role of residual mean circulation and water ice clouds in determining the geographical partitioning of water vapor and frost.

  6. Frequency dependent polarization in blazars

    International Nuclear Information System (INIS)

    Bjoernsson, C.I.

    1984-10-01

    It is argued that the intrinsic frequency dependent polarization in blazars finds its most straightforward explanations in terms of a single rather than a multicomponent sourcemodel. In order to reproduce the observations, under the assumption that the emission mechanism is optically thin synchrotron radiation, both a well ordered magnetic field and an electron distribution with a sharp break or cuttoff are necessary. Non-uniform pitch angle distribution and/or environments where synchrotron losses are important are both conducive to producing strong frequency dependent polarization. Reasons are put forth as to why such conditions ar expected to occur in blazars. Two specific models are discussed in detail and it is shown that they are both able to produce strong frequency dependent polarization, even when the spectral index changes by a small amount only. (orig.)

  7. Reliable retrieval of atmospheric and aquatic parameters in coastal and inland environments from polar-orbiting and geostationary platforms: challenges and opportunities

    Science.gov (United States)

    Stamnes, Knut; Li, Wei; Lin, Zhenyi; Fan, Yongzhen; Chen, Nan; Gatebe, Charles; Ahn, Jae-Hyun; Kim, Wonkook; Stamnes, Jakob J.

    2017-04-01

    Simultaneous retrieval of aerosol and surface properties by means of inverse techniques based on a coupled atmosphere-surface radiative transfer model, neural networks, and optimal estimation can yield considerable improvements in retrieval accuracy in complex aquatic environments compared with traditional methods. Remote sensing of such environments represent specific challenges due (i) the complexity of the atmosphere and water inherent optical properties, (ii) unique bidirectional dependencies of the water-leaving radiance, and (iii) the desire to do retrievals for large solar zenith and viewing angles. We will discuss (a) how challenges related to atmospheric gaseous absorption, absorbing aerosols, and turbid waters can be addressed by using a coupled atmosphere-surface radiative transfer (forward) model in the retrieval process, (b) how the need to correct for bidirectional effects can be accommodated in a systematic and reliable manner, (c) how polarization information can be utilized, (d) how the curvature of the atmosphere can be taken into account, and (e) how neural networks and optimal estimation can be used to obtain fast yet accurate retrievals. Special emphasis will be placed on how information from existing and future sensors deployed on polar-orbiting and geostationary platforms can be obtained in a reliable and accurate manner. The need to provide uncertainty assessments and error budgets will also be discussed.

  8. Martian geomorphology and its relation to subsurface volatiles

    Science.gov (United States)

    Clifford, Stephen M. (Editor); Rossbacher, Lisa A. (Editor); Zimbelman, James R. (Editor)

    1986-01-01

    Martian volatile inventory, planetary climatic and atmospheric evolution, and the interpretation of various remote sensing data were discussed. A number of morphologies that were cited as potential indicators of subsurface volatiles were reviewed. Rampart craters and terrain softening were the focus of more in-depth discussion because of the popular attention they have received and the fact that their areal distributions are by far the most extensive of all the proposed indicators.

  9. Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life

    Science.gov (United States)

    Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.

    2000-01-01

    Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.

  10. Time for a Change; Spirit's View on Sol 1843 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate.

  11. Variations of the electron concentration in the polar ionosphere

    International Nuclear Information System (INIS)

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  12. Polarized positrons and electrons at the linear collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H.K.; Eberl, H.; Ellis, J.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  13. Topological insulator infrared pseudo-bolometer with polarization sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Peter Anand

    2017-10-25

    Topological insulators can be utilized in a new type of infrared photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The detector isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This detector eliminates the need for external polarization selective optics. Polarization sensitive infrared photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.

  14. Martian channels and valleys - Their characteristics, distribution, and age

    Science.gov (United States)

    Carr, M. H.; Clow, G. D.

    1981-01-01

    The distribution and ages of Martian channels and valleys, which are generally believed to have been cut by running water, are examined with particular emphasis on the small branching networks referred to as runoff channels or valley networks. Valleys at latitudes from 65 deg S to 65 deg N were surveyed on Viking images at resolutions between 125 and 300 m. Almost all of the valleys are found in the old cratered terrain, in areas characterized by high elevations, low albedos and low violet/red ratios. The networks are deduced to have formed early in the history of the planet, with a formation rate declining rapidly shortly after the decline of the cratering rate 3.9 billion years ago. Two types of outflow channels are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. Both types start at local sources, and have formed episodically throughout Martian history. Fretted channels, found mainly in two latitude belts characterized by relatively rapid erosion along escarpments, are explained by the lateral enlargement of other channels by mass wasting.

  15. Automated Detection of Craters in Martian Satellite Imagery Using Convolutional Neural Networks

    Science.gov (United States)

    Norman, C. J.; Paxman, J.; Benedix, G. K.; Tan, T.; Bland, P. A.; Towner, M.

    2018-04-01

    Crater counting is used in determining surface age of planets. We propose improvements to martian Crater Detection Algorithms by implementing an end-to-end detection approach with the possibility of scaling the algorithm planet-wide.

  16. An analysis of heat conduction in polar bear hairs using one-dimensional fractional model

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2016-01-01

    Full Text Available Hairs of a polar bear are of superior properties such as the excellent thermal protection. The polar bears can perennially live in an extremely cold environment and can maintain body temperature at around 37 °C. Why do polar bears can resist such cold environment? Its membrane-pore structure plays an important role. In the previous work, we established a 1-D fractional heat conduction equation to reveal the hidden mechanism for the hairs. In this paper, we further discuss solutions and parameters of the equation established and analyze heat conduction in polar bear hairs.

  17. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  18. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  19. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment.

    Science.gov (United States)

    Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte

    2014-02-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).

  20. Martian volcanism: festoon-like ridges on terrestrial basalt flows and implications for Mars

    International Nuclear Information System (INIS)

    Theilig, E.; Greeley, R.

    1987-01-01

    The Fink and Fletcher, and Fink model was used to assess and compare flow rheology for two terrestrial basalt flows and one Martian flow with previous studies. Based on the morphologic similarities between the Martian flows and the Icelandic flows and knowledge of the emplacement of the terrestrial flows, the flows west of Arsia Mons are considered to have been emplaced as large sheet flows from basaltic flood style eruptions. Festoon ridges represent folding of the surface crust in the last stages of emplacement when viscosities would be high due to cooling. Alternatively, the lava may have had a high crystallinity or was erupted at low temperatures. In addition, increased compressive stress behind halted flow fronts or in ponded areas may have contributed to ridge formation

  1. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  2. A Novel Attitude Determination System Aided by Polarization Sensor

    Directory of Open Access Journals (Sweden)

    Wei Zhi

    2018-01-01

    Full Text Available This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  3. A Novel Attitude Determination System Aided by Polarization Sensor.

    Science.gov (United States)

    Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong

    2018-01-09

    This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  4. Magnetic Particles Are Found In The Martian Atmosphere

    Science.gov (United States)

    1976-01-01

    The dark bullseye pattern seen at the top of Viking l's camera calibration chart indicates the presence of magnetic particles in the fine dust in the Martian atmosphere. A tiny magnet is mounted at that spot to catch wind-borne magnetic particles. The particles may have been tossed into the atmosphere surrounding the spacecraft at the time of landing and during the digging and delivery of the Mars soil sample by the surface sampler scoop. This picture was taken August 4.

  5. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    International Nuclear Information System (INIS)

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A.; Lawrence Berkeley National Lab., CA

    1999-01-01

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of 129 Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved 1 H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the 1 H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective 1 H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon

  6. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Science.gov (United States)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  7. Coastal geomorphology of the Martian northern plains

    Science.gov (United States)

    Parker, Timothy J.; Gorsline, Donn S.; Saunders, Stephen R.; Pieri, David C.; Schneeberger, Dale M.

    1993-01-01

    The paper considers the question of the formation of the outflow channels and valley networks discovered on the Martian northern plains during the Mariner 9 mission. Parker and Saunders (1987) and Parker et al. (1987, 1989) data are used to describe key features common both in the lower reaches of the outflow channels and within and along the margins of the entire northern plains. It is suggested, that of the geological processes capable of producing similar morphologies on earth, lacustrine or marine deposition and subsequent periglacial modification offer the simplest and most consistent explanation for the suit of features found on Mars.

  8. Coupling Planar Cell Polarity Signaling to Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Axelrod

    2002-01-01

    Full Text Available Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical–basal axes, referred to as Planar Cell Polarity (PCP. The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly, Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate to Drosophila PCP signaling.

  9. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    Science.gov (United States)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not

  10. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  11. Apparent resistivity and spectral induced polarization in the submarine environment

    Directory of Open Access Journals (Sweden)

    HERCULES DE SOUZA

    2001-09-01

    Full Text Available Relatively few investigations have employed electrical methods in the submarine environment, which may be promising for mineral deposits or threatened by environmental problems. We have measured the electric field using both disk and bar electrodes in the sea water at three different levels: sea surface, seven meters deep, and sea bottom at a depth of ten meters, employing a 2 m spacing dipole-dipole array with 7 array spacings of investigation, and 13 values of frequencies at steps of (2N hertz, N = -2, -1, 0, 1, 2,.....10. The measurement allowed the analysis of the electric field as a function of frequency and spacing, and of the spectral induced polarization. Modelling and interpretation of the apparent resistivity yielded a good fit with previous drilling data. Analysis of the spectrum of the complex apparent resistivity and the comparison with equivalent circuits, provided information about the grain size, the mineral composition and the major induced polarization phenomenon occurring below the sea. Therefore the result of the present research show the feasibility of measuring the variation of seawater resistivity in situ, as well as the resistivity of sea bottom sediments.Relativamente poucas investigações têm empregado métodos elétricos no ambiente submarino, o qual pode ser promissor para depósitos minerais ou ameaçado por problemas ambientais. Nós medimos o campo elétrico usando eletrodos em forma de disco e de barra na água do mar, em três níveis distintos: superfície, sete metros de profundidade, e fundo do mar a dez metros de profundidade, empregando um dispositivo dipolo-dipolo com 2m de afastamento, 7 níveis de investigação e 13 valores de freqüência a intervalos de (2N hertz, N = -2, -1, 0, 1, 2, ... 10. A medida permitiu a análise do campo elétrico como uma função de freqüência e afastamento, e da polarização induzida espectral. A modelagem e a interpretação da resistividade aparente se ajustaram bem

  12. Martian Water: Are There Extant Halobacteria on Mars?

    OpenAIRE

    Landis, Geoffrey A.

    2001-01-01

    On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life is not present on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was mor...

  13. Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water

    International Nuclear Information System (INIS)

    Gunold, Roman; Schaefer, Ralf Bernhard; Paschke, Albrecht; Schueuermann, Gerrit; Liess, Matthias

    2008-01-01

    Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R s were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water. - We calibrated the Chemcatcher passive sampler for current-use polar pesticides in surface waters, allowing its application in future monitoring studies

  14. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  15. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    Science.gov (United States)

    Richardson, C. Doc; Hinman, Nancy W.; Scott, Jill R.

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  16. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    Science.gov (United States)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  17. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  18. Periodic orbits around areostationary points in the Martian gravity field

    International Nuclear Information System (INIS)

    Liu Xiaodong; Baoyin Hexi; Ma Xingrui

    2012-01-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  19. Progress on a cryogenically cooled RF gun polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  20. Morphogenesis of Antarctic Paleosols: Martian Analogue

    Science.gov (United States)

    Mahaney, W. C.; Dohm, J. M.; Baker, V. R.; Newsom, Horton E.; Malloch, D.; Hancock, R. G. V.; Campbell, Iain; Sheppard, D.; Milner, M. W.

    2001-11-01

    Samples of horizons in paleosols from the Quartermain Mountains of the Antarctic Dry Valleys (Aztec and New Mountain areas) were analyzed for their physical characteristics, mineralogy, chemical composition, and microbiology to determine the accumulation and movement of salts and other soluble constituents and the presence/absence of microbial populations. Salt concentrations are of special interest because they are considered to be a function of age, derived over time, in part from nearby oceanic and high-altitude atmospheric sources. The chemical composition of ancient Miocene-age paleosols in these areas is the direct result of the deposition and weathering of airborne-influxed salts and other materials, as well as the weathering of till derived principally from local dolerite and sandstone outcrops. Paleosols nearer the coast have greater contents of Cl, whereas near the inland ice sheet, nitrogen tends to increase on a relative basis. The accumulation and vertical distribution of salts and other soluble chemical elements indicate relative amounts of movement in the profile over long periods of time, in the order of several million years. Four of the six selected subsamples from paleosol horizons in two ancient soil profiles contained nil concentrations of bacteria and fungi. However, two horizons at depths of between 3 and 8 cm, in two profiles, yielded several colonies of the fungi Beauveria bassiana and Penicillium brevicompactum, indicating very minor input of organic carbon. Beauveria bassiana is often reported in association with insects and is used commercially for the biological control of some insect pests. Penicillium species are commonly isolated from Arctic, temperate, and tropical soils and are known to utilize a wide variety of organic carbon and nitrogen compounds. The cold, dry soils of the Antarctic bear a close resemblance to various present and past martian environments where similar weathering could occur and possible microbial populations

  1. Formation of martian araneiforms by gas-driven erosion of granular material

    DEFF Research Database (Denmark)

    de Villiers, S.; Nermoen, A.; Jamtveit, B.

    2012-01-01

    Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m–1 km scale branched channels known...

  2. Convergence of environment polarization effects in multiscale modeling of excitation energies

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; Ruud, Kenneth

    2014-01-01

    We present a systematic investigation of the influence of polarization effects from a surrounding medium on the excitation energies of a chromophore. We use a combined molecular dynamics and polarizable embedding time-dependent density functional theory (PE-TD-DFT) approach for chromophores in pr...

  3. Dune-slope activity due to frost and wind throughout the north polar erg, Mars.

    Science.gov (United States)

    Diniega, Serina; Hansen, Candice J; Allen, Amanda; Grigsby, Nathan; Li, Zheyu; Perez, Tyler; Chojnacki, Matthew

    2017-01-01

    Repeat, high-resolution imaging of dunes within the Martian north polar erg have shown that these dune slopes are very active, with alcoves forming along the dune brink each Mars year. In some areas, a few hundred cubic metres of downslope sand movement have been observed, sometimes moving the dune brink 'backwards'. Based on morphological and activity-timing similarities of these north polar features to southern dune gullies, identifying the processes forming these features is likely to have relevance for understanding the general evolution/modification of dune gullies. To determine alcove-formation model constraints, we have surveyed seven dune fields, each over 1-4 Mars winters. Consistent with earlier reports, we found that alcove-formation activity occurs during the autumn-winter seasons, before or while the stable seasonal frost layer is deposited. We propose a new model in which alcove formation occurs during the autumn, and springtime sublimation activity then enhances the feature. Summertime winds blow sand into the new alcoves, erasing small alcoves over a few Mars years. Based on the observed rate of alcove erasure, we estimated the effective aeolian sand transport flux. From this, we proposed that alcove formation may account for 2-20% of the total sand movement within these dune fields.

  4. Intensities of the Martian N2 electron-impact excited dayglow emissions

    Science.gov (United States)

    Fox, Jane L.; Hać, Nicholas E. F.

    2013-06-01

    The first N2 emissions in the Martian dayglow were detected by the SPICAM UV spectrograph on board the Mars Express spacecraft. Intensities of the (0,5) and (0,6) Vegard-Kaplan bands were found to be about one third of those predicted more than 35 years ago. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is excited in the Martian dayglow by direct electron-impact excitation of the ground N2(X) state to the A state and by excitation to higher triplet states that populate the A state by cascading. Using revised data, we compute here updated intensities of several of the bands in the N2 triplet systems and those involving the a1Πg state, the upper state of the Lyman-Birge-Hopfield bands. We find that the predicted limb intensities for the (0,5) and (0,6) Vegard-Kaplan bands are consistent with the measured values.

  5. Some consequences of a liquid water saturated regolith in early Martian history

    Science.gov (United States)

    Fuller, A. O.; Hargraves, R. B.

    1978-01-01

    Flooding of low-lying areas of the Martian regolith may have occurred early in the planet's history when a comparatively dense primitive atmosphere existed. If this model is valid, the following are some pedogenic and mineralogical consequences to be expected. Fluctuation of the water table in response to any seasonal or longer term causes would have resulted in precipitation of ferric oxyhydroxides with the development of a vesicular duricrust (or hardpan). Disruption of such a crust by scarp undercutting or frost heaving accompanied by wind deflation of fines could account for the boulders visible on Utopia Planitia in the vicinity of the second Viking lander site. Laboratory and field evidence on earth suggests that under weakly oxidizing conditions lepidocrocite (rather than goethite) would have preferentially formed in the Martian regolith from the weathering of ferrous silicates, accompanied by montmorillonite, nontronite, and cronstedtite. Maghemite may have formed as a low-temperature dehydrate of lepidocrocite or directly from ferrous precursors.

  6. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  7. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  8. Review of the Sayh al Uhaymir (SaU 005, Plus Pairings, Martian Meteorite from Al Wusta, Oman

    Directory of Open Access Journals (Sweden)

    Arshad Ali

    2017-01-01

    Full Text Available Al Wusta is a desert area in the Sultanate of Oman which is famous due to the discovery of a number of Martian and Lunar meteorites since the start of the present millennium. According to the Meteoritical Bulletin database, 137 approved Martian meteorites have been found worldwide, including 17 from Oman (4 from Zufar, 13 from Al Wusta region. Interestingly 11 finds in the last 15 years have been of Sayh al Uhaymir (SaU 005 and its pairings. These finds (estimated mass = 11.2 kg are linked to 10 search expeditions carried out between November 26, 1999 and March 2, 2014 by the Swiss group from the University of Bern and several anonymous meteorite hunters. The bulk of these meteorites (~97% is in the possession of anonymous collectors, negatively affecting Oman’s natural heritage and denying further research opportunities, given their associated scientific value. SaU 005 and its pairings belong to the shergottite group of the Shergotty-Nakhla-Chassigny (SNC meteorites, originating from various depths within the Martian mantle. We discuss the recently published oxygen isotope data of bulk and mineral fractions of SaU 008 recovered during the very first expedition in 1999 in the context of other shergottites found in Oman. The bulk oxygen isotope data of SaU 008 and Dhofar 019, another Martian meteorite from Oman, show a narrow range in δ18O values. Their Δ17O values are remarkably close to identical and fall linearly on a Martian fractionation line above the terrestrial fractionation line (TFL by + 0.32‰, suggesting that Mars’ mantle is homogeneous in oxygen isotopes. Petrographic and mineralogical data of SaU 005 and other pairings published in the Meteoritical Bulletin are compiled, and it is noted that all the meteorites are identical and are likely paired. The story behind these rare extra-terrestrial specimens demands a local meteorite museum and preliminary testing laboratory at Sultan Qaboos University (SQU to protect this treasure

  9. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a ''NIMF'' (Nuclear rocket using Indigenous Martian Fuel.) The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO 2 . This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface

  10. Interstellar extinction and polarization in the infrared

    International Nuclear Information System (INIS)

    Martin, P.G.; Whittet, D.C.B.

    1990-01-01

    The wavelength dependences of interstellar continuum extinction and polarization in the range 0.35-5 microns are examined. The existence of a universal extinction curve with power law index of about 1.8 extending from the near-IR to at least 5 microns appears to be established for both diffuse and dense cloud dust. The polarization yields evidence for some degree of universality in the 1.6-5 micron regime which may be represented by a power law with index 1.5-2.0, encompassing that for extinction. The form of the polarization curve in the IR seems independent of the wavelength at which the degree of polarization peaks in the optical, implying that variations in that wavelength are caused by changes in the optical properties of the particle at blue-visible rather than IR wavelengths. It is argued that the more significant alterations of the grain size distribution from one environment to another occur for the smaller particles. 47 refs

  11. Northwest Africa 8159: An approximately 2.3 Billion Year Old Martian Olivine-Bearing Augite Basalt

    Science.gov (United States)

    Simon, J. I.; Peters, T. J.; Tappa, M. J.; Agee, C. B.

    2014-01-01

    Based on petrology, mineralogy, and bulk composition, the new NWA 8159 martian meteorite is distinct from all known samples from Mars. In particular, the augite compositional trends are unique, but most similar to those of nakhite intercumulus. Whether NWA 8159 represents a new lithology or is related to a known meteorite group remains to be determined. Sr and Nd isotopic analyses will allow comparison of source characteristics with SNC and other new ungrouped meteorites (e.g., NWA 7635). Here we report initial Rb-Sr and Sm-Nd isotopic results for NWA 8159 with the objective to determine its formation age and to potentially identify similarities and potential source affinities with other martian rocks.

  12. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    Science.gov (United States)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  13. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  14. Polarization information processing and software system design for simultaneously imaging polarimetry

    Science.gov (United States)

    Wang, Yahui; Liu, Jing; Jin, Weiqi; Wen, Renjie

    2015-08-01

    Simultaneous imaging polarimetry can realize real-time polarization imaging of the dynamic scene, which has wide application prospect. This paper first briefly illustrates the design of the double separate Wollaston Prism simultaneous imaging polarimetry, and then emphases are put on the polarization information processing methods and software system design for the designed polarimetry. Polarization information processing methods consist of adaptive image segmentation, high-accuracy image registration, instrument matrix calibration. Morphological image processing was used for image segmentation by taking dilation of an image; The accuracy of image registration can reach 0.1 pixel based on the spatial and frequency domain cross-correlation; Instrument matrix calibration adopted four-point calibration method. The software system was implemented under Windows environment based on C++ programming language, which realized synchronous polarization images acquisition and preservation, image processing and polarization information extraction and display. Polarization data obtained with the designed polarimetry shows that: the polarization information processing methods and its software system effectively performs live realize polarization measurement of the four Stokes parameters of a scene. The polarization information processing methods effectively improved the polarization detection accuracy.

  15. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  16. Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments

    Science.gov (United States)

    Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.

    2016-05-01

    Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.

  17. Investigation on principle of polarization-difference imaging in turbid conditions

    Science.gov (United States)

    Ren, Wei; Guan, Jinge

    2018-04-01

    We investigate the principle of polarization-difference imaging (PDI) of objects in optically scattering environments. The work is performed by both Marius's law and Mueller-Stokes formalism, and is further demonstrated by simulation. The results show that the object image is obtained based on the difference in polarization direction between the scatter noise and the target signal, and imaging performance is closely related to the choice of polarization analyzer axis. In addition, this study illustrates the potential of Stoke vector for promoting application of PDI system in the real world scene.

  18. Influence of atmospheric turbulence on the quantum polarization state

    Science.gov (United States)

    Yang, Ru; Xue, Yang; Li, Yunxia; Shi, Lei; Zhu, Yu; Zhu, Qiuli

    2018-03-01

    In order to study the influence of atmospheric turbulence on the polarization state of the free space quantum communication, the relationship between the refractive index and altitude, the refractive index structure constant and the turbulence dimension is deduced based on two different atmospheric refractive index structural constants models. The turbulence intensity factor κ is introduced and the equation of the variation of the quantum polarization degree with turbulence intensity is established. Through the simulation of the turbulent refractive index and the performance of four different polarization states in the low altitude turbulence environment, the results show that the atmospheric turbulence in the near ground will affect the fluctuation of the degree of polarization, and the degree of polarization varies linearly with the change of turbulence intensity. In the case of polarization |H>, the range of polarization |H> varies from 0 to 0.14 with the change of turbulence intensity. The influence of atmospheric turbulence on four different polarization states is different, and the degree of |H> and |V> depolarization is greater in the daytime and back. The depolarization degree of |-> at night is greater. The relationship between the degree of polarization and the change of turbulence intensity is analyzed by mathematical modeling, which is helpful to select the reasonable experimental scheme and compensate the change of polarization state in the aviation quantum Secure communication channel.

  19. Structural parallels between terrestrial microbialites and Martian sediments: are all cases of `Pareidolia'?

    Science.gov (United States)

    Rizzo, Vincenzo; Cantasano, Nicola

    2017-10-01

    The study analyses possible parallels of the microbialite-known structures with a set of similar settings selected by a systematic investigation from the wide record and data set of images shot by NASA rovers. Terrestrial cases involve structures both due to bio-mineralization processes and those induced by bacterial metabolism, that occur in a dimensional field longer than 0.1 mm, at micro, meso and macro scales. The study highlights occurrence on Martian sediments of widespread structures like microspherules, often organized into some higher-order settings. Such structures also occur on terrestrial stromatolites in a great variety of `Microscopic Induced Sedimentary Structures', such as voids, gas domes and layer deformations of microbial mats. We present a suite of analogies so compelling (i.e. different scales of morphological, structural and conceptual relevance), to make the case that similarities between Martian sediment structures and terrestrial microbialites are not all cases of `Pareidolia'.

  20. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  1. Hyperfine interaction with polarized atomic environment - the nuclear tilted-foil experiment

    International Nuclear Information System (INIS)

    Niv, Y.

    1985-01-01

    The nuclear tilted-foil experimental field has matured from the early time-integral measurements to the current multifoil time-differential precession and polarization configurations, leading to a wide range of measurements - magnetic moments, quadrupole moments and parity-non-conservation. The physical basis of these experiments is discussed and experimental results are reviewed. (Auth.)

  2. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2007-01-01

    An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings are needed for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, and these lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.

  3. A balloon-borne experiment to investigate the Martian magnetic field

    Science.gov (United States)

    Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.

    1996-03-01

    The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.

  4. Physical properties of the martian surface from the Viking 1 lander: preliminary results

    International Nuclear Information System (INIS)

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II; Scott, R.E.; Spitzer, C.R.

    1976-01-01

    The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface

  5. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    Science.gov (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  6. Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant. Quasi-Static and Dynamic Penetration Testing

    Science.gov (United States)

    Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.

    2017-10-01

    The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.

  7. Chemosynthesis in deep-sea red-clay: Linking concepts to probable martian life

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Mourya, B.S.; Mamatha, S.S.; Khadge, N.H.; LokaBharathi, P.A.

    of microbial biogeochemistry are used in the pres- ent deep-sea analogue studies and would be imple- mented for actual Martian soil samples in future: Microbial abundance in terms of total counts » Diversity of culture dependent and independent Chemos... soils done earlier by Viking I robots [5, Bianciardi et. al, 2012

  8. Modelling of the dose-rate variations with depth in the Martian regolith using GEANT4

    International Nuclear Information System (INIS)

    Morthekai, P.; Jain, M.; Dartnell, L.; Murray, A.S.; Botter-Jensen, L.; Desorgher, L.

    2007-01-01

    The environmental radiation field at the Martian surface consists mainly of Galactic Cosmic Rays (GCR) and charged particles ejected during the Solar Particle Events (SPE). Interactions between these radiation fluxes and the regolith result in a complex radiation field that varies both as a function of depth and time and can only be quantified using radiation transport models. We first describe here the main issues and constraints in deriving Martian dose rates. Preliminary results, obtained using the GEANT4 Monte Carlo simulation tool kit, suggest the surface dose rate is ∼63 mGy a -1 during quiet periods in solar activity. The accuracy of the model predictions has been tested by comparison with published observations of cosmic ray dose-rate variation in the Earth's atmosphere

  9. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    Science.gov (United States)

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  10. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  11. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  12. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars

    OpenAIRE

    Banham, Steven G.; Gupta, Sanjeev; Rubin, David M.; Watkins, Jessica A.; Sumner, Dawn Y.; Edgett, Kenneth S.; Grotzinger, John P.; Lewis, Kevin W.; Edgar, Lauren A.; Stack-Morgan, Kathryn M.; Barnes, Robert; Bell, James F., III; Day, Mackenzie D.; Ewing, Ryan C.; Lapotre, Mathieu G. A.

    2018-01-01

    Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the nort...

  13. Luminescence dating on Mars: OSL characteristics of Martian analogue materials and GCR dosimetry

    DEFF Research Database (Denmark)

    Jain, M.; Andersen, C.E.; Bøtter-Jensen, L.

    2006-01-01

    , and sedimentary precipitates such as sulphates and chlorides. We present here a preliminary investigation of the luminescence characteristics (sensitivity, dose response, fading) of some Martian analogue mineral and rock samples. These materials are likely to be zeroed by the solar UV light (200-300nm) under sub...

  14. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    Science.gov (United States)

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  16. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    Science.gov (United States)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  17. Thermal infrared properties of the Martian atmosphere 4. Predictions of the presence of dust and ice clouds from Viking IRTM spectral measurements

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1979-01-01

    In this paper we investigate the response of the Martian atmosphere at the wavelengths measured by the Viking infrared thermal mapper instrument (IRTM) to the presence of varying amounts of dust and water ice clouds. A detailed radiative transfer study is represented to show that these IRTM measurements at channels centered at 7, 9, 11, and 20 μm may be used to differentiate between the presence of dust and water ice clouds in the Martian atmosphere. They show further that these measurements may also be used to provide some information on the structure of the lower atmosphere. The use of the IRTM measurements in the manner we describe can provide information associated with the thermal characteristics of Martian dust storms

  18. Effects of Long-Term Simulated Martian Conditions on a Freeze-Dried and Homogenized Bacterial Permafrost Community

    Science.gov (United States)

    Hansen, Aviaja A.; Jenson, Lars L.; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W.; Lomstein, Bente Aa.

    2009-03-01

    Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.

  19. The International Polar Year in Portugal: A New National Polar Programme and a Major Education and Outreach project

    Science.gov (United States)

    Mendes-Victor, L.; Vieira, G.; Xavier, J.; Canario, A.

    2008-12-01

    Before the International Polar Year, in Portugal polar research was conducted by a very small group of scientists integrated in foreign projects or research institutions. Portugal was not member of the Scientific Committee for Antarctic Research (SCAR), the European Polar Board (EPB), neither a subscriber of the Antarctic Treaty. In 2004 Portuguese Polar researchers considered the IPY as an opportunity to change this situation and organized the national Committee for the IPY. The objectives were ambitious: to answer the aforementioned issues in defining and proposing a National Polar Programme. In late 2008, close to the end of the IPY, the objectives were attained, except the Antarctic Treaty signature that is, however, in an advanced stage, having been approved by consensus at the National Parliament in early 2007. Portugal joined SCAR in July 2006, the EPB in 2007 and a set of 5 Antarctic research projects forming the roots of the National Polar Programme (ProPolar) have been approved by the Foundation for Science and Technology (FCT-MCTES). Scientifically, the IPY can already be considered a major success in Portugal with an improvement in polar scientific research, in the number of scientists performing field work in the Antarctic, organizing polar science meetings and producing an expected increase in the number of polar science peer- reviewed papers. The Portuguese IPY scientific activities were accompanied by a major education and outreach project funded by the Agencia Ciência Viva (MCTES): LATITUDE60! Education for the Planet in the IPY. This project lead by the universities of Algarve, Lisbon and by the Portuguese Association of Geography Teachers is heavily interdisciplinary, programmed for all ages, from kindergarten to adults, and hoped to bring together scientists and society. LATITUDE60! was a major success and focussed on showing the importance of the polar regions for Earth's environment, emphasising on the implications of polar change for

  20. Deterministic and stochastic methods of calculation of polarization characteristics of radiation in natural environment

    Science.gov (United States)

    Strelkov, S. A.; Sushkevich, T. A.; Maksakova, S. V.

    2017-11-01

    We are talking about russian achievements of the world level in the theory of radiation transfer, taking into account its polarization in natural media and the current scientific potential developing in Russia, which adequately provides the methodological basis for theoretically-calculated research of radiation processes and radiation fields in natural media using supercomputers and mass parallelism. A new version of the matrix transfer operator is proposed for solving problems of polarized radiation transfer in heterogeneous media by the method of influence functions, when deterministic and stochastic methods can be combined.

  1. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    Science.gov (United States)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.

  2. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).

    Energy Technology Data Exchange (ETDEWEB)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-09-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

  3. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD)

    International Nuclear Information System (INIS)

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-01-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive (∼100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications

  4. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  5. Silver contents and Cu/Ag ratios in Martian meteorites and the implications for planetary differentiation

    Science.gov (United States)

    Wang, Zaicong; Becker, Harry

    2017-11-01

    Silver and Cu show very similar partitioning behavior in sulfide melt-silicate melt and metal-silicate systems at low and high pressure-temperature (P-T) experimental conditions, implying that mantle melting, fractional crystallization and core-mantle differentiation have at most modest (within a factor of 3) effects on Cu/Ag ratios. For this reason, it is likely that Cu/Ag ratios in mantle-derived magmatic products of planetary bodies reflect that of the mantle and, in some circumstances, also the bulk planet composition. To test this hypothesis, new Ag mass fractions and Cu/Ag ratios in different groups of Martian meteorites are presented and compared with data from chondrites and samples from the Earth's mantle. Silver contents in lherzolitic, olivine-phyric and basaltic shergottites and nakhlites range between 1.9 and 12.3 ng/g. The data display a negative trend with MgO content and correlate positively with Cu contents. In spite of displaying variable initial Ɛ143Nd values and representing a diverse spectrum of magmatic evolution and physiochemical conditions, shergottites and nakhlites display limited variations of Cu/Ag ratios (1080 ± 320, 1 s, n = 14). The relatively constant Cu/Ag suggests limited fractionation of Ag from Cu during the formation and evolution of the parent magmas, irrespectively of whether sulfide saturation was attained or not. The mean Cu/Ag ratio of Martian meteorites thus reflects that of the Martian mantle and constrains its Ag content to 1.9 ± 0.7 ng/g (1 s). Carbonaceous and enstatite chondrites display a limited range of Cu/Ag ratios of mostly 500-2400. Ordinary chondrites show a larger scatter of Cu/Ag up to 4500, which may have been caused by Ag redistribution during parent body metamorphism. The majority of chondrites have Cu/Ag ratios indistinguishable from the Martian mantle value, indicating that Martian core formation strongly depleted Cu and Ag contents, but probably did not significantly change the Cu/Ag ratio of the

  6. Visualisation of very high resolution Martian topographic data and its application on landing site selection and rover route navigation

    Science.gov (United States)

    Kim, J.; Lin, S.; Hong, J.; Park, D.; Yoon, S.; Kim, Y.

    2010-12-01

    High resolution satellite imagery acquired from orbiters are able to provide detailed topographic information and therefore are recognised as an important tool for investigating planetary and terrestrial topography. The heritage of in-orbit high resolution imaging technology is now implemented in a series of Martian Missions, such as HiRISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) onboard the MRO (Mars Reconnaissance Orbiter). In order to fully utilise the data derived from image systems carried on various Mars orbiters, the generalised algorithms of image processing and photogrammetric Mars DTM extraction have been developed and implemented by Kim and Muller (2009), in which non-rigorous sensor model and hierarchical geomatics control were employed. Due to the successful “from medium to high” control strategy performed during processing, stable horizontal and vertical photogrammetric accuracy of resultant Mars DTM was achievable when compared with MOLA (Mars Obiter Laser Altimeter) DTM. Recently, the algorithms developed in Kim and Muller (2009) were further updated by employing advanced image matcher and improved sensor model. As the photogrammetric qualities of the updated topographic products are verified and the spatial solution can be up to sub-meter scale, they are of great value to be exploited for Martian rover landing site selection and rover route navigation. To this purpose, the DTMs and ortho-rectified imagery obtained from CTX and HiRISE covering potential future rovers and existing MER (Mars Exploration Rover) landing sites were firstly processed. For landing site selection, the engineering constraints such as slope and surface roughness were computed from DTMs. In addition, the combination of virtual topography and the estimated rover location was able to produce a sophisticated environment simulation of rover’s landing site. Regarding the rover navigation, the orbital DTMs and the images taken from cameras

  7. Opportunity's View After Drive on Sol 1806 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a polar projection with geometric seam correction.

  8. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    Science.gov (United States)

    Zubrin, Robert M.

    1990-01-01

    A design study of a novel space transportation concept called NIMF (Nuclear rocket using Indigenous Martian Fuel) is reported. In this concept, Martian CO2 gas, which constitutes 95 percent of the atmosphere, is liquified by simple compression to about 100 psi and remains stable without refrigeration. When heated and exhausted out of a rocket nozzle, a specific impulse of about 264 s can be achieved, sufficient for flights from the surface to highly energetic orbits or from one point on the surface to any other point. The propellant acquisition system can travel with the vehicle, allowing it to refuel itself each time it lands. The concept offers unequalled potential to achieve planetwide mobility, allowing complete global access for the exploration of Mars. By eliminating the necessity of transporting ascent propellant to Mars, the NIMF can also significantly reduce the initial mass in LEO and of a manned Mars mission.

  9. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016.

    Science.gov (United States)

    Ehresmann, Bent; Zeitlin, Cary J; Hassler, Donald M; Matthiä, Daniel; Guo, Jingnan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on

  10. Formation and stability of Pb-, Zn- and Cu-PO4 phases at low temperatures: Implications for heavy metal fixation in polar environments

    International Nuclear Information System (INIS)

    White, Duanne A.; Hafsteinsdóttir, Erla G.; Gore, Damian B.; Thorogood, Gordon; Stark, Scott C.

    2012-01-01

    Low temperatures and frequent soil freeze–thaw in polar environments present challenges for the immobilisation of metals. To address these challenges we investigated the chemical forms of Pb, Zn and Cu in an Antarctic landfill, examined in vitro reaction kinetics of these metals and orthophosphate at 2 and 22 °C for up to 185 days, and subjected the products to freeze–thaw. Reaction products at both temperatures were similar, but the rate of production varied, with Cu-PO 4 phases forming faster, and the Zn- and Pb-PO 4 phases slower at 2 °C. All metal-orthophosphate phases produced were stable during a 2.5 h freeze–thaw cycle to −30 °C. Metal immobilisation using orthophosphate can be successful in polar regions, but treatments will need to consider differing mineral stabilities and reaction rates at low temperatures. - Highlights: ► We identify Cu, Pb and Zn species in an Antarctic Landfill. ► We identify the products and rates of reactions between metals and PO 4 3− at 2 and 22 °C. ► We test the stability of metal-orthophosphate species during freeze–thaw. ► We conclude that orthophosphate may immobilize metals in freezing ground. - Pb, Cu and Zn react with PO 4 3− at low temperatures (2 °C) to form low solubility metal-PO 4 phases at rates that may enable the in-situ remediation of metal contaminated soils in polar areas.

  11. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  12. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  13. The Use of Returned Martian Samples to Evaluate the Possibility of Extant Life on Mars

    Science.gov (United States)

    iMOST Team; ten Kate, I. L.; Mackelprang, R.; Rettberg, P.; Smith, C. L.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mayhew, L. E.; McCoy, J. T.; McCubbin, F. M.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Spry, J. A.; Steele, A.; Swindle, T. D.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    The astrobiological community is highly interested in interrogating returned martian samples for evidence of extant life. A single observation with one method will not constitute evidence of extant life — it will require a suite of investigations.

  14. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Sil’chenko, Olga K., E-mail: olga@sai.msu.su [Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, 119992 (Russian Federation); Isaac Newton Institute, Chile, Moscow Branch (Chile)

    2016-09-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  15. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    International Nuclear Information System (INIS)

    Sil’chenko, Olga K.

    2016-01-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  16. Protecting polar wilderness : Just a western philosophical idea or a useful concept for regulating human activities in the polar regions?

    NARCIS (Netherlands)

    Bastmeijer, Kees; Leary, D.; Koivurova, T.; Alfredsson, G.

    2009-01-01

    Governments involved in Arctic and Antarctic governance have been well aware of the increasing human pressure on the Polar Regions and particularly the last two decades many initiatives have been taken to protect the Arctic and Antarctic environment. But what values are to be protected? This paper

  17. Methane storage capacity of the early martian cryosphere

    Science.gov (United States)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  18. Growth dynamics of Australia's polar dinosaurs.

    Science.gov (United States)

    Woodward, Holly N; Rich, Thomas H; Chinsamy, Anusuya; Vickers-Rich, Patricia

    2011-01-01

    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  19. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Science.gov (United States)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  20. VME online system of the Bonn polarized nucleon targets and polarization measurements on NH3

    International Nuclear Information System (INIS)

    Thiel, W.

    1991-02-01

    The measurement of spin observables is the main purpose of the PHOENICS detector at the Bonn Electron Accelerator ELSA. Therefore a new frosen spin target was built allowing any spin orientation by means of two perpendicular holding fields and the use of a polarizing field up to 7 Tesla. With a vertical dilution refrigerator the polarization can be frozen at a temperature of 70 mK. This thesis describe a VME based control and monitor system for the various parts of this target. It mainly consists of a VIP processor together with different kinds of I/O and interface boards. Caused by its modular structure in hard- and software it can be easyly set up to control and monitor different hardware environments. A menu and command oriented user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liferpool module allowing a dispersion user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liverpool module allowing a dispersion free detection and a simple adjustment to different magnetic fields. A similar VME system takes care of all the necessary task for the polarization measurements. Fast optodecoupled analog I/O modules a e used as an interface to the NMR hardware. Finally the first measurements with this target are presented. Using NH 3 as target material and a polarizing field of 3.5 Tesla a proton polarization of +94% and -100% could be achieved. By lowering the magnetic field to 0.35 Tesla a superradiance effect was observed. (orig.)

  1. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    Science.gov (United States)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to properties might be.

  2. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  3. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  4. Martian Chlorobenzene Identified by Curiosity in Yellowknife Bay: Evidence for the Preservation of Organics in a Mudstone on Mars

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Mahaffy, P.; Miller, K.; Eigenbrode, J.; Summons, R.; Martin, M.; Franz, H.; Steele, A.; Archer, D.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found. After RN, Curiosity traveled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or meteoritic organic compounds may be preserved in the mudstone. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone.

  5. A simplified model of the Martian atmosphere - Part 2: a POD-Galerkin analysis

    Directory of Open Access Journals (Sweden)

    S. G. Whitehouse

    2005-01-01

    Full Text Available In Part I of this study Whitehouse et al. (2005 performed a diagnostic analysis of a simplied model of the Martian atmosphere, in which topography was absent and in which heating was modelled as Newtonian relaxation towards a zonally symmetric equilibrium temperature field. There we derived a reduced-order approximation to the vertical and the horizonal structure of the baroclinically unstable Martian atmosphere, retaining only the barotropic mode and the leading order baroclinic modes. Our objectives in Part II of the study are to incorporate these approximations into a Proper Orthogonal Decomposition-Galerkin expansion of the spherical quasi-geostrophic model in order to derive hierarchies of nonlinear ordinary differential equations for the time-varying coefficients of the spatial structures. Two different vertical truncations are considered, as well as three different norms and 3 different Galerkin truncations. We investigate each in turn, using tools from bifurcation theory, to determine which of the systems most closely resembles the data for which the original diagnostics were performed.

  6. Re-Os Isotopic Constraints on the Chemical Evolution and Differentiation of the Martian Mantle

    Science.gov (United States)

    Brandon, Alan D.; Walker, Richard J.

    2002-01-01

    The (187)Re-187Os isotopic systematics of SNC meteorites, thought to be from Mars, provide valuable information regarding the chemical processes that affected the Martian mantle, particularly with regard to the relative abundances of highly siderophile elements (HSE). Previously published data (Birck and Allegre 1994, Brandon et al. 2000), and new data obtained since these studies, indicate that the HSE and Os isotopic composition of the Martian mantle was primarily set in its earliest differentiation history. If so, then these meteorites provide key constraints on the processes that lead to variation in HSE observed in not only Mars, but also Earth, the Moon and other rocky bodies in the Solar System. Processes that likely have an effect on the HSE budgets of terrestrial mantles include core formation, magma ocean crystallization, development of juvenile crust, and the addition of a late veneer. Each of these processes will result in different HSE variation and the isotopic composition of mantle materials and mantle derived lavas. Two observations on the SNC data to present provide a framework for which to test the importance of each of these processes. First, the concentrations of Re and Os in SNC meteorites indicate that they are derived from a mantle that has similar concentrations to the Earth's mantle. Such an observation is consistent with a model where a chondritic late veneer replenished the Earth and Martian mantles subsequent to core formation on each planet. Alternative models to explain this observation do exist, but will require additional data to test the limitations of each. Second, Re-Os isotopic results from Brandon et al. (2000) and new data presented here, show that initial yos correlates with variations in the short-lived systems of (182)Hf- (182)W and (142)Sm-142Nd in the SNC meteorites (epsilon(sub W) and epsilon(sub 142Nd)). These systematics require an isolation of mantle reservoirs during the earliest differentiation history of Mars, and

  7. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  8. Constraining the Source Craters of the Martian Meteorites: Implications for Prioritiziation of Returned Samples from Mars

    Science.gov (United States)

    Herd, C. D. K.; Tornabene, L. L.; Bowling, T. J.; Walton, E. L.; Sharp, T. G.; Melosh, H. J.; Hamilton, J. S.; Viviano, C. E.; Ehlmann, B. L.

    2018-04-01

    We have made advances in constraining the potential source craters of the martian meteorites to a relatively small number. Our results have implications for Mars chronology and the prioritization of samples for Mars Sample Return.

  9. Geochemical evidence for mixing of three components in martian orthopyroxenite ALH 84001. [Abstract only

    Science.gov (United States)

    Mittlefehldt, D. W.; Lindstrom, M. M.

    1994-01-01

    ALH 84001, a ferroan martian orthopyroxenite, originally consisted of three petrographically defined components: a cumulus assemblage of orthopyroxene + chromite, a trapped melt assemblage of orthopyroxene(?) + chromite + maskelynite + apatite + augite +/- pyrite, and a metasomatic assemblage of carbonate +/- pyrite. We present the results of Instrumental Neutron Activation Analysis (INAA) study of five bulk samples of ALH 84001, combined with Scanning Ion Mass Spectrometer (SIMS) data on the orthopyroxene, in order to attempt to set limits on the geochemical characteristics of the latter two components, and therefore on the petrogenesis of ALH 84001. The INAA data support the petrographic observations, suggesting that there are at least three components in ALH 84001. We will assume that each of the three geochemically required components can be equated with one of the petrographically observed components. Both trapped melt and metasomatic components in ALH 84001 have higher Na than orthopyroxene based on compositions of maskelynite, apatite, and carbonate. For the metasomatic component, we will assume its Na content is that of carbonate, while for a trapped melt component, we will use a typical Na content inferred for martian meteorite parent melts, approximately 1 wt% Na2O. Under these assumptions, we can set limits on the Light Rare Earth Elements/Heavy Rare Earth Elements (LREE/HREE) ratios of the components, and use this information to compare the petrogenesis of ALH 84001 with other martian meteorites. The above calculations assume that the bulk samples are representative of different portions of ALH 84001. We will also evaluate the possible heterogeneous distribution of mineral phases in the bulk samples as the cause of compositional heterogeneity in our samples.

  10. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    Science.gov (United States)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  11. Stratigraphy of the Martian northern plains

    Science.gov (United States)

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  12. Some like it cold: microbial transformations of mercury in polar regions

    Directory of Open Access Journals (Sweden)

    Niels Kroer

    2011-12-01

    Full Text Available The contamination of polar regions with mercury that is transported from lower latitudes as inorganic mercury has resulted in the accumulation of methylmercury (MeHg in food chains, risking the health of humans and wildlife. While production of MeHg has been documented in polar marine and terrestrial environments, little is known about the responsible transformations and transport pathways and the processes that control them. We posit that as in temperate environments, microbial transformations play a key role in mercury geochemical cycling in polar regions by: (1 methylating mercury by one of four proposed pathways, some not previously described; (2 degrading MeHg by activities of mercury resistant and other bacteria; and (3 carrying out redox transformations that control the supply of the mercuric ion, the substrate of methylation reactions. Recent analyses have identified a high potential for mercury-resistant microbes that express the enzyme mercuric reductase to affect the production of gaseous elemental mercury when and where daylight is limited. The integration of microbially mediated processes in the paradigms that describe mercury geochemical cycling is therefore of high priority especially in light of concerns regarding the effect of global warming and permafrost thawing on input of MeHg to polar regions.

  13. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  14. LINEAR POLARIZATION OF CLASS I METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Kang, Ji-hyun; Byun, Do-Young; Kim, Kee-Tae; Kim, Jongsoo; Lyo, A-Ran; Vlemmings, W. H. T.

    2016-01-01

    Class I methanol masers are found to be good tracers of the interaction between outflows from massive young stellar objects with their surrounding media. Although polarization observations of Class II methanol masers have been able to provide information about magnetic fields close to the central (proto)stars, polarization observations of Class I methanol masers are rare, especially at 44 and 95 GHz. We present the results of linear polarization observations of 39 Class I methanol maser sources at 44 and 95 GHz. These two lines are observed simultaneously with one of the 21 m Korean VLBI Network telescopes in single-dish mode. Approximately 60% of the observed sources have fractional polarizations of a few percent in at least one transition. This is the first reported detection of linear polarization of the 44 GHz methanol maser. The two maser transitions show similar polarization properties, indicating that they trace similar magnetic environments, although the fraction of the linear polarization is slightly higher at 95 GHz. We discuss the association between the directions of polarization angles and outflows. We also discuss some targets having different polarization properties at both lines, including DR21(OH) and G82.58+0.20, which show the 90° polarization angle flip at 44 GHz.

  15. Population ecology of polar bears in Davis Strait, Canada and Greenland

    Science.gov (United States)

    Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian

    2013-01-01

    Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.

  16. Model of the fine-grain component of martian soil based on Viking lander data

    International Nuclear Information System (INIS)

    Nussinov, M.D.; Chernyak, Y.B.; Ettinger, J.L.

    1978-01-01

    A model of the fine-grain component of the Martian soil is proposed. The model is based on well-known physical phenomena, and enables an explanation of the evolution of the gases released in the GEX (gas exchange experiments) and GCMS (gas chromatography-mass spectrometer experiments) of the Viking landers. (author)

  17. Meridional Martian water abundance profiles during the 1988-1989 season

    International Nuclear Information System (INIS)

    Rizk, B.; Wells, W.K.; Hunten, D.M.; Stoker, C.R.; Freedman, R.S.; Roush, T.; Pollack, J.B.; Haberle, R.M.

    1991-01-01

    The Martian southern hemisphere atmospheric water vapor column abundance measurements reported agree with Viking Orbiter atmospheric water detectors during early southern spring and southern autumnal equinox; profiles obtained in southern mid- and late summer, however, indicate the presence of twice as much water both in the southern hemisphere and planetwide. This discrepancy is accounted for by the high optical depths created by two global dust storms during the Viking year, while the present observations were obtained in the case of the relatively dust-free atmosphere of the 1988-1989 opposition. 29 refs

  18. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  19. Climate, atmosphere, and volatile inventory evolution: polar processes, climate records, volatile inventories

    International Nuclear Information System (INIS)

    Pollack, J.B.

    1988-01-01

    Climate change on Mars was driven by long term changes in the solar luminosity, variations in the partitioning of volatiles between the atmosphere and near-surface reservoirs, and astronomical variations in axial and orbital properties. There are important parallels between these drives for Mars and comparable ones for Earth. In the early history of the solar system, the Sun's luminosity was 25 to 30 percent lower than its current value. It is suggested that an early benign climate on Earth was due to the presence of much more carbon dioxide in its atmosphere at these early times than currently resides there. Such a partitioning of carbon dioxide, at the expense of the carbonate rock reservoir, may have resulted from a more vigorous tectonic and volcanic style at early times. Such a line of reasoning may imply that much more carbon dioxide was present in the Martian atmosphere during the planet's early history than resides there today. It is now widely recognized that astronomical variations of the Earth's axial and orbital characteristics have played a dominant role in causing the succession of glacial and interglacial periods characterizing the last several million years. The magnitude of the axial and eccentricity variations are much larger for Mars than for Earth. Such changes on Mars could result in sizeable variations in atmospheric pressure, dust storm activity, and the stability of perennial carbon dioxide and water ice polar caps. These quasi-periodic climate changes occur on periods of 100,000 to 1,000,000 years and may be recorded in the sedimentary layers of the polar layered terrain

  20. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  1. Tri Band Dual Polarized Patch Antenna System For Next Generation Cellular Networks

    Directory of Open Access Journals (Sweden)

    Syed Daniyal Ali Shah

    2017-12-01

    Full Text Available In fifth generation networks much emphasis is given to reduce the handset and base station sizes while incorporating even more features for ubiquitous connectivity. Polarization diversity is one of the methods in which a single multi-polarized antenna brings the advantages of antenna diversity. The multiband handset antennas can be made dual-polarized for improved compensation of fading effects of propagation environment especially in terrestrial bands. This paper focuses on the outcomes of the development of a horizontal and vertical polarized patch antenna scheme that operates on 3 bands 900 MHz 1.8 GHz and 2.4 GHz. The antenna system is tested for gain directivity reflection loss polarization radiation pattern and other parameters. The results are published and found are found to satisfy the requirements of cellular and data communication networks in the specified bands.

  2. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  3. Growth dynamics of Australia's polar dinosaurs.

    Directory of Open Access Journals (Sweden)

    Holly N Woodward

    Full Text Available Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  4. SUBMILLIMETER POLARIZATION SPECTRUM IN THE VELA C MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Ade, Peter A. R.; Pascale, Enzo [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Dober, Bradley; Galitzki, Nicholas; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Ashton, Peter; Fissel, Laura M.; Matthews, Tristan G.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Benton, Steven J. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Fukui, Yasuo [Department of Physics and Astrophysics, Nagoya University, Nagoya 464-8602 (Japan); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI, 02912 (United States); Li, Zhi-Yun [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Martin, Peter G. [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Moncelsi, Lorenzo [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Netterfield, Calvin B., E-mail: ngandil1@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, Maryland (United States); and others

    2016-06-20

    Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500 μ m during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850 μ m data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at λ ∼ 350 μ m as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.

  5. Some potentialities of living organisms under simulated Martian conditions.

    Science.gov (United States)

    Lozina-Lozinsky, L K; Bychenkova, V N; Zaar, E I; Levin, V L; Rumyantseva, V M

    1971-01-01

    Temperature, humidity, pressure, composition of the atmosphere and radiation are the main factors conditioning life on the surface of Mars. When studying the Martian ecology, one must know the total effect of these factors. One may expect that, as a result of adaptation to low temperatures, there is a corresponding shift in the temperature optimum of enzymatic activity. Dryness is the main obstacle to active life. We suggest the presence of some soil moisture and water vapour. Moreover, there can be areas of permafrost. This minimum supply of water and periodic fluctuations of humidity may create conditions for the existence of drought-resistant organisms. Decreased atmospheric pressure alone does not affect micro-organisms, plants, protozoa and even insects. Ciliates reproduce in a flowing atmosphere of pure nitrogen containing 0.0002-0.0005% oxygen as an impurity. Protozoa may also develop in an atmosphere of 98-99% carbon dioxide mixed with 1% O2. Therefore, even traces of oxygen in the Martian atmosphere would be sufficient for aerobic unicellular organisms. Cells and organisms on earth have acquired various ways of protection from uv light, and therefore may increase their resistance further by adaptation or selection. The resistance of some organisms to ionizing radiation is high enough to enable them to endure hard ionizing radiation of the sun. Experiments with unicellular [correction of unicellar] organisms show that the effect of short wave uv radiation depends on the intensity of visible light, long-wave solar uv radiation, temperatures, cell repair processes, and the state of cell components, i.e. whether the cell was frozen, dried or hydrated.

  6. Architectural concepts of Martian bases built: of domes, around greenhouses and into slopes -the human aspect and the technology

    Science.gov (United States)

    Kozicki, Janek; Kozicka, Joanna

    Human missions to Mars are a special kind of space missions due to their long duration. The human aspect of such missions becomes as important as the technological one. The need for a human friendly and comfortable habitat arises. Studies of human behavior in ICEs have shown that larger groups of people mean a lower occurrence of conflicts. However, for a larger crew a larger habitat has to be designed -a Martian base. The research deals with psychological, sociological and technological aspects influencing the architectural design of a Martian Base. Extreme conditions present on Mars demand a partic-ular approach to technological and architectural design. To reduce the cost of building a bigger habitat, low cost solutions have been inquired into. A series of analyses has been performed to identify the best architectural solutions for a Martian base. A review of existing technologies and extreme condition habitats (both terrestrial and extraterrestrial) has revealed solutions that are the most reliable and efficient ones. Additionally, innovative technologies have been analyzed in search of the best candidates for actual base construction. Low cost solutions have been prioritized in the process. An in-depth study of architectural problems inherent in the design of a Martian base has resulted in a number of guidelines for the architect. The main ones are introduced in this review. Based on them, several concepts have been drafted as examples of user-friendly and aesthetically pleasing habitats. They are discussed in the following order: habitats made of domes, those built around greenhouses and those situated in sloping terrain. One of them is presented in detail, including interior design.

  7. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  8. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity.

    Science.gov (United States)

    Costard, F; Forget, F; Mangold, N; Peulvast, J P

    2002-01-04

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  9. Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul; Webster, Chris R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie, A.; Manning, Heidi; hide

    2013-01-01

    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks.

  10. Three-photon polarization ququarts: polarization, entanglement and Schmidt decompositions

    International Nuclear Information System (INIS)

    Fedorov, M V; Miklin, N I

    2015-01-01

    We consider polarization states of three photons, propagating collinearly and having equal given frequencies but with arbitrary distributed horizontal or vertical polarizations of photons. A general form of such states is a superposition of four basic three-photon polarization modes, to be referred to as the three-photon polarization ququarts (TPPQ). All such states can be considered as consisting of one- and two-photon parts, which can be entangled with each other. The degrees of entanglement and polarization, as well as the Schmidt decomposition and Stokes vectors of TPPQ are found and discussed. (paper)

  11. Polarization splitter and polarization rotator designs based on transformation optics.

    Science.gov (United States)

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  12. Molecular MRI based on hyper-polarized xenon

    International Nuclear Information System (INIS)

    Tassali, Nawal

    2012-01-01

    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyper-polarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129 Xe MRI-based sensors for the detection of biological events. In this approach, hyper-polarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyper-polarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyper-polarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented. (author) [fr

  13. The Petrochemistry of Jake_M: A Martian Mugearite

    Science.gov (United States)

    Stolper, E. M.; Baker, M. B.; Newcombe, M. E.; Schmidt, M. E.; Treiman, A. H.; Cousin, A.; Dyar, M. D.; Fisk, M. R.; Gellert, R.; King, P. L.; Leshin, L.; Maurice, S.; McLennan, S. M.; Minitti, M. E.; Perrett, G.; Rowland, S.; Sautter, V.; Wiens, R. C.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Teinturier, Samuel; Dromart, Gilles; Robert, François; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Cameron, James; Clegg, Sam; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Jones, Andrea; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-09-01

    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).

  14. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    Science.gov (United States)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its

  15. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    Science.gov (United States)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  16. Polarization dynamics and polarization time of random three-dimensional electromagnetic fields

    International Nuclear Information System (INIS)

    Voipio, Timo; Setaelae, Tero; Shevchenko, Andriy; Friberg, Ari T.

    2010-01-01

    We investigate the polarization dynamics of random, stationary three-dimensional (3D) electromagnetic fields. For analyzing the time evolution of the instantaneous polarization state, two intensity-normalized polarization autocorrelation functions are introduced, one based on a geometric approach with the Poincare vectors and the other on energy considerations with the Jones vectors. Both approaches lead to the same conclusions on the rate and strength of the polarization dynamics and enable the definition of a polarization time over which the state of polarization remains essentially unchanged. For fields obeying Gaussian statistics, the two correlation functions are shown to be expressible in terms of quantities characterizing partial 3D polarization and electromagnetic coherence. The 3D degree of polarization is found to have the same meaning in the 3D polarization dynamics as the usual two-dimensional (2D) degree of polarization does with planar fields. The formalism is demonstrated with several examples, and it is expected to be useful in applications dealing with polarization fluctuations of 3D light.

  17. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  18. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  19. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul R.; Webster, Christopher R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie A.; Manning, Heidi; Owen, Tobias; Pepin, Robert O.; Squyres, Steven; Trainer, Melissa; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Jones, Andrea; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-07-01

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 (40Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10-3; carbon monoxide, < 1.0 × 10-3; and 40Ar/36Ar, 1.9(±0.3) × 103. The 40Ar/N2 ratio is 1.7 times greater and the 40Ar/36Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The 40Ar/36Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature δ13C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

  20. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-07-01

    Full Text Available The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs and Earth system models (ESMs to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx, HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect

  1. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  2. Visible and Near-IR Reflectance Spectra of Smectite Acquired Under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, Richard V.; Achilles, Cherie N; Archer, Paul D.; Graff, Trevor G.; Agresti, David G.; Ming, Douglas W; Golden, Dadi C.; Mertzman, Stanley A.

    2011-01-01

    Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant

  3. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  4. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    Science.gov (United States)

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  5. Modified Polar Sigma-Delta Transmitter for Multiradio Applications

    Directory of Open Access Journals (Sweden)

    Maršálek Roman

    2010-01-01

    Full Text Available Radio transmitters capable of transforming variable envelope signals into constant envelope signals can be associated with high-efficiency switched mode power amplifiers. One of the techniques providing this conversion is Polar Sigma-Delta ( architecture. This approach provides efficient solution for high-dynamic signals, and, moreover, it offers flexibility in a multiradio environment. The overall concept of the polar transmitter is presented here along with novel modifications and improvements. Namely, when recombining the envelope and the phase signals, it is suggested to replace the analog mixing by a digital mixing. The impact of a frequency synthesizer with a switched loop bandwidth and its imperfections on the overall polar architecture is investigated as well. The Mobile WiMAX standard has been chosen for validation due to very high requirements in terms of power dynamics and the variable channel bandwidth. Simulation results are presented in this paper, and advantages and drawbacks of this novel approach are pointed here as well.

  6. Palynology in a polar desert, eastern North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Abrahamsen, Niels

    1988-01-01

    history back to c. 7,000 years calBP (6,000 years convBP) in this·extreme environment, which presents the coldest thermal regime where vascular plants can grow. The diagram shows that polar desert developed from sparse high arctic tundra at c. 4,300 years calBP (3,900 years convBP), owing...... to reduced summer heat. Also adjacent parts of high arctic Greenland, Canada and Svalbard suffered environmental decline, and polar deserts- presently restricted to a narrow fringe of land at the shores of the Arctic Ocean-were even more restricted before this time. Like other arctic vegetation types, polar...... desert is highly sensitive to summer temperatures, and its southern limit coincides with the isotherm for mean July temperatures of 3.5'C, A comparison with the Northwest European ice-age pollen record shows no evidence of summers as cold as those now prevailing in the extreme north, and the results...

  7. Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"

    Science.gov (United States)

    Golden, D. C.; Ming, D. W.; Morris, R. V.

    2006-01-01

    Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of

  8. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  9. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-02-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.

  10. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  11. Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2010-01-01

    Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.

  12. The development of a Martian atmospheric Sample collection canister

    Science.gov (United States)

    Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.

    The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.

  13. Structure of Ion Outflow in the Martian Magnetotail

    Science.gov (United States)

    McFadden, J. P.; Mitchell, D.; Luhmann, J. G.; Connerney, J. E. P.; Jakosky, B. M.

    2017-12-01

    The Suprathermal And Thermal Ion Composition (STATIC) sensor on the MAVEN spacecraft provides a detailed look at the structure of ion outflow in the Martian magnetotail including ion composition, energization, and flow. Mars' magnetotail contains a mixture of cold (multi-species ions, tailward-moving cold multi-species ions, suprathermal ions of a few tens of eV, warm (about 100 eV) proton populations, and heavy (primarily O+) pickup ions at energies from 1 to 10 keV which may display several simultaneous peaks in energy flux. The cold tailward-moving ions represent a significant fraction of the Martian ion loss, perhaps comparable to loses from molecular oxygen dissociation. The suprathermal tail that accompanies the cold ions varies greatly and provides clues to ion escape. The warm protons, on first examination, appear to be of sheath origin, displaying a similar energy distribution and accompanied by a tenuous warm population at M/Q=2 (which could be either solar wind alphas or molecular hydrogen ions of ionospheric origin). STATIC produces a weak ghost peak at M/Q=11-12 when observing molecular hydrogen ions, but not alphas, often allowing the instrument to distinguish the source of protons. Measurements show the warm protons are of ionospheric origin in the central tail and transition to sheath plasma in the umbra. Energetic (1-10 keV) pickup oxygen in the magnetotail is produced on the nightside, near the pole where the IMF convection electric field points toward the planet, the same hemisphere where sputtering occurs. When two spectral peaks are observed, these tailward-moving ions differ in direction by relatively small angles (about 20 degrees). These peaks can persist for tens of minutes indicating approximately time-stationary acceleration, and therefore acceleration in potential fields. Magnetotail structure and geometry can be inferred not only from the local magnetic field, but also from the measured electron distributions which indicate source

  14. Near-UV Transmittance of Basalt Dust as an Analog of the Martian Regolith: Implications for Sensor Calibration and Astrobiology

    Directory of Open Access Journals (Sweden)

    J. Martínez-Frías

    2006-06-01

    Full Text Available The Martian regolith is exposed to solar irradiation in the near-UV (200-390 nm.Basalt is one of the main components of the dust on Mars surface. The near-UV irradiationof basalt dust on Mars is simulated experimentally in order to determine the transmittance asa function of the mass and thickness of the dust. This data can serve to quantify theabsorption of dust deposited on sensors aiming to measure the UV intensity on Marssurface. The minimum thickness of the dust that corresponds to near-zero-transmittance inthe near-UV is measured. Hypothetical Martian microorganisms living on the dusty regolithat deeper layers would be preserved from the damaging solar UV irradiation.

  15. Study of the formation of duricrusts on the martian surface and their effect on sampling equipment

    Science.gov (United States)

    Kömle, Norbert; Pitcher, Craig; Gao, Yang; Richter, Lutz

    2017-01-01

    The Powdered Sample Dosing and Distribution System (PSDDS) of the ExoMars rover will be required to handle and contain samples of Mars regolith for long periods of time. Cementation of the regolith, caused by water and salts in the soil, results in clumpy material and a duricrust layer forming on the surface. It is therefore possible that material residing in the sampling system may cement, and could potentially hinder its operation. There has yet to be an investigation into the formation of duricrusts under simulated Martian conditions, or how this may affect the performance of sample handling mechanisms. Therefore experiments have been performed to create a duricrust and to explore the cementation of Mars analogues, before performing a series of tests on a qualification model of the PSDDS under simulated Martian conditions. It was possible to create a consolidated crust of cemented material several millimetres deep, with the material below remaining powder-like. It was seen that due to the very low permeability of the Montmorillonite component material, diffusion of water through the material was quickly blocked, resulting in a sample with an inhomogeneous water content. Additionally, samples with a water mass content of 10% or higher would cement into a single solid piece. Finally, tests with the PSDDS revealed that samples with a water mass content of just 5% created small clumps with significant internal cohesion, blocking the sample funnels and preventing transportation of the material. These experiments have highlighted that the cementation of regolith in Martian conditions must be taken into consideration in the design of sample handling instruments.

  16. Tidal excitation of elliptical instability in the Martian core: Possible mechanism for generating the core dynamo

    Science.gov (United States)

    Arkani-Hamed, J.; Seyed-Mahmoud, B.; Aldridge, K. D.; Baker, R. E.

    2008-06-01

    We propose a causal relationship between the creation of the giant impact basins on Mars by a large asteroid, ruptured when it entered the Roche limit, and the excitation of the Martian core dynamo. Our laboratory experiments indicate that the elliptical instability of the Martian core can be excited if the asteroid continually exerts tidal forces on Mars for ~20,000 years. Our numerical experiments suggest that the growth-time of the instability was 5,000-15,000 years when the asteroid was at a distance of 50,000-75,000 km. We demonstrate the stability of the orbital motion of an asteroid captured by Mars at a distance of 100,000 km in the presence of the Sun and Jupiter. We also present our results for the tidal interaction of the asteroid with Mars. An asteroid captured by Mars in prograde fashion can survive and excite the elliptical instability of the core for only a few million years, whereas a captured retrograde asteroid can excite the elliptical instability for hundreds of millions of years before colliding with Mars. The rate at which tidal energy dissipates in Mars during this period is over two orders of magnitude greater than the rate at which magnetic energy dissipates. If only 1% of the tidal energy dissipation is partitioned to the core, sufficient energy would be available to maintain the core dynamo. Accordingly, a retrograde asteroid is quite capable of exciting an elliptical instability in the Martian core, thus providing a candidate process to drive a core dynamo.

  17. The noble gas concentrations of the Martian meteorites GRV 99027 and paired NWA 7906/NWA 7907

    Science.gov (United States)

    Stephenson, Peter C.; Lin, Yangting; Leya, Ingo

    2017-12-01

    Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event 5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of 5 Ma favored by Cartwright et al. for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of 1.3 Ga is in accord with Cartwright et al. For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86-88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.

  18. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass

    Directory of Open Access Journals (Sweden)

    Guoliang Han

    2017-11-01

    Full Text Available Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.

  19. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    Science.gov (United States)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In

  20. The new Martians a scientific novel

    CERN Document Server

    Kanas, Nick

    2014-01-01

    The year is 2035, and the crew from the first expedition to Mars is returning to Earth. The crewmembers are anxious to get home, and ennui pervades the ship. The mood is broken by a series of mysterious events that jeopardize their safety. Someone or something is threatening the crew. Is it an alien being? A psychotic crewmember? A malfunctioning computer? The truth raises questions about the crewmembers’ fate and that of the human race. In this novel, the intent is to show real psychological issues that could affect a crew returning from a long-duration mission to Mars. The storyline presents a mystery that keeps the reader guessing, yet the issues at stake are based on the findings from the author’s research and other space-related work over the past 40+ years. The novel touches on actual plans being discussed for such an expedition as well as notions involving the search for Martian life and panspermia. The underlying science, in particular the psychological, psychiatric, and interpersonal elements...

  1. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Zhang, Haocheng; Taylor, Greg; Li, Hui; Guo, Fan

    2017-01-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  2. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haocheng; Taylor, Greg [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Li, Hui; Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  3. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  4. Bi-Static Deep Electromagnetic Soundings for Martian Subsurface Characterization: Experimental Validation in the Egyptian Western Desert

    Science.gov (United States)

    Ciarletti, V.; Le Gall, A.; Berthelier, J. J.; Corbel, Ch.; Dolon, F.; Ney, R.; Reineix, A.; Guiffaud, Ch.; Clifford, S.; Heggy, E.

    2007-03-01

    A bi-static version of the HF GPR TAPIR developed for martian deep soundings has been operated in the Egyptian Western Desert. The study presented focuses on the retrieval of the direction of arrival of the observed echoes on both simulated and measured d

  5. Morphometric analysis of Martian valley network basins using a circularity function

    Science.gov (United States)

    Luo, Wei; Howard, Alan D.

    2005-12-01

    This paper employs a circularity function to quantify the internal morphology of Martian watershed basins in Margaritifer Sinus region and to infer the primary erosional processes that led to their current geomorphologic characteristics and possible climatic conditions under which these processes operated. The circularity function describes the elongation of a watershed basin at different elevations. We have used the circularity functions of terrestrial basins that were interpreted as having been modified by (1) erosion related to primarily groundwater sapping and (2) erosion related to primarily rainfall and surface run-off, as well as the circularity functions of cratering basins on the Moon, in order to formulate discriminant functions that are able to separate the three types of landforms. The spatial pattern of the classification of Martian basins based on discriminant functions shows that basins that look morphologically similar to terrestrial fluvial basins are mostly clustered near the mainstream at low elevation, while those that look morphologically similar to terrestrial basins interpreted as groundwater sapping origin are located near the tributaries and at higher elevation. There are more of the latter than the former. This spatial distribution is inconsistent with a continuous Earth-like warm and wet climate for early Mars. Instead, it is more aligned with an overall early dry climate punctuated with episodic wet periods. Alternatively, the concentrated erosion in the mainstream could also be caused by a change of water source from rainfall to snowfall or erosion cut through a duricrust layer.

  6. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    Science.gov (United States)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  7. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  8. Polarization Calculation and Underwater Target Detection Inspired by Biological Visual Imaging

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2014-04-01

    Full Text Available In challenging underwater environments, the polarization parameter maps calculated by the Stokes model are characterized by the high noise and error, harassing the underwater target detection tasks. In order to solve this problem, this paper proposes a novel bionic polarization calculation and underwater target detection method by modeling the visual system of mantis shrimps. This system includes many operators including a polarization-opposition calculation, a factor optimization and a visual neural network model. A calibration learning method is proposed to search the optimal value of the factors in the linear subtraction model. Finally, a six-channel visual neural network model is proposed to detect the underwater targets. Experimental results proved that the maps produced by the polarization-opposition parameter is more accurate and have lower noise than that produced by the Stokes parameter, achieving better performance in underwater target detection tasks.

  9. Modeling aeolian dune and dune field evolution

    Science.gov (United States)

    Diniega, Serina

    Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and

  10. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  11. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; CERN, Durham U. IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.

    2005-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  12. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  13. PolarTrack: Optical Outside-In Device Tracking that Exploits Display Polarization

    DEFF Research Database (Denmark)

    Rädle, Roman; Jetter, Hans-Christian; Fischer, Jonathan

    2018-01-01

    PolarTrack is a novel camera-based approach to detecting and tracking mobile devices inside the capture volume. In PolarTrack, a polarization filter continuously rotates in front of an off-the-shelf color camera, which causes the displays of observed devices to periodically blink in the camera feed....... The periodic blinking results from the physical characteristics of current displays, which shine polarized light either through an LC overlay to produce images or through a polarizer to reduce light reflections on OLED displays. PolarTrack runs a simple detection algorithm on the camera feed to segment...... displays and track their locations and orientations, which makes PolarTrack particularly suitable as a tracking system for cross-device interaction with mobile devices. Our evaluation of PolarTrack's tracking quality and comparison with state-of-the-art camera-based multi-device tracking showed a better...

  14. Polar2Grid 2.0: Reprojecting Satellite Data Made Easy

    Science.gov (United States)

    Hoese, D.; Strabala, K.

    2015-12-01

    Polar-orbiting multi-band meteorological sensors such as those on the Suomi National Polar-orbiting Partnership (SNPP) satellite pose substantial challenges for taking imagery the last mile to forecast offices, scientific analysis environments, and the general public. To do this quickly and easily, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin has created an open-source, modular application system, Polar2Grid. This bundled solution automates tools for converting various satellite products like those from VIIRS and MODIS into a variety of output formats, including GeoTIFFs, AWIPS compatible NetCDF files, and NinJo forecasting workstation compatible TIFF images. In addition to traditional visible and infrared imagery, Polar2Grid includes three perceptual enhancements for the VIIRS Day-Night Band (DNB), as well as providing the capability to create sharpened true color, sharpened false color, and user-defined RGB images. Polar2Grid performs conversions and projections in seconds on large swaths of data. Polar2Grid is currently providing VIIRS imagery over the Continental United States, as well as Alaska and Hawaii, from various Direct-Broadcast antennas to operational forecasters at the NOAA National Weather Service (NWS) offices in their AWIPS terminals, within minutes of an overpass of the Suomi NPP satellite. Three years after Polar2Grid development started, the Polar2Grid team is now releasing version 2.0 of the software; supporting more sensors, generating more products, and providing all of its features in an easy to use command line interface.

  15. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  16. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  17. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  18. Comparison of Chlamydia trachomatis serovar L2 growth in polarized genital epithelial cells grown in three-dimensional culture with non-polarized cells.

    Science.gov (United States)

    Dessus-Babus, Sophie; Moore, Cheryl G; Whittimore, Judy D; Wyrick, Priscilla B

    2008-04-01

    A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on collagen-coated microcarrier beads, as well as in HeLa cells grown in tissue culture flasks. Microscopy analysis revealed no difference in chlamydial attachment/entry patterns or in inclusion development throughout the developmental cycle between cell lines. Very comparable growth curves in both cell lines were also found using real-time PCR analysis, with increases in chlamydial DNA content of 400-500-fold between 2 and 36 h post-inoculation. Similar progeny yields with comparable infectivity were recovered from HEC-1B and HeLa cell bead cultures, and no difference in chlamydial growth was found in polarized vs. non-polarized HeLa cells. In conclusion, unlike other C. trachomatis strains such as urogenital serovar E, invasive serovar L2 grows equally well in physiologically different endometrial and endocervical environments, regardless of the host cell polarization state.

  19. Learning From Nature: Biomimetic Polarimetry for Imaging in Obscuring Environments

    Energy Technology Data Exchange (ETDEWEB)

    VanderLaan, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kemme, Shanalyn A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index systematically, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement in circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  20. Thermal tides and Martian dust storms: Direct evidence for coupling

    International Nuclear Information System (INIS)

    Leovy, C.B.; Zurek, R.W.

    1979-01-01

    Observations of surface pressure oscillations at the Viking 1 and Viking 2 lander sites on Mars indicate that the thermally driven global atmospheric tides were closely coupled to the dust content of the Martian atmosphere, especially during northern fall and winter, when two successive global dust storms occurred. The onset of each of these global storms was marked by substantial, nearly simultaneous increases in the dust opacity and in the range of the daily surface pressure variation observed at both lander sites. Although both the diurnal and semidiurnal tidal surface pressure components were amplified at Lander 1 during the onset of a global dust storm, the semidiurnal component was greatly enhanced in relation to the diurnal tide. Semidiurnal wind components were prominent at both lander sites during the height of the global dust storm. We have attempted to interpret these observations using simplified dynamical models. In particular, the semidiurnal wind component can be successfully related to the observed surface pressure variation using a simplified model of a semidiurnally forced Ekman boundary layer. On the other hand, a classical atmospheric tidal model shows that the preferential enhancement of the semidiurnal surface pressure oscillation at Lander 1 can be produced by a tidal heating distribution which places most of the heating (per unit mass) above 10-km altitude. Furthermore, when a dust storm expands to global scale, it does so rather quickly, and the total atmospheric heating at the peak of the dust storm can represent more than 50% of the available insolation. The Viking observations suggest that a number of mechanisms are important for the generation and decay of these episodic Martian global dust storms