WorldWideScience

Sample records for martian polar caps

  1. North-Polar Martian Cap as Habitat for Elementary Life

    Wallis, M. K.; Wickramasinghe, J. T.; Wickramasinghe, N. C.

    2008-09-01

    North-polar cap over millenia Atmospheric water in Mars tends currently as for the past millenia to distil onto the polar caps and be buried under dust deposits. Diffusive release from ground-ice (and its excavation in meteorite impacts [1]) replenishes atmospheric water, allowing the gradual build up of polar ice-dust deposits. When sunlit, this warmed and sublimating ice-dust mix has interest as a potential habitat for micro-organisms. Modelling shows precipitable vapour at 10-50μm/yr, varying sensitively with small changes in orbitable obliquity around the present 25° [2]. The modelling applies to a globe with regionally uniform albedo, unlike the steep topography and dark layering of the north polar cap whose upper 300m have accumulated over the last 500 kyr [3]. The cliffs and ravines of the north-polar cap are thought to form through south-facing slopes sublimating and gaining a dirt-encrusted surface, while horizontal surfaces brighten through frost deposits. The two-phase surface derives from the dust and frost feedback on surface albedo [4] and the resulting terrain develops over diurnal cycles of frosting and sublimation, and over annual seasonal cycles. The steep south-facing sides of observed ravines when unshadowed would see for a few hours the full intensity of sunlight at near normal incidence, without the atmospheric dimming at similar inclinations on Earth. As exposed ice sublimates at T > 200K (partial pressure exceeds typical martian 0.1 Pa), a crust of dirt develops to maintain quasi-stability. The dirt crust's main function is to buffer the ice against diurnal temperature fluctuations, but it also slows down vapour diffusion - analogous to south polar ice sublimation [5] and the growth of ground-ice [6]. We envisage 1-10 mm/yr as the net sublimation rate, compatible with the 100 kyr life and scales of the north polar ravines. Modelling of icy-dirt crusts in the polar cap Plane-parallel layers have been used to model the changing temperature

  2. The Martian polar caps: Stability and water transport at low obliquities

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  3. IR SPECTRAL MAPPING OF THE MARTIAN SOUTH POLAR RESIDUAL CAP USING CRISM

    J. Campbell

    2016-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are considered to be important in theories of abiogenesis (Allamandola, 2011 . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS on the Cassini spacecraft (Cruikshank et al., 2007. The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012. This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC structural evolution (Thomas et al., 2009 that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called “Swiss Cheese Terrain”, a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009. We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, on board NASA’s Mars Reconnaissance Orbiter (MRO. CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  4. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  5. Hyperspectral characterisation of the Martian south polar residual cap using CRISM

    Campbell, J. D.; Sidiropoulos, P.; Muller, J.-P.

    2017-09-01

    We present our research on hyperspectral characterization of the Martian South Polar Residual Cap (SPRC), with a focus on the detection of organic signatures within the dust content of the ice. The SPRC exhibits unique CO2 ice sublimation features known colloquially as 'Swiss Cheese Terrain' (SCT). These flat floored, circular depressions are highly dynamic, and may expose dust particles previously trapped within the ice in the depression walls and partially on the floors. Here we identify suitable regions for potential dust exposure on the SPRC, and utilise data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO) satellite to examine infrared spectra of dark regions to establish their mineral composition, to eliminate the effects of ices on sub-pixel dusty features, and to assess whether ther might be signatures indicative of Polycyclic Aromatic Hydrocarbons (PAHs). Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC and CRISM spectra have been corrected to minimise the influence of CO2 and H2O ice. Whilst no conclusive evidence for PAHs has been found, depression rims are shown to have higher water content than regions of featureless ice, and there are indications of magnesium carbonate within the dark, dusty regions.

  6. North Polar Cap

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  7. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  8. Additions and corrections to the absorption coefficients of CO2 ice: Applications to the Martian south polar cap

    Calvin, W.M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here

  9. Theoretical model of polar cap auroral arcs

    Kan, J.R.; Burke, W.J.; USAF, Bedford, MA)

    1985-01-01

    A theory of the polar cap auroral arcs is proposed under the assumption that the magnetic field reconnection occurs in the cusp region on tail field lines during northward interplanetary magnetic field (IMF) conditions. Requirements of a convection model during northward IMF are enumerated based on observations and fundamental theoretical considerations. The theta aurora can be expected to occur on the closed field lines convecting sunward in the central polar cap, while the less intense regular polar cap arcs can occur either on closed or open field lines. The dynamo region for the polar cap arcs is required to be on closed field lines convecting tailward in the plasma sheet which is magnetically connected to the sunward convection in the central polar cap. 43 references

  10. Edge of polar cap patches

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  11. Mars polar cap: a habitat for elementary life1

    Wallis, M. K.; Wickramasinghe, N. C.

    2009-04-01

    Ices in the Martian polar caps are potential habitats for various species of microorganisms. Salts in the ice and biological anti-freeze polymers maintain liquid in cracks in the ices far below 0°C, possibly down to the mean 220-240 K. Sub-surface microbial life is shielded from ultraviolet (UV) radiation, but could potentially be activated on south-facing slopes under the midday, midsummer Sun. Such life would be limited by low levels of vapour, little transport of nutrients, low light levels below a protective dirt-crust, frost accumulation at night and in shadows, and little if any active translocation of organisms. As in the Antarctic and in permafrost, movement to new habitats depends on geo-climatic changes, which for Mars's north polar cap occur on a 50 000 year scale, except for rare meteorite impacts.

  12. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  13. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  14. Dynamics of the quiet polar cap

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  15. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  16. JAWS: Just Add Water System - A device for detection of nucleic acids in Martian ice caps

    Hansen, Anders J.; Willerslev, Eske; Mørk, Søren

    2002-01-01

    with a regulation of pH and salt concentrations e.g. the MOD systems and could be installed on a planetary probe melting its way down the Martian ice caps e.g. the NASA Cryobot. JAWS can be used for detection of remains of ancient life preserved in the Martian ice as well as for detection of contamination brought...... to the planet from Earth....

  17. Martian North Polar Water-Ice Clouds During the Viking Era

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  18. Polar cap deflation during magnetospheric substorms

    Moses, J. J.; Siscoe, G. L.; Heelis, R. A.; Winningham, J. D.

    1989-01-01

    The expanding/contracting polar cap model has been used to simulate DE-2 ion drift data during substorms as determined using the AL index. Of the 39 cases modeled, 57 percent required the opening of a nightside gap which maps to where reconnection occurs in the tail; 75 percent of the 16 recovery phase cases required a nightside gap, while only 29 percent of the 17 expansion phase cases required a nightside gap. On the basis of this result, it is concluded that if a nightside gap implies tail reconnection, then reconnection probably occurs after expansion phase onset and continues throughout most of the recovery phase of a substorm.

  19. Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession

    Brown, A. J.; McGuire, P.; Wolff, M. J.

    2008-03-01

    We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.

  20. A Novel Approach to Exploring the Mars Polar Caps

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  1. A Novel Approach to Exploring the Mars Polar Caps

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  2. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  3. A simplified model of polar cap electric fields

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  4. Sublimation and transport of water from the north residual polar cap on Mars

    Haberle, Robert M.; Jakosky, Bruce M.

    1990-01-01

    The possible role of the north residual cap in the current Martian water cycle was examined using models to assess the ability of the cap to supply water to the atmosphere and the ability of the atmospheric circulation to transport it out of the polar regions to low northern latitudes. Results indicate that rather extreme circumstances would be required for the cap to provide all of the observed increase in atmospheric water, such as a combination of high surface winds, low cap emissivities, or substantial evaporation from dark material. But even if these conditions could be met, the high-latitude circulation is too localized in scale to move much water vapor out of the polar environment. Both the present calculations and the data from the Viking's Mars Atmospheric Water Detection Experiment show that about two thirds of the water appearing in the Martian northern hemisphere during summer must be supplied by other sources. It is suggested that the additional source is water desorbing from the nonpolar regolith.

  5. The Mars water cycle at other epochs: Recent history of the polar caps and layered terrain

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The Martian polar caps and layered terrain presumably evolves by the deposition and removal of small amounts of water and dust each year, the current cap attributes therefore represent the incremental transport during a single year as integrated over long periods of time. The role was studied of condensation and sublimation of water ice in this process by examining the seasonal water cycle during the last 10(exp 7) yr. In the model, axial obliquity, eccentricity, and L sub s of perihelion vary according to dynamical models. At each epoch, the seasonal variations in temperature are calculated at the two poles, keeping track of the seasonal CO2 cap and the summertime sublimation of water vapor into the atmosphere; net exchange of water between the two caps is calculated based on the difference in the summertime sublimation between the two caps (or on the sublimation from one cap if the other is covered with CO2 frost all year). Results from the model can help to explain (1) the apparent inconsistency between the timescales inferred for layer formation and the much older crater retention age of the cap and (2) the difference in sizes of the two residual caps, with the south being smaller than the north.

  6. Polar cap index as a proxy for hemispheric Joule heating

    Chun, F.K.; Knipp, D.J.; McHarg, M.G.

    1999-01-01

    The polar cap (PC) index measures the level of geomagnetic activity in the polar cap based on magnetic perturbations from overhead ionospheric currents and distant field-aligned currents on the poleward edge of the nightside auroral oval. Because PC essentially measures the main sources of energy...... input into the polar cap, we propose to use PC as a proxy for the hemispheric Joule heat production rate (JH). In this study, JH is estimated from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. We fit hourly PC values to hourly averages of JH. Using a data base approximately...

  7. Evidence that polar cap arcs occur on open field lines

    Gussenhoven, M.S.; Hardy, D.A.; Rich, F.J.; Mullen, E.G.; Redus, R.H.

    1990-01-01

    The characteristics of polar cap arc occurrence are reviewed to show that the assumption of a closed magnetospheric magnetic field topology at very high latitudes when the IMF B z is strongly northward is difficult to reconcile with a wide variety of observational and theoretical considerations. In particular, we consider the implications of observations of particle entry for high and low energy electrons, magnetic flux conservation between the near and far tail, the time sequencing in polar cap arcs events, and the hemispherical differences in polar cap arc observations. These points can be explained either by excluding the need for a major topological magnetic field change from explanations of polar cap arc dynamics, or by assuming a long-tailed magnetosphere for all IMF orientations in which magnetic field lines eventually merge with solar wind field lines in either a smooth or a patchy fashion. (author)

  8. A study of auroral activity in the nightside polar cap

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  9. Polar cap contraction and expansion during a period of substorms

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  10. The evolution of polar caps in magnetic cataclysmic variables

    Frank, J.; Chanmugam, G.

    1986-01-01

    A simple analysis of the evolution of the size of the magnetic polar cap in accreting white dwarfs is made on the basis of current theories of the secular evolution of magnetic cataclysmic variables. For white dwarfs with dipolar fields it is shown that the size of the polar cap in DQ Her binaries is larger than in AM Her binaries. The size of the former is, however, smaller than deduced from interpretation of their X-ray light curves, while that of the latter is in rough agreement. If the dwarf contains an aligned magnetic quadrupole the size of the polar caps of the DQ Her binaries is significantly increased. Magnetic field decay of the quadrupole moment in the older AM Her binaries implies that their fields are predominantly dipolar. (author)

  11. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Alice K. Harding

    2013-09-01

    Full Text Available Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. Particle acceleration and high-energy emission from the polar caps is expected to occur in connection with electron-positron pair cascades. I will review acceleration and gamma-ray emission from the pulsar polar cap and associated slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting, population synthesis and phase-resolved spectroscopy.

  12. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  13. Azimuthal Structure of the Sand Erg that Encircles the North Polar Water-Ice Cap

    Teodoro, L. A.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.; Pathare, A.

    2011-12-01

    The sand erg that completely encircles the perennial water-ice cap that covers the Martian north geographic pole displays considerable azimuthal structure as seen in visible and near-IR images. Much of this structure is associated with the terminations of the many steep troughs that cut spiral the approximately 3 km thick polar ice cap. Other contributions come from the katabatic winds that spill over steep-sided edges of the cap, such as what bounds the largest set of dunes that comprise Olympia Undae. During the spring and summer months when these winds initiate from the higher altitudes that contain sublimating CO2 ice, which is very cold and dry, heat adiabatically when they compress as they lose altitude. These winds should then remove H2O moisture from the uppermost layer of the sand dunes that are directly in their path. Two likely locations where this desiccation may occur preferentially is at the termination of Chasma Boreale and the ice cap at Olympia Undae. We will search for this effect by sharpening the spatial structure of the epithermal neutron counting rates measured at northern high latitudes using the Mars Odyssey Neutron Spectrometer (MONS). The epithermal range of neutron energies is nearly uniquely sensitive to the hydrogen content of surface soils, which should likely be in the form of H2O/OH molecules/radicals. We therefore convert epithermal counting rates in terms of Water-Equivalent-Hydrogen, WEH. However, MONS counting-rate data have a FWHM of ~550 km., which is sufficiently broad to prevent a close association of WEH variability with images of geological features. In this study, we reduce spurious features in the instrument smeared neutron counting rates through deconvolution. We choose the PIXON numerical deconvolution technique for this purpose. This technique uses a statistical approach (Pina 2001, Eke 2001), which is capable of removing spurious features in the data in the presence of noise. We have previously carried out a detailed

  14. Variations in the polar cap area during two substorm cycles

    S. E. Milan

    2003-05-01

    Full Text Available This study employs observations from several sources to determine the location of the polar cap boundary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral images from the Ultraviolet Imager (UVI instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP and National Oceanographic and Atmospheric Administration (NOAA satellites, and the Fast Auroral SnapshoT (FAST spacecraft. Changes in the open flux content of the magnetosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, allowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and decreases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to decrease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap boundary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times supports this finding.Key words. Ionosphere (plasma convection; polar ionosphere – Magnetospheric physics (magnetospheric configuration and dynamics

  15. Convection flow structure in the central polar cap

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  16. Polar cap particle precipitation and aurora: Review and commentary

    Newell, Patrick T.; Liou, Kan; Wilson, Gordon R.

    2009-02-01

    Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally d[Phi]MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause. Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically 0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the

  17. Polar cap flow channel events: spontaneous and driven responses

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  18. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  19. Estimation of the polar cap dimensions from photometric data

    Besprozvannaya, A.S.; Vorob'ev, V.G.; Ruga, G.N.; Shchuka, T.I.; Yagodkina, O.I.

    1992-01-01

    The moment of crossing near-polar boundary of auroral oval by the is. Heis station (Φ L =74,4 deg) according to simultaneous optical and ionospheric observations during the period, dated 25.12.83-10.01.84, is investigated. It is shown that time of the station appearance in the polar cap area, characterized by decrease in luminescence intensity of the basic auroral emissions by the background one and by appearance in the UT afternoon hours of flat layers, coincide. Correlation coefficient - r=0.95

  20. The thermospheric effects of a rapid polar cap expansion

    D. W. Idenden

    Full Text Available In a previous publication we used results from a coupled thermosphere-ionosphere-plasmasphere model to illustrate a new mechanism for the formation of a large-scale patch of ionisation arising from a rapid polar cap expansion. Here we describe the thermospheric response to that polar cap expansion, and to the ionospheric structure produced. The response is dominated by the energy and momentum input at the dayside throat during the expansion phase itself. These inputs give rise to a large-scale travelling atmospheric disturbance (TAD that propagates both antisunward across the polar cap and equatorward at speeds much greater than both the ion drifts and the neutral winds. We concentrate only on the initially poleward travelling disturbance. The disturbance is manifested in the neutral temperature and wind fields, the height of the pressure level surfaces and in the neutral density at fixed heights. The thermospheric effects caused by the ionospheric structure produced during the expansion are hard to discern due to the dominating effects of the TAD.

    Key words. Ionosphere (ionosphere · atmosphere interaction; modeling and forecasting; plasma convection.

  1. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  2. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70° N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of j”kulhlaup flooding events), possible

  3. Simple model for polar cap convection patterns and generation of theta auroras

    Lyons, L.R.

    1985-01-01

    The simple addition of a uniform interplanetary magnetic field and the Earth's dipole magnetic field is used to evaluate electric field convection patterns over the polar caps that result from solar wind flow across open geomagnetic field lines. This model is found to account for observed polar-cap convection patterns as a function of the interplanetary magnetic field components B/sub y/ and B/sub z/. In particular, the model offers an explanation for sunward and antisunward convection over the polar caps for B/sub z/>0. Observed field-aligned current patterns within the polar cap and observed auroral arcs across the polar cap are also explained by the model. In addition, the model gives several predictions concerning the polar cap that should be testable. Effects of solar wind pressure and magnetospheric currents on magnetospheric electric and magnetic fields are neglected. That observed polar cap features are reproduced suggests that the neglected effects do not modify the large-scale topology of magnetospheric electric and magnetic fields along open polar cap field lines. Of course, the neglected effects significantly modify the magnetic geometry, so that the results of this paper are not quantitatively realistic and many details may be incorrect. Nevertheless, the model provides a simple explanation for many qualitative features of polar cap convection

  4. Magnetospheric convection and current system in the dayside polar cap

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  5. Electron polar cap and the boundary of open geomagnetic field lines.

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  6. Pulsar bi-drifting: implications for polar cap geometry

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  7. Topography and stratigraphy of Martian polar layered deposits

    Blasius, K. R.; Cutts, J. A.; Howard, A. D.

    1982-01-01

    The first samples of high resolution Viking Orbiter topographic and stratigraphic data for the layered polar deposits of Mars are presented, showing that these deposits are with respect to both slopes and angular relief similar to those in the south. It is also demonstrated that, in conjunction with stereophotogrammetry, photoclinometry holds promise as a tool for detailed layered deposit studies. The spring season photography, which lends itself to photoclinometric analysis, covers the entire area of the north polar deposits. Detailed tests of layered terrain evolution hypotheses will be made, upon refinement of the data by comparison with stereo data. A more promising refining technique will make use of averaging perpendicular to selected sections to enhance SNR. Local reliefs of 200-800 m, and slopes of 1-8 deg, lead to initial calculations of average layer thickness which yields results of 14-46 m, linearly correlated with slope.

  8. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  9. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  10. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  11. Simultaneous observations of sun-aligned polar cap arcs in both hemispheres by EXOS-C and viking

    Obara, T.; Kitayama, M.; Mukai, T.; Kaya, N.; Murphree, J.S.; Cogger, L.L.

    1988-01-01

    On September 25, 1986, the EXOS-C satellite traversed an intense electron precipitation in the southern polar cap, while the Viking satellite simultaneously obtained image data of the polar cap arc in the northern hemisphere. The energy spectrum of the precipitation, measured by instrumentation aboard EXOS-C, was very similar to that of adjacent (typical) auroral arcs, and the precipitation in the southern polar cap was observed in the same local time sector in which the arc was found in the northern polar cap. Observations seem to support the view that the polar cap arc occurs on closed field lines and is conjugate in both hemispheres. copyright American Geophysical Union 1988

  12. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  13. The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1993-01-01

    A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.

  14. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  15. Polar cap electric field structures with a northward interplanetary magnetic field

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  16. Inclined Pulsar Magnetospheres in General Relativity: Polar Caps for the Dipole, Quadrudipole, and Beyond

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2017-12-01

    In the canonical model of a pulsar, rotational energy is transmitted through the surrounding plasma via two electrical circuits, each connecting to the star over a small region known as a “polar cap.” For a dipole-magnetized star, the polar caps coincide with the magnetic poles (hence the name), but in general, they can occur at any place and take any shape. In light of their crucial importance to most models of pulsar emission (from radio to X-ray to wind), we develop a general technique for determining polar cap properties. We consider a perfectly conducting star surrounded by a force-free magnetosphere and include the effects of general relativity. Using a combined numerical-analytical technique that leverages the rotation rate as a small parameter, we derive a general analytic formula for the polar cap shape and charge-current distribution as a function of the stellar mass, radius, rotation rate, moment of inertia, and magnetic field. We present results for dipole and quadrudipole fields (superposed dipole and quadrupole) inclined relative to the axis of rotation. The inclined dipole polar cap results are the first to include general relativity, and they confirm its essential role in the pulsar problem. The quadrudipole pulsar illustrates the phenomenon of thin annular polar caps. More generally, our method lays a foundation for detailed modeling of pulsar emission with realistic magnetic fields.

  17. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  18. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  19. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  20. DMSP optical and electron measurements in the vicinity of polar cap arcs

    Hardy, D.A.; Burke, W.J.; Gussenhoven, M.S.

    1982-01-01

    We have completed an extensive analysis of the electron and optical data from the DMSP satellites for an external period of polar cap arc occurrences on December 12, 1977. The polar cap arcs are observed in three distinct intervals in a period of quieting after a time of intense substorm activity. The observation of polar cap arcs is associated with the admittance of large and variable fluxes of low-energy electrons into a major portion of both the northern and southern hemisphere polar caps. These fluxes fall into the following categories: First, nearly Maxwellian distributions of electrons with temperatures between 50 eV and 200 eV and number densities varying from 0.03/cm 3 to 4/cm 3 . The highest densities are found at the poleward boundary of the diffuse aurorae and near the visible polar cap arcs. The lowest densities are associated with the polar rain. Second, distributions of electrons peaked between 50 eV and 200 eV. These distributions result from accelertion of the cold Maxwellian distribution through a potential of 50 to 200 V without any heating of the electrons. Third, distributions of electrons displaying two populations; an intense low-energy component with a temperature of approx.20 eV and a much weaker high-energy component with a temperature of 180 eV. We interpret such distributions as evidence of direct admittance of magnetosheath electrons into the polar cap. Fourth,, distributions of electrons peaked at approx.1 keV. These distributions produce the visible arcs. They result from the acceleration of a two-component electron population with temperatures of 100 and 350 eV through a potential drop of approx.750 V

  1. Characteristics of magnetospheric convective electric fields as mapped onto the polar caps

    Saunders, R.S.

    1976-01-01

    A study is made of the open connected magnetosphere using two numerical computer models: the Hones-Taylor (1965), with image and internal dipoles being the only sources, and the Mead-Williams (1965) with a current sheet added. The objectives of the study are to demonstrate that steady state field line connection across the magnetopause is a possible mechanism for producing the polar cap electric fields detected there, and to show the interesting characteristics of such fields. A review of the literature pertinent to the polar cap electric fields is included

  2. Modeling polar cap F-region patches using time varying convection

    Sojka, J.J.; Bowline, M.D.; Schunk, R.W.; Decker, D.T.; Valladares, C.E.; Sheehan, R.; Anderson, D.N.; Heelis, R.A.

    1993-01-01

    Here the authors present the results of computerized simulations of the polar cap regions which were able to model the formation of polar cap patches. They used the Utah State University Time-Dependent Ionospheric Model (TDIM) and the Phillips Laboratory (PL) F-region models in this work. By allowing a time varying magnetospheric electric field in the models, they were able to generate the patches. This time varying field generates a convection in the ionosphere. This convection is similar to convective changes observed in the ionosphere at times of southward pointing interplanetary magnetic field, due to changes in the B y component of the IMF

  3. Mars Seasonal Polar Caps as a Test of the Equivalence Principle

    Rubincam, Daivd Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial to gravitational masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor E6tv6s test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  4. Mars seasonal polar caps as a test of the equivalence principle

    Rubincam, David Parry

    2011-01-01

    The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor Eoetvoes test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test.

  5. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  6. Polar cap geomagnetic field responses to solar sector changes

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  7. Black carbon aerosols and the third polar ice cap

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  8. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  9. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  10. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    H. Liu

    2000-09-01

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  11. Characteristics of the polar cap at ionospheric levels and present understanding of the physical processes that give rise to these characteristics

    Brekke, A.

    1983-01-01

    This chapter discusses the relationship between the interplanetary magnetic field (IMF) and various polar cap current systems, such as the DP2-system and the S /SUB q/ P-system. The disagreements concerning these systems are examined. Topics considered include the polar cap (a result of an open magnetosphere); studies of the polar cap magnetic field variations; the DP2-current system and its relation to the IMF; the polar cap current system during a northward IMF; the azimuthal component of IMF and its influence on the polar cap magnetic field variations; the electric potential distribution on the polar cap; rocket observations of the polar cap electric field; the auroral arcs as a visible trace of the ionospheric convection; neutral wind measurements in the polar cap F-region; and further studies of polar cap dynamics. The focus is on the polar region inside the auroral oval. It is suggested that more research is needed of the polar cap current system in order to understand the magnetosphereionosphere coupling, with the polar cap ionospheric conductivity distribution being the most crucial parameter

  12. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  13. Estimation of Polar Cap Potential and the Role of PC Index

    Ga-Hee Moon

    2012-09-01

    Full Text Available Polar cap potential has long been considered as an indicator for the amount of energy flowing in the magnetosphere-ionosphere system. Thus, the estimation of polar cap potential is important to understand the physical process of the magnetosphere. To estimate the polar cap potential in the Northern Hemisphere, merging electric field by Kan & Lee (1979 is adopted. Relationships between the PC index and calculated merging electric field (E* are examined during full-time and storm-time periods separately. For this purpose Dst, AL, and PC indices and solar wind data are utilized during the period from 1996-2003. From this linear relationship, polar cap potential (Φ* is estimated using the formula by Doyle & Burke (1983. The values are represented as 58.1 ± 26.9 kV for the full-time period and 123.7 ± 84.1 kV for a storm-time period separately. Considering that the average value of polar cap potential of Doyle & Burke (1983 is about 47 kV during moderately quiet intervals with the S3-2 measurements, these results are similar to such. The monthly averaged variation of Dst, AL, and PC indices are then compared. The Dst and AL indices show distinct characteristics with peaks during equinoctial season whereas the average PC index according to the month shows higher values in autumn than in spring. The monthly variations of the linear correlation coefficients between solar wind parameters and geomagnetic indices are also examined. The PC-AL linear correlation coefficient is highest, being 0.82 with peaks during the equinoctial season. As with the AL index, the PC index may also prove useful for predicting the intensity of an auroral substorm. Generally, the linear correlation coefficients are shown low in summer due to conductance differences and other factors. To assess the role of the PC index during the recovery phase of a storm, the relation between the cumulative PC index and the duration is examined. Although the correlation coefficient lowers

  14. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate

    M. Lockwood

    2005-12-01

    Full Text Available Using data from the EISCAT (European Incoherent Scatter VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005. It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002, were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1 concentration enhancement within the patches by cusp/cleft precipitation; (2 plasma depletion in the minima between the patches by fast plasma flows; and (3 intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3 is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2 also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000.

  15. Mass balance of Mars' residual south polar cap from CTX images and other data

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  16. Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole

    Brown, A. J.; Wolff, M. J.

    2009-03-01

    We have used CRISM Emission Phase Function gimballed observations to investigate atmospheric dust/ice opacity and surface albedo in the south polar region for the first Mars year of MRO operations. This covers the MY28 "dust event" and cap recession.

  17. H2O grain size and the amount of dust in Mars' residual North polar cap

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  18. Recession of the Northern polar cap from the PFS Mars Express observations

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team

    Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 ice polar cap, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water ice clouds exist at lower latitudes with maximum opacity at the edge of the polar cap. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.

  19. Drifting field-aligned density structures in the night-side polar cap

    Santolík, Ondřej; Persoon, A. M.; Gurnett, D. A.; Décréau, P. M. E.; Pickett, J. S.; Maršálek, O.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2005-01-01

    Roč. 32, - (2005), L06106-1 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA202/03/0832; GA MŠk ME 650; GA MŠk 1P05ME811 Grant - others: NASA (US) NAG5-9974; NASA (US) NNG04GB98G; NSF(US) 0307319; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : Magnetospheric Physics * Plasma convection * Plasma waves and instabilities * Polar cap phenomena * Magnetospheric configuration and dynamics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005

  20. Dependence of the cross polar cap potential saturation on the type of solar wind streams

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2013-01-01

    We compare of the cross polar cap potential (CPCP) saturation during magnetic storms induced by various types of the solar wind drivers. By using the model of Siscoe-Hill \\citep{Hilletal1976,Siscoeetal2002a,Siscoeetal2002b,Siscoeetal2004,Siscoe2011} we evaluate criteria of the CPCP saturation during the main phases of 257 magnetic storms ($Dst_{min} \\le -50$ nT) induced by the following types of the solar wind streams: magnetic clouds (MC), Ejecta, the compress region Sheath before MC ($Sh_{M...

  1. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  2. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  3. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    R. Maggiolo

    2012-02-01

    Full Text Available On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi

  4. Parameterizing the Magnetopause Reconnection Rate from Observations of the Expanding Polar Cap

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-04-01

    We determine an expression for the magnetopause reconnection rate in terms of upstream interplanetary parameters. We quantify the dayside reconnection rate from observations of the expanding polar cap when the nightside reconnection rate is assumed to be zero. The polar cap open flux is calculated from auroral images collected by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet camera (FUV), and its rate of increase is correlated with upstream solar wind and interplanetary magnetic field measurements from the OMNI data-set. We find that the reconnection rate is successfully reproduced by considering the magnetic flux transport within a 4 Re-wide channel within the solar wind (with an additional small correction for the solar wind velocity) and an IMF clock angle dependence with an exponent of 9/2. Contrary to several previous studies we do not find a dependence of the reconnection rate on solar wind density. We discuss our findings in the context of previous studies and solar wind-magnetosphere coupling models.

  5. Mapping of the solar wind electric field to the Earth's polar caps

    Toffoletto, F.R.; Hill, T.W.

    1989-01-01

    In this paper we describe a quantitative model of a magnetically interconnected (open) magnetosphere, developed as a perturbation to Voigt's closed magnetosphere model with a given magnetopause shape. The ''interconnection'' (perturbation) field is obtained as a solution to a Neumann boundary value problem, with the magnetopause normal component distribution as a boundary condition. The normal component at the magnetopause is required to be time independent and is specified in accordance with one of two hypotheses: the subsolar point merging hypothesis and Crooker's antiparallel merging hypothesis. The resulting open magnetospheric configuration is used to map the magnetopause electric field down to the polar cap ionosphere. We present ionospheric convection patterns derived from three representative interplanetary magnetic field (IMF) orientations for each of the two dayside merging geometries. Both merging geometries reproduce the observed convergence of convection streamlines near noon in a convection ''throat,'' and the east-west deflection of these streamlines in response to the east-west IMF component. The major difference between the two dayside merging geometries occurs for nonsouthward IMF, and consists of a Sun-aligned convection gap that bifurcates the polar cap in the case of the antiparallel merging geometry but not in the subsolar point merging geometry. This convection gap may plausibly be associated with the ''theta aurora'' structure observed when the IMF has a northward component. copyright American Geophysical Union 1989

  6. Automated identification and tracking of polar-cap plasma patches at solar minimum

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  7. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  8. O+ trough zones in the polar cap ionosphere-magnetosphere coupling region

    Horwitz, James; Zeng, Wen; Jaafari, Fajer

    Regions of low-density troughs in O+ have been observed at 1 RE altitude in the polar cap ionosphere-magnetosphere region by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft. In this presentation, the UT Arlington Dynamic Fluid-Kinetic (DyFK) code is employed to investigate the formation of such O+ density troughs. We utilize convection paths of flux tubes in the high-latitude region as prescribed by an empirical convection model with solar wind inputs to track the evolution of ionospheric plasma transport and in particular O+ densities along these tubes with time/space. The flux tubes are subjected to auroral processes of precipitation and wave-driven ion heating when they pass through the auroral oval, which tends to elevate the plasma densities in these tubes. When the F-regions of such tubes traverse locations where the F-region is in darkness, recombination there causes the higher-altitude regions to drain and the densities to decline throughout. Owing to the varying effects of these processes, significant and low trough-like densities at higher altitudes developed along these flux tubes. The modeled densities near 6000 km altitudes will be compared with multiple POLAR passes featuring POLAR/TIDE-measured O+ densities for inside and outside of such trough regions.

  9. The response of ionospheric convection in the polar cap to substorm activity

    M. Lester

    Full Text Available We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°λ-78°λ. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF. We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71°λ by the time of the expansion phase onset. A westward electrojet, centred at 65.4°λ, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1°λ at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the "distant" neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap

  10. EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary

    A. T. Aikio

    2008-02-01

    Full Text Available The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6° cgmLat and Longyearbyen (75.2° cgmLat on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB made zig-zag-type motion with amplitude of 2.5° cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL. The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992. The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 RE mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2° during

  11. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    H. Liu

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.

    Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  12. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  13. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved

  14. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  15. On the role of IMF By in generating the electric field responsible for the flow across the polar cap

    Vennerstroem, S.; Friis-Christensen, E.

    1987-01-01

    During periods of southward interplanetary magnetic field (IMF) the authors have examined the relationship between magnetic variations in the central polar cap and the IMF B y and B z components. The geomagnetic polar cap index PC that can be used as a measure of the flow across the polar cap has been derived using data from Thule in the IMS period. The results have been compared with IMP 8 measurements of the IMF and the solar wind velocity. The statistical analysis shows that the absolute value of the azimuthal component |B y | contributes to the cross-polar cap flow in the same manner as the southward component B s . The relative contributions of |B y | and B z have been examined and compared with the theoretical expression υB T sin 2 θ/2 for the merging electric field. It is found that the contribution of |B y | compared to B z is only half as big in the observations as in the theoretical expression. The B y effect on PC is compared to an earlier reported effect of B y on the geomagnetic index AL (Murayama et al., 1980) and found to be quite different from this. This is discussed in relation to interpretations in terms of merging site asymmetry

  16. Multi-station basis for Polar Cap (PC) indices: ensuring credibility and operational reliability

    Stauning, Peter

    2018-02-01

    The Polar Cap (PC) indices, PCN (North) and PCS (South) are based on polar geomagnetic observations from Qaanaaq (Thule) and Vostok, respectively, processed to measure the transpolar plasma convection that may seriously affect space weather conditions. To establish reliable space weather forecasts based on PC indices, and also to ensure credibility of their use for scientific analyses of solar wind-magnetosphere interactions, additional sources of data for the PC indices are investigated. In the search for alternative index sources, objective quality criteria are established here to be used for the selection among potential candidates. These criteria are applied to existing PC index series to establish a quality scale. In the Canadian region, the data from Resolute Bay magnetometer are shown to provide alternative PCN indices of adequate quality. In Antarctica, the data from Concordia Dome-C observatory are shown to provide basis for alternative PCS indices. In examples to document the usefulness of these alternative index sources it is shown that PCN indices in a real-time version based on magnetometer data from Resolute Bay could have given 6 h of early warning, of which the last 2 h were "red alert", up to the onset of the strong substorm event on 13 March 1989 that caused power outage in Quebec. The alternative PCS indices based on data from Dome-C have helped to disclose that presently available Vostok-based PCS index values are corrupted throughout most of 2011.

  17. Relationships between the solar wind and the polar cap magnetic activity

    Berthelier, A.

    1981-01-01

    The influence of solar wind conditions on magnetic activity is described in order to delineate the differences in the response of the magnetic activity to the arrival on the magnetopause of different typical solar wind variations. By determining a new index of local magnetic activity free from seasonal and diurnal effects we put in evidence the dependence of the various effects upon the invariant latitude. Most important results are: (1) the main increase of the magnetic activity does not occur at the same invariant latitude for different interplanetary variations, e.g. peaks of Bz tend to increase magnetic activity mainly in the auroral zones while peaks of B correspond to a uniform increase in magnetic activity over the polar cap and auroral zone; (2) there is a two steps response of magnetic activity to the high speed plasma streams; (3) an increase of magnetic activity is observed for large and northward Bz, which probably indicates that the solar wind-magnetosphere coupling is efficient under these circumstances. The specific influences of the IMF polarity are also briefly reviewed. (orig.)

  18. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    Lester, M.; Freeman, M.P.; Southwood, D.J.; Waldock, J.A.; Singer, H.J.

    1990-01-01

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at ∼ 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thence to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s -1 . the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s -1

  19. Dayside and nightside contributions to the cross polar cap potential: placing an upper limit on a viscous-like interaction

    S. E. Milan

    2004-11-01

    Full Text Available Observations of changes in size of the ionospheric polar cap allow the dayside and nightside reconnection rates to be quantified. From these it is straightforward to estimate the rate of antisunward transport of magnetic flux across the polar regions, quantified by the cross polar cap potential ΦPC. When correlated with upstream measurements of the north-south component of the IMF, ΦPC is found to increase for more negative Bz, as expected. However, we also find that ΦPC does not, on average, decrease to zero, even for strongly northward IMF. In the past this has been interpreted as evidence for a viscous interaction between the magnetosheath flow and the outer boundaries of the magnetosphere. In contrast, we show that this is the consequence of flows excited by tail reconnection, which is inherently uncorrelated with IMF Bz.

  20. Experimental Demonstration of the Formation of Liquid Brines under Martian Polar Conditions in the Michigan Mars Environmental Chamber

    Fischer, Erik; Martinez, German; Elliott, Harvey; Borlina, Caue; Renno, Nilton

    2014-05-01

    Liquid water is one of the necessary ingredients for the development of life as we know it. The behavior of various liquid states of H2O such as liquid brine, undercooled liquid interfacial water, subsurface melt water and ground water [1] needs to be understood in order to address the potential habitability of Mars for microbes and future human exploration. It has been shown thermodynamically that liquid brines can exist under Martian polar conditions [2, 3]. We have developed the Michigan Mars Environmental Chamber (MMEC) to simulate the entire range of Martian surface and shallow subsurface conditions with respect to temperature, pressure, relative humidity, solar radiation and soil wetness at equatorial and polar latitudes. Our experiments in the MMEC show that deliquescence of NaClO4, Mg(ClO4)2 and Ca(ClO4)2 occurs diurnally under the environmental conditions of the Phoenix landing site when these salts get in contact with water ice. Since Phoenix detected these salts and water ice at the landing site, including frost formation, it is extremely likely that deliquescence occurs at the Phoenix landing site. By layering NaClO4, Mg(ClO4)2 or Ca(ClO4)2 on top of a pure water ice slab at 800 Pa and 190 K and raising the temperature stepwise across the eutectic temperature of the perchlorate salts, we observe distinct changes in the Raman spectra of the samples when deliquescence occurs. When crossing the eutectic temperatures of NaClO4 (236 K), Mg(ClO4)2 (205 K) and Ca(ClO4)2 (199 K) [4, 5], the perchlorate band of the Raman spectrum shows a clear shift from 953 cm-1 to 936 cm-1. Furthermore, the appearance of a broad O-H vibrational stretching spectrum between 3244 cm-1 and 3580 cm-1 is another indicator of deliquescence. This process of deliquescence occurs on the order of seconds when the perchlorate salt is in contact with water ice. On the contrary, when the perchlorate salt is only subjected to water vapor in the Martian atmosphere, deliquescence was not

  1. The electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    Valladares, C.E.; Carlson, H.C. Jr.

    1991-01-01

    The authors report here measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stromfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area (order 10 3 km by 10 3 km) maps of altitude profiles for observed electron and ion gas number densities, temperatures and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities (N e , T e , T i , V, E, Σ p , Σ H ), horizontal and field-aligned currents, joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc. Strong electron temperature enhancements (>2,000 K) are found as expected within the sheets of ionizing particle precipitation. Dawn to dusk decreases in the antisunward plasma flow of order 1 km s -1 , across order 100 km, correspond to peak electron densities of order 10 5 cm -3 down to altitudes as low as 120 km, and upward currents of order 1 μA m -2 . These data also lead to important implications for the physics of polar cap arcs. The high-velocity (antisunward flow on the dawnside) edge of the arc marks the location of strong persistent Joule heating driven by downward Poynting flux. The deposition rate into the atmosphere of the net electromagnetic energy well exceeds the net particle energy deposited by the ionizing energetic electron flux. This heating is a substantial source of heat into the polar thermosphere

  2. ''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap

    Menietti, J.D.; Burch, J.L.

    1985-01-01

    A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180 0 . One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84 0 to 75 0 . The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1 0 in invariant latitude. The conic signatures have been found at energies that range from 50 eV 0 is larger than expected for a loss cone feature. If the electrons conserve the first adiabatic invariant in a dipole magnetic field, and in some cases a parallel electric field, the mirroring altitude varies between about 500 km and 8000 km, which is above the atmospheric loss region. For this reason, and in analogy with the formation of ion conics, we suggest that the conic signatures are produced by heating of the electrons perpendicular to the magnetic field

  3. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability

  4. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  5. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  6. Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap

    Milan, S. E.; Gosling, J. S.; Hubert, B.

    2012-03-01

    Many studies have attempted to quantify the coupling of energy from the solar wind into the magnetosphere. In this paper we parameterize the dependence of the magnetopause reconnection rate on interplanetary parameters from the OMNI data set. The reconnection rate is measured as the rate of expansion of the polar cap during periods when the nightside reconnection rate is thought to be low, determined from observations by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Far Ultraviolet (FUV) imager. Our fitting suggests that the reconnection rate is determined by the magnetic flux transport in the solar wind across a channel approximately 4 RE in width, with a small correction dependent on the solar wind speed, and a clock angle dependence. The reconnection rate is not found to be significantly dependent on the solar wind density. Comparison of the modeled reconnection rate with SuperDARN measurements of the cross-polar cap potential provides broad support for the magnitude of the predictions. In the course of the paper we discuss the relationship between the dayside reconnection rate and the cross-polar cap potential.

  7. On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

    M. Pinnock

    Full Text Available Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.

    Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  8. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity.

    The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours.

    We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  9. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity. The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours. We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  10. Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

    L. Perrone

    2004-04-01

    Full Text Available Polar cap absorption (PCA events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica, and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd, the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field.

    Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November and by 4.2–14.5MeV (23 November. Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy E0=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances can contribute to the ionospheric absorption.

    Key words. Ionosphere (Polar Ionosphere, Particle precipitation – Solar physics (Flares and mass ejections

  11. South Polar Polygons

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  12. Variations in the polar cap area during intervals of substorm activity on 20-21 March 1990 deduced from AMIE convection patterns

    J. R. Taylor

    1996-09-01

    Full Text Available The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF, has been calculated during two intervals when the IMF had an approximately constant southward component (1100–2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990. The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday\\'s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday\\'s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between ~35RE and ~75RE downstream in the tail.

  13. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  14. Clouds in the Martian Atmosphere

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  15. Interannual and seasonal changes in the south seasonal polar cap of Mars: Observations from MY 28-31 using MARCI

    Calvin, W. M.; Cantor, B. A.; James, P. B.

    2017-08-01

    The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.

  16. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    Stauning, P.

    2015-01-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B y ) of the interplanetary magnetic field (IMF). The added IMF B y -related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m -1 ). Furthermore, cases of reverse convection during strong northward IMF B z (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m -1 during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  17. A critical note on the IAGA-endorsed Polar Cap index procedure. Effects of solar wind sector structure and reverse polar convection

    Stauning, P. [Danish Meteorological Institute, Copenhagen (Denmark)

    2015-07-01

    The International Association of Geomagnetism and Aeronomy (IAGA) has recently endorsed a new Polar Cap (PC) index version to supersede the previous seven different versions of the PCN (North) index and the five different PCS (South) index versions. However, the new PC index has some adverse features which should be known and taken into account by users of the index. It uses in its derivation procedure an ''effective'' quiet day level (QDC) composed of a ''basic'' QDC and an added solar wind sector term related to the azimuthal component (B{sub y}) of the interplanetary magnetic field (IMF). The added IMF B{sub y}-related terms may introduce unjustified contributions to the PC index of more than 2 index units (mV m{sup -1}). Furthermore, cases of reverse convection during strong northward IMF B{sub z} (NBZ) conditions included in the database for calculation of index coefficients can cause unjustified index enhancements of 0.5-1 mV m{sup -1} during calm conditions, reduction of index values by more than 20% during disturbed conditions, and inconsistencies between index coefficients and index values for the northern and southern polar caps. The aim here is to specify these adverse features and quantify their effects, and to suggest alternative steps for future modifications of the index procedure.

  18. Ion Outflow and Convection in the Polar Cap and Cleft as Measured by Tide, EFI, MFE and Timas

    Elliott, H. A.; Craven, P. D.; Chandler, M. O.; Moore, T. E.; Maynard, N. C.; Peterson, W. K.; Lennartsson, O. W.; Shelley, E. G.; Mozer, F. S.; Russell, C. T.

    1997-01-01

    This study examines high-latitude ion outflows and velocities perpendicular to the magnetic field derived from moments of ion distributions measured by the TIDE (Thermal Ion Dynamics Experiment) instrument on the Polar satellite. Hydrogen and oxygen ions are shown to be E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1. 8 Re). E X B drifts are calculated from electric fields measured by EFI (Electric Field Instrument) and magnetic fields measured by MFE (Magnetic Field Experiment) both of which are also on Polar. How convection at Polar's perigee relates to potential patterns of the ionosphere will be discussed. In the cusp/cleft the distribution of hydrogen extends over a large enough range of energy to be measured by both TIDE and the Toroidal Imaging Mass-Angle Spectrograph (TIMAS). Such comparisons will be also be presented.

  19. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    V. G. Vorobjev

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  20. Extended period of polar cap auroral display: auroral dynamics and relation to the IMF and the ionospheric convection

    V. G. Vorobjev

    1995-08-01

    Full Text Available An unusually extended period (5 h of polar cap auroral display on 3 August 1986 is examined. Auroras have been investigated using ground-based data as well as measurements from the IMP-8 spacecraft in interplanetary space and simultaneous observations from the polar-orbiting satellites Viking and DE-1 in the northern and southern hemispheres, respectively. It is found that visible Sun-aligned arcs are located inside the transpolar band of the θ-aurora observed from the satellite in ultraviolet wavelengths. The transpolar band can contain several Sun-aligned arcs that move inside the band toward the morning or evening side of the auroral oval independent of the direction of the band movement. Intensifications of polar cap auroras with durations of up to about 30 min are observed. No change has been found in either IMF parameters or substorm activity that can be related to these intensifications. The θ-aurora occurred during a 2-h period when the B z-component of the IMF was negative. A tendency is noted for dawnward (duskward displacement of the transpolar band when By>0 (By<0 in the southern hemisphere. Simultaneous observations of auroral ovals during interplanetary Bz<0, By<0 and Bx>0 in both hemispheres and convection patterns for Bz<0 and By<0 have been displayed using satellite and ground-based measurements. It was found that the transpolar band of the -aurora in the sunlit hemisphere was situated in the region of large-scale downward Birkeland currents.

  1. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  2. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  3. Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field

    Lu, G.; Reiff, P.H.; Karty, J.L.; Hairston, M.R.; Heelis, R.A.

    1989-01-01

    Plasma flow data from the AE-C, AE-D and DE 2 satellites have been used to systematically study the distribution of the convection potential around the polar cap boundary under a variety of different interplanetary magnetic field (IMF) conditions. For either a garden hose (B x B y x B y >0) orientation of the IMF, the potential distribution is mainly affected by the sign of B y . In the northern hemisphere, the zero potential line (which separates the dusk convection cell from the dawn cell) on the dayside shifts duskward as B y changes from positive to negative. But in the southern hemisphere, a dawnward shift has been found, although the uncertainties are large. The typical range of displacement is about ±1.5 hours MLT. Note that this shift is in the opposite direction from most simple schematic models of ionospheric flow; this reflects the fact that the polar cap boundary is typically more poleward than the flow reversal associated with the region 1 current system, which shifts in the opposite direction. Thus the enhanced flow region typically crosses noon. In most cases a sine wave is an adequate representation of the distribution of potential around the boundary. However, in a few cases the data favors (at the 80% confidence level) a steeper gradient near noon, more indicative of a throat. The potential drop at the duskside boundary is almost greater than at the dawnside boundary. A slight duskward shift of the patterns observed as the IMF changes from garden hose to ortho-garden hose conditions. Analytic equipotential contours, given the potential function as a boundary condition, are constructed for several IMF conditions

  4. Field-aligned currents and convection patterns in the Southern Polar Cap during stable northward, southward, and azimuthal IMF

    Papitashvili, V.O.; Belov, B.A.; Gromova, L.I.

    1989-01-01

    Equivalent ionospheric current patterns are derived from ground-based geomagnetic observations for events on 11-12 November 1979 (B/sub z/ >> 0), 24 November 1981 (B/sub z/ > 0) (B/sub y/ >> 0), and 25-26 November 1979 (B/sub y/ 0 . Due to stable external conditions, it is possible to calculate the field-aligned current (FAC) density within cells formed by two adjacent stations by taking into account the uniform conductivity of the summer polar ionosphere. These results completely correspond to regressional analysis of interplanetary magnetic fields (IMF) and ground-based geomagnetic data, and also to satellite observations of the NBZ current system. During stable southward IMF a new result was obtained, a reversal of antisunward convection flow is identified, and an NBZ-like FAC system is restored in the central part of the southern polar cap. The authors conclude that there may be an additional NBZ-like FAC system poleward of -85 0 , which is independent of the IMF and is generated by the quasi-viscous interaction between solar-wind plasma and high-latitude lobes of the magnetospheric tail

  5. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on

  6. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    Kleimenova, N.; Kozyreva, O.V.; Francia, P.; Villante, U.

    1999-01-01

    Geomagnetic field measurements at two Antarctic are compared during two weeks in the local summer (January 1-15, 1992). Low frequency (0.6 mHz) pulsations are observed at each station near local magnetic noon. The same wave packets appear in some case also at the other station, although with a significant attenuation, more clearly in the morning sector; the wave show a near noon reversal of the polarization sense from counterclockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively

  7. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    J. Bitterly

    1999-06-01

    Full Text Available Geomagnetic field measurements at two Antarctic stations are compared during two weeks in the local summer (January 1-15, 1992. Low frequency (0.6-6 mHz pulsations are observed at each station near local magnetic noon. The same wave packets appear in some cases also at the other station, although with a significant attenuation, more clearly in the morning sector; the waves show a near noon reversal of the polarization sense from counter-clockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively.

  8. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  9. Identifications of the polar cap boundary and the auroral belt in the high-altitude magnetosphere: a model for field-aligned currents

    Sugiura, M.

    1975-01-01

    By means of the Ogo 5 Goddard Space Flight Center fluxgate magnetometer data the polar cap boundary is identified in the high-altitude magnetosphere by a sudden transition from a dipolar field to a more taillike configuration. It is inferred that there exists a field-aligned-current layer at the polar cap boundary. In the night side magnetosphere the polar cap boundary is identified as the high-latitude boundary of the plasma sheet. The field-aligned current flows downward to the ionosphere on the morning side of the magnetosphere and upward from the ionosphere on the afternoon side. The basic pattern of the magnetic field variations observed during the satellite's traversal of the auroral belt is presented. Currents flow in opposite directions in the two field-aligned-current layers. The current directions in these layers as observed by Ogo 5 in the high-altitude magnetosphere are the same as those observed at low altitudes by the polar-orbiting Triad satellite (Armstrong and Zmuda, 1973). The magnetic field in the region where the lower-latitude field-aligned-current layer is situated is essentially meridional. A model is presented in which two field-aligned-current systems, one at the polar cap boundary and the other on the low-latitude part of the auroral belt, are main []y connected by ionospheric currents flowing across the auroral belt. The existence of field-aligned currents deduced from the Ogo 5 observations is a permanent feature of the magnetosphere. Intensifications of the field-aligned currents and occurrences of multiple pairs of field-aligned-current layers characterize the disturbed conditions of these regions

  10. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  11. Eddy transport of water vapor in the Martian atmosphere

    Murphy, J. R.; Haberle, Robert M.

    1993-01-01

    Viking orbiter measurements of the Martian atmosphere suggest that the residual north polar water-ice cap is the primary source of atmospheric water vapor, which appears at successively lower northern latitudes as the summer season progresses. Zonally symmetric studies of water vapor transport indicate that the zonal mean meridional circulation is incapable of transporting from north polar regions to low latitudes the quantity of water vapor observed. This result has been interpreted as implying the presence of nonpolar sources of water. Another possibility is the ability of atmospheric wave motions, which are not accounted for in a zonally symmetric framework, to efficiently accomplish the transport from a north polar source to the entirety of the Northern Hemisphere. The ability or inability of the full range of atmospheric motions to accomplish this transport has important implications regarding the questions of water sources and sinks on Mars: if the full spectrum of atmospheric motions proves to be incapable of accomplishing the transport, it strengthens arguments in favor of additional water sources. Preliminary results from a three dimensional atmospheric dynamical/water vapor transport numerical model are presented. The model accounts for the physics of a subliming water-ice cap, but does not yet incorporate recondensation of this sublimed water. Transport of vapor away from this water-ice cap in this three dimensional framework is compared with previously obtained zonally symmetric (two dimensional) results to quantify effects of water vapor transport by atmospheric eddies.

  12. /sup 15/N(p,. cap alpha. )/sup 12/C reaction with polarized protons from 0. 34 to 1. 21 MeV

    Pepper, G H; Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-03-29

    A polarized beam was used to measure angular distributions of the analyzing power of the /sup 15/N(p,..cap alpha..)/sup 12/C reaction at 0.34 MeV and at five energies from 0.92 to 1.21 MeV. The analyzing power can be fitted with associated Legendre polynomials, P/sub 1//sup 1/ and P/sub 2//sup 1/ sufficing to describe the results except near 1.2 MeV where P/sub 3//sup 1/ is also required. Polarization excitation functions were measured throughout the entire energy range at angles where the polynomials P/sub 2//sup 1/ and P/sub 3//sup 1/ are zero. A polarization contour map is given.

  13. Response of the polar cap boundary and the current system to changes in IMF observed from the MAGSAT satellite in the southern hemisphere during summer

    Bhatnagar, V.P.; Burrows, J.R.

    1987-01-01

    The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions. The study has been carried out for the summer months in the Southern Hemisphere. ''Shear reversals'' (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180 0 . It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bsub(z) component and in the latitude range of about 70 0 -80 0 . SRs in the dusk sector occur predominantly when the azimuthal component Bsub(y) is positive and in the dawn sector when Bsub(y) is negative, irrespective of the sign of Bsub(z). These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bsub(z). Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 x 10 4 to 6.5 x 10 5 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to

  14. Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind" electric potential

    Collinson, Glyn; Mitchell, David; Glocer, Alex; Grebowsky, Joseph; Peterson, W. K.; Connerney, Jack; Andersson, Laila; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrei; Ma, Yingjuan; Bougher, Steven; Lillis, Robert; Ergun, Robert; Jakosky, Bruce

    2015-11-01

    An important mechanism in the generation of polar wind outflow is the ambipolar electric potential which assists ions in overcoming gravity and is a key mechanism for Terrestrial ionospheric escape. At Mars, open field lines are not confined to the poles, and outflow of ionospheric electrons is observed far into the tail. It has thus been hypothesized that a similar electric potential may be present at Mars, contributing to global ionospheric loss. However, no direct measurements of this potential have been made. In this pilot study, we examine photoelectron spectra measured by the Solar Wind Electron Analyzer instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout to put an initial upper bound on the total potential drop in the ionosphere of Mars of Φ♂ ≾⊥ 2V , with the possibility of a further ≾4.5 V potential drop above this in the magnetotail. If the total potential drop was close to the upper limit, then strong outflows of major ionospheric species (H+, O+, and O2+) would be expected. However, if most of the potential drop is confined below the spacecraft, as expected by current theory, then such a potential would not be sufficient on its own to accelerate O2+ to escape velocities, but would be sufficient for lighter ions. However, any potential would contribute to atmospheric loss through the enhancement of Jeans escape.

  15. Viking orbiter imaging observations of dust in the Martian atmosphere

    Briggs, G.A.; Baum, W.A.; Barnes, J.

    1979-01-01

    More than 20 local Martian dust clouds and two global dust storms were observed with the Viking orbiter camera. Sixteen of the local clouds were imaged in two colors or were observed with other instruments confirming their identification as dust clouds. These Viking results are compared with earth-based observations of Martian dust storms and with Mariner 9 data. Most of the dust activity seen by Viking occurred during southern hemisphere spring and early summer, when Mars was near perihelion and isolation was near maximum. About half the local clouds occurred near the edge of the southern polar cap, where winds are presumably enhanced by a strong regional temperature gradient. The other half occurred mainly in the southern hemisphere near regions where circulation models incorporating topography predict positive vertical velocities. Although dust clouds observed from earth show a similar partial correlation with models, some ambiguity exists concerning interpretation of regions near Hellespontus that have spawned the most spectacular Martian dust storms on record

  16. Cervical Cap

    ... Videos for Educators Search English Español The Cervical Cap KidsHealth / For Teens / The Cervical Cap What's in ... Call the Doctor? Print What Is a Cervical Cap? A cervical cap is a small cup made ...

  17. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  18. Chronological changes in the eighth cranial nerve compound action potential (CAP) in experimental endolymphatic hydrops: the effects of altering the polarity of click sounds.

    Morizono, Tetsuo; Kondo, Tsuyoshi; Yamano, Takafumi; Miyagi, Morimichi; Shiraishi, Kimio

    2009-02-01

    Using a guinea pig model of experimental endolymphatic hydrops, click sounds of altered polarity showed different latencies and amplitudes in hydropic compared with normal cochleae. Latency changes appeared as early as 1 week after endolymphatic obstruction. This method can help diagnose endolymphatic hydrops. The goal of the study was to develop an objective electrophysiological diagnosis of endolymphatic hydrops. Endolymphatic hydrops were created surgically in guinea pigs. The latency and the amplitude of the eighth cranial nerve compound action potential (CAP) for click sounds of altered polarity were measured up to 8 weeks after the surgery. At early stages after surgery, the latency for condensation clicks became longer, and at later stages the latencies for both condensation and rarefaction became longer. The discrepancy in the latencies for rarefaction and condensation click sounds (rarefaction minus condensation) became larger by the first week after surgery, but no further discrepancy occurred thereafter. Compared with latency changes, amplitude changes in the CAP were rapid and progressive following surgery, suggesting ongoing damage to hair cells.

  19. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  20. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  1. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  2. Martian surface

    Carr, M.H.

    1987-01-01

    The surface of Mars is characterized on the basis of reformatted Viking remote-sensing data, summarizing results published during the period 1983-1986. Topics examined include impact craters, ridges and faults, volcanic studies (modeling of surface effects on volcanic activity, description and interpretation of volcanic features, and calculations on lava-ice interactions), the role of liquid water on Mars, evidence for abundant ground ice at high latitudes, water-cycle modeling, and the composition and dynamics of Martian dust

  3. Cervical Cap

    ... giving birth vaginally, which means the cervical cap may not fit as well. Inconsistent or incorrect use of the cervical cap increases your risk of pregnancy. For example, you may get pregnant when using the cervical cap if: ...

  4. A critical note on the IAGA-endorsed Polar Cap (PC) indices: excessive excursions in the real-time index values

    Stauning, Peter

    2018-04-01

    The Polar Cap (PC) indices were approved by the International Association for Geomagnetism and Aeronomy (IAGA) in 2013 and made available at the web portal http://pcindex.org" target="_blank">http://pcindex.org holding prompt (real-time) as well as archival index values. The present note provides the first reported examination of the validity of the IAGA-endorsed method to generate real-time PC index values. It is demonstrated that features of the derivation procedure defined by Janzhura and Troshichev (2011) may cause considerable excursions in the real-time PC index values compared to the final index values. In examples based on occasional downloads of index values, the differences between real-time and final values of PC indices were found to exceed 3 mV m-1, which is a magnitude level that may indicate (or hide) strong magnetic storm activity.

  5. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    Aghanim, N.; Alves, M. I R; Arzoumanian, D.

    2016-01-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the...

  6. Martian seismicity

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  7. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km.

    The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  8. On the relations between proton influx and D-region electron densities during the polar-cap absorption event of 28-29 October 2003

    J. K. Hargreaves

    2005-11-01

    Full Text Available Observations by incoherent-scatter radar have been applied to explore relationships between the fluxes of incident protons and the resulting D-region electron densities during a polar-cap radio-absorption event. Using proton flux data from a GOES geosynchronous satellite, the energy band having the greatest influence at a selected height is estimated by a process of trial and error, and empirical relationships are defined. The height profiles of the effective recombination coefficient are determined for day and night, and the transition over the evening twilight is investigated for the height range 60-70 km. The results show that the day-night change is confined to heights below 80 km, night-time values at the lower levels being consistent with a balance between negative ions and electrons controlled by 3-body attachment and collisional detachment. The daytime results confirm that, contrary to the prediction of some chemical models, a square-law continuity equation may be strictly applied. It is confirmed that, as previously reported, the timing of the sunset change varies with altitude.

  9. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability

    Lamarche, Leslie J.; Makarevich, Roman A.

    2017-03-01

    We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.

  10. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  11. On the spatial relationship between auroral emissions and magnetic signatures of plasma convection in the midday polar cusp and cap ionospheres during negative and positive IMF Bsub(z)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.

    1986-03-01

    The dynamics of midday auroras, including polar cusp and cap emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated with optical ground-based observations from Svalbard, Norway and IMF data from spacecraft ISEE-2. One case is presented showing the spatial relationship, along the magnetic meridian in the midday sector, between the cusp aurora and IMF Bγ-related convection currets (the DPY signature) for negative and positive values of IMF Bsub(z)

  12. Antarctic Martian Meteorites at Johnson Space Center

    Funk, R. C.; Satterwhite, C. E.; Righter, K.; Harrington, R.

    2018-01-01

    This past year marked the 40th anniversary of the first Martian meteorite found in Antarctica by the ANSMET Antarctic Search for Meteorites) program, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET program making for a total of 15 Martian meteorites in the U. S. Antarctic meteorite collection at Johnson Space Center (JSC). Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate samples. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottite in 1982. This meteorite has been allocated to 137 scientists for research and there are 180.934 g remaining at JSC. Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain noble gas and nitrogen compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 205 scientists for research and 5,298.435 g of sample is available.

  13. Following the south polar cap recession as viewed by OMEGA/MEX using automatic detection of H2O and CO2 ices.

    Schmidt, F.; Doute, S.; Schmitt, B.

    In order to understand Mars' current climate it is necessary to detect, characterize and monitor CO2 and H2O at the surface (permanent and seasonal icy deposits) and in the atmosphere (vapor and clouds). Here we will focus on the South Seasonal Polar Cap (SSPC) whose recession was previously observed with different techniques : from earth in the visible range with HST [James 1996], or from MGS spacecraft with MOC images [Benson 2005], in the thermal IR range by the TES [Kieffer 2000], in the near infrared by OMEGA/MEX [Langevin submitted]. The time and space evolutions of the SSPC is a major annual climatic signal both at the global and the regional scales. In particular the measurement of the temporal and spatial distributions of CO2 constrains exchange processes between both surface and atmosphere. This exchange may involve preponderant species : H2O, CO2 and dust. In this work we will apply a new detection technique : "wavanglet" in order to follow the recession of the SSPC thanks to OMEGA/MEX observations. This method was especially developed in the goal to classify a huge dataset, such OMEGA ones. We propose to use "wavanglet" as a supervised automatic classification method that identifies spectral features and classifies the image in spectrally homogeneous units. Additionally we will evaluate quantitative detection limits of "wavanglet" based on synthetic dataset simulating OMEGA spectra in typical situation of the SSPC. This detection limit will be discussed in terms of abundance for H2O and CO2 ices in order to improve the interpretation of the classification. Finally we will present the recession of the SSPC using "wavanglet" and we will compare the results with those of earlier investigation. An interpretation of the similarities and disagreements between those maps will be done.

  14. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  15. Earth analogs for Martian life - Microbes in evaporites, a new model system for life on Mars

    Rothschild, Lynn J.

    1990-01-01

    It is suggested that 'oases' in which life forms may persist on Mars could occur, by analogy with terrestrial cases, in (1) rocks, as known in endolithic microorganisms, (2) polar ice caps, as seen in snow and ice algae, and (3) volcanic regions, as witnessed in the chemoautotrophs which live in ocean-floor hydrothermal vents. Microorganisms, moreover, have been known to survive in salt crystals, and it has even been shown that organisms can metabolize while encrusted in evaporites. Evaporites which may occur on Mars would be able to attenuate UV light, while remaining more transparent to the 400-700 nm radiation useful in photosynthesis. Suggestions are made for the selection of Martian exobiological investigation sites.

  16. Cradle Cap (For Parents)

    ... Safe Videos for Educators Search English Español Cradle Cap (Infantile Seborrheic Dermatitis) KidsHealth / For Parents / Cradle Cap ( ... many babies develop called cradle cap. About Cradle Cap Cradle cap is the common term for seborrheic ...

  17. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  18. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  19. Death cap

    Rudbæk, Torsten R; Kofoed, Pernille Bouteloup; Bove, Jeppe

    2014-01-01

    Death cap (Amanita phalloides) is commonly found and is one of the five most toxic fungi in Denmark. Toxicity is due to amatoxin, and poisoning is a serious medical condition, causing organ failure with potential fatal outcome. Acknowledgement and clarification of exposure, symptomatic and focused...

  20. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  1. Martian volcanism: A review

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  2. The Martian climate and energy balance models with CO2/H2O atmospheres

    Hoffert, M. I.

    1986-01-01

    The analysis begins with a seasonal energy balance model (EBM) for Mars. This is used to compute surface temperature versus x = sin(latitude) and time over the seasonal cycle. The core model also computes the evolving boundaries of the CO2 icecaps, net sublimational/condensation rates, and the resulting seasonal pressure wave. Model results are compared with surface temperature and pressure history data at Viking lander sites, indicating fairly good agreement when meridional heat transport is represented by a thermal diffusion coefficient D approx. 0.015 W/sq. m/K. Condensational wind distributions are also computed. An analytic model of Martian wind circulation is then proposed, as an extension of the EMB, which incorporates vertical wind profiles containing an x-dependent function evaluated by substitution in the equation defining the diffusion coefficient. This leads to a parameterization of D(x) and of the meridional circulation which recovers the high surface winds predicted by dynamic Mars atmosphere models (approx. 10 m/sec). Peak diffusion coefficients, D approx. 0.6 w/sq m/K, are found over strong Hadley zones - some 40 times larger than those of high-latitude baroclinic eddies. When the wind parameterization is used to find streamline patterns over Martian seasons, the resulting picture shows overturning hemispheric Hadley cells crossing the equator during solstices, and attaining peak intensities during the south summer dust storm season, while condensational winds are most important near the polar caps.

  3. Apical cap

    McLoud, T.C.; Isler, R.J.; Novelline, R.A.; Putman, C.E.; Simeone, J.; Stark, P.

    1981-01-01

    Apical caps, either unilateral or bilateral, are a common feature of advancing age and are usually the result of subpleural scarring unassociated with other diseases. Pancoast (superior sulcus) tumors are a well recognized cause of unilateral asymmetric apical density. Other lesions arising in the lung, pleura, or extrapleural space may produce unilateral or bilateral apical caps. These include: (1) inflammatory: tuberculosis and extrapleural abscesses extending from the neck; (2) post radiation fibrosis after mantle therapy for Hodgkin disease or supraclavicular radiation in the treatment of breast carcinoma; (3) neoplasm: lymphoma extending from the neck or mediastinum, superior sulcus bronchogenic carcinoma, and metastases; (4) traumatic: extrapleural dissection of blood from a ruptured aorta, fractures of the ribs or spine, or hemorrhage due to subclavian line placement; (5) vascular: coarctation of the aorta with dilated collaterals over the apex, fistula between the subclavian artery and vein; and (6) miscellaneous: mediastinal lipomatosis with subcostal fat extending over the apices

  4. Martian Environment Electrostatic Precipitator

    McDougall, Michael Owen

    2016-01-01

    As part of the planned manned mission to Mars, NASA has noticed that shipping oxygen as a part of life support to keep the astronauts alive continuously is overly expensive, and impractical. As such, noting that the Martian atmosphere is 95.37% CO2, NASA chemists noted that one could obtain oxygen from the Martian atmosphere. The plan, as part of a larger ISRU (in-situ resource utilization) initiative, would extract water from the regolith, or the Martian soil which can be electrolyzed by solar panel produced voltage into hydrogen and oxygen. The hydrogen can then be used in the Sabatier reaction with carbon dioxide to produce methane and water producing a net reaction that does not lose water and outputs methane and oxygen for use as rocket fuel and breathing.

  5. Polar Stratigraphy

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  6. On to Mars! chronicles of Martian simulations

    PLETSER, Vladimir

    2018-01-01

    This book introduces the Martian simulations, one installed on Devon Island, an uninhabited island in the Canadian Arctic, well within the polar circle, and two in the desert of Utah, several hundreds of kilometers South of Salt Lake City. The book is based on the diaries during the simulations, held by Vladimir Pletser, a physicist-engineer, who was selected to attend these simulations. It relates the details of everyday life in these Martian habitats and of the scientific and exploratory work conducted in these extreme environments in preparation for future manned missions to Mars. Through the real experiences described in the book, readers will find space explorations and living on Mars more tangible. .

  7. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  8. Martian extratropical cyclones

    Hunt, G. E.; James, P. B.

    1979-01-01

    Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.

  9. Where to search for martian biota?

    Tasch, Paul

    1997-07-01

    Martian Salt. Terrestrial halite containing negative crystals which entrapped drops of viscous fluid yielded viable bacteria. The fluid has a Br/Mg ratio which chemist W.T. Holser characterized as a `Permian bittern.' All relevant salt on Mars should be inspected for negative crystals and possible ancient bacterial tenants. Martian Water. Moist soil in the regolith, cooled hydrothermal fluids, sediments of recurrent oceanic water, and related to inferred strand lines, even limited water in future SNC-type meteorites, upper atmosphere liquid water or water vapor, and North Polar liquid water or ice--all liquid water in any form, wherever, should be collected for microbiological analysis. Vent Fauna. Living or fossil thermophiles as trace fossils, or fauna metallicized in relation to sulphide ores. Iron Bacteria. Limonitized magnetite ore (USSR) in thin section showed structures attributed to iron bacteria. Biogenic magnetite, produced by both aerobic and anaerobic bacteria and its significance. Carbonaceous chondrites (non martian) (Ivuna and Orgueil) yielded apparent life forms that could not be attributed to contamination during the given study. Are they extraterrestrial?

  10. The Martian Oasis Detector

    Smith, P. H.; tomasko, M. G.; McEwen, A.; Rice, J.

    2000-07-01

    The next phase of unmanned Mars missions paves the way for astronauts to land on the surface of Mars. There are lessons to be learned from the unmanned precursor missions to the Moon and the Apollo lunar surface expeditions. These unmanned missions (Ranger, Lunar Orbiter, and Surveyor) provided the following valuable information, useful from both a scientific and engineering perspective, which was required to prepare the way for the manned exploration of the lunar surface: (1) high resolution imagery instrumental to Apollo landing site selection also tremendously advanced the state of Nearside and Farside regional geology; (2) demonstrated precision landing (less than two kilometers from target) and soft landing capability; (3) established that the surface had sufficient bearing strength to support a spacecraft; and (4) examination of the chemical composition and mechanical properties of the surface. The search for extinct or extant life on Mars will follow the water. However, geomorphic studies have shown that Mars has had liquid water on its surface throughout its geologic history. A cornucopia of potential landing sites with water histories (lakes, floodplains, oceans, deltas, hydrothermal regions) presently exist. How will we narrow down site selection and increase the likelihood of finding the signs of life? One way to do this is to identify 'Martian oases.' It is known that the Martian surface is often highly fractured and some areas have karst structures that support underground caves. Much of the water that formed the channels and valley networks is thought to be frozen underground. All that is needed to create the potential for liquid water is a near surface source of heat; recent lava flows and Martian meteorites attest to the potential for volcanic activity. If we can locate even one spot where fracturing, ice, and underground heat are co-located then we have the potential for an oasis. Such a discovery could truly excite the imaginations of both the

  11. Polygons in Martian Frost

    2003-01-01

    MGS MOC Release No. MOC2-428, 21 July 2003This June 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygonal pattern developed in seasonal carbon dioxide frost in the martian southern hemisphere. The frost accumulated during the recent southern winter; it is now spring, and the carbon dioxide frost is subliming away. This image is located near 80.4oS, 200.2oW; it is illuminated by sunlight from the upper left, and covers an area 3 km (1.9 mi) across.

  12. Control parameters of the martian dune field positions at planetary scale: tests by the MCD

    allemand, pascal

    2016-04-01

    The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.

  13. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  14. The cervical cap (image)

    The cervical cap is a flexible rubber cup-like device that is filled with spermicide and self-inserted over the cervix ... left in place several hours after intercourse. The cap is a prescribed device fitted by a health ...

  15. Trajectories of martian habitability.

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  16. Cradle Cap: Treatment

    Cradle cap Treatment Cradle cap usually doesn't require medical treatment. It clears up on its own within a few months. In the meantime, wash ... tips can help you control and manage cradle cap. Gently rub your baby's scalp with your fingers ...

  17. Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean

    Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.

    2015-10-01

    The existance of a large Martian cryolitozone consisting of different cryogenic formations both on the surface- polar caps ice and in subsurface layer (and probably overcooled salt solutions in lower horizons) is conditioned mostly by the planet's geological history and atmosphere evolution. The very structure of the cryolitozone with its strongly pronounced zone character owing to drying up of 0 to 200 m thick surface layer in the equatorial latitudes ranging from + 30 to - 300 was formed in the course of long-periodic climatic variations and at present is distincly heterogeneous both depthward and in latitudinal and longtudinal dimensions. The dryed up region of Martian frozen rocks is estimated to have been developing during more than 3.5 bln years, so the upper layer boundary of permafrost can serve as a sort of indicator reflecting the course of Martian climatic evolution. Since the emount of surface moisture and its distribition character are conditioned by the cryolitozone scale structure its investigation is considered to be an important aspect of the forthcoming Martian projects. In order to create Martian climate and atmosphere circulation models the whole complex information on surface provided by optical and infrared ranges observations, regional albedo surface measurements, ground layer thermal flow investigations, etc. must be carefully studed. The investigation of permafrost formation global distribution and their appearance in h ≤1 m thick subsurface layer may be provided successfully by using active-passive microwave remote sensing techniques [1]. Along with optical and infrared observations the method of orbital panoramic microwave radiometry in centi- and decimeter ranges would contribute to the mapping of the cryolitozone global surface distribution. This proposal discusses methodical and experimental possibilities of this global observation of Martian cryolitozone as the additional way for investigation subsurface of Mars. The main idea of

  18. Some aspects of composition of the lower Martian atmosphere: input for MIRA

    Moroz, V.; Korablev, O.; Krasnopolsky, V.; Rorin, A.

    Recent spacecraft missions and high-resolution spectroscopic observations from the Earth-based, airborne and spaceborne observatories have justified the chemical contents of the Martian atmosphere at a new level of confidence. Both the lower and middle atmosphere of Mars reveal very limited chemical activity, while the variations of the abundance of minor constituents may be attributed to phase transitions of volatiles. Water vapor, which mixing ratio is controlled by complex hydrological cycle in the lower atmosphere and at the surface of the planet, affects seasonally varying depletion of ozone. Measured ratio of D/H can be explained with general models of the early evolution of the planet, though this estimate in the bulk atmosphere may not be ultimately representative due to altitude dependant fractionation of water isotopes. CO, as a chemically passive nonvolatile component, reveals increase of mixing ratio in the vicinity of winter polar caps during active condensation of the bulk CO2 atmosphere. No reliable evidence o any organicf matter in the atmosphere of Mars has been obtained.

  19. Relative chronology of Martian volcanoes

    Landheim, R.; Barlow, N.G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

  20. Hydrological and Climatic Significance of Martian Deltas

    Di Achille, G.; Vaz, D. A.

    2017-10-01

    We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.

  1. Microtubule's conformational cap

    Flyvbjerg, H.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...

  2. Mapping the Martian Meteorology

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  3. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  4. Curiosity analyzes Martian soil samples

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  5. A Microphysically-based Approach to Inferring Porosity, Grain Size, and Dust Abundance in the Seasonal Caps from Atmospherically-corrected TES Spectra

    Eluszkiewicz, J.; Titus, T. N.

    2003-01-01

    One of the highlights of the TES observations in the polar regions has been the identification of a "cryptic" region in the south where CO2 appears to be in the form of a solid slab rather than a fluffy frost. While the exact mechanism(s) by which the cryptic region is formed are still subject of some debate, it appears certain that a type of rapid metamorphism related to the high volatility of CO2 ice is involved. The high volatility of CO2 ice under martian conditions has several Solar System analogs (N2 on Triton and Pluto, SO2 on Io), thus making the martian cryptic region somewhat less cryptic and certainly non-unique among planetary objects. In an endmember scenario, both the formation and the spectral properties of the cryptic region (and of other areas in the seasonal caps) can be quantitatively modeled by considering sintering of an ensemble of quasi-spherical CO2 grains. This model includes the special case of instanteneous slab formation, which occurs when the grains are sufficiently small (in the submicron range) so that their sintering timescale is short relative to the deposition timescale (a situation analogous to the "sintering" of water droplets falling into a pond).

  6. CENTRIFUGE END CAP

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  7. Chemical composition of Martian fines

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  8. CAPS Simulation Environment Development

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  9. Electrodynamics of the Martian Ionosphere

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  10. Laser-powered Martian rover

    Harries, W. L.; Meador, W. E.; Miner, G. A.; Schuster, Gregory L.; Walker, G. H.; Williams, M. D.

    1989-01-01

    Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived.

  11. Yamato 980459: Crystallization of Martian Magnesian Magma

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  12. Martian Ionospheric Observation and Modeling

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  13. Martian Neutron Energy Spectrometer (MANES)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  14. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and

  15. Boron enrichment in martian clay.

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  16. Variability of Seasonal CO2 Ice Caps on Mars for Mars Years 26 through 29

    Feldman, W. C.; Maurice, S.; Prettyman, T. H.

    2011-12-01

    We have developed an improved thermal, epithermal, and fast neutron counting-rate time series data of the Mars Odyssey Neutron Spectrometer (MONS), optimized to greatly reduce both statistical and systematic uncertainties. This new data set was applied to study temporal and spatial distributions of the growth, decay, and maximum amount of precipitated CO2 ice during Martian years (MY) 26, 27, 28, and 29. For this study, we concentrate on the epithermal counting rate detected using the down-looking prism (P1) of MONS, and a combination of the epithermal and thermal counting rate detected by the forward-looking sensor (P2) of MONS. Although the energy range of neutrons detected by P2 covers both the thermal and epithermal range, it is heavily weighted to the thermal range. We find that the variance of the maximum epithermal counting rate is remarkably small over both north and south seasonal caps, varying by less than 3% over the four-year period. In contrast, although the maximum P2 counting rate over both poles is sensibly the same within error bars (about 2%) during the first three years, it drops by 18% over the north pole and 8% over the south pole during MY 29. The most-likely explanation of this drop is that abundances of the non-condensable gases N2 and Ar, are unusually enhanced during MY 29. Movies were also made of maps of the growth and decay of P2 counting rates summed over the first three years of these data. Careful inspection shows that both the growth and decay in the north were cylindrically symmetric, centered near the geographic north pole. In contrast, both the growth and decay of CO2 buildup in the south were skewed off the geographic pole to the center of the CO2 residual cap, and contained a small, but definitely distinct ring-like annular enhancement centered at a latitude of about 83.5° S spread over a longitude range that extends between about -35° and +35° E. This arc runs parallel to, and overlays, the very steep drop in altitude from

  17. Flank tectonics of Martian volcanoes

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    1990-01-01

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are ∼250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults

  18. Origin of giant Martian polygons

    Mcgill, George E.; Hills, L. S.

    1992-01-01

    Extensive areas of the Martian northern plains in Utopia and Acidalia planitiae are characterized by 'polygonal terrane'. Polygonal terrane consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on earth. However, the Martian polygons are orders of magnitude larger than these potential earth analogues, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Plate-bending and finite element models indicate that shrinkage of desiccating sediment or cooling volcanics accompanied by differential compaction over buried topography can account for the stresses responsible for polygon troughs as well as the large size of the polygons. Although trough widths and depths relate primarily to shrinkage, the large scale of the polygonl pattern relates to the spacing between topographic elevations on the surface buried beneath polygonal terrane material. Geological relationships favor a sedimentary origin for polygonal terrane material, but our model is not dependent on the specific genesis. Our analysis also suggests that the polygons must have formed at a geologically rapid rate.

  19. Designing Smart Charter School Caps

    Dillon, Erin

    2010-01-01

    In 2007, Andrew J. Rotherham proposed a new approach to the contentious issue of charter school caps, the statutory limits on charter school growth in place in several states. Rotherham's proposal, termed "smart charter school caps," called for quality sensitive caps that allow the expansion of high-performing charter schools while also…

  20. Manganese, Metallogenium, and Martian Microfossils

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  1. Nuclear thermal rockets using indigenous Martian propellants

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  2. Wind tunnel simulation of Martian sand storms

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  3. Polarized neutrons

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  4. On the link between martian total ozone and potential vorticity

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  5. ATLAS end-cap detector

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  6. The North Zealand CAP Monitor

    Nielsen, Minna; Ravn, Pernille; Notander Clausen, Lise

    with CAP. We started with 34 audit variables. Through repeated cycles of testing, feedback and discussions, we reduced the number of indicators to 22 and time per audit from 20 to 10 minutes. Strategy for change To link the monitoring system with our patient pathway for CAP we established an improvement...... Designing a database Designing and testing a dashboard to present indicators in a balanced way Messages for others Auditing patients with a common disease as CAP is useful to identify areas for improvement for a large group of patients. The baseline audit can serve as a basis for a monitoring system......Contect We describe how we developed a monitoring system for community acquired pneumonia (CAP) at North Zealand Regional hospital. We serve 310.000 inhabitants and annually around 3200 patients with CAP are admitted. As part of a program of clinical pathways for common conditions, a pathway...

  7. Photovoltaic array for Martian surface power

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  8. Magnesium Based Rockets for Martian Exploration, Phase I

    National Aeronautics and Space Administration — We propose to develop Mg rockets for Martian ascent vehicle applications. The propellant can be acquired in-situ from MgO in the Martian regolith (5.1% Mg by mass)...

  9. MetNet Network Mission for Martian Atmospheric Investigations

    Harri, A.-M.; Alexashkin, S.; Arrugeo, I.; Schmidt, W.; Vazquez, L.; Genzer, M.; Haukka, H.

    2014-07-01

    A new kind of planetary exploration mission for Mars called MetNet is being developed for martian atmospheric investigations. The eventual scope of the MetNet Mission is to deploy tens of small landers on the martian surface.

  10. Cryopyrin-Associated Autoinflammatory Syndromes (CAPS) - Juvenile

    ... all ethnic groups can be affected. What are CAPS? Cryopyrin-associated autoinflammatory syndromes (CAPS) consist of three ... ears by magnetic resonance imaging (MRI). How is CAPS treated? Medications that target interleukin-1 are very ...

  11. Evidence for methane in Martian meteorites.

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  12. Life on Mars: Evidence from Martian Meteorites

    McKay, David S.; Thomas-Keptra, Katie L.; Clemett, Simon J.; Gibson, Everett K., Jr.; Spencer, Lauren; Wentworth, Susan J.

    2009-01-01

    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features.

  13. Chemical evolution of the early Martian hydrosphere

    Schaefer, M.W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions

  14. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  15. SNC meteorites: Clues to martian petrologic evolution

    McSween, H.Y. Jr.

    1985-01-01

    The shergottites, nakhlites, and Chassigny (SNC meteorites) are apparently cumulate mafic and ultramafic rocks that crystallized at shallow levels in the crust of their parent body. The mineralogy and chemistry of these meteorites are remarkably like equivalent terrestrial rocks, although their ratios of Fe/(Fe+Mg) and certain incompatible elements and their oxygen isotopic compositions are distinctive. All have crystallization ages of 1.3 b.y. or younger and formed from magmas produced by partial melting of previously fractionated source regions. Isotope systematics suggest that the SNC parent body had a complex and protracted thermal history spanning most of geologic time. Some meteorites have been severely shock metamorphosed, and all were ejected from their parent body at relatively recent times, possibly in several impact events. Late crystallization ages, complex petrogenesis, and possible evidence for a large gravitational field suggest that these meteorites are derived from a large planet. Trapped gases in shergottite shock melts have compositions similar to the composition measured in the Martian atmosphere. Ejection of Martian meteorites may have been accomplished by acceleration of near-surface spalls or other mechanisms not fully understood. If SNC meteorites are of Martian origin, they provide important information on planetary composition and evolution. The bulk composition and redox state of the Martian mantle, as constrained by shergottite phase equilibria, must be more earthlike than most current models. Planetary thermal models should benefit from data on the abundances of radioactive heat sources, the melting behavior of the mantle, and the timing of planetary differentiation

  16. Martian Gullies: Formation by CO2 Fluidification

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2006-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried explain its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We propose that the mechanism of formation of the gullies is as follows: In winter CO2 snow mixed with sand falls in the terrain. In spring the CO2 snow sublimate and gaseous CO2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air in the granular material. We present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compare them with Martian gullies choose from four different areas, to target goal recognize or to distinguish, (to identify) possible processes evolved in its formation. Also, we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material.

  17. Nature of Reduced Carbon in Martian Meteorites

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.

    2012-01-01

    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  18. NATURE MANAGEMENT, LANDSCAPE AND THE CAP

    Brouwer, Floor M.; Godeschalk, Frans E.

    2004-01-01

    The integration of nature management, landscape and environmental concerns into the Common Agricultural Policy (CAP) has gained momentum with the CAP reforms adopted in June 2003. The report explores instruments and approaches that contribute to the inte-gration of nature conservation and landscape concerns into the CAP. A broader use of the CAP instruments might help to achieve nature types in the Netherlands.

  19. 47 CFR 54.623 - Cap.

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Cap. 54.623 Section 54.623 Telecommunication... Universal Service Support for Health Care Providers § 54.623 Cap. (a) Amount of the annual cap. The annual cap on federal universal service support for health care providers shall be $400 million per funding...

  20. 47 CFR 54.507 - Cap.

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Cap. 54.507 Section 54.507 Telecommunication... Universal Service Support for Schools and Libraries § 54.507 Cap. (a) Amount of the annual cap. The annual funding cap on federal universal service support for schools and libraries shall be $2.25 billion per...

  1. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  2. Martian Mixed Layer during Pathfinder Mission

    Martinez, G. M.; Valero, F.; Vazquez, L.

    2008-09-01

    In situ measurements of the Martian Planetary Boundary Layer (MPBL) encompass only the sur- face layer. Therefore, in order to fully address the MPBL, it becomes necessary to simulate somehow the behaviour of the martian mixed layer. The small-scale processes that happen in the MPBL cause GCM's ([1], [2]) to describe only partially the turbulent statistics, height, convective scales, etc, of the surface layer and the mixed layer. For this reason, 2D and 3D martian mesoscale models ([4], [5]), and large eddy simulations ([4], [6], [7], [8]) have been designed in the last years. Although they are expected to simulate more accurately the MPBL, they take an extremely expensive compu- tational time. Alternatively, we have derived the main turbu- lent characteristics of the martian mixed layer by using surface layer and mixed layer similarity ([9], [10]). From in situ temperature and wind speed measurements, together with quality-tested simu- lated ground temperature [11], we have character- ized the martian mixed layer during the convective hours of Pathfinder mission Sol 25. Mean mixed layer turbulent statistics like tem- perature variance , horizontal wind speed variance , vertical wind speed variance , viscous dissipation rate , and turbu- lent kinetic energy have been calculated, as well as the mixed layer height zi, and the convective scales of wind w? and temperature θ?. Our values, obtained with negligible time cost, match quite well with some previously obtained results via LES's ([4] and [8]). A comparisson between the above obtained mar- tian values and the typical Earth values are shown in Table 1. Convective velocity scale w doubles its counterpart terrestrial typical value, as it does the mean wind speed variances and . On the other hand, the temperature scale θ? and the mean temperature variance are virtually around one order higher on Mars. The limitations of these results concern the va- lidity of the convective mixed layer similarity. This theory

  3. On the chemistry of the Martian surface

    Keil, K.

    1978-01-01

    Analyses of 13 smaples of Martian surface materials with the Viking X-ray fluorescence spectrometers show SiO 2 similar to that of terrestrial mafic rocks, whereas Fe 2 O 3 , Cl, and S are higher and Al 2 O 3 , K 2 O, Rb, Sr, Y, and Zr are lower. Low totals suggest presence of CO 2 , H 2 O, and Na 2 O. Duricrust fragments are higher in S than fines, but samples from both landing sites are surprisingly similar. We suggest that Martian surface materials are aeolian deposits of complex mixtures of weathering products of mafic-ultramafic rocks, possibly consisting of iron-rich clays, sulfates, iron oxides, carbonates, and chlorides. (orig.) 891 HK [de

  4. Permeability Barrier Generation in the Martian Lithosphere

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  5. Iron snow in the Martian core?

    Davies, Christopher J.; Pommier, Anne

    2018-01-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  6. Martian regolith geochemistry and sampling techniques

    Clark, B. C.

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  7. Martian regolith geochemistry and sampling techniques

    Clark, B. C.

    1988-01-01

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  8. Martian Atmospheric Pressure Static Charge Elimination Tool

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  9. Iron Redox Systematics of Martian Magmas

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  10. Unusual Iron Redox Systematics of Martian Magmas

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  11. Periglacial and glacial analogs for Martian landforms

    Rossbacher, Lisa A.

    1992-01-01

    The list of useful terrestrial analogs for Martian landforms has been expanded to include: features developed by desiccation processes; catastrophic flood features associated with boulder-sized materials; and sorted ground developed at a density boundary. Quantitative analytical techniques developed for physical geography have been adapted and applied to planetary studies, including: quantification of the patterns of polygonally fractured ground to describe pattern randomness independent of pattern size, with possible correlation to the mechanism of origin and quantification of the relative area of a geomorphic feature or region in comparison to planetary scale. Information about Martian geomorphology studied in this project was presented at professional meetings world-wide, at seven colleges and universities, in two interactive televised courses, and as part of two books. Overall, this project has expanded the understanding of the range of terrestrial analogs for Martian landforms, including identifying several new analogs. The processes that created these terrestrial features are characterized by both cold temperatures and low humidity, and therefore both freeze-thaw and desiccation processes are important. All these results support the conclusion that water has played a significant role in the geomorphic history of Mars.

  12. Electrical Activity in Martian Dust Storms

    Majid, W.; Arabshahi, S.; Kocz, J.

    2016-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. Such electrical activity poses serious risks to any Human exploration of the planet and the lack of sufficient data to characterize any such activity has been identified by NASA's MEPAG as a key human safety knowledge gap. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, frequency of occurrence, and the strength of the generated electric fields. We will describe a recently deployed detection engine using NASA's Deep Space Network (DSN) to carry out a long term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The resulting knowledge of Mars electrical activity would allow NASA to plan risk mitigation measures to ensure human safety during Mars exploration. In addition, these measurements will also allow us to place limits on presence of oxidants such as H2O2 that may be produced by such discharges, providing another measurement point for models describing Martian atmospheric chemistry and habitability. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the DSN is the only instrument in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity at Mars from the ground.

  13. Martian meteorites and Martian magnetic anomalies: a new perspective from NWA 7034 (Invited)

    Gattacceca, J.; Rochette, P.; Scozelli, R. B.; Munayco, P.; Agee, C. B.; Quesnel, Y.; Cournede, C.; Geissman, J. W.

    2013-12-01

    The magnetic anomalies observed above the Martian Noachian crust [1] require strong crustal remanent magnetization in the 15-60 A/m range over a thickness of 20-50 km [2,3]. The Martian rocks available for study in the form of meteorites do contain magnetic minerals (magnetite and/or pyrrhotite) but in too small amount to account for such strong remanent magnetizations [4]. Even though this contradiction was easily explained by the fact that Martian meteorites (mostly nakhlites and shergottites) are not representative of the Noachian Martian crust, we were left with no satisfactory candidate lithology to account for the Martian magnetic anomalies. The discovery in the Sahara of a new type of Martian meteorite (NWA 7034 [5] and subsequent paired stones which are hydrothermalized volcanic breccia) shed a new light on this question as it contains a much larger amount of ferromagnetic minerals than any other Martian meteorite. We present here a study of the magnetic properties of NWA 7034, together with a review of the magnetic properties of thirty other Martian meteorites. Magnetic measurements (including high and low temperature behavior and Mössbauer spectroscopy) show that NWA 7034 contains about 15 wt.% of magnetite with various degrees of substitution and maghemitization up to pure maghemite, in the pseudo-single domain size range. Pyrrhotite, a common mineral in other Martian meteorites is not detected. Although it is superparamagnetic and cannot carry remanent magnetization, nanophase goethite is present in significant amounts confirming that NWA 7034 is the most oxidized Martian meteorite studied so far, as already indicated by the presence of maghemite (this study) and pyrite [5]. These magnetic properties show that a kilometric layer of a lithology similar to NWA 7034 magnetized in a dynamo field would be enough to account for the strongest Martian magnetic anomalies. Although the petrogenesis of NWA 7034 is still debated, as the brecciation could be either

  14. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  15. From Blogs to Bottle Caps

    Edinger, Ted

    2012-01-01

    There is a wonderful community of art educators connecting a once-isolated profession through blogging. Art educators around the world are sharing ideas and communicating with their peers through this amazing resource. In this article, the author describes the bottle cap mural at Tulip Grove Elementary School which was inspired by this exchange of…

  16. Magnesium isotope systematics in Martian meteorites

    Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus

    2017-09-01

    Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current

  17. An Electrostatic Precipitator System for the Martian Environment

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  18. On the polarization of Herbig Ae/Be star radiation

    Petrova, N I; Shevchenko, V S

    1987-08-01

    Results of multicolor UBVRI polarimetry of 14 Herbig Ae/Be stars including 7 stars for which observations of polarization have been made for the first time are presented. 6 bright Herbig Ae/Be stars (As 441, AS 442, LK H..cap alpha..134, LK H..cap alpha..135, Lk H..cap alpha..169 and V517 Cyg) which belong to star formation region connected with IC 5070 show the polarization from 1 to 4.5. per cent with similar theta (approx. 180 deg) (basically of interstellar nature). The polarimetrical variability of BD+46 deg 3471, BD+65 deg 1637, HD 200775 and Lk H..cap alpha..234 is confirmed. Mechanismes of polarization in Herbig Ae/Be stars in circumstellar formations are discussed.

  19. Do Martian Blueberries Have Pits? -- Artifacts of an Early Wet Mars

    Lerman, L.

    2005-03-01

    Early Martian weather cycles would have supported organic chemical self-organization, the assumed predecessor to an independent "origin" of Martian life. Artifacts of these processes are discussed, including the possibility that Martian blueberries nucleated around organic cores.

  20. Diurnal and seasonal occurrence of polar patches

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  1. Analyses of hydraulic performance of velocity caps

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  2. 21 CFR 884.5250 - Cervical cap.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cervical cap. 884.5250 Section 884.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... cap. (a) Identification. A cervical cap is a flexible cuplike receptacle that fits over the cervix to...

  3. 21 CFR 888.3000 - Bone cap.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone cap. 888.3000 Section 888.3000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3000 Bone cap. (a) Identification. A bone cap is a mushroom...

  4. An Examination of "The Martian" Trajectory

    Burke, Laura

    2015-01-01

    This analysis was performed to support a request to examine the trajectory of the Hermes vehicle in the novel "The Martian" by Andy Weir. Weir developed his own tool to perform the analysis necessary to provide proper trajectory information for the novel. The Hermes vehicle is the interplanetary spacecraft that shuttles the crew to and from Mars. It is notionally a Nuclear powered vehicle utilizing VASIMR engines for propulsion. The intent of this analysis was the determine whether the trajectory as it was outlined in the novel is consistent with the rules of orbital mechanics.

  5. Backscattering Moessbauer spectroscopy of Martian dust

    Bertelsen, P.; Madsen, M. B.; Binau, C. S.; Goetz, W.; Gunnlaugsson, H. P.; Hviid, S. F.; Kinch, K. M.; Klingelhoefer, G.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Squyres, S. W.

    2005-01-01

    We report on the determination of the mineralogy of the atmospherically suspended Martian dust particles using backscattering 57 Fe Moessbauer spectroscopy on dust accumulated onto the magnets onboard the Mars Exploration Rovers. The spectra can be interpreted in terms of minerals of igneous origin, and shows only limited, if any, amounts of secondary minerals that may have formed in the presence of liquid water. These findings suggest that the dust has formed in a dry environment over long time in the history of the planet.

  6. Martian Surface as Seen by Phoenix

    2008-01-01

    This anaglyph, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 36, the 36th Martian day of the mission (July 1, 2008), shows a stereoscopic 3D view of a trench informally called 'Snow White' dug by Phoenix's Robotic Arm. Phoenix's solar panel is seen in the bottom right corner of the image. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Coastal geomorphology of the Martian northern plains

    Parker, Timothy J.; Gorsline, Donn S.; Saunders, Stephen R.; Pieri, David C.; Schneeberger, Dale M.

    1993-01-01

    The paper considers the question of the formation of the outflow channels and valley networks discovered on the Martian northern plains during the Mariner 9 mission. Parker and Saunders (1987) and Parker et al. (1987, 1989) data are used to describe key features common both in the lower reaches of the outflow channels and within and along the margins of the entire northern plains. It is suggested, that of the geological processes capable of producing similar morphologies on earth, lacustrine or marine deposition and subsequent periglacial modification offer the simplest and most consistent explanation for the suit of features found on Mars.

  8. Pb evolution in the Martian mantle

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.; Roszjar, J.

    2018-03-01

    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm-Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4-4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted

  9. Polar warming in the middle atmosphere of Mars

    Deming, D.; Mumma, M. J.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1986-01-01

    During the 1984 Mars opposition, ground-based laser heterodyne spectroscopy was obtained for the nonthermal core emission of the 10.33-micron R(8) and 10.72-micron P(32) lines of C-12(O-16)2 at 23 locations on the Martian disk. It is deduced on the basis of these data that the temperature of the middle Martian atmosphere varies with latitude, and a meridional gradient of 0.4-0.9 K/deg latitude is indicated. The highest temperatures are noted to lie at high latitudes in the winter hemisphere; as in the terrestrial case of seasonal effects at the menopause, this winter polar warming in the Martian middle atmosphere requires departures from radiative equilibrium. Two-dimensional circulation model comparisons with these results indicate that atmospheric dust may enhance this dynamical heating at high winter latitudes.

  10. First Experimental Demonstration of Coherent CAP for 300-Gb/s Metropolitan Optical Networks

    Estaran Tolosa, Jose Manuel; Iglesias Olmedo, Miguel; Zibar, Darko

    2014-01-01

    We report on high - capacity coherent links employing dual polarization 2D - CAP modulation, allowing for signal design in 8 - dimensional space. Successful demodulation of 221 Gb/s (7.5 b/s/Hz) and 336 Gb/s (7.8 b/s/Hz) after 225 km and 451 km of standard single - mode fiber (SSMF) is achieved....

  11. Comparison of Mars Northern Cap Edge Advance and Recession Rates over the Last 6 Mars Years

    Titus, T. N.; Cushing, G. E.; Langevin, Y.; Brown, A. J.; Themis Science Team; CRISM Science Team

    2011-12-01

    The most observable parameter that describes the Mars polar seasonal caps is their size, which has been measured since the days of Herschel. The advance and retreat of the polar cap from year to year may exhibit many clues to help elucidate little understood physical processes. For example, summertime heat storage in the regolith could delay the onset of seasonal CO2 cap formation. The evolution of the seasonal cap could also be directly affected by the thermal inertia of the near-surface regolith and place constraints on the depth of the ice table. Parameterizations of the seasonal cap edges provide useful constraints on atmospheric GCMs and mesoscale models. Longitudinally resolving the cap edges as they advance and retreat constrains the times when zonal means are appropriate and when longitudinal asymmetries make zonal means invalid. These same kinds of parameterizations can also be used when modeling other data that have low spatial resolutions, such as Gamma Ray Spectrometer (GRS )and Neutron Spectrometer (NS) data. By knowing where the cap edge should be, coarse spatial data can correct for subpixel mixing caused by large point-spread functions including both frosted and frost-free areas. The northern cap exhibits a near symmetric retreat, which has been well characterized at visible wavelengths by both telescopic and spacecraft observations. However, the advance of the cap has not been well characterized until the 21st century. Kieffer and Titus (2001) have used zonal means to observe surface temperature and visible bolometric albedo variations with season using MGS/TES. The TES thermal observations show an almost perfectly symmetrical advance; i.e., condensation at consistent latitude across all longitudes, with the most northern edge of the seasonal cap occurring between longitudes 245°E to 265°E and the most southern edge of the seasonal cap occurring between 280°E and 30°E. The advance of the northern cap typically leads the advance of the edge of

  12. Polarization developments

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  13. Climate, atmosphere, and volatile inventory evolution: polar processes, climate records, volatile inventories

    Pollack, J.B.

    1988-01-01

    Climate change on Mars was driven by long term changes in the solar luminosity, variations in the partitioning of volatiles between the atmosphere and near-surface reservoirs, and astronomical variations in axial and orbital properties. There are important parallels between these drives for Mars and comparable ones for Earth. In the early history of the solar system, the Sun's luminosity was 25 to 30 percent lower than its current value. It is suggested that an early benign climate on Earth was due to the presence of much more carbon dioxide in its atmosphere at these early times than currently resides there. Such a partitioning of carbon dioxide, at the expense of the carbonate rock reservoir, may have resulted from a more vigorous tectonic and volcanic style at early times. Such a line of reasoning may imply that much more carbon dioxide was present in the Martian atmosphere during the planet's early history than resides there today. It is now widely recognized that astronomical variations of the Earth's axial and orbital characteristics have played a dominant role in causing the succession of glacial and interglacial periods characterizing the last several million years. The magnitude of the axial and eccentricity variations are much larger for Mars than for Earth. Such changes on Mars could result in sizeable variations in atmospheric pressure, dust storm activity, and the stability of perennial carbon dioxide and water ice polar caps. These quasi-periodic climate changes occur on periods of 100,000 to 1,000,000 years and may be recorded in the sedimentary layers of the polar layered terrain

  14. An extensive phase space for the potential martian biosphere.

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  15. Neutron polarization

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  16. The rebirth of the cervical cap.

    Cappiello, J D; Grainger-Harrison, M

    1981-01-01

    In an effort to dispel myths surrounding the cervical cap, the historical and political factors affecting the cap's use in the U.S. are described. Clinical aspects of cap fitting are also included. The cervical cap has found only limited acceptance in the U.S. Skepticisms on the part of physicians may be the result of 2 factors: confusion of the cervical cap with intracervical devices used for artificial insemination and confusion with stem pessaries; and the lack of clinical research and statistical evaluation of efficacy rates. The latter factor prompted Tietze et al. to conduct the only U.S. statistical study of the cap in 1953. Of the 143 women studied, the pregnancy rate was 7.6/100 years of use. Of the 28 unplanned pregnancies, 6 were related to faulty technique or omission of a spermicide and 10 were instances of admittedly irregular use. When these failures are omitted, the theoretical effectiveness rate is about 98%. Some practitioners are concerned about an increased incidence of cervical erosion with cap use. Possibly currently conducted studies will show that cap and spermicide users have a lower incidence of cervical erosion than women using no contraceptive method. Study findings suggest that the cervical cap may afford protection without any spermicidal supplement, but the use of spermicides continues to be recommended to clients. Advantages of the cervical cap include the following: it can be left in place longer than a diaphragm without additional applications of spermicide in the vagina; and the insertion of the cap is unrelated to the time of intercourse. Despite research on toleration of the cap for 3 weeks at a time, it is recommended that the cap be worn for only a few days at a time. At this time there are no manufacturers of cervical caps for contraceptive use in the U.S. The cap is now being imported from England and it costs $6.00. A factor that has made the cap unpopular with many physicians is the lengthy time required for fitting. An

  17. Polarization holography

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  18. Survival of microorganisms in smectite clays: Implications for Martian exobiology

    Moll, Deborah M.; Vestal, J. Robie

    1992-08-01

    Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe 3+-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe 3+-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe 3+-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.

  19. Martian Gullies: H2O or CO2 snow?

    Yolanda, C.; Durand-Manterola, H. J.

    2007-05-01

    The theories proposed to try to explain the origin of the Martian gullies involve either liquid water, liquid carbon dioxide or flows of dry granular material. We propose another processes that can be favorable for the origin of the Martian gullies, with our model by gaseous fluidification of CO2. We propose that on the Martian slopes, CO2 snow and dust transported by winds, are accumulate. During the Martian spring, sublimation of carbonic snow starts because of heat and weigth of the frezze layer, causing that the material mixed its fluidifized and slide downslope by gravity. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air inside the granular material. We also present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compared them with some Martian gullies, to identify possible processes evolved in its formation. We measured the lengths of those Martian gullies and the range was from 24 meters to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material and our field trip to Nevado de Toluca Volcano.

  20. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  1. Comparision of the Martian Gullies With Terrestrial Ones

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2005-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried to explained its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We present the characteristics of some terrestrial gullies formed at cold enviroment, sited at the Nevado de Toluca volcanoe near Toluca City, Mexico. We compare them with Martian gullies, choisen from four different areas, to recognize possible processes evolved in its formation. Also, we measured the lenghts of those Martian gullies and their range was from 24 m 1775 m.

  2. Rover's Wheel Churns Up Bright Martian Soil

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  3. Stratigraphy of the Martian northern plains

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  4. The Electric Environment of Martian Dust Devils

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  5. ATLAS electromagnetic end-cap detector

    Maximilien Brice

    2003-01-01

    After the insertion of the first end-cap into this cryostat, the team proceed to the wiring operations. Millions of wires are connected to the electromagnetic calorimeter on this end-cap, whch must be carefully fed out from the detector so that data can be read out. The energy of photons, electrons and positrons will be measured as they pass through the end-cap having been created along the line of the beams in the proton-proton collisions.

  6. Opportunity's Surroundings on Sol 1818 (Polar)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  7. Ionic polarization

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  8. Polarization experiments

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  9. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  10. The role of water ice clouds in the Martian hydrologic cycle

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  11. Plasma Extraction of Oxygen from Martian Atmosphere, Phase I

    National Aeronautics and Space Administration — Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is...

  12. Polarization measurement for internal polarized gaseous targets

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  13. Alteration of Sedimentary Clasts in Martian Meteorite Northwest Africa 7034

    McCubbin, F. M.; Tartese, R.; Santos, A. R.; Domokos, G.; Muttik, N.; Szabo, T.; Vazquez, J.; Boyce, J. W.; Keller, L. P.; Jerolmack, D. J.; hide

    2014-01-01

    The martian meteorite Northwest Africa (NWA) 7034 and pairings represent the first brecciated hand sample available for study from the martian surface [1]. Detailed investigations of NWA 7034 have revealed substantial lithologic diversity among the clasts [2-3], making NWA 7034 a polymict breccia. NWA 7034 consists of igneous clasts, impact-melt clasts, and "sedimentary" clasts represented by prior generations of brecciated material. In the present study we conduct a detailed textural and geochemical analysis of the sedimentary clasts.

  14. Does uncertainty justify intensity emission caps?

    Quirion, Philippe

    2005-01-01

    Environmental policies often set 'relative' or 'intensity' emission caps, i.e. emission limits proportional to the polluting firm's output. One of the arguments put forth in favour of relative caps is based on the uncertainty on business-as-usual output: if the firm's production level is higher than expected, so will be business-as-usual emissions, hence reaching a given level of emissions will be more costly than expected. As a consequence, it is argued, a higher emission level should be allowed if the production level is more important than expected. We assess this argument with a stochastic analytical model featuring two random variables: the business-as-usual emission level, proportional to output, and the slope of the marginal abatement cost curve. We compare the relative cap to an absolute cap and to a price instrument, in terms of welfare impact. It turns out that in most plausible cases, either a price instrument or an absolute cap yields a higher expected welfare than a relative cap. Quantitatively, the difference in expected welfare is typically very small between the absolute and the relative cap but may be significant between the relative cap and the price instrument. (author)

  15. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...

  16. Durability of Capped Wood Plastic Composites

    Mark Mankowski; Mark J. Manning; Damien P. Slowik

    2015-01-01

    Manufacturers of wood plastic composites (WPCs) have recently introduced capped decking to their product lines. These new materials have begun to take market share from the previous generation of uncapped products that possessed a homogenous composition throughout the thickness of their cross-section. These capped offerings have been introduced with claims that the...

  17. Sources of polarized neutrons

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  18. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  19. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

    James, P. B.

    1985-01-01

    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  20. Variations of the electron concentration in the polar ionosphere

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  1. Small martian valleys: Pristine and degraded morphology

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  2. Amazonis and Utopia Planitiae: Martian Lacustrine basins

    Scott, David H.; Rice, James W., Jr.; Dohm, James M.; Chapman, Mary G.

    1992-01-01

    Amazonis and Utopia Planitiae are two large (greater than 10(exp 6) sq. km) basins on Mars having morphological features commonly associated with former lakes. The investigation of these areas is an extension of our previous paleolake studies in the Elysium basin. Using Viking images, we are searching for familiar geologic forms commonly associated with standing bodies of water on Earth. Like Elysium, the two basins exhibit terraces and lineations resembling shorelines, etched and infilled floors with channel-like sinuous markings in places, inflow channels along their borders, and other geomorphic indicators believed to be related to the presence of water and ice. In some areas these features are better displayed than in others where they may be very tenuous; their value as indicators can be justified only by their association with related features. Even though these postulated paleolakes are very young in the Martian stratigraphic sequence, their shoreline features are poorly preserved and they are probably much older than large Pleistocene lakes on Earth.

  3. The new Martians a scientific novel

    Kanas, Nick

    2014-01-01

    The year is 2035, and the crew from the first expedition to Mars is returning to Earth. The crewmembers are anxious to get home, and ennui pervades the ship. The mood is broken by a series of mysterious events that jeopardize their safety. Someone or something is threatening the crew. Is it an alien being? A psychotic crewmember? A malfunctioning computer? The truth raises questions about the crewmembers’ fate and that of the human race. In this novel, the intent is to show real psychological issues that could affect a crew returning from a long-duration mission to Mars. The storyline presents a mystery that keeps the reader guessing, yet the issues at stake are based on the findings from the author’s research and other space-related work over the past 40+ years. The novel touches on actual plans being discussed for such an expedition as well as notions involving the search for Martian life and panspermia. The underlying science, in particular the psychological, psychiatric, and interpersonal elements...

  4. What is the Time Scale for Orbital Forcing of the Martian Water Cycle?

    Hecht, M. H.

    2003-01-01

    Calculation of the periodic variations in the martian orbital parameters by Ward and subsequent refinements to the theory have inspired numerous models of variation of the martian water cycle. Most of these models have focused on variations in planetary obliquity on a both a short-term (110 kyr) time scale as well as larger oscillations occuring over millions of years. To a lesser extent, variations in planetary eccentricity have also been considered. The third and fastest mode of variation, the precession of the longitude of perihelion, has generally been deemphasized because, among the three parameters, it is the only one that does not change the integrated annual insolation. But as a result of this precession, the asymmetry in peak summer insolation between the poles exceeds 50%, with the maximum cycling between poles every 25.5 kyrs. The relative contribution of these different elements to orbital forcing of climate takes on particular importance in the context of apparently recent waterrelated features such as gullies or polar layered deposits (PLD). Christensen, for example, recently indentified mantling of heavily gullied crater walls as residual dust-covered snow deposits that were responsible for the formation of the gullies in a previous epoch. Christensen assumed that the snow was originally deposited at a period of high obliquity which was stabilized against sublimation by a lag deposit of dust. It is suggested here that not obliquity, but the shortterm oscillations associated with precession of the perihelion may play the dominant role in the formation of gullies, major strata in the polar layered deposits (PLD), and other water-related features.

  5. Polarization study

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  6. Genetic ablation of root cap cells in Arabidopsis

    Tsugeki, Ryuji; Fedoroff, Nina V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of...

  7. Mapping of p140Cap phosphorylation sites

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine...... residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant...

  8. CAP FUTURE: WHAT DO STAKEHOLDERS WANT?

    Petr BLIZKOVSKY

    2018-03-01

    Full Text Available The Common Agricultural Policy (CAP is at the crossroads of several policy interests. It is scrutinised by farming and environmental communities as well as by the food industry, regional authorities, research and public sector. The paper analyses the recent consultation process undertaken by the European Commission. The paper concludes that among the key reform issues are: the level of the financial support to the CAP; the continued environmental and other public goods orientation of the CAP and generational renewal. In addition, the focus on result orientation and reduction of the administrative burden can be expected. The relevant European Commission proposals are foreseen around summer 2018.

  9. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  11. Water in Pyroxene and Olivine from Martian Meteorites

    Peslier, A. H.

    2012-01-01

    Water in the interior of terrestrial planets can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) like olivine, pyroxene, or feldspar [1-3]. Although these minerals contain only tens to hundreds of ppm H2O, this water can amount to at least one ocean in mass when added at planetary scales because of the modal dominance of NAM in the mantle and crust [4]. Moreover these trace amounts of water can have drastic effects on melting temperature, rheology, electrical and heat conductivity, and seismic wave attenuation [5]. There is presently a debate on how much water is present in the martian mantle. Secondary ionization mass spectrometry (SIMS) studies of NAM [6], amphiboles and glass in melt inclusions [7-10], and apatites [11, 12] from Martian meteorites report finding as much water as in the same phases from Earth's igneous rocks. Most martian hydrous minerals, however, generally have the relevant sites filled with Cl and F instead of H [13, 14], and experiments using Cl [15] in parent melts can reproduce Martian basalt compositions as well as those with water [16]. We are in the process of analyzing Martian meteorite minerals by Fourier transform infrared spectrometry (FTIR) in order to constrain the role of water in this planet s formation and magmatic evolution

  12. Liquid Water in the Extremely Shallow Martian Subsurface

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  13. Martian Atmospheric and Ionospheric plasma Escape

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  14. Asteroids from a Martian Mega Impact

    Kohler, Susanna

    2018-04-01

    Like evidence left at a crime scene, the mineral olivine may be the clue that helps scientists piece together Marss possibly violent history. Could a long-ago giant impact have flung pieces of Mars throughout our inner solar system? Two researchers from the Tokyo Institute of Technology in Japan are on the case.A Telltale MineralOlivine, a mineral that is common in Earths subsurface but weathers quickly on the surface. Olivine is a major component of Marss upper mantle. [Wilson44691]Olivine is a major component of the Martian upper mantle, making up 60% of this region by weight. Intriguingly, olivine turns up in other places in our solar system too for instance, in seven out of the nine known Mars Trojans (a group of asteroids of unknown origin that share Marss orbit), and in the rare A-type asteroids orbiting in the main asteroid belt.How did these asteroids form, and why are they so olivine-rich? An interesting explanation has been postulated: perhaps this olivine all came from the same place Mars as the result of a mega impact billions of years ago.Evidence for ImpactMars bears plenty of signs pointing to a giant impact in its past. The northern and sourthern hemispheres of Mars look very different, a phenomenon referred to as the Mars hemisphere dichotomy. The impact of a Pluto-sized body could explain the smooth Borealis Basin that covers the northern 40% of Marss surface.This high-resolution topographic map of Mars reveals the dichotomy between its northern and sourthern hemispheres. The smooth region in the northern hemisphere, the Borealis basin, may have been formed when a giant object impacted Mars billions of years ago. [NASA/JPL/USGS]Other evidence piles up: Marss orbit location, its rotation speed, the presence of its two moons all could be neatly explained by a large impact around 4 billion years ago. Could such an impact have also strewn debris from Marss mantle across the solar system?To test this theory, we need to determine if a mega impact is

  15. Towards 400GBASE 4-lane Solution Using Direct Detection of MultiCAP Signal in 14 GHz Bandwidth per Lane

    Iglesias Olmedo, Miguel; Tianjian, Zuo; Jensen, Jesper Bevensee

    2013-01-01

    We report on an experimental demonstration of 102 Gbit/s transmission over a 15km single wavelength and polarization fiber link with 14GHz 3dB bandwidth. Novel multiband CAP signaling allows for a 4-lane 400GBASE long reach solution....

  16. Morphogenesis of Antarctic Paleosols: Martian Analogue

    Mahaney, W. C.; Dohm, J. M.; Baker, V. R.; Newsom, Horton E.; Malloch, D.; Hancock, R. G. V.; Campbell, Iain; Sheppard, D.; Milner, M. W.

    2001-11-01

    Samples of horizons in paleosols from the Quartermain Mountains of the Antarctic Dry Valleys (Aztec and New Mountain areas) were analyzed for their physical characteristics, mineralogy, chemical composition, and microbiology to determine the accumulation and movement of salts and other soluble constituents and the presence/absence of microbial populations. Salt concentrations are of special interest because they are considered to be a function of age, derived over time, in part from nearby oceanic and high-altitude atmospheric sources. The chemical composition of ancient Miocene-age paleosols in these areas is the direct result of the deposition and weathering of airborne-influxed salts and other materials, as well as the weathering of till derived principally from local dolerite and sandstone outcrops. Paleosols nearer the coast have greater contents of Cl, whereas near the inland ice sheet, nitrogen tends to increase on a relative basis. The accumulation and vertical distribution of salts and other soluble chemical elements indicate relative amounts of movement in the profile over long periods of time, in the order of several million years. Four of the six selected subsamples from paleosol horizons in two ancient soil profiles contained nil concentrations of bacteria and fungi. However, two horizons at depths of between 3 and 8 cm, in two profiles, yielded several colonies of the fungi Beauveria bassiana and Penicillium brevicompactum, indicating very minor input of organic carbon. Beauveria bassiana is often reported in association with insects and is used commercially for the biological control of some insect pests. Penicillium species are commonly isolated from Arctic, temperate, and tropical soils and are known to utilize a wide variety of organic carbon and nitrogen compounds. The cold, dry soils of the Antarctic bear a close resemblance to various present and past martian environments where similar weathering could occur and possible microbial populations

  17. C-CAP Niihau 2005 Land Cover

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land cover derived from high resolution imagery according to the Coastal Change Analysis Program (C-CAP) protocol. This data set utilized 1...

  18. C-CAP Land Cover, Kauai, Hawaii

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  19. Recessed floating pier caps for highway bridges.

    1973-01-01

    Presented are alternate designs for two existing bridges in Virginia - one with steel beams and the other with prestressed concrete beams - whereby the pier caps are recessed within the depth of the longitudinal beams. The purpose of this recession i...

  20. C-CAP Land Cover, Niihau, Hawaii

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  1. Civil Air Patrol (CAP) Aircraft Requirement Study

    Mercher, Christopher

    1999-01-01

    The Air Force Audit Agency (AFAA) concluded in its Report of Audit EB0980013 (13 May 98), Air Force Oversight of CY 1996 Civil Air Patrol Corporation Activities, CAP-USAF, Maxwell AFB, AL 36112-6323...

  2. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  3. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  4. Circumpolar Active-Layer Permafrost System (CAPS)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  5. Truncated Dual-Cap Nucleation Site Development

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  6. Corrective action program (CAP) in United States

    Okamoto, Koji; Kobayashi, Masahide

    2008-01-01

    The Corrective Action Process (CAP) is one of the most important key issues on the Nuclear Reactor Safety. The experiences on the nuclear power plant operations, including safety culture, maintenance, and so on, should be continuously evaluated and influenced to the KAIZEN (improvement) of the NPP operations. The review of the CAP system in US will be useful for the NPP safety in Japan. (author)

  7. Curation of US Martian Meteorites Collected in Antarctica

    Lindstrom, M.; Satterwhite, C.; Allton, J.; Stansbury, E.

    1998-01-01

    To date the ANSMET field team has collected five martian meteorites (see below) in Antarctica and returned them for curation at the Johnson Space Center (JSC) Meteorite Processing Laboratory (MPL). ne meteorites were collected with the clean procedures used by ANSMET in collecting all meteorites: They were handled with JSC-cleaned tools, packaged in clean bags, and shipped frozen to JSC. The five martian meteorites vary significantly in size (12-7942 g) and rock type (basalts, lherzolites, and orthopyroxenite). Detailed descriptions are provided in the Mars Meteorite compendium, which describes classification, curation and research results. A table gives the names, classifications and original and curatorial masses of the martian meteorites. The MPL and measures for contamination control are described.

  8. Iron Redox Systematics of Shergottites and Martian Magmas

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  9. A nucleation theory of cell surface capping

    Coutsias, E.A.; Wester, M.J.; Perelson, A.S.

    1997-01-01

    We propose a new theory of cell surface capping based on the principles of nucleation. When antibody interacts with cell surface molecules, the molecules initially form small aggregates called patches that later coalesce into a large aggregate called a cap. While a cap can form by patches being pulled together by action of the cell''s cytoskeleton, in the case of some molecules, disruption of the cytoskeleton does not prevent cap formation. Diffusion of large aggregates on a cell surface is slow, and thus we propose that a cap can form solely through the diffusion of small aggregates containing just one or a few cell surface molecules. Here we consider the extreme case in which single molecules are mobile, but aggregates of all larger sizes are immobile. We show that a set of patches in equilibrium with a open-quotes seaclose quotes of free cell surface molecules can undergo a nucleation-type phase transition in which the largest patch will bind free cell surface molecules, deplete the concentration of such molecules in the open-quotes seaclose quotes and thus cause the other patches to shrink in size. We therefore show that a cap can form without patches having to move, collide with each other, and aggregate

  10. Thermal infrared properties of the Martian atmosphere 2. The 15-μm band measurements

    Martin, T.Z.; Kieffer, H.H.

    1979-01-01

    Viking infrared thermal mapper observations of Mars in the 15-μm CO 2 band reveal global atmospheric thermal behavior at the 0.3- to 0.6-mbar level. Dust entrained by storms produces major modification of diurnal and latitudinal structure in the brightness temperature T 15 . In the dust-laden atmosphere of southern spring and summer 1977, T 15 was a maximum in late afternoon at a latitude well south of the subsolar latitude. Diurnal amplitude was as great as 30 K, while diurnal mean temperatures exceeded 220 K. Over the northern winter polar cap, T 15 increased dramatically following the second global dust storm of 1977; even in regions of polar night the change was up to 80 K. Inversions of similar magnitude resulted, and the change in downward radiance was sufficient to modify substantially the rate of CO 2 condensation at the surface

  11. Laser induced breakdown spectroscopy library for the Martian environment

    Cousin, A.; Forni, O.; Maurice, S.; Gasnault, O.

    2011-01-01

    The NASA Mars Science Laboratory rover will carry the first Laser Induced Breakdown Spectroscopy experiment in space: ChemCam. We have developed a laboratory model which mimics ChemCam's main characteristics. We used a set of target samples relevant to Mars geochemistry, and we recorded individual spectra. We propose a data reduction scheme for Laser Induced Breakdown Spectroscopy data incorporating de-noising, continuum removal, and peak fitting. Known effects of the Martian atmosphere are confirmed with our experiment: better Signal-to-Noise Ratio on Mars compared to Earth, narrower peak width, and essentially no self-absorption. The wavelength shift of emission lines from air to Mars pressure is discussed. The National Institute of Standards and Technology vacuum database is used for wavelength calibration and to identify the elemental lines. Our Martian database contains 1336 lines for 32 elements: H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ar, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb, Sr, Cs, Ba, and Pb. It is a subset of the National Institute of Standards and Technology database to be used for Martian geochemistry. Finally, synthetic spectra can be built from the Martian database. Correlation calculations help to distinguish between elements in case of uncertainty. This work is used to create tools and support data for the interpretation of ChemCam results. - Highlights: ► Chemcam: first Laser Induced Breakdown Spectroscopy technique on Mars. ► Creation of a LIBS specific database to ChemCam on Mars. ► Data reduction scheme is proposed. ► Best signal under Martian conditions. ► LIBS emission lines database: subset of NIST database for Martian geochemistry.

  12. Earth – Mars Similarity Criteria for Martian Vehicles

    Octavian TRIFU

    2010-09-01

    Full Text Available In order to select the most efficient kind of a martian exploring vehicle, the similarity criteria are deduced from the equilibrium movement in the terrestrial and martian conditions. Different invariants have been obtained for the existing (entry capsules, parachutes and rovers and potential martian exploring vehicles (lighter-than-air vehicle, airplane, helicopter and Mars Jumper. These similarity criteria, as non dimensional numbers, allow to quickly compare if such a kind of vehicles can operate in the martian environment, the movement performances, the necessary geometrical dimensions and the power consumption. Following this way of study it was concluded what vehicle is most suitable for the near soil Mars exploration. “Mars Rover” has less power consumption on Mars, but due to the rugged terrain the performances are weak. A vacuumed rigid airship is possible to fly with high performances and endurance on Mars, versus the impossibility of such a machine on the Earth. Due to very low density and the low Reynolds numbers in the Mars atmosphere, the power consumption for the martian airplane or helicopter, is substantial higher. The most efficient vehicle for the Mars exploration it seems to be a machine using the in-situ non-chemical propellants: the 95% CO2 atmosphere and the weak solar radiation. A small compressor, electrically driven by photovoltaics, compresses the gas in a storage tank, in time. If the gas is expanded through a nozzle, sufficient lift and control forces are obtained for a VTOL flight of kilometers over the martian soil, in comparison with tens of meters of the actual Mars rovers.

  13. Survival of microorganisms in smectite clays - Implications for Martian exobiology

    Moll, Deborah M.; Vestal, J. R.

    1992-01-01

    The survival of Baccillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 has been examined in clays representing terrestrial (Wyoming type montmorillonite) and Martian (Fe3+ montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric composition and pressure. An important finding is that MS2 survived simulated Mars conditions better than the terrestrial environment, probably owing to stabilization of the virus caused by the cold and dry conditions of the simulated Mars environment. This finding, the first published indication that viruses may be able to survive in Mars-type soils, may have important implications for future missions to Mars.

  14. Remote Sensing Studies Of The Current Martian Climate

    Taylor, F. W.; McCleese, D. J.; Schofield, J. T.; Calcutt, S. B.; Moroz, V. I.

    A systematic and detailed experimental study of the Martian atmosphere remains to be carried out, despite many decades of intense interest in the nature of the Martian climate system, its interactions, variability and long-term stability. Such a study is planned by the 2005 Mars Reconnaissance Orbiter, using limb-scanning infrared radiometric techniques similar to those used to study trace species in the terrestrial stratosphere. For Mars, the objectives are temperature, humidity, dust and condensate abundances with high vertical resolution and global coverage in the 0 to 80 km height range. The paper will discuss the experiment and its methodology and expectations for the results.

  15. /sup 58,60,62/Ni (. cap alpha. ,p) three--nucleon transfer reactions and. cap alpha. optical potential ambiguities

    Yuanda, Wang; Xiuming, Bao; Zhiqiang, Mao; Rongfang, Yuan; Keling, Wen; Binyin, Huang; Zhifu, Wang; Shuming, Li; Jianan, Wang; Zuxun, Sun; others, and

    1985-11-01

    The differential cross sections are measured using 26.0 MeV ..cap alpha.. particle for /sup 58,62/Ni(..cap alpha.., ..cap alpha..) /sup 58,62/Ni and /sup 58,62/Ni(..cap alpha..,p) /sup 61,65/Cu reactions as well as 25.4 MeV ..cap alpha.. particle for /sup 60/Ni(..cap alpha.., ..cap alpha..)/sup 69/Ni and /sup 60/Ni(..cap alpha.., p)/sup 63/Cu reactions. Consistent calculations with optical model and ZR DWBA are made for (..cap alpha.., ..cap alpha..) and (..cap alpha.., p) reactions by using of single, two, three and four nucleon optical potential parameters. For elastic scattering due to the ..cap alpha.. optical potential ambiguities, all the above optical potential can reproduce the experimental angular distributions. However, the single, two and three nucleon potential, including the Baird's mass systematics and the Chang's energy systematics of ..cap alpha.. potentials, obviously can not provide a reasonable fitting with the (..cap alpha..,p) reaction experimental data. Only the results from the four nucleon potential is in good agreement with the (..cap alpha..,p) reaction experimental data. This reveals that in the ..cap alpha..-particle induced transfer reactions, the real depth of the ..cap alpha..-nucleus optical potential should be rather deep.

  16. Looking for Fossil Bacteria in Martian Materials

    Westall, F.; Walsh, M. M.; Mckay, D. D.; Wentworth, S.; Gibson, E. K.; Steele, A.; Toporski, J.; Lindstrom, D.; Martinez, R.; Allen, C. C.

    1999-01-01

    The rationale for looking for prokaryote fossils in Martian materials is based on our present understanding of the environmental evolution of that planet in comparison to the history of the terrestrial environments and the development and evolution of life on Earth. On Earth we have clear, albeit indirect, evidence of life in 3.8 b.y.-old rocks from Greenland and the first morphological fossils in 3.3-3.5 b.y.-old cherts from South Africa and Australia. In comparison, Mars, being smaller, probably cooled down after initial aggregation faster than the Earth. Consequently, there could have been liquid water on its surface earlier than on Earth. With a similar exogenous and endogenous input of organics and life-sustaining nutrients as is proposed for the Earth, life could have arisen on that planet, possibly slightly earlier dm it did on Earth. Whereas on Earth liquid water has remained at the surface of the planet since about 4.4 b.y. (with some possible interregnums caused by planet-sterilising impacts before 3.8. b.y. and perhaps a number of periods of a totally frozen Earth, this was not the case with Mars. Although it is not known exactly when surficial water disappeared from the surface, there would have been sufficient time for life to have developed into something similar to the terrestrial prokaryote stage. However, given the earlier environmental deterioration, it is unlikely that it evolved into the eukaryote stage and even evolution of oxygenic photosynthesis may not have been reached. Thus, the impetus of research is on single celled life simnilar to prokaryotes. We are investigating a number of methods of trace element analysis with respect to the Early Archaean microbial fossils. Preliminary neutron activation analysis of carbonaceous layers in the Early Archaean cherts from South Africa and Australia shows some partitioning of elements such as As, Sb, Cr with an especial enrichment of lanthanides in a carbonaceous-rich banded iron sediment . More

  17. 49 CFR 230.41 - Flexible staybolts with caps.

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flexible staybolts with caps. 230.41 Section 230... Appurtenances Staybolts § 230.41 Flexible staybolts with caps. (a) General. Flexible staybolts with caps shall have their caps removed during every 5th annual inspection for the purpose of inspecting the bolts for...

  18. Anti-pp,. cap alpha cap alpha. and p. cap alpha. elastic scattering at high energies and Chou-Yang conjecture

    Saleem, M.; Fazal-e-Aleem; Rifique, M.

    1987-03-01

    The recent experimental measurements for anti-pp and ..cap alpha cap alpha.. elastic scattering at high energies have shown that the Chou-Yang conjecture regarding the relationship between the electromagnetic and the hadronic form factor of a particle is only an approximation. A new ansatz has been proposed to obtain hadronic form factors of proton and the ..cap alpha..-particle. These form factors have been used to explain the various characteristics of anti-pp, ..cap alpha cap alpha.. and p..cap alpha.. elastic scattering at high energies.

  19. A thermoelectric cap for seafloor hydrothermal vents

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  20. Polar Polygons

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  1. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component

  2. 75 FR 49527 - Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC...

    2010-08-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,195] Caps Visual Communications, LLC; Black Dot Group; Formerly Known as Caps Group Acquisition, LLC Chicago, IL; Amended... of Caps Visual Communications, LLC, Black Dot Group, formerly known as Caps Group Acquisition, LLC...

  3. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    Hu Longhua; Papoian, Garegin A

    2011-01-01

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  4. Strategic Polarization.

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  5. Layering extraction from subsurface radargrams over Greenland and the Martian NPLD by combining wavelet analysis with Hough transforms

    Xiong, Si-Ting; Muller, Jan-Peter

    2017-04-01

    Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts

  6. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  7. Seasonal cycle of Martian climate : Experimental data and numerical simulation

    Rodin, A. V.; Willson, R. J.

    2006-01-01

    The most adequate theoretical method of investigating the present-day Martian climate is numerical simulation based on a model of general circulation of the atmosphere. First and foremost, such models encounter the greatest difficulties in description of aerosols and clouds, which in turn

  8. Radio Emissions from Electrical Activity in Martian Dust Storms

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  9. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    Kavulich, Michael J.; Szunyogh, Istvan; Gyarmati, Gyorgyi; Wilson, R. John

    2013-01-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  10. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    Kavulich, Michael J.

    2013-11-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  11. Martian gullies: possible formation mechanism by dry granular material..

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material

  12. Martian sub-surface ionising radiation: biosignatures and geology

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  13. The Martian Water Cycle Based on 3-D Modeling

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  14. Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of 500 patients from the International CAPS Registry.

    Rodríguez-Pintó, Ignasi; Moitinho, Marta; Santacreu, Irene; Shoenfeld, Yehuda; Erkan, Doruk; Espinosa, Gerard; Cervera, Ricard

    2016-12-01

    To analyze the clinical and immunologic manifestations of patients with catastrophic antiphospholipid syndrome (CAPS) from the "CAPS Registry". The demographic, clinical and serological features of 500 patients included in the website-based "CAPS Registry" were analyzed. Frequency distribution and measures of central tendency were used to describe the cohort. Comparison between groups regarding qualitative variables was undertaken by chi-square or Fisher exact test while T-test for independent variables was used to compare groups regarding continuous variables. 500 patients (female: 343 [69%]; mean age 38±17) accounting for 522 episodes of CAPS were included in the analysis. Forty percent of patients had an associated autoimmune disease, mainly systemic lupus erythematosus (SLE) (75%). The majority of CAPS episodes were triggered by a precipitating factor (65%), mostly infections (49%). Clinically, CAPS was characterized by several organ involvement affecting kidneys (73%), lungs (60%), brain (56%), heart (50%), and skin (47%). Lupus anticoagulant, IgG anticardiolipin and IgG anti-β2-glycprotein antibodies were the most often implicated antiphospholipid antibodies (83%, 81% and 78% respectively). Mortality accounted for 37% of episodes of CAPS. Several clinical differences could be observed based on the age of presentation and its association to SLE. Those cases triggered by a malignancy tended to occur in older patients, while CAPS episodes in young patients were associated with an infectious trigger and peripheral vessels involvement. Additionally, CAPS associated with SLE were more likely to have severe cardiac and brain involvement leading to a higher mortality (48%). Although the presentation of CAPS is characterized by multiorgan thrombosis and failure, clinical differences among patients exist based on age and underlying chronic diseases, e.g. malignancy and SLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Beta-decay asymmetries in polarized /sup 12/B and /sup 12/N and the G-parity non-conservation

    Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    1976-07-01

    The decay asymmetries (A) in polarized /sup 12/B and /sup 12/N have been measured as a function of ..beta..-ray energies (E). The coefficients ..cap alpha..sub(-+) in A = -+ P(p/E) (1 + ..cap alpha..sub(-+)E)) have been determined to be ..cap alpha..sub(-) (/sup 12/B) = +(0.31+-0.06)%/MeV and ..cap alpha..sub(+) (/sup 12/N) = -(0.21+-0.07)%/MeV. The experimental value, ..cap alpha..sub(-) - ..cap alpha..sub (+) = (0.52+-0.09)%/MeV, is larger than the prediction according to conservation of vector current which includes no second-class current, (..cap alpha..sub(-) - ..cap alpha..sub(+) CVC approximately equal to 0.27%/MeV, and indicates the existence of the second-class induced-tensor current.

  16. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  17. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric

  18. Physical properties of Martian meteorites: Porosity and density measurements

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  19. Polarized secondary radioactive beams

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  20. Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034

    McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain

    2015-01-01

    Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been

  1. Polar crane

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  2. Photoactivable caps for reactive metal nanoparticles

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  3. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis.

    Van Impe, Katrien; Bethuyne, Jonas; Cool, Steven; Impens, Francis; Ruano-Gallego, David; De Wever, Olivier; Vanloo, Berlinda; Van Troys, Marleen; Lambein, Kathleen; Boucherie, Ciska; Martens, Evelien; Zwaenepoel, Olivier; Hassanzadeh-Ghassabeh, Gholamreza; Vandekerckhove, Joël; Gevaert, Kris; Fernández, Luis Ángel; Sanders, Niek N; Gettemans, Jan

    2013-12-13

    Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). CapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers

  4. Seismic explosion sources on an ice cap

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed......Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...

  5. Assembling the CMS yoke end-caps

    Laurent Guiraud

    2001-01-01

    A crane is used to piece together one of the end-caps that will provide the path for magnetic flux return on the CMS experiment. A total of six end-cap discs will be assembled before being positioned on the barrel yoke to complete the huge 12 500 tonne cylinder yoke. The magnetic field produced will be greater than any other solenoid created to date at 4 T, 100 000 times greater than the Earth's natural magnetic field, and will store enough energy to melt 18 tonnes of gold.

  6. Solubility of C-O-H volatiles in graphite-saturated martian basalts and application to martian atmospheric evolution

    Stanley, B. D.; Hirschmann, M. M.; Withers, A. C.

    2012-12-01

    The modern martian atmosphere is thin, leading to surface conditions too cold to support liquid water. Yet, there is evidence of liquid surface water early in martian history that is commonly thought to require a thick CO2 atmosphere. Our previous work follows the analysis developed by Holloway and co-workers (Holloway et al. 1992; Holloway 1998), which predicts a linear relationship between CO2 and oxygen fugacity (fO2) in graphite-saturated silicate melts. At low oxygen fugacity, the solubility of CO2 in silicate melts is therefore very low. Such low calculated solubilities under reducing conditions lead to small fluxes of CO2 associated with martian magmatism, and therefore production of a thick volcanogenic CO2 atmosphere could require a prohibitively large volume of mantle-derived magma. The key assumption in these previous calculations is that the carbonate ion is the chief soluble C-O-H species. The results of the calculations would not be affected appreciably if molecular CO2, rather than carbonate ion, were an important species, but could be entirely different if there were other appreciable C-species such as CO, carbonyl (C=O) complexes, carbide (Si-C), or CH4. Clearly, graphite-saturated experiments are required to explore how much volcanogenic C may be degassed by reduced martian lavas. A series of piston-cylinder experiments were performed on synthetic martian starting materials over a range of oxygen fugacities (IW+2.3 to IW-0.9), and at pressures of 1-3 GPa and temperatures of 1340-1600 °C in Pt-graphite double capsules. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and range from 0.0026-0.50 wt%. CO2 solubilities change by one order of magnitude with an order of magnitude change in oxygen fugacity, as predicted by previous work. Secondary ion mass spectrometry (SIMS) determinations of C contents in glasses range from 0.0131-0.2626 wt%. C contents determined by SIMS are consistently higher

  7. Terrestrial microbes in martian and chondritic meteorites

    Airieau, S.; Picenco, Y.; Andersen, G.

    2007-08-01

    Introduction: The best extraterrestrial analogs for microbiology are meteorites. The chemistry and mineralogy of Asteroid Belt and martian (SNC) meteorites are used as tracers of processes that took place in the early solar system. Meteoritic falls, in particular those of carbonaceous chondrites, are regarded as pristine samples of planetesimal evolution as these rocks are primitive and mostly unprocessed since the formation of the solar system 4.56 billion years ago. Yet, questions about terrestrial contamination and its effects on the meteoritic isotopic, chemical and mineral characteristics often arise. Meteorites are hosts to biological activity as soon as they are in contact with the terrestrial biosphere, like all rocks. A wide biodiversity was found in 21 chondrites and 8 martian stones, and was investigated with cell culture, microscopy techniques, PCR, and LAL photoluminetry. Some preliminary results are presented here. The sample suite included carbonaceous chondrites of types CR, CV, CK, CO, CI, and CM, from ANSMET and Falls. Past studies documented the alteration of meteorites by weathering and biological activity [1]-[4]. Unpublished observations during aqueous extraction for oxygen isotopic analysis [5], noted the formation of biofilms in water in a matter of days. In order to address the potential modification of meteoritic isotopic and chemical signatures, the culture of microbial contaminating species was initiated in 2005, and after a prolonged incubation, some of the species obtained from cell culture were analyzed in 2006. The results are preliminary, and a systematic catalog of microbial contaminants is developing very slowly due to lack of funding. Methods: The primary method was cell culture and PCR. Chondrites. Chondritic meteorite fragments were obtained by breaking stones of approximately one gram in sterile mortars. The core of the rocks, presumably less contaminated than the surface, was used for the present microbial study, and the

  8. Propagation of stationary Rossby waves in the Martian lower atmosphere

    Ghosh, Priyanka; Thokuluwa, Ramkumar

    The Martian lower atmospheric (-1.5 km to 29.3 km) temperature, measured by radio occultation technique during the Mars Global Surveyor (MGS) mission launched by US in November 1996, at the Northern winter hemispheric latitude of about 63(°) N clearly shows a statistically significant (above 95 percent confidential level white noise) and strong 3.5-day oscillation during 1-10 January 2006. This strong signal occurs in the longitudinal sectors of 0-30(°) E and 190-230(°) E but statistically insignificant in almost all the other longitudes. This 180 degree separation between the two peaks of occurrence of strong 3.5 day oscillation indicates that this may be associated with zonal wave number 2 structure global scale wave. At the lowest height of -1.5 km, the power observed in the longitude of 0-30(°) E is 50 K (2) and it increased gradually to the maximum power of 130 K (2) at the height of 0.8 - 1.7 km. Above this height, the power decreased monotonously and gradually to insignificant level at the height of 3.7 km (20 K (2) ). This gradual decrease of power above the height of 1.7 km indicates that radiative damping (infra red cooling due to large abundance of CO _{2} molecules and dust particles) would have played an important role in the dissipation of waves. The height and longitudinal profiles of phase of the 3.5-day wave indicate that this wave is a vertically standing and eastward propagating planetary wave respectively. Since the statistically significant spectral amplitude occurs near the high topography structures, it seems that the wave is generated by flows over the topography. In the Northern winter, it is possible that the large gradient of temperature between the low and high latitudes would lead to flow of winds from the tropical to polar latitudes. Due to the Coriolis effect, this flow would in turn move towards the right and incite wave generation when the air flows over the high topographic structures. This lead to speculate that the observed 3

  9. Preliminary Test for Constitutive Models of CAP

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  10. Preventing Thin Film Dewetting via Graphene Capping.

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Added Mass of a Spherical Cap Body

    Šimčík, Miroslav; Punčochář, Miroslav; Růžička, Marek

    2014-01-01

    Roč. 118, OCT 18 (2014), s. 1-8 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : spherical cap * added mass * single particle Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.337, year: 2014

  12. A world first to cap them all

    Taylor, C.J.

    1981-05-01

    A new, more powerful cap lamp has a sealed lead-acid battery which never needs refilling and which will not spill liquid, even if the case is damaged. The plastic case is flame resistant and meets South African requirements for use underground. A new type of cable lock prevents accidental disconnection.

  13. Survey of Enabling Technologies for CAPS

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  14. The Effectiveness of Caps on Political Lobbying

    Matejka, M.; Onderstal, A.M.; De Waegenaere, A.M.B.

    2002-01-01

    In this paper, we analyze a lobby game, modelled as an all-pay auction in which interest groups submit bids in order to obtain a political prize.The bids are restricted to be below a cap imposed by the government.For both an incomplete and a complete information setting we show the following

  15. Immunoprecipitation of Tri-methylated Capped RNA.

    Hayes, Karen E; Barr, Jamie A; Xie, Mingyi; Steitz, Joan A; Martinez, Ivan

    2018-02-05

    Cellular quiescence (also known as G 0 arrest) is characterized by reduced DNA replication, increased autophagy, and increased expression of cyclin-dependent kinase p27 Kip1 . Quiescence is essential for wound healing, organ regeneration, and preventing neoplasia. Previous findings indicate that microRNAs (miRNAs) play an important role in regulating cellular quiescence. Our recent publication demonstrated the existence of an alternative miRNA biogenesis pathway in primary human foreskin fibroblast (HFF) cells during quiescence. Indeed, we have identified a group of pri-miRNAs (whose mature miRNAs were found induced during quiescence) modified with a 2,2,7-trimethylguanosine (TMG)-cap by the trimethylguanosine synthase 1 (TGS1) protein and transported to the cytoplasm by the Exportin-1 (XPO1) protein. We used an antibody against (TMG)-caps (which does not cross-react with the (m 7 G)-caps that most pri-miRNAs or mRNAs contain [Luhrmann et al ., 1982]) to perform RNA immunoprecipitations from total RNA extracts of proliferating or quiescent HFFs. The novelty of this assay is the specific isolation of pri-miRNAs as well as other non-coding RNAs containing a TMG-cap modification.

  16. CAP Reform and the Doha Development Agenda

    van Dijck, P.; Faber, G.

    2004-01-01

    The CAP reforms that the EU accepted in June 2003 will partially decouple direct income payments to farmers from production and make these payments conditional on cross-compliance. The reforms are driven by enlargement of EU membership, budgetary constraints, mounting pressures from diverse animal

  17. Preliminary Test for Constitutive Models of CAP

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2010-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  18. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  19. Opportunity's Surroundings on Sol 1798 (Polar)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  20. Opportunity's Surroundings After Sol 1820 Drive (Polar)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.

  1. Opportunity's Surroundings on Sol 1687 (Polar)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a polar projection with geometric seam correction.

  2. A snapshot of the polar ionosphere

    Whitteker, J.H.

    1976-01-01

    This paper presents a picture of the north polar F layer and topside ionosphere obtained primarily from three satellites (Alouette 2, ISIS 1, ISIS 2), that passed over the region within a time interval of ca. 50 min on 25 April 1971, a magnetically quiet day. The horizontal distribution of electron densities at the peak of the F layer is found to be similar to synoptic results from the IGY. Energetic particle and ionospheric plasma data are also presented, and the F layer data are discussed in terms of these measurements, and also in terms of electric field and neutral N 2 density measurements made by other satellites on other occasions. The major features observed are as follows: A tongue of F region ionization extends from the dayside across the polar cap, which is accounted for by antisunward drift due to magnetospheric convection. In the F layer and topside ionosphere, the main effect of auroral precipitation appears to be heating and expansion of the topside. A region of low F layer density appears on the morning side of the polar cap, which may be due to convection and possibly also to enhanced N 2 densities. (author)

  3. Sediment Capping and Natural Recovery, Contaminant Transport Fundamentals With Applications to Sediment Caps

    Petrovski, David M; Corcoran, Maureen K; May, James H; Patrick, David M

    2005-01-01

    Engineered sediment caps and natural recovery are in situ remedial alternatives for contaminated sediments, which consist of the artificial or natural placement of a layer of material over a sediment...

  4. Nuclear polarization and neutrons

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  5. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  6. Lava Tubes as Martian Analog sites on Hawaii Island

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  7. Martian Methane From a Cometary Source: A Hypothesis

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  8. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  9. Ionization rates and profiles of electron concentration in Martian atmosphere

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  10. Orbital evolution and origin of the Martian satellites

    Szeto, A.M.K.

    1983-01-01

    The orbital evolution of the Martian satellites is considered from a dynamical point of view. Celestial mechanics relevant to the calculation of satellite orbital evolution is introduced and the physical parameters to be incorporated in the modeling of tidal dissipation are discussed. Results of extrapolating the satellite orbits backward and forward in time are presented and compared with those of other published work. Collision probability calculations and results for the Martian satellite system are presented and discussed. The implications of these calculations for the origin scenarios of the satellites are assessed. It is concluded that Deimos in its present form could not have been captured, for if it had been, it would have collided with Phobos at some point. An accretion model is therefore preferred over capture, although such a model consistent with the likely carbonaceous chondritic composition of the satellites has yet to be established. 91 references

  11. Facially amphiphilic thiol capped gold and silver nanoparticles

    Abstract. A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  12. Post-Viking view of Martian geologic evolution

    Arvidson, R.E.; Goettel, K.A.; Hohenberg, C.M.

    1980-01-01

    The mean density, 3.393 g/cm 3 , and the estimated moment of inertia factor constrain the density distribution within Mars but do not define it uniquely. For plausible core density, core radii can range from approx. 1350 to approx. 2200 km, with the core constituting from approx. 13 to approx. 35% of the planet's mass. Possible extremes for the zero-pressure density of the Martian mantle could be as high as 3.6 g/cm 3 or as low as 3.3 g/cm 3 . The Martian mantle is probably denser than the terrestrial mantle. The dominant Martian lavas are probably mafic or ultramafic. Martian surface materials probably consist of variable proportions of mafic igneous minerals and weathering products, the latter primarily oxides and carbonates. A major geologic dichotomy exists between the complex northern plains and the ancient southern cratered terrain. The Tharsis plateau, which dominates the low-degree harmonics of the gravity field, appears to be only partially compensated; Olympus Mons appears to be completely uncompensated. Substantial stresses must be supported, either statically by a thick, rigid lithosphere, or dynamically. Mean crustal thicknesses from 23 to 40 km have been obtained from modeling of Bouguer gravity data. Lithospheric thicknesses from 25 to 50 km under volcanoes in the Tharsis and Elysium provinces to >150 km under olympus Mons have been obtained from consideration of the effects of mass loading by volcanic constructs. Many of the compressional and extensional features on Mars have orientations consistent with formation by fracturing in response to loading by the Tharsis plateau. The deficiency of small craters within cratered terrain is attributed to obliteration by volcanism. The maximum resurfacing rate due to volcanism occurred between 1.0 and 1.5 b.y. ago if a constant cratering flux is assumed and between 3.5 and 4.0 b.y. ago if the lunar cratering flux (scaled to Mars) is assumed

  13. Low computation vision-based navigation for a Martian rover

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  14. Microwave Palaeointensity Experiments On Terrestrial and Martian Material

    Shaw, J.; Hill, M.; Gratton, M.

    The microwave palaeointensity technique was developed in Liverpool University (Walton et al 1996) and has successfully been applied to archaeological ceramics and recent lavas (Shaw et al 1996, 1999.; Hill et al 1999,2000). These published results show that microwave analysis provides accurate palaeointensity determinations com- bined with a very high success rate. Most recently the technique has been successfully applied to Martian material (Shaw et al, 2001) to look for the existence of an internal Martian dynamo early in Martian history. New experiments have been carried out us- ing microwaves to demagnetise synthetic muti-component TRM's and new palaeoin- tensity experiments providing a comparison between microwave analysis of laboratory TRM's and conventional thermal Thellier analysis of microwave generated mTRM's. These experiments demonstrate the equivalence of microwave and thermally gener- ated TRM's. D. Walton, S Snape, T.C. Rolph, J. Shaw and J.A. Share, Application of ferromagnetic resonance heating to palaeointensity determinations.1996, Phys Earth Planet Int,94, 183-186. J. Shaw, D. Walton, S Yang, T.C.Rolph, and J.A. Share. Microwave Archaeointensities from Peruvian Ceramics. 1996, Geophys. J. Int,124,241-244 J. Shaw, S. Yang, T. C. Rolph, and F. Y. Sun. A comparison of archaeointensity results from Chinese ceramics using Microwave and conventional ThellierSs and ShawSs methods.,1999, G J Int.136, 714-718 M. Hill, and J. Shaw, 1999, Palaeointensity results for Historic Lavas from Mt. Etna using microwave demagnetisation/remagnetisation in a modified Thellier type exper- iment. G. J. Int, 139, 583-590 M. J. Hill, and J. Shaw, 2000. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique, Geophys. J. Int., 142, 487-504. J. Shaw, M. Hill, and S. J. Openshaw, 2001, Investigating the ancient Martian magnetic field using microwaves, Earth and Planetary Science Letters 190 (2001) 103-109

  15. Martian geomorphology and its relation to subsurface volatiles

    Clifford, Stephen M. (Editor); Rossbacher, Lisa A. (Editor); Zimbelman, James R. (Editor)

    1986-01-01

    Martian volatile inventory, planetary climatic and atmospheric evolution, and the interpretation of various remote sensing data were discussed. A number of morphologies that were cited as potential indicators of subsurface volatiles were reviewed. Rampart craters and terrain softening were the focus of more in-depth discussion because of the popular attention they have received and the fact that their areal distributions are by far the most extensive of all the proposed indicators.

  16. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  17. Magnetic Particles Are Found In The Martian Atmosphere

    1976-01-01

    The dark bullseye pattern seen at the top of Viking l's camera calibration chart indicates the presence of magnetic particles in the fine dust in the Martian atmosphere. A tiny magnet is mounted at that spot to catch wind-borne magnetic particles. The particles may have been tossed into the atmosphere surrounding the spacecraft at the time of landing and during the digging and delivery of the Mars soil sample by the surface sampler scoop. This picture was taken August 4.

  18. Chemical and Physical Interactions of Martian Surface Material

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  19. A Martian origin for the Mars Trojan asteroids

    Polishook, D.; Jacobson, S. A.; Morbidelli, A.; Aharonson, O.

    2017-08-01

    Seven of the nine known Mars Trojan asteroids belong to an orbital cluster1,2 named after its largest member, (5261) Eureka. Eureka is probably the progenitor of the whole cluster, which formed at least 1 Gyr ago3. It has been suggested3 that the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect spun up Eureka, resulting in fragments being ejected by the rotational-fission mechanism. Eureka's spectrum exhibits a broad and deep absorption band around 1 μm, indicating an olivine-rich composition4. Here we show evidence that the Trojan Eureka cluster progenitor could have originated as impact debris excavated from the Martian mantle. We present new near-infrared observations of two Trojans ((311999) 2007 NS2 and (385250) 2001 DH47) and find that both exhibit an olivine-rich reflectance spectrum similar to Eureka's. These measurements confirm that the progenitor of the cluster has an achondritic composition4. Olivine-rich reflectance spectra are rare amongst asteroids5 but are seen around the largest basins on Mars6. They are also consistent with some Martian meteorites (for example, Chassigny7) and with the material comprising much of the Martian mantle8,9. Using numerical simulations, we show that the Mars Trojans are more likely to be impact ejecta from Mars than captured olivine-rich asteroids transported from the main belt. This result directly links specific asteroids to debris from the forming planets.

  20. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  1. Advanced concept for a crewed mission to the martian moons

    Conte, Davide; Di Carlo, Marilena; Budzyń, Dorota; Burgoyne, Hayden; Fries, Dan; Grulich, Maria; Heizmann, Sören; Jethani, Henna; Lapôtre, Mathieu; Roos, Tobias; Castillo, Encarnación Serrano; Schermann, Marcel; Vieceli, Rhiannon; Wilson, Lee; Wynard, Christopher

    2017-10-01

    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.

  2. The physics of Martian weather and climate: a review

    Read, P L; Mulholland, D P; Lewis, S R

    2015-01-01

    The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO 2 . These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist’s viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies. (review)

  3. Neutron polarization in polarized 3He targets

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  4. CAPS Activity in Priming Vesicle Exocytosis Requires CK2 Phosphorylation*

    Nojiri, Mari; Loyet, Kelly M.; Klenchin, Vadim A.; Kabachinski, Gregory; Martin, Thomas F. J.

    2009-01-01

    CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in...

  5. Comparison of ground-based and Viking Orbiter measurements of Martian water vapor - Variability of the seasonal cycle

    Jakosky, B. M.; Barker, E. S.

    1984-01-01

    Earth-based observations of Mars atmospheric water vapor are presented for the 1975-1976, 1977-1978, and 1983 apparitions. Comparisons are made with near-simultaneous spacecraft measurements made from the Viking Orbiter Mars Atmospheric Water Detection experiment during 1976-1978 and with previous earth-based measurements. Differences occur between the behavior in the different years, and may be related to the Mars climate. Measurements during the southern summer in 1969 indicate a factor of three times as much water as is present at this same season in other years. This difference may have resulted from the sublimation of water from the south polar residual cap upon removal of most or all of the CO2 ice present; sublimation of all of the CO2 ice during some years could be a result of a greater thermal load being placed on the cap due to the presence of differing amounts of atmospheric dust.

  6. 7 CFR 1714.7 - Interest rate cap.

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Interest rate cap. 1714.7 Section 1714.7 Agriculture... PRE-LOAN POLICIES AND PROCEDURES FOR INSURED ELECTRIC LOANS General § 1714.7 Interest rate cap. Except... section, or both the rate disparity test for the interest rate cap and the consumer income test set forth...

  7. CMS end-cap yoke at the detector's assembly site.

    Patrice Loïez

    2002-01-01

    The magnetic flux generated by the superconducting coil in the CMS detector is returned via an iron yoke comprising three end-cap discs at each end (end-cap yoke) and five concentric cylinders (barrel yoke). This picture shows the first of three end-cap discs (red) seen through the outer cylinder of the vacuum tank which will house the superconducting coil.

  8. 20 CFR 606.22 - Application for cap.

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Application for cap. 606.22 Section 606.22... Reduction § 606.22 Application for cap. (a) Application. (1) The Governor of the State shall make... a State requests a cap on tax credit reduction. The Governor is required to notify the Department on...

  9. 47 CFR 61.41 - Price cap requirements generally.

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Price cap requirements generally. 61.41 Section... (CONTINUED) TARIFFS General Rules for Dominant Carriers § 61.41 Price cap requirements generally. (a... companies shall not bar a carrier from electing price cap regulation provided the carrier is otherwise...

  10. Sedimentological Investigations of the Martian Surface using the Mars 2001 Robotic Arm Camera and MECA Optical Microscope

    Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.

    1999-01-01

    The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.

  11. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent

  12. Central Air-Conditioning Plant (CAP) extension

    Shetty, P.S.; Kaul, S.K.; Mishra, H.

    2017-01-01

    Central Air-Conditioning Plant (CAP) and its associated chilled water network of BARC is one among the largest central plants in India for such application. The plant was planned in 1960s to cater to the air-conditioning and process water requirements of laboratories, workshops and buildings spread over a distance of 1.5 Km in three directions from CAP through underground network of chilled water pipelines. The plant was designed for a total capacity of 6600 TR. The present installed capacity of the plant is 7250 TR. The connected load at present is 9800 TR. After the XII plan capacity will be augmented to 7650 TR. The connected load is expected to cross 11,000 TR after the commissioning of new Engg. Halls 9, 10 and 11

  13. Greening CAP payments: a missed opportunity?

    Matthews, Alan

    2013-01-15

    At an important point in the current reform of the Common Agricultural Policy (CAP), a new IIEA policy brief by Professor Alan Matthews, one of the EU’s foremost experts on the topic, considers proposals to green direct farm payments. Professor Matthews argues that proposed greening of direct payments – the key innovation in the current round of CAP Reform – look likely to fail. While greening may survive as a concept, the likely outcome of the negotiations between Agriculture Ministers and the European Parliament will deliver little practical environmental benefit. The paper examines the rationale underpinning greening, arguing that it exists to justify the continuation of a large agricultural budget, explores reasons for the apparent failure of the proposals, and reflects on the implications for future efforts to better integrate environmental objectives into EU agriculture policy. This is the first in a series of Environment Nexus policy briefs by leading experts in the fields of agriculture, energy, climate change and water.

  14. X. cap alpha. method with pseudopotentials

    Szasz, L. (Fordham Univ., New York (USA). Dept. of Physics)

    1980-06-01

    The X..cap alpha.. method for an atom or molecule is transformed into an all-electron pseudopotential formalism. The equations of the X..cap alpha.. method are exactly transformed into pseudo-orbital equations and the resulting pseudopotentials are replaced by simple density-dependent potentials derived from Thomas-Fermi model. It is shown that the new formalism satisfies the virial theorem. As the first application, it is shown that the model explains the shell-structure of atoms by the property that the pseudo-orbitals for the (ns), (np), (nd), etc. electrons are, in a very good approximation, the solutions of the same equation and have their maxima at the same point thereby creating the peaks in the radial density characterizing the shell structure.

  15. ATLAS End-cap Part II

    2007-01-01

    The epic journey of the ATLAS magnets is drawing to an end. On Thursday 12 July, the second end-cap of the ATLAS toroid magnet was lowered into the cavern of the experiment with the same degree of precision as the first (see Bulletin No. 26/2007). This spectacular descent of the 240-tonne component, is one of the last transport to be completed for ATLAS.

  16. Particle Entrainment in Spherical-Cap Wakes

    Warncke, Norbert G W; Delfos, Rene; Ooms, Gijs; Westerweel, Jerry, E-mail: n.g.w.warncke@tudelft.nl [Laboratory for Aero- and Hydrodynamics, Delft University of Technology (Netherlands)

    2011-12-22

    In this work we study the preferential concentration of small particles in the turbulent wake behind a spherical-cap object. We present a model predicting the mean particle concentration in the near-wake as a function of the characteristic Stokes number of the problem, the turbulence level and the Froude number. We compare the model with our experimental results on this flow, measured in a vertical water tunnel.

  17. Are CAP Decoupling Policies Really Production Neutral?

    Katranidis, Stelios D.; Kotakou, Christina A.

    2008-01-01

    This paper examines the effects of decoupling policies on Greek cotton production. We estimate a system of cotton supply and input derived demand functions under the hypothesis that producers face uncertainty about prices. Using our estimation results we simulate the effects on cotton production under four alternative policy scenarios: the ‘Old’ CAP regime (i.e. the policy practiced until 2005), the Mid Term Review regime, a fully decoupled policy regime and a free trade-no policy scenario. O...

  18. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    HIRISE image processing in the existing data processing pipeline and improve it at the same time. Currently the workflow is not finished: DEM units are relative and are not in elevation. We have been able to derive successful DEMs from CTX data Becquerel [14] and Crommelin craters as well as for some areas in the North Polar Layered Terrain. Due to its tremendous resolution HIRISE data showing great surface detail, hence allowing better correlation than other sensors considered in this work. In all cases DEM were showing considerable potential for exploration of terrain characteristics. Next steps include cross validation results with DEM produced by other teams and sensors (HRSC [6], HIRISE [7]) and providing elevation in terms of absolute height over a MOLA areoid. MRO imaging data allows us an unprecedented look at Martian terrain. This work provides a step forward derivation of DEM from HIRISE and CTX datasets and currently undergoing validation vs. other existing datasets. We will present our latest results for layering structures in both North and South Polar Layered deposits as well as layered structures inside Becquerel and Crommelin craters. Digital Elevation models derived from the CTX sensor can also be utilized effectively as a input for clutter reduction models, which are in turn used for the ground penetrating SHARAD instrument [13]. References. [1] R. Arvidson, et al. Mars exploration program 2007 phoenix landing site selection and characteristics. Journal of Geophysical Research-Planets, 113, JUN 19 2008. [2] M. Golombek, et al. Assessment of mars exploration rover landing site predictions. Nature, 436(7047):44-48, JUL 7 2005. [3] K. E. Herkenhoff, et al. Meter-scale morphology of the north polar region of mars. Science, 317(5845):1711-1715, SEP 21 2007. [4] A. B. Ivanov. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions. volume 34 of Lunar and Planetary Inst. Technical Report, pages 2084-+, Mar

  19. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  20. Protein synthesis in geostimulated root caps

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  1. Comparison of Detector Technologies for CAPS

    Stockum, Jana L.

    2005-01-01

    In this paper, several different detectors are examined for use in a Comet/Asteroid Protection System (CAPS), a conceptual study for a possible future space-based system. Each detector will be examined for its future (25 years or more in the future) ability to find and track near-Earth Objects (NEOs) from a space-based detection platform. Within the CAPS study are several teams of people who each focus on different aspects of the system concept. This study s focus is on detection devices. In particular, evaluations on the following devices have been made: charge-coupled devices (CCDs), charge-injected devices (CIDs), superconducting tunneling junctions (STJs), and transition edge sensors (TESs). These devices can be separated into two main categories; the first category includes detectors that are currently being widely utilized, such as CCDs and CIDs. The second category includes experimental detectors, such as STJs and TESs. After the discussion of the detectors themselves, there will be a section devoted to the explicit use of these detectors with CAPS.

  2. MycoCAP - Mycobacterium Comparative Analysis Platform.

    Choo, Siew Woh; Ang, Mia Yang; Dutta, Avirup; Tan, Shi Yang; Siow, Cheuk Chuen; Heydari, Hamed; Mutha, Naresh V R; Wee, Wei Yee; Wong, Guat Jah

    2015-12-15

    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.

  3. Pulp-Capping with Mineral Trioxide Aggregate

    Peycheva Kalina

    2015-11-01

    Full Text Available There are two considerations for direct pulp capping - accidental mechanical pulp exposure and exposure caused by caries. Mineral trioxide aggregate (MTA was used as pulp-capping material to preserve the vitality of the pulpal tissues. Follow-up examinations revealed that treatment was successful in preserving pulpal vitality and continued development of the tooth. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. Material and methods: Cases 18 - 8 teeth with grey MTA, 10 teeth with white MTA; diagnose: Pulpitis chronica ulcerosa, Electro pulpal test (EOD - 30-35 μA, pre-clinical X-ray - without changes in the structures, follow ups for 4 years. Successful treatments: without clinical symptoms and changes in the X-rays: 5 teeth with grey MTA, 8 teeth with white MTA for period of 4 years. Unsuccessful treatments: Clinical symptoms and sometimes changes in the X-ray: 3 with grey MTA, 2 with white MTA. MTA is an appropriate material for pulp-capping and follow-up examinations revealed that the treatment was successful in preserving pulpal vitality.

  4. Estimated release from the saltstone landfill effect of landfill caps and landfill-cap/monolith-liner combinations

    Wilhite, E.L.

    1985-01-01

    The effect of capping the entire saltstone landfill is dependent on the effectiveness of the clay cap in preventing infiltration. A cap that is 99% effective will reduce releases from the saltstone landfill by a factor of 7.7. Several combinations of landfill design alterations will result in meeting ground water standards

  5. Polarized electron sources

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  6. Polarized electron sources

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  7. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  8. Polarized neutron spectrometer

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  9. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  10. Dynamics of the polar ionosphere structure disturbance in the Svalgaard-Mansurov effect

    Osipov, N.K.; Mozhaev, A.M.; Larina, T.N.; Ponomarev, Yu.N.

    1988-01-01

    Nonstationary disturbance model of the ionsphere of polar caps caused by change of B y component sign of interplanetary magnetic field is considered. It is shown that nonstationary convection transfer of ionospheric plasma represents the main and the most fast mechanism regulating reconstruction of ionosphere structure in polar caps during magnetosphere substorms, caused by the change of B y sign. Calculations show that characteristic time of sufficient change of ionosphere structure at ∼1500 km distances is on the order of 10-25 min

  11. Effect of the interplanetary magnetic field on the distribution of electric fields in the polar ionosphere

    Uvarov, V. M.; Barashkov, P. D.

    1985-08-01

    Heppner (1972), in an analysis of satellite data, observed 12 types of electric-field distributions in the polar ionosphere along the morning-evening meridian. In the present paper it is shown that these distribution types can be described by the analytical model of Uvarov and Barashkov (1984). In this model the excitation of the electric fields is investigated by solving the set of continuity equations for current in three regions (the north and south polar caps and a region outside the caps) with allowance for the magnetic conjugacy of the ionosphere in the two hemispheres.

  12. Model of the polar ionosphere with account for the interplanetary medium

    Uvarov, V.M.; Barashkov, P.D.; Zakharova, A.P.

    1992-01-01

    The effect of IMR B y -component on F-region structure is simulated numerically. An additional convective vortex is reflected in the structure of F2 electronic density isolines in the form of vortex-live depression on the day half of the polar cap when B y y >0), the ionization is more profound on the night (daytime) side of the polar cap; plasma cavity is centered for after (before) midnight hours; F2 electron density increases (decreases) in the auroral peak and vortex-like depression is localized at p.m (a.m) hours

  13. Characterization of cap binding proteins associated with the nucleus

    Patzelt, E.

    1986-04-01

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-( 32 P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m 7 GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m 7 GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m 7 GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  14. Polarized targets and beams

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  15. Thermal Evolution and Crystallisation Regimes of the Martian Core

    Davies, C. J.; Pommier, A.

    2015-12-01

    Though it is accepted that Mars has a sulfur-rich metallic core, its chemical and physical state as well as its time-evolution are still unconstrained and debated. Several lines of evidence indicate that an internal magnetic field was once generated on Mars and that this field decayed around 3.7-4.0 Gyrs ago. The standard model assumes that this field was produced by a thermal (and perhaps chemical) dynamo operating in the Martian core. We use this information to construct parameterized models of the Martian dynamo in order to place constraints on the thermochemical evolution of the Martian core, with particular focus on its crystallization regime. Considered compositions are in the FeS system, with S content ranging from ~10 and 16 wt%. Core radius, density and CMB pressure are varied within the errors provided by recent internal structure models that satisfy the available geodetic constraints (planetary mass, moment of inertia and tidal Love number). We also vary the melting curve and adiabat, CMB heat flow and thermal conductivity. Successful models are those that match the dynamo cessation time and fall within the bounds on present-day CMB temperature. The resulting suite of over 500 models suggest three possible crystallization regimes: growth of a solid inner core starting at the center of the planet; freezing and precipitation of solid iron (Fe- snow) from the core-mantle boundary (CMB); and freezing that begins midway through the core. Our analysis focuses on the effects of core properties that are expected to be constrained during the forthcoming Insight mission.

  16. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  17. An investigation of Martian and terrestrial dust devils

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  18. Dispersion relation of linearly polarized strong electromagnetic waves

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  19. Martian Water: Are There Extant Halobacteria on Mars?

    Landis, Geoffrey A.

    2001-01-01

    On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life is not present on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was mor...

  20. TDEM for Martian in situ resource prospecting missions

    G. Tacconi

    2003-06-01

    Full Text Available This paper presents a TDEM (Time Domain Electromagnetic Methods application, addressed to the search for water on Mars. In this context, the opportunities for a TDEM system as payload in a future mission are investigated for different in situ exploration scenarios. The TDEM sounding capability is evaluated with respect to the expected Martian environment, and some considerations are made about the many unknown variables (above all the background EM noise and the subsoil composition altogether with the limited resources availability (mission constraints in mass, time and power and the way they could represent an obstacle for operations and measurements.

  1. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  2. Customizable cap implants for neurophysiological experimentation.

    Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C

    2018-04-22

    Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Laboratory testing of closure cap repair techniques

    Persoff, P.; Moridis, G.; Tuck, D.M.

    1996-10-01

    Landfill design requires a low permeability closure cap as well as a low permeability liner. The Savannah River Site, in South Carolina, has approximately 85 acres of mixed waste landfills covered with compacted kaolin clay. Maintaining low permeability of the clay cap requires both that the permeability of the compacted clay itself remain low and that the integrity of the barrier be maintained. Barrier breaches typically result from penetration by roots or animals, and especially cracks caused by uneven settling or desiccation. In this study, clay layers, 0.81 m in diameter and 7.6 cm thick, were compacted in 7 lysimeters to simulate closure caps. The hydraulic conductivity of each layer was measured, and the compacted clay layers (CCL's) were cracked by drying. Then various repair techniques were applied and the effectiveness of each repair was assessed by remeasuring the hydraulic conductivity. Finally the repaired CCL was again dried and measured to determine how the repair responded to the conditions that caused the original failure. For a full report of this investigation see Persoff et al. Six repair techniques have been tested, four of which involve the use of injectable barrier liquids colloidal silica (CS) and polysiloxane (PSX) described below: (I) covering the crack with a bentonite geosynthetic clay liner (GCL), (ii) recompaction of new kaolinite at STD+3 moisture content joined to existing kaolinite that had dried and shrunk, (iii) direct injection of colloidal silica to a crack, (iv) injection of colloidal silica (CS) to wells in an overlying sand layer, (v) direct injection of polysiloxane to a crack, and (vi), injection of polysiloxane (PSX) to wells in an overlying soil layer

  4. IAA transport in corn roots includes the root cap

    Hasenstein, K.H.

    1989-01-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing 3 H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 μ1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 μ1 of sorbitol or the Ca 2+ chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap

  5. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry

    Oyama, V.I.; Berdahl, B.J.; Carle, G.C.

    1977-01-01

    It is stated that O 2 and CO 2 were evolved from humidified Martian soil in the gas exchange experiment on Viking Lander 1. Small changes in N 2 gas were also recorded. A model of the morphology and a hypothesis of the mechanistics of the Martian surface are proposed. (author)

  6. MARK II end cap calorimeter electronics

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/√E was achieved

  7. Introduction: The 6th special issue of Mars Polar Science

    Sori, Michael M.; Brown, Adrian J.

    2018-07-01

    Polar science at Mars has the ability to elucidate outstanding problems in the planet's history. The long-lived, kilometers-thick deposits at both poles hold a climate record that is still being steadily deciphered (e.g., Becerra et al., 2017), seasonal volatiles are important drivers of geomorphological change (e.g., Pilorget and Forget, 2015), and there is a growing recognition that water ice at lower latitudes is an important piece of the story in understanding polar processes (e.g., Bramson et al., 2015). Additionally, the icy volatiles trapped in the mid-latitudes will be an important resource for future human explorers (e.g., Viola et al., 2015). One task of this generation of Martian polar explorers is to understand the evolution of water as it cycles through the polar and mid-latitudes on geologic timescales in anticipation of its eventual utilization by the next generation of human and robotic explorers. To address these and other topics, the 6th International Mars Polar Science Conference was held in September 2016 in Reykjavik, Iceland (Smith et al., 2018). This special issue represents 16 papers presented at that conference.

  8. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Spirit Near 'Stapledon' on Sol 1802 (Polar)

    2009-01-01

    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a polar projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  10. Scattering with polarized neutrons

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  11. Polarized Light Corridor Demonstrations.

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  12. Macrophage Capping Protein CapG Is a Putative Oncogene Involved in Migration and Invasiveness in Ovarian Carcinoma

    J. Glaser

    2014-01-01

    Full Text Available The actin binding protein CapG modulates cell motility by interacting with the cytoskeleton. CapG is associated with tumor progression in different nongynecologic tumor entities and overexpression in breast cancer cell lines correlates with a more invasive phenotype in vitro. Here, we report a significant CapG overexpression in 18/47 (38% of ovarian carcinomas (OC analyzed by qRealTime-PCR analyses. Functional analyses in OC cell lines through siRNA mediated CapG knockdown and CapG overexpression showed CapG-dependent cell migration and invasiveness. A single nucleotide polymorphism rs6886 inside the CapG gene was identified, affecting a CapG phosphorylation site and thus potentially modifying CapG function. The minor allele frequency (MAF of SNP rs6886 (c.1004A/G was higher and the homozygous (A/A, His335 genotype was significantly more prevalent in patients with fallopian tube carcinomas (50% as in controls (10%. With OC being one of the most lethal cancer diseases, the detection of novel biomarkers such as CapG could reveal new diagnostic and therapeutic targets. Moreover, in-depth analyses of SNP rs6886 related to FTC and OC will contribute to a better understanding of carcinogenesis and progression of OC.

  13. MFTF-. cap alpha. + T progress report

    Nelson, W.D. (ed.)

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; they will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.

  14. Habitable periglacial landscapes in martian mid-latitudes

    Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.

    2012-05-01

    Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).

  15. Implications of Earth analogs to Martian sulfate-filled Fractures

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  16. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  17. Martian channels and valleys - Their characteristics, distribution, and age

    Carr, M. H.; Clow, G. D.

    1981-01-01

    The distribution and ages of Martian channels and valleys, which are generally believed to have been cut by running water, are examined with particular emphasis on the small branching networks referred to as runoff channels or valley networks. Valleys at latitudes from 65 deg S to 65 deg N were surveyed on Viking images at resolutions between 125 and 300 m. Almost all of the valleys are found in the old cratered terrain, in areas characterized by high elevations, low albedos and low violet/red ratios. The networks are deduced to have formed early in the history of the planet, with a formation rate declining rapidly shortly after the decline of the cratering rate 3.9 billion years ago. Two types of outflow channels are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. Both types start at local sources, and have formed episodically throughout Martian history. Fretted channels, found mainly in two latitude belts characterized by relatively rapid erosion along escarpments, are explained by the lateral enlargement of other channels by mass wasting.

  18. Martian dust storms as a possible sink of atmospheric methane

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  19. Modeling of the Martian environment for radiation analysis

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  20. Periodic orbits around areostationary points in the Martian gravity field

    Liu Xiaodong; Baoyin Hexi; Ma Xingrui

    2012-01-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  1. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  2. Techniques in polarization physics

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  3. Acoustic Monitoring of the Arctic Ice Cap

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  4. Polarized Moessbauer transitions

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  5. Geographical Income Polarization

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  6. Calculation of polarization effects

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  7. Lowering the YE+1 end-cap for CMS

    Maximilien Brice

    2007-01-01

    On 9 January 2007, the massive YE+1 end-cap was lowered into the CMS cavern. This is a very precise process as the crane must lower the end-cap through minimal clearance without tilt or sway. Once in the cavern, the end-cap is then positioned over the end of the barrel to detect particles produced in collisions that travel close to the axis of the beams.

  8. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  9. Preform spar cap for a wind turbine rotor blade

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  10. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  11. Contabilidad de Costos II. - Capítulo 4. Respuestas

    Morillo Moreno, Marysela C.

    2008-01-01

    ÍNDICE Presentación Orientaciones para el usuario Capítulo 1: Contabilidad de costos por procesos Sistemas de Contabilidad de Costos por Proceso Costos de Producción Conjunta. Productos Principales y Secundarios Capítulo 2: Contabilidad de costos predeterminados Presupuesto Estático y Presupuesto Flexible Sistema de Costos Estándar Capítulo 3: Sistema de costos variables Capítulo 4: Respuestas Bibliografía recomendada Pr...

  12. Analyses of Current And Wave Forces on Velocity Caps

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  13. Who's (Still) Above the Social Security Payroll Tax Cap?

    Nicole Woo; Janelle Jones; John Schmitt

    2012-01-01

    The Social Security payroll tax cap is the earnings level above which no further Social Security taxes are collected. The cap is currently at $110,100, though legislation has been introduced in Congress to apply the Social Security payroll tax to earnings above $250,000 (but not between the current cap and this level). This issue brief updates earlier work, finding that 5.8 percent of workers would be affected if the Social Security cap were eliminated entirely and 1.4 percent would be affect...

  14. Synthesis of tritium or deuterium labelled 19-nor-3. cap alpha. -hydroxy-5. cap alpha. -androstan-17-one from nortestosterone

    Protiva, J; Klinotova, E [Karlova Univ., Prague (Czechoslovakia). Prirodovedecka Fakulta; Filip, J [Ustav pro Vyzkum, Vyrobu a Vyuziti Radioisotopu, Prague (Czechoslovakia); Hampl, R [Research Inst. of Endocrinology, Praha (Czechoslovakia)

    1982-10-20

    Tritium and/or deuterium (5-H) labelled 19-nor-3..cap alpha..-hydroxy-5..cap alpha..-androstan-17-one (norandrosterone) was prepared from nortestosterone in view to use it as a radioligand for radioimmunoassay of the main nortestosterone metabolites. Based upon model experiments using testosterone and deuterium labelling, the following four step procedure was established: nortestosterone was oxidized with pyridine chlorochromate and the resulting 19-nor-4-androsten-3,17-dione was tritiated with tritium gas under catalysis with tris(triphenylphosphine)rhodium chloride to give (4,5..cap alpha..-/sup 3/H)19-nor-5..cap alpha..-androstan-3,17-dione. A selective reduction of the latter compound yielded (5-/sup 3/H)19-nor-3..cap alpha..-hydroxy-5..cap alpha..-androstan-17-one of the molar radioactivity 0.3 TBq (8.15 Ci)/mmol.

  15. Acceleration of polarized particles

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  16. Polarization effects. Volume 2

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  17. The Physics of Polarization

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  18. THE TURN OF THE MONTH EFFECT CONTINUED: A COMPARISON OF SMALL CAP STOCKS AND LARGE CAP STOCKS

    Ramsundhar, Shamman

    2010-01-01

    The purpose of this paper is to investigate whether the turn of the month effect occurs in small cap and large cap stocks and if it occurs in both categories, to determine whether there is a difference in the magnitude. My research, for the period of 1963-2008, based on the CRSP value weighted index, shows that there is a significant turn of the month effect in small and large cap stocks, however the effect is larger in small cap stocks. Furthermore, this effect is not limited to a short time...

  19. Physical and chemical properties of the Martian soil: Review of resources

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  20. The provenance, formation, and implications of reduced carbon phases in Martian meteorites

    Steele, Andrew; McCubbin, Francis M.; Fries, Marc D.

    2016-11-01

    This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life-detection studies.

  1. Diagnostic criteria for cryopyrin-associated periodic syndrome (CAPS).

    Kuemmerle-Deschner, Jasmin B; Ozen, Seza; Tyrrell, Pascal N; Kone-Paut, Isabelle; Goldbach-Mansky, Raphaela; Lachmann, Helen; Blank, Norbert; Hoffman, Hal M; Weissbarth-Riedel, Elisabeth; Hugle, Boris; Kallinich, Tilmann; Gattorno, Marco; Gul, Ahmet; Ter Haar, Nienke; Oswald, Marlen; Dedeoglu, Fatma; Cantarini, Luca; Benseler, Susanne M

    2017-06-01

    Cryopyrin-associated periodic syndrome (CAPS) is a rare, heterogeneous disease entity associated with NLRP3 gene mutations and increased interleukin-1 (IL-1) secretion. Early diagnosis and rapid initiation of IL-1 inhibition prevent organ damage. The aim of the study was to develop and validate diagnostic criteria for CAPS. An innovative process was followed including interdisciplinary team building, item generation: review of CAPS registries, systematic literature review, expert surveys, consensus conferences for item refinement, item reduction and weighting using 1000Minds decision software. Resulting CAPS criteria were tested in large cohorts of CAPS cases and controls using correspondence analysis. Diagnostic models were explored using sensitivity analyses. The international team included 16 experts. Systematic literature and registry review identified 33 CAPS-typical items; the consensus conferences reduced these to 14. 1000Minds exercises ranked variables based on importance for the diagnosis. Correspondence analysis determined variables consistently associated with the diagnosis of CAPS using 284 cases and 837 controls. Seven variables were significantly associated with CAPS (pCAPS-typical symptoms: urticaria-like rash, cold-triggered episodes, sensorineural hearing loss, musculoskeletal symptoms, chronic aseptic meningitis and skeletal abnormalities. Sensitivity was 81%, specificity 94%. It performed well for all CAPS subtypes and regardless of NLRP3 mutation. The novel approach integrated traditional methods of evidence synthesis with expert consensus, web-based decision tools and innovative statistical methods and may serve as model for other rare diseases. These criteria will enable a rapid diagnosis for children and adults with CAPS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Alternate cap designs under RCRA regulations

    Manrod, W.E. III; Yager, R.E.; Craig, P.M.

    1988-01-01

    Low-level radioactive waste and mixed wastes have been disposed of in several sites in the vicinity of the Oak Ridge Y-12 Plant in Tennessee. Most of these materials have been placed in shallow land burial pits (SLB). Closure plans have been developed and approved by appropriate regulatory agencies for several of these sites. A variety of cap (final cover) designs for closure of these sites were investigated to determine their ability to inhibit infiltration of precipitation to the waste. The most effective designs are those that use synthetic materials as drainage layers and/or impermeable liners. The more complex, multi-layer systems perform no better than simpler covers and would complicate construction and increase costs. Despite the successful analytical results described in this paper, additional considerations must be factored into use of geosynthetic as well as natural materials

  3. Cap stabilization for reclaimed uranium sites

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.; Hawkins, E.F.

    1989-01-01

    The reclamation and stabilization of uranium-mill tailings sites requires engineering designs to protect against the disruption of tailings and the potential release of radioactive materials. The reclamation design is to be effective for 200-1000 years. This paper presents recently developed or refined techniques and methodologies used to evaluate uranium-tailings-reclamation plans designed to provide long-term stability against failure modes. Specific cap-design aspects presented include design flood selection, influence of fluvial geomorphology on site stabilization, stable slope prediction, slope stabilization using riprap, and riprap selection relative to rock quality and durability. Design relationships are presented for estimating flow through riprap, sizing riprap, and estimating riprap flow resistance for overtopping conditions. Guidelines for riprap-layer thickness and gradation are presented. A riprap-rating procedure for estimating rock quality and durability is also presented

  4. Glaciers and ice caps outside Greenland

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  5. Viscoplastic augmentation of the smooth cap model

    Schwer, Leonard E.

    1994-01-01

    The most common numerical viscoplastic implementations are formulations attributed to Perzyna. Although Perzyna-type algorithms are popular, they have several disadvantages relating to the lack of enforcement of the consistency condition in plasticity. The present work adapts a relatively unknown viscoplastic formulation attributed to Duvaut and Lions and generalized to multi-surface plasticity by Simo et al. The attraction of the Duvaut-Lions formulation is its ease of numerical implementation in existing elastoplastic algorithms. The present work provides a motivation for the Duvaut-Lions viscoplastic formulation, derivation of the algorithm and comparison with the Perzyna algorithm. A simple uniaxial strain numerical simulation is used to compare the results of the Duvaut-Lions algorithm, as adapted to the ppercase[dyna3d] smooth cap model with results from a Perzyna algorithm adapted by Katona and Muleret to an implicit code. ((orig.))

  6. Analysis of Strain and Intermixing in a Single Layer Ge/Si dots using polarized Raman Spectroscopy

    PEROVA, TANIA; MOORE, ROBERT

    2006-01-01

    PUBLISHED The built-in strain and composition of as-grown and Si-capped single layers of Ge?Si dots grown at various temperatures (460?800 ?C) are studied by a comparative analysis of the Ge-Ge and Si-Ge modes in the polarized Raman spectra of the dots. A pronounced reduction of the strain and Ge content in the dots after deposition of the cap layer at low temperatures is observed, indicating that strain-induced Si diffusion from the cap layer is occurring. For large dots grown at 700?800...

  7. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  8. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  9. SeaWinds - Oceans, Land, Polar Regions

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  10. Polar cap magnetic field reversals during solar grand minima: could pores play a role?

    Švanda, Michal; Brun, A.S.; Roudier, T.; Jouve, L.

    2016-01-01

    Roč. 586, February (2016), A123/1-A123/11 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-04338S Institutional support: RVO:67985815 Keywords : dynamo * Sun * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  11. ULF/Lower-ELF Electromagnetic Field Measurements in the Polar Caps

    1980-12-01

    motion sensitive and the ice stations are subject to noisy motion from I ordinary ice movements (the bumping, scraping, and so on of ice floes) 56 ,zp and...the earth", Geomag. Aeron. USSR, English Transl., 17, 760-762, 1977. Cagniard, L., "Basic theory of the magneto- telluric method of geo- physical...1967. Nishida, A., Geomagnetic Diagnosis of the Magnetosphere, 256 pp., Springer, New York, 1978. Novysh, V.V., and G.A. Fonarev, " Telluric currents

  12. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    Mustard, John F.

    1999-01-01

    Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.

  13. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.

  14. Rover's Wheel Churns Up Bright Martian Soil (Stereo)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Multiple images taken with Spirit's panoramic camera are combined here into a stereo view that appears three-dimensional when seen through red-blue glasses, with the red lens on the left.

  15. Rover's Wheel Churns Up Bright Martian Soil (Vertical)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  16. The Petrochemistry of Jake_M: A Martian Mugearite

    Stolper, E. M.; Baker, M. B.; Newcombe, M. E.; Schmidt, M. E.; Treiman, A. H.; Cousin, A.; Dyar, M. D.; Fisk, M. R.; Gellert, R.; King, P. L.; Leshin, L.; Maurice, S.; McLennan, S. M.; Minitti, M. E.; Perrett, G.; Rowland, S.; Sautter, V.; Wiens, R. C.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Teinturier, Samuel; Dromart, Gilles; Robert, François; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Cameron, James; Clegg, Sam; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Jones, Andrea; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-09-01

    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).

  17. The origin and evolution of terrestrial and Martian rock labyrinths

    Brook, G. A.

    1984-01-01

    The morphological characteristics and evolutionary development of rock labyrinths on Earth (in sandstone, volcanics, and carbonates) are compared with those on Mars. On Earth rock labyrinths originate as parallel, an echelon, or intersecting narrow grabens, or develop where fault and joint networks are selectively eroded. Labyrinths frequently contain both downfaulted and erosional elements. Closed labyrinths contain depressions; open labyrinths do not, they are simple part of a fluvial network generally of low order. As closed labyrinths made up of intersecting grabens or made up of connected erosional depressions are extremely common on Mars, the research focussed on an understanding of these labyrinth types. Field investigations were carried out in Canyonlands National Park, Utah, and in the Chirachahua Mountains of Arizona. Martian labyrinths were investigated using Viking orbiter images. In addition, research was undertaken on apparent thermokarst features in Lunae Planum and Chryse Planitia where closed depressions are numerous and resemble atlas topography.

  18. Mission analysis for the Martian Moons Explorer (MMX) mission

    Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro

    2018-05-01

    Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.

  19. Terrestrial Permafrost Models of Martian Habitats and Inhabitants

    Gilichinsky, D.

    2011-12-01

    The terrestrial permafrost is the only rich depository of viable ancient microorganisms on Earth, and can be used as a bridge to possible Martian life forms and shallow subsurface habitats where the probability of finding life is highest. Since there is a place for water, the requisite condition for life, the analogous models are more or less realistic. If life ever existed on Mars, traces might have been preserved and could be found at depth within permafrost. The age of the terrestrial isolates corresponds to the longevity of the frozen state of the embedding strata, with the oldest known dating back to the late Pliocene in Arctic and late Miocene in Antarctica. Permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Such a difference in time scale would have a significant impact on the possibility of preserving life on Mars, which is why the longevity of life forms preserved within terrestrial permafrost can only be an approximate model for Mars. 1. A number of studies indicate that the Antarctic cryosphere began to develop on the Eocene-Oligocene boundary, after the isolation of the continent. Permafrost degradation is only possible if mean annual ground temperature, -28°C now, rise above freezing, i.e., a significant warming to above 25°C is required. There is no evidence of such sharp temperature increase, which indicates that the climate and geological history was favorable to persistence of pre-Pliocene permafrost. These oldest relics (~30Myr) are possibly to be found at high hypsometric levels of ice-free areas (Dry Valleys and nearby mountains). It is desirable to test the layers for the presence of viable cells. The limiting age, if one exists, within this ancient permafrost, where the viable organisms were no longer present, could be established as the limit for life preservation below 0oC. Positive results will extend the known temporal limits of life in permafrost. 2. Even in this case, the age of

  20. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  1. Intraflow width variations in Martian and terrestrial lava flows

    Peitersen, Matthew N.; Crown, David A.

    1997-03-01

    Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.

  2. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  3. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Harri, A.-M.; Haukka, H.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Siikonen, T.; Palin, M.

    2017-09-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  4. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  5. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-10-13

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  6. Instrumentation with polarized neutrons

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  7. The CAP Theorem Versus Databases with Relaxed ACID properties

    Frank, Lars; Pedersen, Rasmus Ulslev; Havnø Frank, Christian

    2014-01-01

    data from different locations can have at most two of the three desirable CAP properties [5]. The NoSQL movement has applied the CAP theorem as an argument against tradi- tional ACID (atomicity, consistency, isolation, and durabil- ity) databases, which prioritize consistency and partition- tolerance...

  8. Preparing an ATLAS toroid magnet end-cap for lowering

    Claudia Marcelloni

    2007-01-01

    One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.

  9. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  10. In Situ Remediation Of Contaminated Sediments - Active Capping Technology

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-01-01

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  11. 20 CFR 606.21 - Criteria for cap.

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Criteria for cap. 606.21 Section 606.21 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TAX CREDITS UNDER THE... Reduction § 606.21 Criteria for cap. (a) Reduction in unemployment tax effort. (1) For purposes of paragraph...

  12. Devon island ice cap: core stratigraphy and paleoclimate.

    Koerner, R M

    1977-04-01

    Valuable paleoclimatic information can be gained by studying the distribution of melt layers in deep ice cores. A profile representing the percentage of ice in melt layers in a core drilled from the Devon Island ice cap plotted against both time and depth shows that the ice cap has experienced a period of very warm summers since 1925, following a period of colder summers between about 1600 and 1925. The earlier period was coldest between 1680 and 1730. There is a high correlation between the melt-layer ice percentage and the mass balance of the ice cap. The relation between them suggests that the ice cap mass balance was zero (accumulation equaled ablation) during the colder period but is negative in the present warmer one. There is no firm evidence of a present cooling trend in the summer conditions on the ice cap. A comparison with the melt-layer ice percentage in cores from the other major Canadian Arctic ice caps shows that the variation of summer conditions found for the Devon Island ice cap is representative for all the large ice caps for about 90 percent of the time. There is also a good correlation between melt-layer percentage and summer sea-ice conditions in the archipelago. This suggests that the search for the northwest passage was influenced by changing climate, with the 19th-century peak of the often tragic exploration coinciding with a period of very cold summers.

  13. ATLAS end-caps 
on the move

    2007-01-01

    Two delicate and spectacular transport operations have been performed for ATLAS in recent weeks: the first end-cap tracker was installed in its final position, and one of the huge end-caps of the toroid magnet was moved to the top of the experiment’s shaft.

  14. Chemical synthesis of highly size-confined triethylamine-capped ...

    2018-03-23

    Mar 23, 2018 ... TiO2 nanoparticles and its dye-sensitized solar cell performance .... Figure 5. Formation mechanism of TEA-capped and uncapped TiO2 nanoparticles. ... this research work, synthesized TEA-capped TiO2 nanopar- ticles were ...

  15. 20 CFR 606.20 - Cap on tax credit reduction.

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Cap on tax credit reduction. 606.20 Section 606.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR TAX CREDITS... Tax Credit Reduction § 606.20 Cap on tax credit reduction. (a) Applicability. Subsection (f) of...

  16. Wooden beverage cases cause little damage to bottle caps

    R. Bruce Anderson; William C. Miller

    1973-01-01

    Wooden beverage cases cause little damage to aluminum resealable caps during distribution. A study at bottling plants and distribution warehouses showed that an average of 1 bottle out of 4,000 has cap damage. Most of the damage was attributed to handling at the warehouse and in transit. Some recommendations are given for improvement of wooden beverage cases to prevent...

  17. Sleep stability and cognitive function in an Arctic Martian analogue.

    Gríofa, Marc O; Blue, Rebecca S; Cohen, Kenneth D; O'Keeffe, Derek T

    2011-04-01

    Human performance is affected by sleep disruption and sleep deprivation can critically affect mission outcome in both spaceflight and other extreme environments. In this study, the seven-person crew (four men, three women) lived a Martian sol (24.65 h) for 37 d during a long-term stay at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada. Crewmembers underwent cardiopulmonary monitoring for signs of circadian disruption and completed a modified Pittsburgh Sleep Diary to monitor subjective fatigue. Crewmembers underwent cognitive testing to identify the effects, if any, of sleep disruption upon cognitive skill. A Martian sol was implemented for 37 d during the Arctic mission. Each crewmember completed an adapted version of the Pittsburgh Sleep Diary in tandem with electrocardiograph (ECG) cardiopulmonary monitoring of sleep by the Cardiac Adapted Sleep Parameters Electrocardiogram Recorder (CASPER). Crewmembers also underwent cognitive testing during this time period. Sleep diary data indicate improvement in alertness with the onset of the sol (fatigue decreasing from 5.1 to 4.0, alertness increasing from 6.1 to 7.0). Cardiopulmonary data suggest sleep instability, though trends were not statistically significant. Crewmember decision speed time scores improved from pre-Mars to Mars (average improving from 66.5 to 84.0%), though the remainder of cognitive testing results were not significant. While subjective data demonstrate improved sleep and alertness during the sol, objective data demonstrate no significant alteration of sleep patterns. There was no apparent cognitive decline over the course of the mission.

  18. The development of a Martian atmospheric Sample collection canister

    Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.

    The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.

  19. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  20. Some potentialities of living organisms under simulated Martian conditions.

    Lozina-Lozinsky, L K; Bychenkova, V N; Zaar, E I; Levin, V L; Rumyantseva, V M

    1971-01-01

    Temperature, humidity, pressure, composition of the atmosphere and radiation are the main factors conditioning life on the surface of Mars. When studying the Martian ecology, one must know the total effect of these factors. One may expect that, as a result of adaptation to low temperatures, there is a corresponding shift in the temperature optimum of enzymatic activity. Dryness is the main obstacle to active life. We suggest the presence of some soil moisture and water vapour. Moreover, there can be areas of permafrost. This minimum supply of water and periodic fluctuations of humidity may create conditions for the existence of drought-resistant organisms. Decreased atmospheric pressure alone does not affect micro-organisms, plants, protozoa and even insects. Ciliates reproduce in a flowing atmosphere of pure nitrogen containing 0.0002-0.0005% oxygen as an impurity. Protozoa may also develop in an atmosphere of 98-99% carbon dioxide mixed with 1% O2. Therefore, even traces of oxygen in the Martian atmosphere would be sufficient for aerobic unicellular organisms. Cells and organisms on earth have acquired various ways of protection from uv light, and therefore may increase their resistance further by adaptation or selection. The resistance of some organisms to ionizing radiation is high enough to enable them to endure hard ionizing radiation of the sun. Experiments with unicellular [correction of unicellar] organisms show that the effect of short wave uv radiation depends on the intensity of visible light, long-wave solar uv radiation, temperatures, cell repair processes, and the state of cell components, i.e. whether the cell was frozen, dried or hydrated.