WorldWideScience

Sample records for martensitic transformation induced

  1. Strain Induced Martensitic Transformation in Austempered Ductile Iron (ADI)

    Science.gov (United States)

    Li, X. H.; Saal, P.; Gan, W. M.; Landesberger, M.; Hoelzel, M.; Hofmann, M.

    2016-09-01

    The strain induced martensitic transformation in austempered ductile iron (ADI) has been investigated using high resolution neutron diffraction on samples compressed ex-situ to different plastic strains. In addition bulk texture measurements using neutron diffraction have been performed to calculate the orientation distribution of ferrite and austenite phases for different strain levels. Combing the detailed texture information with neutron diffraction pattern proved to be essential for quantitative phase analysis and extraction of martensite phase fractions. The martensite content induced by strain in ADI depends on austempering temperature and degree of deformation.

  2. Induced martensitic transformation during tensile test in nanostructured bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Rivas, L. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); University of Kaiserslautern, Materials Testing, Gottlieb - Daimler - Str., 67663 Kaiserslautern (Germany); Garcia-Mateo, C., E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kuntz, Matthias [Robert Bosch GmbH, Materials and Processing Dept, P.O. Box 300240, Stuttgart (Germany); Sourmail, Thomas [Asco Industries CREAS (Research Centre) Metallurgy, BP 70045, Hagondange Cedex 57301 (France); Caballero, F.G. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2016-04-26

    Retained austenite in nanostructured bainite is able to undergo mechanically induced martensitic transformation. However, the link between transformation and deformation mechanisms involved makes difficult the understanding of the process. In this work, a model has been developed to assess the effect of the external stress itself on the martensite phase transformation. In addition, after a detailed initial microstructural characterization, the martensite fraction evolution during tensile deformation has been obtained by means of X-ray diffraction analyses after interrupted tensile tests in several nanostructured bainitic steels. Experimental results have been compared to the outputs of the model, as a reference. They suggests that stress partitioning between phases upon tensile deformation is promoted by isothermal transformation at lower temperatures.

  3. Martensitic transformations; Martensite hentai

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, K. [University of Tsukuba, Tsukuba (Japan)

    1997-09-20

    This paper explains the recent studies on martensitic transformation (M transformation). The classical theory on nucleation in M transformation gives non-realistic activation energy as large as 10{sup 4}eV for Fe system. Although various theoretical and experimental approaches have been attempted, a universal theory is not yet established. The {beta}{sub 1}(DO{sub 3})-{gamma}{sub 1} transformation of Cu- Al-Ni alloy was resolved as lattice-invariable deformation by introducing the second kind twin. Various subsequent comparative studies for alloy systems between a phenomenology and experimental results showed the validity of a phenomenology due to lattice-invariable deformation. In the thermodynamics of M transformation, it has been recognized that the mechanism of transformation is entirely different between athermal and isothermal transformations, however, a statistical thermodynamic model was proposed for dealing with these transformations integrally. The study on intelligent materials is under active investigation from the viewpoint of application of M transformation. 44 refs.

  4. Mechanically induced martensitic transformation as a stress driven process

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Perdahcioglu, Emin Semih

    2009-01-01

    Combined shear-tension tests at room temperature performed on a 12Cr9Ni4Mo low carbon austenitic stainless steel have been reviewed and evaluated under the assumption that the martensitic transformation is exclusively stress driven. It is shown that the start of the transformation is very well

  5. STRESS-INDUCED MARTENSITIC TRANSFORMATION AND A NEW 7-LAYER MARTENSITE PHASE IN THE 63.1Ni-Al ALLOY

    OpenAIRE

    Martynov, V.; Enami, K.; Khandros, L.; Tkachenko, A.; Nenno, S.

    1982-01-01

    It is well known that the nickel-rich Ni-Al β phase alloy exhibits the martensitic transformation and the crystal structures of the as-quenched martensites are Llo(α'2) and 2H, (1,2). However, there is no systematic investigation on the deformation behaviour and stress-induced martensitic transformation in this alloy system, other than the deformation behaviour of the α'2 martensite (3). Recently we investigated the deformation behaviour and the stress-induced martensitic transformation of th...

  6. Magnetic indication of the stress-induced martensitic transformation in ferromagnetic Ni-Mn-Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Heczko, O. [Laboratory of Materials Science, Helsinki University of Technology, Vuorimiehentie 2A, P.O. Box 6200, FIN-02015 TKK, Espoo (Finland); L' vov, V.A. [Radiophysics Department, Taras Shevchenko University, Glushkov str. 2, build. 5, 03022 Kiev (Ukraine); Straka, L. [Laboratory of Biomedical Engineering, Helsinki University of Technology, Rakentajanaukio 2C, P.O. Box 2200, FIN-02015, Espoo (Finland)]. E-mail: ladislav.straka@hut.fi; Hannula, S.-P. [Laboratory of Materials Science, Helsinki University of Technology, Vuorimiehentie 2A, P.O. Box 6200, FIN-02015 TKK, Espoo (Finland)

    2006-07-15

    A quantitative study of the stress-induced martensitic transformation in Ni{sub 49.7}Mn{sub 29.1}Ga{sub 21.2} magnetic shape memory alloy has been carried out in two different ways: the first way is based on the measurements of saturation magnetization under variable mechanical stress and the second one is founded on the quantitative theoretical treatment of experimental stress-strain loops. A functional dependence between the volume fraction of transformed martensite and applied stress has been determined from both magnetization and strain values. A quantitative agreement between the functions determined in two different ways has been observed, and hence, the effectiveness of the magnetic indication of the stress-induced martensitic transformations has been proved. This method can be used to monitor stress-induced transformations in martensitic films, needles and small specimens.

  7. Magnetic indication of the stress-induced martensitic transformation in ferromagnetic Ni Mn Ga alloy

    Science.gov (United States)

    Heczko, O.; L'vov, V. A.; Straka, L.; Hannula, S.-P.

    2006-07-01

    A quantitative study of the stress-induced martensitic transformation in Ni 49.7Mn 29.1Ga 21.2 magnetic shape memory alloy has been carried out in two different ways: the first way is based on the measurements of saturation magnetization under variable mechanical stress and the second one is founded on the quantitative theoretical treatment of experimental stress-strain loops. A functional dependence between the volume fraction of transformed martensite and applied stress has been determined from both magnetization and strain values. A quantitative agreement between the functions determined in two different ways has been observed, and hence, the effectiveness of the magnetic indication of the stress-induced martensitic transformations has been proved. This method can be used to monitor stress-induced transformations in martensitic films, needles and small specimens.

  8. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  9. Deformation-induced martensitic transformation in Cu-Zr-Al(Ti) bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ram Bachchan; Pauly, Simon; Das, Jayanta; Eckert, Juergen [Institut fuer Komplexe Materialien, IFW Dresden (Germany)

    2009-07-01

    Plastic deformation of Cu-Zr-(Al, Ti) bulk metallic glass (BMG) composites induces a martensitic phase transformation from the B2 to the B19* CuZr phase. Addition of Ti to binary Cu-Zr increases the temperature above which the B2 CuZr phase becomes stable. This affects the phase formation upon quenching in Cu-Zr-Ti BMG composites. The deformation-induced martensitic transformation is believed to cause the strong work hardening and to contribute to the large compressive deformability with plastic strains up to 15%.

  10. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  11. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  12. Constitutive modelling of stainless steels for cryogenic applications. Strain induced martensitic transformation

    CERN Document Server

    Garion, C

    2001-01-01

    The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).

  13. Position-dependent shear-induced austenite– martensite transformation in double-notched TRIP and dual-phase steel samples

    NARCIS (Netherlands)

    Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.

    2014-01-01

    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation

  14. Position-dependent shear-induced austenite– martensite transformation in double-notched TRIP and dual-phase steel samples

    NARCIS (Netherlands)

    Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.

    2014-01-01

    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation

  15. Atomistic Study on Size Effects in Thermally Induced Martensitic Phase Transformation of NiTi

    Directory of Open Access Journals (Sweden)

    Sourav Gur

    2016-01-01

    Full Text Available The atomistic study shows strong size effects in thermally induced martensitic phase transformation evolution kinetics of equiatomic NiTi shape memory alloys (SMAs. It is shown that size effects are closely related to the presence of free surfaces; thus, NiTi thin films and nanopillars are studied. Quasi-static molecular dynamics simulations for several cell sizes at various (constant temperatures are performed by employing well-established interatomic potentials for NiTi. The study shows that size plays a crucial role in the evolution of martensite phase fraction and, importantly, can significantly change the phase transformation temperatures, which can be used for the design of NiTi based sensors, actuators, or devices at nano- to microscales. Interestingly, it is found that, at the nanometer scale, Richard’s equation describes very well the martensite phase fraction evolution in NiTi thin films and nanopillars as a function of temperature.

  16. Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate

    Science.gov (United States)

    Khan, Z.; Ahmed, M.

    1996-04-01

    This paper addresses the influence of cyclic stress-induced martensitic transformation on fatigue crack growth rates in metastable austenitic stainless steels. At low applied stress and mean stress values in AISI type 301 stainless steel, fatigue crack growth rate is substantially retarded due to a cyclic stress-induced γ-α' and γ-ɛ martensitic transformation occurring at the crack-tip plastic zone. It is suggested that the transformation products produce a compressive residual stress at the tip of the fatigue crack, which essentially lowers the effective stress intensity and hence retards the fatigue crack growth rate. At high applied stress or mean stress values, fatigue crack growth rates in AISI type 301 steels become almost equal to those of stable AISI type 302 alloy. As the amount of transformed products increases (with an increase in applied or mean stress), the strain-hardening effect brought about by the transformed martensite phase appears to accelerate fatigue crack growth, offsetting the contribution from the compressive residual stress produced by the positive volume change of γ → α' or ɛ transformation.

  17. Measurement of local strain-induced martensitic phase transformation by micro-hardness; Bisho kodo wo mochiita kyokusho hizumi yuki martensite hentai tokusei no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Shibutani, Y.; Taniyama, A.; Tomita, Y.; Adachi, T. [Kobe University, Kobe (Japan). Faculty of Engineering

    1997-08-15

    By the duplex effect produced by two kinds of phases of austenite and martensite, the transformation-induced plasticity (TRIP) steel is improved in ductility and fracture toughness. The strain-induced martensitic phase transformation could be associated with the strain localization behavior. Accordingly, the measurement of the amount of local transformation is necessary in order to construct a more physical evolution model in the constitutive equation. In this study, a new measurement system using a micro-hardness tester is proposed to obtain a volume fraction map of the martensitic phase expanding in the neighbor of strain localization. Then the system is applied to investigate the inhomogenous transformation behavior around the notch root of SUS 304 stainless steel bar under uniaxial tension. 27 refs., 11 figs., 1 tab.

  18. MARTENSITE TRANSFORMATION MICROSTRUCTURE OF 40Cr STEEL COMPLEXLY INDUCED BY LASER SHOCK

    Institute of Scientific and Technical Information of China (English)

    CHEN Ruifang; HUA Yinqun; CAI Lan

    2007-01-01

    40Cr steel is laser quenched by the NEL-2500A rapidly axial flow CO2 laser. Then the martensite induced by laser quenched is shocked by Nd:YAG laser again. Through comparing and analyzing the appearance and size ofmartensite, the dislocation density in microstructure between the treated zones by laser quenched and by laser quenched plus laser shock, the following results are shown: The second martensite obtained by laser compound treatment is more finer compared with those obtained by laser quenched; In the hardened zones obtained by compound treatment, a lot of slender second twin crystal martensites are induced; A lot of more high density dislocation tangles and cellular dislocations are generated. From the transmission electron microscope (TEM) micrograph after compound treatment, there are not only long lath and short nubbly martensites arranged in cross direction, but also massive nubbly and small short nubbly martensites arranged in longitudinal direction. Some martensites look like the broken blocks of quenched martensites. These new martensites are inserted transversely in the quenched martensites with large tangle. And they make quenched martensites break into pieces. Compared with the quenched martensites, the size of fresh martensites are smaller, about 0.3~0.5 μm.

  19. Analysis of the strain induced martensitic transformation in austenitic steel subjected to dynamic perforation

    Directory of Open Access Journals (Sweden)

    Zaera R.

    2012-08-01

    Full Text Available An experimental and numerical analysis on the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is reported. Two target thicknesses are considered, 0.5 and 1.0 mm, and impact velocities range from 35 to 200 m/s. The perforation mechanisms are identified and the effect of the projectile nose-shape on the ability of the target for energy absorption is evaluated. Martensite has been detected in all the impacted samples and the role played by the projectile nose-shape on the transformation is highlighted. A 3D model implemented in ABAQUS/Explicit allowed to simulate the perforation tests. The material is defined through a constitutive description developed by the authors to describe the strain induced martensitic transformation taking place in metastable austenitic steels at high strain rates. The numerical results are compared with the experimental evidence and satisfactory matching is obtained. The numerical model succeeds in describing the perforation mechanisms associated to each projectile-target configuration analysed.

  20. Martensite transformation induced by deformation and its phase electrochemical behavior for stainless steels AISI 304 and 316L

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The martensite transformation induced by tensile elongation and its effect on the behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. The results show that the content of ((-martensite in stainless steel 304 increases with the true strain. As ((-martensite content increased, free corrosion potential and pitting potential of stainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also found that pitting nucleated preferentially at the phase interfaces between martensite and austenite. There existed apparent difference between electrochemical properties of austenite and of martensite for stainless steel 304 and 316L in 3.5% NaCl solution.

  1. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  2. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    Science.gov (United States)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-11-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  3. Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites

    Directory of Open Access Journals (Sweden)

    Dianyu Wu

    2015-11-01

    Full Text Available The microstructures and mechanical properties of (Cu0.5Zr0.5100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. % bulk metallic glass (BMG composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the microstructures of the as-quenched samples with low Zn additions (x = 0, 1.5, and 2.5 at. %, while B2 CuZr and amorphous phases being accompanied with minor martensitic crystals form at a higher Zn content (x = 4.5, 7, 10, and 14 at. %. The fabricated Cu-Zr-Zn BMG composites exhibit macroscopically appreciable compressive plastic strain and obvious work-hardening due to the formation of multiple shear bands and the deformation-induced martensitic transformation (MT within B2 crystals. The present BMG composites could be a good candidate as high-performance structural materials.

  4. A Detailed Observation on Successive Stress-Induced Martensite Transformation in CuAlMnZnZr Alloy Polycrystalline Above Af

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Wang Ming-pu; Tang Wang; Guo Ming-xing

    2004-01-01

    The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform β1 matrix, two or more orientation plates of M18R martensite are stress-induced in a grain. With further increasing stress, one orientation plate depletes the other and coalesces into a single region in some view field. The mechanisms by which these are developed have been ascertained, and include variant-variant coalescence, stress-induced martensite to martensite transformation and the complicated cross-like stress-induced martensite formation.

  5. Plasticity-induced martensitic transformation around fatigue cracks in type SUS304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Y. [Dept. of Mechanical Engineering, Faculty of Engineering, Tokyo Univ. of Science, Shinjuku-ku, Tokyo (Japan); Iwasaki, Y.; Shimizu, T.; Kasumi, S. [Tokyo Univ. of Science (Japan)

    2003-07-01

    The presented study investigates plasticity-induced martensitic transformation around fatigue cracks in Type SUS304 austenitic stainless steel. Volume fraction of {alpha}' martensite transformed in uniformly stretched SUS304 plates was measured and expressed as a function of the applied strain level. The distributions of {alpha}' phase fraction in the plastic wake regions produced around fatigue cracks were then measured by ferrite scope in fatigued SUS 304 plate specimens. The results were compared with the distributions of vertical magnetic flux density B{sub z} above the fatigue cracks in the specimens magnetized by a strong magnetic field higher than 0.4 T. It was revealed that the B{sub z} distributions reflected the {alpha}' phase fraction distributions in the wake regions: i.e., the distance between two outermost peaks of the B{sub z} distributions had good linear correlations with real fatigue crack length, and the maximum and the minimum values of B{sub z} also showed good linear relationships with the applied stress intensity factor range {delta}K. These results imply that not only crack length but also the applied {delta}K level or the applied stress range {delta}{sigma} level can be detected effectively in an electromagnetic non-destructive way. (orig.)

  6. Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys

    Directory of Open Access Journals (Sweden)

    Q. Tao

    2012-12-01

    Full Text Available A series of Ni50-xMn41+xSn9 (x = 0–19 alloys from Ni-rich to Mn-rich composition were prepared, and the composition dependence of phase transitions and magnetic properties were investigated. No γ-phase can be observed until x = 17. Martensitic transformation from ferromagnetic austenite to weak-magnetic or ferromagnetic martensite was observed in alloys with Mn content between 52 and 58, and magnetic-field-induced transformation was confirmed. A large magnetization change of 44 Am2/kg across the martensitic transformation is observed in Ni37Mn54Sn9. Our results indicate that Mn-rich Ni-Mn-Sn alloys show promise as metamagnetic shape memory alloys.

  7. Stress-induced martensitic transformation in Ni–Ti(–Cu) interlayers controlling stress distribution in functional coatings during sliding

    Energy Technology Data Exchange (ETDEWEB)

    Callisti, M., E-mail: mc3a09@soton.ac.uk; Polcar, T.

    2015-01-15

    Highlights: • The stress-induced martensitic transformation is affected by the grain size. • Grain boundaries stop the growth of martensitic bands between adjacent grains. • Larger shear deformation is accommodated by interlayer with larger grain size. • The Ni–Ti(–Cu) interlayer controls wear on the functional top layer. - Abstract: The stress-induced martensitic transformation occurring in sputter-deposited Ni{sub 48.1}Ti{sub 51.9} and Ni{sub 43.4}Ti{sub 49.6}Cu{sub 7} interlayers, integrated in a W-S-C/Ni–Ti(–Cu) bilayer design, was investigated by transmission electron microscopy, after these bilayers were subjected to different sliding conditions. Martensitic bands across the interlayers were formed depending on the sliding direction with their shape and distribution a function primarily of both applied normal load and grain size. The Ni{sub 48.1}Ti{sub 51.9} interlayer (lateral grain size of ∼3 μm) showed well oriented and ordered martensitic bands extended through the interlayer thickness under low load (5 N). At a higher load (18 N) the growth of these bands was limited by the stabilised martensite formed as a consequence of the high compressive stress, at the interface with the substrate. The Ni{sub 43.4}Ti{sub 49.6}Cu{sub 7} interlayer (lateral grain size of ∼650 nm) exhibited no significant evidence of stabilised martensite under different loading conditions. The martensitic transformation was limited by the smaller grain size and most of the stress was relaxed by elastic and, to some extent, pseudo-elastic deformation of the austenitic phase. Grain boundaries were found to stop the growth of martensitic bands, thus limiting the activation of the martensitic transformation into the neighbouring grains during sliding. The grain refinement caused a change in the capability of the interlayer to relax shear and compressive stresses. Such a change was found to affect the formation of the WS{sub 2}-rich tribolayer on the W-S-C sliding

  8. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K. [Leibniz Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Mayr, S. G., E-mail: stefan.mayr@iom-leipzig.de [Leibniz Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Department of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig (Germany)

    2016-04-11

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  9. Martensitic transformation fcc(γ)→hcp(ε)

    Institute of Scientific and Technical Information of China (English)

    徐祖耀

    1997-01-01

    Criteria of the thermoelastic martensitic transformation are suggested, on the basis of which the martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys is classified as a semi-thermoelastic transformation In contrast with the martensitic transformation fcc(γ)→bct(bcc)α’ in iron-based alloys, the thermoelastic transformation in Cu-based alloys and the t→m transformation in ceramics containing ZrO2, in γ→ε of Fe-Mn-Si, the strengthening and grain size of the parent phase will not markedly affecl the Ms and the internal friction peak indicating the martensitic Transformation does not correspond to a significant lowering of the elastic modulus, implying that the nucleation of ε-martensite may occur directly through the stacking fault and may not strongly depend on soft mode. A comparison between the thermal and stress induced ε martensites is made and a brief discussion is given.

  10. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  11. Deformation behavior after stress-induced martensite transformation in a Ti-50.8 at.% Ni alloy

    Directory of Open Access Journals (Sweden)

    Wang Xiebin

    2015-01-01

    Full Text Available In this study, the deformation behavior of a Ti-50.8 at.% Ni thin wire, which was subjected to different heat treatments, was investigated by means of uniaxial tensile tests. Considerable ductility (tensile elongation >50% and a large variation of the stress-strain relations are observed after different heat treatments, especially in the stage after the stress-induced martensite transformation plateau. A possible explanation for the observed phenomenon is discussed in this work.

  12. Multiple steady state phenomenon in martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non-equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation.

  13. Martensitic Transformation and Magnetic-Field-Induced Strain in Magnetic Shape Memory Alloy NiMnGa Melt-Spun Ribbon

    Institute of Scientific and Technical Information of China (English)

    Shihai GUO; Yanghuan ZHANG; Jianliang LI; Baiyun QUAN; Yan QI; Xinlin WANG

    2005-01-01

    A magnetic shape memory alloy with nonstoichiometric Ni5oMn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt-spun ribbon were investigated. The experimental results showed that the melt-spun ribbons underwent thermal-elastic martensitic transformation and reverse transformation in cooling and heating process and exhibited typical thermoelastic shape memory effect. However the start temperature for martensitic transformation decreased from 286 K for as-cast alloy to 254 K for as-quenched ribbon and Curie temperature remains approximately constant. A particular internal stress induced by melt-spinning resulted in the formation of a texture structure in the ribbons, which made the ribbons obtain larger martensitic transformation strain and MFIS. The internal stress was released substantially after annealing, which resulted in a decrease of MFIS of the ribbons.

  14. A Stress-Induced Martensitic Transformation in Aged Ti49Ni51 Alloy after High-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Yingying Zhu

    2016-06-01

    Full Text Available The effects of a high-velocity impact on the microstructure, phase transformation and mechanical property of aged Ti49Ni51 alloy are investigated. The transformation behavior and microstructure along the impact direction after impact emerge with regionalization characteristics, including a deformed region near the crater (0–4 mm and an un-deformed region of the distal crater (5–6 mm. Stress-induced martensite is the main deformation mechanism in the deforming region of aged Ti49Ni51 alloy under high-velocity impact.

  15. Stress-induced martensitic transformation in (Ni47Ti44)100-xNbx shape memory alloys with wide hysteresis

    Institute of Scientific and Technical Information of China (English)

    HE Xiang-ming; ZHAO Long-zhi; DUO Shu-wang; ZHANG Rong-fa; RONG Li-jian

    2006-01-01

    The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100-xNbx (x=3,9,15,20,30,mole fraction,%) shape memory alloys was investigated in detail by differential scanning calorimetry (DSC) after performing cryogenic tensile tests at a temperature of Ms+30 ℃. The results show that Nb-content has obvious effect on the process of stress-induced martensitic transformation. It is also observed that the stress-induced martensite is stabilized relative to the thermally-induced martensite (TIM) formed on cooling,and Nb-content in Ni-Ti-Nb alloy has great influence on the reverse transformation start temperature and transformation temperature hysteresis of stress-induced martensite(SIM). The mechanism of wide transformation temperature hysteresis was fully explained based on the microscopic structure and the distribution of the elastic strain energy of (Ni47Ti44)100-xNbx alloys.

  16. Transformation plasticity in titanium alpha double prime martensite

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Teliovich, R.V. [Institute of Metal Physics, Kiev (Ukraine)

    2001-09-01

    In this paper, explanation of an exceptionally low yield strength and high plasticity of {alpha}{sup ''}-martensite is given using the experimental data on martensite crystal structure of Ti-7%Mo (wt). It is supposed that as-quenched martensite microstructure is a highly nonuniform set of distorted due to compositional modulation microvolumes. Interaction between internal stresses generated in martensite modulated microstructure and external applied stresses modifies crystal lattice in a specific way, leading to a transformation induced plasticity. (orig.)

  17. Improvement of the strength of a metastable austenitic stainless steel by cyclic deformation-induced martensitic transformation at 103 K

    Energy Technology Data Exchange (ETDEWEB)

    Bayerlein, M.; Mughrabi, H. (Inst. fuer Werkstoffwissenschaften, Lehrstuhl 1, Univ. Erlangen-Nuernberg, Erlangen (Germany)); Kesten, M.; Meier, B. (Messer Griesheim GmbH, Koeln (Germany))

    1992-12-15

    Specimens of a metastable austenitic stainless steel were cyclically deformed at 103 K under constant plastic strain control with constant plastic strain ranges [Delta][epsilon][sub pl] = 1% and 2%. The tests were performed both with a symmetrical plastic strain amplitude (mean plastic strain anti [epsilon][sub pl] = 0) and with an asymetrical plastic strain amplitude (anti [epsilon][sub pl] > 0) with the minimum plastic strain equal to zero. The cyclic deformation behaviour was investigated, especially in the stage of cyclic hardening, and correlated with the deformation-induced formation of martensitic phases which could be detected by transmission electron microscopy. The effect of the transformed martensite on the mechanical properties of the steel was quantified by subsequent tensile tests at room temperature with the cyclically deformed specimens. In contrast to results of earlier studies at room temperature, no cumulative plastic ''incubation'' strain was necessary at 103 K to trigger the deformation-induced martensitic transformation. At [Delta][epsilon][sub pl] = 2% and anti [epsilon][sub pl] = 0 the maximum cyclic range was attained after only 18 cycles. In the reference test with an asymmetrical plastic strain amplitude (anti [epsilon][sub pl] = 1%) 23 cycles were required to reach the maximum cyclic stress range. Tension tests revealed an increase of up to 200% in the 1% offset yield stress and a 75% increase in the tensile strength at room temperature after cycling the specimens to the maximum stress range with either symmetrical or asymmetrical plastic strain amplitudes. The ductility and the toughness of the steel remained surprisingly high with an elongation after failure of 45%. (orig.).

  18. Effects of Vacuum-Carburizing Conditions on Surface-Hardened Layer Properties of Transformation-Induced Plasticity-Aided Martensitic Steel

    Directory of Open Access Journals (Sweden)

    Koh-ichi Sugimoto

    2017-08-01

    Full Text Available The effects of carbon potential in vacuum-carburization on the surface-hardened layer properties of the 0.2%C-1.5%Si-1.5%Mn-1.0%Cr-0.05%Nb transformation-induced plasticity-aided martensitic steel were investigated for the fabrication of precision gears. The volume fraction of retained austenite and hardness in the surface hardened layer of the steel increased with increasing carbon potential. Subsequent fine-particle peening enhanced the hardness and the compressive residual stress via severe plastic deformation and strain-induced martensite transformation, especially under a high carbon potential. The severe plastic deformation mainly contributed to increased hardness and compressive residual stress and the contribution of the strain-induced martensitic transformation was relatively small.

  19. Theory and Model for Martensitic Transformations

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Mouritsen, Ole G.

    1986-01-01

    Martensitic transformations are shown to be driven by the interplay between two fluctuating strain components. No soft mode is needed, but a central peak occurs representing the dynamics of strain clusters. A two-dimensional magnetic-analog model with the martensitic-transition symmetry...

  20. Magnetic Field-Induced Reverse Martensitic Transformation and Thermal Transformation Arrest Phenomenon of Ni41Co9Mn39Sb11 Alloy

    Directory of Open Access Journals (Sweden)

    Rie Y. Umetsu

    2014-12-01

    Full Text Available In order to investigate behavior of magnetic field-induced reverse martensitic transformation for Ni-Co-Mn-Sb, magnetization experiments up to a static magnetic field of 18 T and a pulsed magnetic field of 40 T were carried out. In the thermomagnetization curves for Ni41Co9Mn39Sb11 alloy, the equilibrium transformation temperature T0 was observed to decrease with increasing applied magnetic field, μ0H, at a rate of dT0/dμ0H = 4.6 K/T. The estimated value of entropy change evaluated from the Clausius-Clapeyron relation was about 14.1 J/(K·kg, which was in good agreement with the value obtained by differential scanning calorimetric measurements. For the isothermal magnetization curves, metamagnetic behavior associated with the magnetic field-induced martensitic transformation was observed. The equilibrium magnetic field, μ0H0 = (μ0HAf + μ0HMs/2, of the martensitic transformation tended to be saturated at lower temperature; that is, transformation arrest phenomenon was confirmed for the Ni-Co-Mn-Sb system, analogous with the Ni(Co-Mn-Z (Z = In, Sn, Ga, Al alloys. Temperature dependence of the magnetic field hysteresis, μ0Hhys = μ0HAf − μ0HMs, was analyzed based on the model for the plastic deformation introduced by the dislocations. The behavior can be explained by the model and the difference of the sweeping rate of the applied magnetic field was well reflected by the experimental results.

  1. Measurement of lattice rotations and internal stresses in over one hundred individual grains during a stress-induced martensitic transformation

    Directory of Open Access Journals (Sweden)

    Hachi Younes El

    2015-01-01

    Full Text Available To better understand the properties of polycrystals at a microscopic scale during cyclic mechanical loading we have measured the relationship between grain orientations, their positions inside the sample and their internal stresses. In this work, in-situ 3DXRD technique was performed on over hundred grains during the stress-induced martensitic transformation in a Cu-Al-Be shape memory alloy. Information about the position, orientation, and stress field was obtained for each austenitic grain. These results have been used to develop a procedure that allows automatic processing for a large number of grains, matching them during loading and leads to a quantitative stress field. A strong heterogeneity of stress state between the grains at the surface and in the volume is evident.

  2. Materials model for describing the austenite-martensite phase transformation considering transformation-induced plasticity; Ein Materialmodell zur Beschreibung der Austenit-Martensit Phasentransformation unter Beruecksichtigung der transformationsinduzierten Plastizitaet

    Energy Technology Data Exchange (ETDEWEB)

    Oberste-Brandenburg, C.

    1999-06-01

    In this thesis, a model to describe the austenite martensite transformation was developed. The transformation induced plasticity (TRIP) was taken into consideration. The model can be used to design complex structures. A local examination of the energy and entropy balance at the phase boundary serves as the starting point for the identification of the thermodynamical driving force and the thermodynamic flow. For both, a tensorial description is necessary for a general nonhydrostatically stressed solid. In the second part, a material law for the description of TRIP-Steels was developed based on the values derived in the first part. The different mechanical behavior of the phases, especially the differing yield stresses, was taken into account. The model developed was implemented into the finite element program MARC. Simulations of the material and the structural behavior were performed. The experimentally observed strong dependence of the transformation kinetics on the yield stress of the austenite and the dependence of the orientation of the martensite inclusion on the stress state could be verified. (orig.) [German] Im Rahmen dieser Arbeit wurde ein Materialmodell zur Beschreibung der Austenit-Martensit Phasenumwandlung unter Beruecksichtigung der transformationsinduzierten Plastizitaet (TRIP) entwickelt. Das Modell ist zur Berechnung ausgedehnter Strukturen einsetzbar. Eine lokale Betrachtung der Energie- und Entropiebilanz an der Phasengrenze bildet den Ausgangspunkt zur Identifikation der thermodynamischen Kraft und des thermodynamischen Flusses bei Beschreibung der Transformationskinetik. Fuer beide Groessen muss fuer den allgemein nichthydrostatischen Spannungszustand eine tensorielle Beschreibung verwendet werden. Im zweiten Teil der Arbeit bilden diese Groessen die Basis zur Entwicklung eines Stoffgesetzes zur Beschreibung des TRIP-Phaenomens. Es wird das unterschiedliche mechanische Verhalten der Phasen, insbesondere die stark unterschiedlichen

  3. Thermodynamic Analyses of Strain-induced Martensite Transformation in Fe-7Mn-1.2C Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Ms temperature, ΔGγ→α, ΔGγ→M and mechanical energy under a non-severe impact loading in a medium manganese steel (Fe-7Mn-1.2C) have been calculated by means of Xu's Fe-X-C model. The relation between the yield strength of austenite and the driving force for martensite transformation has been established. It is proved that the martensite transformation can take place in a medium manganese steel (Fe-7Mn-1.2C alloy) under a non-severe impact loading.

  4. The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium

    Science.gov (United States)

    Kimiecik, Michael; Jones, J. Wayne; Daly, Samantha

    2016-04-01

    A combined experimental and analytical study to determine the configurations of transforming martensite during ambient temperature cyclic deformation of superelastic Nickel-Titanium has been conducted. Full-field, sub-grain-size microscale strain measurements were made in situ during cycling using distortion-corrected Digital Image Correlation combined with Scanning Electron Microscopy (SEM-DIC). Using grain orientation maps from Electron Backscatter Diffraction analysis, possible configurations of martensite formed during cyclic deformation were identified by matching the calculated and measured strain fields. This analysis showed that the inclusion of Correspondence Variants (CVs) in addition to Habit Plane Variants (HPVs) of transformed martensite was necessary to provide a robust fit between calculated and measured strain fields. The approach also provided evidence that there was a more rapid accumulation of residual strain in CV regions and that a correlation existed between residual strain accumulation and the loss of actively transforming martensite in later cycles. It was also found that regions of CVs could coexist with untransformed austenite and Habit Plane Variants (HPVs) in individual grains throughout the microstructure, and that these regions of CVs formed before the end of the macroscopic stress plateau. The CV structure that forms during the initial superelastic deformation of Nickel-Titanium plays a critical role in shaping and stabilizing subsequent martensite recovery during cyclic loading.

  5. Crystallography and morphology of antiphase boundary-like structure induced by martensitic transformation in Ti–Pd–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda@alpha.msre.kumamoto-u.ac.jp [Department of Materials Science and Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nishimura, S.; Tsurekawa, S.; Takashima, K. [Department of Materials Science and Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Mitsuhara, M.; Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-01-05

    Highlights: • The APB-like structure are observed in both 9R and B19 martensite of Ti–Pd–Fe alloy. • Atomic displacement on APB-like structure reflects the microdomain by pre-martensite. • The density of APB-like contrasts are affected by Fe content in Ti–Pd–Fe alloy. - Abstract: The antiphase boundary (APB)-like structure of both 9R and B19 martensites in the Ti–Pd–Fe alloy was investigated by means of transmission electron microscopy. Some APB-like structures with curved and wide contrasts along the (0 0 1){sub 9R} basal plane are observed in 9R martensitic plates. The atomic displacement on the APB-like structure reflects the atomic movement stemming from the microdomains formed as a pre-martensitic transformation. The displacement vector of the APB-like structure in the B19 martensite can be expressed as R = 〈1/3 0 −1/2〉{sub B19}. The density of APB-like contrasts increases by the substitution of Fe for Pd in Ti–Pd–Fe alloy.

  6. Stress-induced martensitic transformation in nanometric NiTi shape memory alloy strips: An in situ TEM study of the thickness/size effect

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S.C., E-mail: scmao@bjut.edu.cn [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Li, H.X. [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Liu, Y., E-mail: yinong.liu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009 (Australia); Deng, Q.S.; Wang, L.H.; Zhang, Y.F. [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Z. [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Han, X.D. [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2013-12-05

    Highlights: •An in situ deformation technique in TEM was designed. •The martensitic transformation shows strong size effect. •The size effect is attributed to the effect of damaged surfaces. •The “size effect” is not an intrinsic but of extrinsic influences. -- Abstract: Ultrathin NiTi miniature strips of 40–83 nm in thickness were fabricated by means of focused ion beam milling from a polycrystalline NiTi shape memory alloy. The NiTi strips were subjected to tensile deformation inside a transmission electron microscope using a self-designed tension apparatus for in situ examination of the effect of thickness on the stress induced martensitic transformation behavior in the strips. The study revealed that the transformation was completely suppressed in a strip of 40 nm in thickness whereas it was possible in thicker strips. In these strips, the stress induced martensitic transformation was found to commence sequentially in thicker strips first and then in thinner strips at higher strain (stress) levels, demonstrating the size effect. This size effect is attributed to the effect of damaged surfaces, including a Ga{sup +}-impregnated amorphous layer on one side of the strip caused by sample fabrication using FIB and oxidation affected layers on both sides. This means that the observed “size effect” is not an intrinsic behavior of the martensitic transformation in NiTi but of extrinsic influences.

  7. Microstructural analysis of thermally induced and deformation induced martensitic transformations in Fe-12.5 wt.% Mn-5.5 wt.% Si-9 wt.% Cr-3.5 wt.% Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kirindi, T. [Department of Computer Technology, Faculty of Education, Kirikkale University, 71450 Yahsihan, Kirikkale (Turkey)]. E-mail: talipkirindi@yahoo.com; Dikici, M. [Department of Physics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale (Turkey)

    2006-01-05

    Martensitic transformations induced by thermally and compression deformation at room temperature in Fe-12.5 wt.% Mn-5.5 wt.% Si-9 wt.% Cr-3.5 wt.% Ni alloy were studied in detail by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From microstructural observations, it was seen that heat treated samples exhibited regular overlapping of stacking faults and {epsilon} martensite plates were formed parallel to each other. Also, TEM investigations showed that the orientation relationship between {gamma} (fcc) and {epsilon} (hcp) phases corresponds to Shoji-Nishiyama type. With applied low plastic deformation rate, only {epsilon} martensite occurred in austenite grain. As a consequence, 4 and 25% plastic deformation at room temperature caused {epsilon} martensite formation in austenite phase and the new {epsilon} (hcp) and {alpha}' (bcc) martensite formation in martensite phases, respectively. Orientation relationship between {epsilon} and {alpha}' phases was found by the electron diffraction analysis.

  8. Influences of cyclic loading on martensite transformation of TRIP steels

    Science.gov (United States)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.

    2013-03-01

    While austenite transformation into martensite induces increasing of the crack initiation life and restraining of the growth of fatigue cracks in cyclic-loading processes, TRIP-assisted steels have a better fatigue life than the AHSS (Advance High Strength Steels). As two key parameters in the cyclic loading process, strain amplitude and cyclic frequency are used in a kinetic transformation model to reasonably evaluate the phase transformation from austenite into martensite with the shear-band intersections theory, in which strain amplitude and cyclic frequency are related to the rate of shear-band intersection formation and the driving force of phase transformation. The results revealed that the martensite volume fraction increased and the rate of phase transformation decrease while the number of cycles increased, and the martensite volume fraction was almost constant after the number of cycles was more than 2000 times. Higher strain amplitude promotes martensite transformation and higher cyclic frequency impedes phase transformation, which are interpreted by temperature increment, the driving force of phase transformation and the rate of shearband intersection formation.

  9. Ductility enhancement in ultrafine-grained Fe-Ni-Mn martensitic steel by stress-induced reverse transformation

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Nili-Ahmadabadi, M., E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Shirazi, H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Hossein Nedjad, S. [Faculty of Materials Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz (Iran, Islamic Republic of); Pishbin, S.H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of)

    2010-11-15

    Research highlights: Fe-10Ni-7Mn age-hardenable martensitic steel in the strain-free, aged condition shows premature fracture and zero ductility. By Large strain deformation, nano-grained wire could be fabricated. Ultrahigh straining improved the ultimate tensile stress up to 2540 MPa and strain up to 7%. X-ray and TEM observations determined reverse transformation of martensite to austenite to epsilon martensite in nanostructured Fe-Ni-Mn steel. As a result and as shown by X-ray diffraction and SFE calculation, deformation of austenite could lead to {epsilon}-martensite formation by stacking fault mechanism in nano-grains. These transformations could be the reasons for further mechanical properties improvement. - Abstract: The effect of large strain deformation on the mechanical properties was investigated in a martensitic Fe-Ni-Mn alloy. After a combined deformation route (cold rolling plus wire drawing), the mechanical properties improved. The tensile strength of alloy in this study reaches to 2540 MPa and total tensile strain to 7% which are much higher than our previous study which after cold rolling and aging tensile strength was 1840 MPa with total tensile strain of 2.8%, although in both cases the improvement are significant for this brittle alloy. The enhancement of ductility after aging might be attributed to the effective role of grain refining down to nanoscale and the formation of austenite during deformation process and stabilization of that austenite in the aged wire. The austenite transforms to {epsilon}-martensite during tensile testing because of its low stacking fault energy (SFE) and increases the total measured tensile strain more. X-ray diffraction (XRD) analyses and transmission electron microscopic (TEM) images clarified the suggested reason for this ductility enhancement.

  10. The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis.

    Science.gov (United States)

    Weafer, F M; Guo, Y; Bruzzi, M S

    2016-01-01

    NiTi׳s superelasticity is exploited in a number of biomedical devices, in particular self-expanding endovascular stents. These stents are often laser-cut from textured micro-tubing; texture is the distribution of crystallographic grain orientations in a polycrystalline material which has been experimentally shown to have a marked influence on mechanical properties. This study offers a computational examination into the effect of texture on the stress-induced martensite transformation (SIMT) in a micro-dogbone NiTi specimen subject to tensile loading. Finite Element Analysis (FEA) is employed to simulate the transformational behaviour of the specimen on a micro-scale level. To represent a realistic grain structure in the FEA model, grains present in a 200µm×290µm test site located at the centre edge of the specimen were identified using Scanning Electron Microscopy (SEM). Grains are assumed to have homogenous behaviour with properties varying according to their crystallographic orientation to the loading direction. Required material properties were extracted from uniaxial stress-strain curves of single crystals for each crystallographic orientation for input into the in-built UMAT/Nitinol. The orientation of each grain in the test site was identified using Electron Back-Scatter Diffraction (EBSD) techniques. In this way, a quantitative explanation is offered to the effect of crystallographic texture on SIMT. Finally, the evolution of grains in the specimen, during the transformation process, was experimentally investigated by means of an in-situ SEM tensile test.

  11. Crystallographic theory of the martensitic transformation

    Directory of Open Access Journals (Sweden)

    Edwar A. Torres-López

    2014-08-01

    Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.

  12. General Aspects about the Martensitic Transformation

    Directory of Open Access Journals (Sweden)

    Edwar A. Torres-López

    2013-11-01

    Full Text Available With the time, the number of studies associated to the martensitic transformation has been expanded; therefore, understand as this mechanism operates and as it confers different characteristics to diverse materials where it occurs, many studies has been conducted in different areas carrying out to discoveries at microstructural, kinetic and crystallographic level. This paper presents an overview of the martensitic transformation, beginning with a historical development, through a review on their morphology and kinetically characteristics, in addition to an analysis of the prospects of the studies carried out in the area, with a special interest in the phenomena of thermo-elasticity and shape memory.

  13. In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements

    Directory of Open Access Journals (Sweden)

    Carola Celada-Casero

    2017-07-01

    Full Text Available An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ to martensite (α′ phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite has been found by comparing the results to the ex-situ characterization by magnetization measurements, light optical microscopy, and X-ray diffraction. The sensor has allowed for the observation of the stepwise transformation behavior, a not-well-understood phenomena that takes place in large regions of the bulk material and that so far had only been observed by synchrotron X-ray diffraction.

  14. Characteristics of the martensitic transformation and the induced two-way shape memory effect after training by compressive pseudoelastic cycling in Cu-Zn-Al single crystals

    Science.gov (United States)

    Picornell, C.; Cesari, E.; Sade, M.

    1994-04-01

    Training effects on the characteristics of the transformation when using pseudoelastic compressive cycling are studied from σ-ɛ curves and calorimetric measurements. Several characteristics produced by tensile cycling and observed in thermally induced martensitic transformations also appear in this case. For a fixed number of training cycles, the efficiency of the two-way shape memory effect (TWSME) obtained after compressive tests is higher than that measured when tensile experiments are done. In a certain range, the efficiency of the resulting TWSME after compressive training increases with the magnitude of the applied stress. Values of the stress (threshold stress) which trained samples with an induced TWSME are able to overcome when going to martensite are presented for two sets of samples. These opposing stresses are related to different degrees of the TWSME inhibition. These values increase with the number of compressive cycles and show a saturation behavior.

  15. Characteristics of the martensitic transformation and the induced two-way shape memory effect after training by compressive pseudoelastic cycling in Cu-Zn-Al single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Picornell, C.; Cesari, E. (Univ. of the Balearic Islands, Palma de Mallorca (Spain). Physics Dept.); Sade, M. (Balseiro Inst., Bariloche (Argentina). National Commission of Atomic Energy National Univ. of Cuyo (Argentina). National Commission of Atomic Energy)

    1994-04-01

    Training effects on the characteristics of the transformation when using pseudoelastic compressive cycling are studied from [sigma]-[var epsilon] curves and calorimetric measurements. Several characteristics produced by tensile cycling and observed in thermally induced martensitic transformations also appear in this case. For a fixed number of training cycles, the efficiency of the two-way shape memory effect (TWSME) obtained after compressive tests is higher than that measured when tensile experiments are done. In a certain range, the efficiency of the resulting TWSME after compressive training increases with the magnitude of the applied stress. Values of the stress (threshold stress) which trained samples with an induced TWSME are able to overcome when going to martensite are presented for two sets of samples. These opposing stresses are related to different degrees of the TWSME inhibition. These values increase with the number of compressive cycles and show a saturation behavior.

  16. Grain size effect on the thermal-induced martensitic transformation in polycrystalline Cu-based shape memory alloys

    OpenAIRE

    la Roca, Paulo Matías; Isola, Lucio Manuel; Sobrero, Cesar Enrique; Vermaut, P.; Malarria, Jorge Alberto

    2016-01-01

    In Cu-based SMA alloys, the grain size (d) effect on the martensitic transformation temperature was investigated for a wide range of d. Specimens were prepared by different heat treatments in order to create a range of grain sizes, from about 500 nm (ribbons and tapes obtained by rapid solidification techniques) up to 6 mm diameter single-crystals (grown by the Bridgman method). Information obtained from the literature was also included in the set of analyzed experimental data. The reduction ...

  17. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    CERN Document Server

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  18. Crystalline damage development during martensitic transformations

    NARCIS (Netherlands)

    Suiker, A.S.J.; Turteltaub, S.R.

    2006-01-01

    A recently developed thermo-mechanical model [1] is presented that can be used to simulate the interactions between martensitic phase transformations and crystalline damage growth at the austenitic grain level. Subgrain information is included in the model via the crystallographic theory of martensi

  19. Interface Propagation and Microstructure Evolution in Phase Field Models of Stress-Induced Martensitic Phase Transformations

    Science.gov (United States)

    2010-01-01

    between phase transformation and thermoelasticity equations has important computational con- sequences: finite element thermoelasticity codes can be...combination of four herring bone types of micro- structure is developed (Fig. 10). At some stage, the equivalence of both variants is violated-units...preceding analysis . At these high driving forces the interface motion is governed by the phonon (and at lower temperatures, by the electron) drag

  20. FEM simulations of a multi stage forming process on Sandvik maraging steel 1RK91 describing the stress assisted and the strain induced martensite transformation

    Science.gov (United States)

    Post, J.; Huétink, J.; Geijselaers, H. J. M.; Voncken, R. M. J.

    2003-10-01

    Sandvik steel IRK91 combines good corrosion resistance with high strength. The steel has good deformability in austenitic conditions. This material belongs to the group of metastable austenites, so during deformation a strain-induced transformation into martensite takes place. After deformation, transformation ccontinues as a resuit of internai stresses. Depending on the heat treatment, this stress-assisted transformation is more or less atitocatalytic. Both transformations are stress-state and temperature dependent. This article presents a constitutive model for this steel, based on the macroscopic material behaviour measured by inductive measurements. Both the stress-assisted and the strain-induced transformation to martensite are incorpomted in this model. Path-dependent work hardening is also taken into account. The model is implemented in the commercial FEM code MARC for doing simulations. In the simulations thé tools are treated as rigid bodies, friction is taken into account beeause it inflnences the stress state during metal forming. The material properties after a calculation step are mapped to the next step to incorporate the cumulative effect of the transformation and work hardening during the different steps. A multi-stage metal-forming process is simulated. The process consists of different forming steps with intervals between them to simulate the waiting time between the different metal-forming steps. Results of the transformation behaviour are presented together with the shape of the product during and after metal forming. Finally, this article shows the results of the calculation in which the material transforms autocatalytic, as a resuit of a specific heat treatment.

  1. Dislocation Model and Morphology Simulation of bcc fcc Martensitic Transformation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model bas been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.

  2. Isomagnetic martensitic transformation in Ni sub 2 MnGa alloys

    CERN Document Server

    Glavatska, N I

    2000-01-01

    An effect of the magnetic field on the martensitic transformation and the change in the martensitic variants of the alloy Ni sub 2 MnGa containing (at%) 49.6 Ni, 28.4 Mn and 22.0 Ga was studied using X-ray diffraction. It is shown that the applied magnetic field induces martensitic transformation and initiates the development of a preferential martensitic variant. These processes are extended in time, which resembles the isothermal martensitic transformation observed in iron-based alloys. The kinetics of transformation under magnetic field and the after-effect when the field is taken out are studied. The kinetics is shown to depend on the orientation of the applied field in relation to the direction of easy magnetization 1 0 0. The strain induced by the magnetic field is measured and the time dependence of the strain is found in consistence with the results of X-ray diffraction study.

  3. On the Driving Forces of Magnetically Induced Martensitic Transformation in Directionally Solidified Polycrystalline Ni-Mn-In Meta-Magnetic Shape Memory Alloy with Structural Anisotropy

    Science.gov (United States)

    Hu, Qiaodan; Zhou, Zhenni; Yang, Liang; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-08-01

    The magnetic anisotropy energy (MAE) in the ferromagnetic shape memory alloys (FSMAs) provides the driving forces to obtain large magnetic field induced strain (MFIS) by rearranging the martensitic variants. However, to date, no significant MAE was observed in the new class of Ni-Mn-Z (Z = In, Sn, Sb) metamagnetic shape memory alloys (MSMAs). Here, we report a significant magnetic anisotropy in Ni48Mn35In17 Heusler alloy with a [110]A fiber texture prepared by the directional solidification. In this case, when the applied magnetic field is along the [110]A direction, a larger magnetization change is obtained compared with that of the randomly oriented samples, which increases the driving forces for the magnetically induced martensitic transformation (MIMT). In contrast, along the [110]A direction, the magnetocaloric effect (MCE) is enhanced by 60 pct, the MFIS is improved by 20 pct, and the critical field for the MFIS is reduced by 0.5 T. Such a peculiar magnetic behavior could be well explained by a proposed model on the viewpoint of the transformation of ferromagnetic austenite phase. Furthermore, considering the thermodynamics aspects, we demonstrate that two main magnetic energies of the Zeeman energy and the MAE in the MSMAs assist each other to promote the MIMT, instead of opposing each other in the FSMAs. This discovery of the strong magnetic anisotropy in highly textured polycrystals provides a feasible route to enhance the MIMT, and new insights to design and prepare the Ni-Mn-based Heusler alloys for practical applications.

  4. In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2016-01-10

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated prior to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.

  5. On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni-Ti-based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Stefanie; Maass, Burkhard; Frenzel, Jan; Schmidt, Marvin; Ullrich, Johannes; Seelecke, Stefan; Schuetze, Andreas; Kastner, Oliver; Eggeler, Gunther [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2015-10-15

    It is well known that a good crystallographic compatibility between austenite and martensite in Ni-Ti-based shape memory alloys results in narrow thermal hystereses (e.g. Ball and James, Arch. Ration. Mech. Anal., 1987). The present work suggests that a good crystallographic fit is moreover associated with a small mechanical hysteresis width, observed during a forward and reverse stress-induced transformation. Furthermore, shape memory alloys with a good crystallographic fit show smaller transformation strains. The results obtained in the present study suggest that these correlations are generic and apply to binary Ni-Ti (with varying Ni contents) and quaternary Ni-Ti-Cu-X (X = Cr, Fe, V) alloys. For binary Ni-Ti, it was observed that Ni-rich compositions (good lattice fit) show a lower accumulation of irreversible strains during pseudoelastic cycling.

  6. Texture evolution during nitinol martensite detwinning and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J. E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Ave., Fort Wayne, Indiana 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., 433/D008, Argonne, Illinois 60439 (United States); Yu, C. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing (China)

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  7. Texture evolution during nitinol martensite detwinning and phase transformation

    Science.gov (United States)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.

    2013-12-01

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

  8. Acoustic emission and shape memory effect in the martensitic transformation.

    Science.gov (United States)

    Sreekala, S; Ananthakrishna, G

    2003-04-01

    Acoustic emission signals are known to exhibit a high degree of reproducibility in time and show correlations with the growth and shrinkage of martensite domains when athermal martensites are subjected to repeated thermal cycling in a restricted temperature range. We show that a recently introduced two dimensional model for the martensitic transformation mimics these features. We also show that these features are related to the shape memory effect where near full reversal of morphological features are seen under these thermal cycling conditions.

  9. A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping

    Science.gov (United States)

    Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang

    2017-03-01

    In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.

  10. Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels

    NARCIS (Netherlands)

    Geijselaers, H.J.M.; Hilkhuijsen, P.; Bor, T.C.; Perdahcioglu, E.S.; Boogaard, van den A.H.; Zhang, S.-H.; Liu, X.-H.; Gheng, M.; Li, J.

    2013-01-01

    The transformation of austenite to martensite is a dominant factor in the description of the constitutive behavior during forming of TRIP assisted steels. To predict this transformation different models are currently available. In this paper the transformation is regarded as a stress induced process

  11. Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys

    Science.gov (United States)

    Perkins, Jeff; Sponholz, R. O.

    1984-02-01

    The character and mechanism of two-way shape memory in Cu-Zn-Al alloys is investigated by means of closely controlled thermomechanical cycling and careful measurement of the progressive effect of the particular “training” routine, as well as by correlary studies of submicrostructural evolution as training proceeds. The results establish the quantitative relationship between the cyclic training routine and the ability of the sample to exhibit two-way shape memory. The variation of numerous training parameters with cycling is presented and interpreted. Microscopic studies indicate that as two-way shape memory training proceeds, specific physical features develop in the parent phase submicrostructure, particularly dislocation tangles and “vestigial” martensite markings; these assist in the nucleation and growth of a preferred martensite plate arrangement during cooling.

  12. Martensitic transformation during fatigue testing of an AISI 301LN steel

    OpenAIRE

    Mateo García, Antonio Manuel; Fargas Ribas, Gemma

    2012-01-01

    The plastic deformation accumulated during fatigue testing can induce the transformation of austenite to martensite in metastable austenitic stainless steels. To analyze this issue, a metastable austenitic stainless steel grade AISI 301 LN was studied in two different conditions, i.e. annealed and cold rolled. In the first case, the steel was fully austenitic, whereas cold rolled material had almost 30% of martensite. High cycle fatigue tests at a stress ratio of 0.8 were carried out on flat ...

  13. Modeling mechanical effects on promotion and retardation of martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Maalekian, Mehran, E-mail: mehran.maalekian@ubc.ca [Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, B.C. V61Z4 (Canada); Kozeschnik, Ernst [Christian Doppler Laboratory for ' Early Stages of Precipitation' , Institute of Materials Science and Technology, Vienna University of Technology (Austria)

    2011-01-25

    Research highlights: {yields} Compressive elastic stresses up to 250 MPa are applied in continuous cooling. {yields} Using the thermodynamic data and maximum value of the mechanical driving force the predicted increase in M{sub s} ({approx}0.1 K/MPa) is in agreement with experiment {yields} Austenite was deformed plastically at different temperatures (800 deg. C-1100 deg. C). {yields} High deformation temperature (i.e. 1100 deg. C) as well as low plastic strain (i.e. {epsilon}{sub ave} {approx} 30%) do not affect martensite transformation noticeably, whereas lower deformation temperature (e.g. 900 deg. C) and large plastic strain (i.e. {epsilon}{sub ave} {approx} 70%) retards martensite transformation. {yields} The theory of mechanical stabilization predicts the depression of M{sub s}. - Abstract: The influence of compressive stress and prior plastic deformation of austenite on the martensite transformation in a eutectoid steel is studied both experimentally and theoretically. It is demonstrated that martensite formation is assisted by stress but it is retarded when transformation occurs from deformed austenite. With the quantitative modeling of the problem based on the theory of displacive shear transformation, the explanation of the two opposite roles of mechanical treatment prior to or simultaneously to martensite transformation is presented.

  14. International Conference on Martensitic Transformations (ICOMAT 92)

    Science.gov (United States)

    1993-03-05

    Ve3 1tre lifve been great advances tin e~ectmrn irragutg and diffraction, in Precision %- Marty neMutron "ifra~timn, in lrwlstic itutn sciittrirg, eM in...Luisa No, J. Herreros and J. San Juan In this work we have studied the mobility of the martensitic interphases, during and after the 0l-martensitic...on Cu-Al-Ni Shape Memory Alloys Vicente Recarte, Inahi Hurrado, J. Herreros , Maria Luisa No and Jose San Juan About the Cu-Al-Ni shape memory alloys

  15. Complexion-mediated martensitic phase transformation in Titanium

    Science.gov (United States)

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A.-C.; Raabe, D.

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α'' (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  16. Complexion-mediated martensitic phase transformation in Titanium

    Science.gov (United States)

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  17. Recent developments in crystallographic investigation of martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    GU Nanju; DONG Guixia; LIN Xiaoping; WANG Baoqi; MA Xiaoli

    2004-01-01

    The results and new knowledge obtained in recent years by using an atom force microscope (AFM) to investigate the surface relieves and to reveal the lattice deformation characteristics in martensitic transformation (MT) are summarized. All-round analysis and research about crystallography and morphology of MT have been done based on our "displacement vector" theory. New viewpoints that the "invariant-plane-strain" criterion have no universality and that the large rotation of habit-planes takes place in {557} lath and {225} plate martensites are put forward. Thereby, the formation mode of {557} martensite is established, which is in good agreement with the experimental results. Finally, according to the self-accommodation principle between variants crystallographic calculations of twin and multi-variant martensites in shape memory alloys have been carried out. The calculation method greatly simplifies the crystallographic calculation process of phenomenological theory. And the calculated results are in good agreement with experimental ones.

  18. Texture analysis of deformation induced martensite in an AISI 301L stainless steel: microtexture and macrotexture aspects

    OpenAIRE

    Hamilton Ferreira Gomes de Abreu; Marcelo José Gomes da Silva; Luís Flávio Gaspar Herculano; Harry Bhadeshia

    2009-01-01

    Experiments have been conducted to study the strain induced transformation from austenite to martensite in a metastable AISI 301LN austenitic stainless steel, deformed by uniaxial tension applied along rolling direction. Samples deformed 10 and 20% have shown the presence of α´ martensite phase. Measured pole figures of martensite phase were compared to calculated ones, assuming no variant selection and selection of variants where interaction between stress and the plate of martensite ad...

  19. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Tyshchenko, A.I. [G.V. Kurdyumov Institute for Metal Physics, 03142 Kiev (Ukraine); Theisen, W.; Oppenkowski, A.; Siebert, S. [Ruhr University Bochum, Chair of Materials Technology, 44780 Bochum (Germany); Razumov, O.N.; Skoblik, A.P.; Sirosh, V.A.; Petrov, Yu.N. [G.V. Kurdyumov Institute for Metal Physics, 03142 Kiev (Ukraine); Gavriljuk, V.G., E-mail: gavr@imp.kiev.ua [G.V. Kurdyumov Institute for Metal Physics, 03142 Kiev (Ukraine)

    2010-10-15

    Research highlights: {yields} Low-temperature martensitic transformation is important for beneficial effect of DCT. {yields} Plastic deformation occurs in the course of low-temperature martensitic transformation. {yields} Carbon clouds around dislocations are formed due to the capture of immobile carbon atoms by gliding dislocations. {yields} Carbide phase is partially dissolved during DCT. - Abstract: The tool steel X220CrVMo 13-4 (DIN 1.2380) containing (mass%) 2.2C, 13Cr, 4V, 1Mo and the binary alloy Fe-2.03 mass% C were studied using transmission electron microscopy, Moessbauer spectroscopy, X-ray diffraction and internal friction with the aim of shedding light on processes occurring during deep cryogenic treatment. It is shown that the carbon atoms are essentially immobile at temperatures below -50 deg. C, whereas carbon clustering in the virgin martensite occurs during heating above this temperature. An increase in the density of dislocations, the capture of immobile carbon atoms by moving dislocations, the strain-induced partial dissolution of the carbide phase, and the abnormally low tetragonality of the virgin martensite are found and interpreted in terms of plastic deformation that occurs during martensitic transformation at low temperatures where the virgin martensite is sufficiently ductile.

  20. New observations on formation of thermally induced martensite in Fe–30%Ni–1%Pd alloy

    Indian Academy of Sciences (India)

    Gokcen Yildiz; Yasin Gokturk Yildiz; Saffet Nezir

    2013-02-01

    Kinetical, morphological, crystallographical and thermal characteristics of thermally induced martensite in an Fe–30%Ni–1%Pd alloy has been studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction method. Kinetics of transformation was found to be as athermal. SEM and TEM observations and X-ray method revealed ' () martensite formation in the austenite phase of alloy by thermal effect. The crystallographic orientation relationship between austenite and ' () martensite was found to be having Kurdjumov–Sachs (K–S) type relationship. In addition, the lattice parameters of austenite and martensite phases were calculated from X-ray diffraction patterns.

  1. Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Umetsu, R.Y., E-mail: rieume@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ito, K.; Ito, W. [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Sendai 980-8579 (Japan); Koyama, K. [High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kanomata, T. [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Ishida, K.; Kainuma, R. [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Sendai 980-8579 (Japan)

    2011-02-03

    Research highlights: > NiMnZ (Z = Ga, Al, In, Sn, Sb) Heusler alloys are now very attractive because of their unique physical properties, such as, magnetic shape memory effect, magnetic field-induced phase transition, inverse magnetocaloric effect, magnetoresistance effect and the giant magnetothermal conductivity. > In our previous investigations for the NiCoMnSn alloy, the behavior of the shape recovery due to the magnetic field induced reverse transformation has been reported. However, the detailed investigations on the magnetic properties such as metamagnetic behavior have not been made. > In our present manuscript, we show the experimental results of the magnetic properties under the magnetic fields up to 12 T for NiCoMnSn alloy. We demonstrated the kinetic arresting behavior of the martensitic transformation under the high magnetic fields and thermodynamically discussed it. In addition, we analyzed the structure of the martensitic phase with a long period stacking structure and showed a lattice change between the before and the after the martensitic transformation. We believe that these results are high importance for understanding the interesting physical properties of the Ni-based ferromagnetic shape memory alloys and its applications. - Abstract: High-field magnetic measurements were carried out in order to investigate behaviors of field-induced reverse martensitic transformation and kinetic arrest of NiCoMnSn metamagnetic shape memory alloy. In the thermomagnetization curves, it was confirmed that the reverse martensitic transformation temperature decreases 67 K by applying magnetic field of 5 T, while in the magnetic field cooling process under 5 T, martensitic transformation does not occur down to low temperatures. Equilibrium magnetic field, defined from the critical magnetic fields of the metamagnetic evidence in the magnetization curves, exhibits almost constant below about 100 K, suggesting that the entropy change becomes zero, which is considered

  2. Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-01-29

    A comparative study was carried out on the kinetics of the martensitic transformation in a 304L stainless steel during cold rolling by conventional and novel approaches. The phase analysis based on X-ray diffraction patterns and metallography and also magnetic measurements based on ferritescope readings were utilized to elucidate the kinetics of the martensitic transformation. A straightforward magnetic measurement approach for evaluating the amount of strain-induced martensite in metastable austenitic stainless steels has been introduced in this study. This technique collects the data throughout the bulk of the material to give a realistic estimate of the amount of ferromagnetic martensite. This is an advantage over the surface collecting methods such as ferritescope readings, which overestimates the amount of martensite due to its inhomogeneous distribution through the thickness based on the frictional effects between the rolls and the specimen surface. The proposed approach can be applied in various designs for static/continuous magnetic measurement of bulk materials that is advantageous compared with the conventional vibrating sample magnetometer technique which is useful for static measurement of bulk materials with specific shapes. Moreover, in analogy to ferritescope, the output data of the developed device is directly related to the amount of martensite.

  3. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)]. E-mail: zhliu@aphy.iphy.ac.cn; Liu, H. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, X.X. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, M. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Dai, X.F. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Hu, H.N. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen, J.L. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu, G.H. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: userm201@aphy.iphy.ac.cn

    2004-08-23

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni{sub 50+x}Fe{sub 25-x}Ga{sub 25} (x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L21->B2 transition occurs in the samples treated at 873 K, while the {gamma} phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni{sub 2}FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni{sub 2}FeGa on the saturation magnetization and exchange interaction are also discussed.

  4. Depth distribution analysis of Martensitic transformations in Xe implanted austenitic stainless steel

    DEFF Research Database (Denmark)

    Johnson, E.; Gerritsen, E.; Chechenin, N.G.

    1989-01-01

    In recent years the implantation of noble gases in metals has been found to induce some exciting phenomena such as formation of inclusions containing solid gas at extremely high pressures. In stainless steels these inclusions are the origin of a stress-induced martensitic fcc → bcc phase...... transformation in the implanted layer. In this work we present results from a depth distribution analysis of the martensitic phase change occurring in Xe implanted single crystals of austenitic stainless steel. Analysis was done by in situ RBS/channeling analysis, X-ray diffraction and cross-section transmission...

  5. Modeling the coupling between martensitic phase transformation and plasticity in shape memory alloys

    Science.gov (United States)

    Manchiraju, Sivom

    The thermo-mechanical response of NiTi shape memory alloys (SMAs) is predominantly dictated by two inelastic deformation processes---martensitic phase transformation and plastic deformation. This thesis presents a new microstructural finite element (MFE) model that couples these processes and anisotropic elasticity. The coupling occurs via the stress redistribution induced by each mechanism. The approach includes three key improvements to the literature. First, transformation and plasticity are modeled at a crystallographic level and can occur simultaneously. Second, a rigorous large-strain finite element formulation is used, thereby capturing texture development (crystal rotation). Third, the formulation adopts recent first principle calculations of monoclinic martensite stiffness. The model is calibrated to experimental data for polycrystalline NiTi (49.9 at% Ni). Inputs include anisotropic elastic properties, texture, and DSC data as well as a subset of pseudoelastic and load-biased thermal cycling data. This calibration process provides updated material values---namely, larger self-hardening between similar martensite plates. It is then assessed against additional pseudoelastic and load-biased thermal cycling experimental data and neutron diffraction measurements of martensite texture evolution. Several experimental trends are captured---in particular, the transformation strain during thermal cycling monotonically increases with increasing bias stress, reaching a peak and then decreasing due to intervention of plasticity---a trend which existing MFE models are unable to capture. Plasticity is also shown to enhance stress-induced martensite formation during loading and generate retained martensite upon unloading. The simulations even enable a quantitative connection between deformation processing and two-way shape memory effect. Some experimental trends are not captured---in particular, the ratcheting of macrostrain with repeated thermal cycling. This may

  6. Stress effect of martensitic transformation of small iron particles in copper matrix. Dobosochu no tetsu bisho ryushi no martensite hentai ni oyobosu gairyoku koka

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Fujii, T.; Hoshino, Y.; Mori, T. (Tokyo Institute of Technology, Tokyo (Japan))

    1992-08-20

    There are two different ways of understanding the stress effects on martensitic transformation. To find out which one is more reasonable, examinations were given on the Stress- induced [mu][yields][alpha] martensitic transformation of iron particulates in monocrystalline copper matrix. The result revealed that out of 24 kinds of Kurdjumov-Sachs variants, the preferentially formed variants are various depending on the direction ([001][sub f] and [419][sub f]) and the sense (tension and compression). In addition, the easiness of generating a martensitic transformation depends upon the sense of external stresses. For example, when compared at the same plasticity shear distortion, the compression induced more martensite than tension at a stress of [001][sub f], but no significant difference was observed between the tension and the compression at a stress of [419][sub f], Further, in an experiment using polycrystalline copper-iron alloy specimens, the tensile stress had a greater effect on martensitic transformation than the compressive stress. 24 refs., 4 figs., 4 tabs.

  7. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Li Pan-Pan; Wang Jing-Min; Jiang Cheng-Bao

    2011-01-01

    This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-x:CuxMn31Ga19 (x=2-10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.

  8. Martensitic Transformation during Fatigue Testing of an AISI 301LN Stainless Steel

    Science.gov (United States)

    Mateo, A.; Fargas, G.; Zapata, A.

    2012-02-01

    The plastic deformation accumulated during fatigue testing can induce the transformation of austenite to martensite in metastable austenitic stainless steels. To analyze this issue, a metastable austenitic stainless steel grade AISI 301 LN was studied in two different conditions, i.e. annealed and cold rolled. In the first case, the steel was fully austenitic, whereas cold rolled material had almost 30% of martensite. High cycle fatigue tests at a stress ratio of 0.8 were carried out on flat specimens from both steel conditions. Several characterization techniques, including optical microscopy, X-ray diffraction (XRD) and electron back scattered diffraction (EBSD), were used to detect and quantify the martensite induced by the cyclic deformation.

  9. Measuring techniques for martensitic transformations; Marutensaito hentai ni kansuru sokutei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y.; Morito, S. [Univ. of Tsukuba, Tsukuba (Japan). Graduate School; Otsuka, K. [Univ. of Tsukuba, Ibaraki (Japan). Inst. of Materials Science

    1996-03-20

    It is better to measure physical amount that shows significant change during transformation in order to carry out precise detection of martensitic transformations or to decide the transformation temperature. One of it is Differential scanning calorimetry (DSC) method. This method is very easy along with the determination of transformation enthalpy and also specific heat and is used widely. In martensitic transformation, there exist the intrinsic crystal habit face to the alloy system and crystal azimuthal relation between parent phase and martensite, and it is important to decide them correctly as crystallographic parameters. Overhere, method for measuring crystallographic parameters from martensite caused in parent phase single crystal material is introduced. Further, role of electron microscope is extremely large regarding the revelation of martensitic transformation mechanism in atomic scale. In this report, as for what is revealed regarding martensitic transformation when using electron microscope, crystal structure of martensite, form, structure of the interface and so forth are cited. 39 refs., 5 figs.

  10. Dissecting the mechanism of martensitic transformation via atomic-scale observations.

    Science.gov (United States)

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-21

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  11. Orientation dependence of the martensite transformation in a quenched and partitioned steel subjected to uniaxial tension

    NARCIS (Netherlands)

    De Knijf, D.; Nguyen-Minh, T.; Petrov, R.H.; Kestens, L.A.I.; Jonas, J.J.

    2014-01-01

    The orientation dependence of the austenite-to-martensite transformation during uniaxial tensile testing was modelled using the phenomenological theory of martensite crystallography and the mechanical driving force. It was validated experimentally by means of electron backscatter diffraction measure

  12. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, D. N.; Priolkar, K. R., E-mail: krp@unigoa.ac.in [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Emura, S. [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nigam, A. K. [Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  13. Some aspects of thermally induced martensite in Fe-30% Ni-5% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guener, M. [Department of Physics, Faculty of Science and Arts, University of Kirikkale, 71450 Yahsihan, Kirikkale (Turkey)]. E-mail: martensite@email.com; Gueler, E. [Department of Physics, Faculty of Science and Arts, University of Hitit, 19030, Corum (Turkey); Yasar, E. [Department of Physics, Faculty of Science and Arts, University of Kirikkale, 71450 Yahsihan, Kirikkale (Turkey); Aktas, H. [Department of Physics, Faculty of Science and Arts, University of Kirikkale, 71450 Yahsihan, Kirikkale (Turkey)

    2007-05-31

    Kinetical, morphological, crystallographical and several thermal properties of thermally induced martensite in the austenite phase of Fe-30% Ni-5% Cu alloy were investigated. Scanning electron microscope (SEM), transmission electron microscope (TEM) and differential scanning calorimetry (DSC) techniques were used during study. Kinetics of the transformation was found to be as athermal type. SEM and TEM observations revealed {alpha}' (BCC) martensite formation in the austenite phase of alloy by thermal effect. These thermally induced {alpha}' martensites exhibited a thin plate-like morphology with twinnings.

  14. An enhanced Brinson model with modified kinetics for martensite transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Jin; Lee, Jung Ju [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Ju-Won [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Lim, Jae Hyuk [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    We propose an enhanced Brinson model with modified kinetics for martensite transformation. Two additional material constants are considered to follow the stress-temperature diagram above austenite start temperature (As) along with treatment to keep the continuity of the martensite volume fraction and the path dependency of the phase transformation. To demonstrate the performance of the proposed model, we implement this algorithm into ABAQUS user subroutine, then conduct several numerical simulations and compare their results with SMA wire experiments as well as those of three-dimensional SMA constitutive models. From the results, it turns out that the proposed model is as accurate as the three-dimensional models and shows better accuracy over original Brinson model in terms of recovery stress.

  15. Martensitic transformation in Ni-Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barandiaran, J.M.; Gutierrez, J. [Universidad del Pais Vasco, Dpto. Electricidad y Electronica, P.O. Box 644, E-48080 Bilbao (Spain); Lazpita, P. [Universidad del Pais Vasco, Dpto. Electricidad y Electronica, P.O. Box 644, E-48080 Bilbao (Spain)], E-mail: weblaarp@lg.ehu.es; Chernenko, V.A. [Institute of Magnetism, Kyiv 03142 (Ukraine); Segui, C.; Pons, J.; Cesari, E. [Universitat de les Illes Balears, Departament de Fisica, E-07071 Palma de Mallorca (Spain); Oikawa, K. [National Institute of Advanced Industrial Science and Technology, Sendai 983-8551 (Japan); Kanomata, T. [Department of Applied Physics, Tohoku Gakuin University, Tagajo 985-8537 (Japan)

    2008-04-15

    Fe-based ferromagnetic shape memory alloys have attractive mechanical properties as compared with the classical Ni{sub 2}MnGa ones, because of their enhanced ductility. This opens new possibilities regarding technical applications as magnetic sensors or actuators. In this work, we present a multiple technique study of the martensitic transformation in alloys with nominal composition Ni{sub 55-x}Fe{sub 19+x}Ga{sub 26} (x = 0, 1, and 2) transforming close to room temperature. Magnetic characterisations, performed in a SQUID magnetometer and by AC methods show the Curie temperature (T{sub C} {approx} 300 K) increasing with Fe content while the martensitic temperature (T{sub M} {approx} 240 K) decreases, in agreement with DSC and resistivity measurements. In addition, several Curie temperatures are found by the magnetic measurements, indicating the coexistence of different phases in the alloy. Neutron diffraction study suggests the L2{sub 1}-ordered cubic phase for austenite and 14 M structure for the martensitic phase. The transformation is observed from the temperature evolution of the diffraction peaks.

  16. Martensitic nucleation mechanism

    Institute of Scientific and Technical Information of China (English)

    陈奇志; 桑灿; 吴杏芳; 柯俊

    1997-01-01

    A sort of special dislocation configuration was deformation-induced in an Fe-Ni-V-C alloy by in-situ elongation tests of TEM. The cooling in-situ observations, as well as the SADPs from the region of the special dislocation configurations, proved that they are martensitic nuclei. In martensitic transformation, a nucleus changed into a small martensitic sub-plate, and a group of parallel sub-plates that formed from a group of parallel nuclei made up a big martensitic plate Martensitic transformation involved opposite shear between adjacent martensitic nuclei. By using the reduced-cell method, the crystallographic structure of observed martensitic nuclei was indexed as a face-centered orthogonal (FCO) lattice, which was explained by the nucleation mechanism proposed by the present authors. The crystallographic analysis confirmed that the defect faulting involved in martensitic nucleation took place among three close pakked planes, instead of between two adjacent planes as an ordinary stacking fault.

  17. Suppression of martensitic transformation in Fe50Mn23Ga27 by local symmetry breaking

    Science.gov (United States)

    Ma, Tianyu; Liu, Xiaolian; Yan, Mi; Wu, Chen; Ren, Shuai; Li, Huiying; Fang, Minxia; Qiu, Zhiyong; Ren, Xiaobing

    2015-05-01

    Defects-induced local symmetry breaking has led to unusual properties in nonferromagnetic ferroelastic materials upon suppressing their martensitic transformation. Thus, it is of interest to discover additional properties by local symmetry breaking in one important class of the ferroelastic materials, i.e., the ferromagnetic shape memory alloys. In this letter, it is found that local symmetry breaking including both tetragonal nano-inclusions and anti-phase boundaries (APBs), suppresses martensitic transformation of a body-centered-cubic Fe50Mn23Ga27 alloy, however, does not affect the magnetic ordering. Large electrical resistivity is retained to the low temperature ferromagnetic state, behaving like a half-metal ferromagnet. Lower ordering degree at APBs and local stress fields generated by the lattice expansion of tetragonal nanoparticles hinder the formation of long-range-ordered martensites. The half-metal-like conducting behavior upon suppressing martensitic transformation extends the regime of ferromagnetic shape memory materials and may lead to potential applications in spintronic devices.

  18. Effects of high magnetic field on martensitic transformation behavior and structure in Fe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, H.; Wada, H. [Tsukuba Labs., Ibaraki (Japan). Nat. Res. Inst. for Metals; Ghosh, G. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    2000-07-01

    Effects of magnetic field on lath-type martensitic transformation behavior and the reverse transformation behavior from lath math martensite to austenite have been investigated in 18Ni maraging steel. It was found that the reverse transformation temperature during heating is increased by magnetic field. Reverse transformation behavior during isothermal holding was also found to be retarded by magnetic field. (orig.)

  19. X-ray diffraction study of the reverse martensitic transformation in NiTi shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koker, M.K.A. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstraße 3, D-70569 Stuttgart (Germany); Schaab, J. [University of Stuttgart, Institute for Materials Science, Heisenbergstraße 3, D-70569 Stuttgart (Germany); Zotov, N., E-mail: n.zotov@is.mpg.de [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstraße 3, D-70569 Stuttgart (Germany); Mittemeijer, E.J. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstraße 3, D-70569 Stuttgart (Germany); University of Stuttgart, Institute for Materials Science, Heisenbergstraße 3, D-70569 Stuttgart (Germany)

    2013-10-31

    The development of stresses, phase fractions and the microstructure of thin equiatomic NiTi substrate-bound films was investigated during the reverse transformation from martensite to austenite. Synchrotron X-ray diffraction (XRD) experiments were performed during the heating portion of thermal cycling applied to the thin films to capture, in particular, the reverse martensitic phase transformation (monoclinic martensite → cubic austenite). The phase fractions and microstructure, as a function of temperature and thermal cycling, were analyzed through the application of Rietveld refinement to the diffraction data. Further, using the XRD data, the overall macroscopic stress in the film (derived from the curvature of the film/substrate system determined by XRD rocking curve measurements) and the stress in the austenite phase (derived from the lattice strain) during the transformation were tracked as a function of the degree of the transformation. The state of the stress in the austenite was found to remain biaxially, rotationally symmetric, even in the two-phase (martensite and austenite) film. The developments of the total stress in the film and the stresses in each of the two phases are discussed in terms of the transformation-induced volume misfit and its accommodation by elastic deformation. - Highlights: • The martensite crystallite size remains constant as a function of temperature. • The austenite crystallite size suggests heterogeneous nucleation and growth. • Strongly anisotropic microstrain in the martensite phase. • The state of stress in the austenite is biaxially rotationally symmetric. • Thermal lag between macroscopic stress and austenite phase fraction.

  20. Martensite transformation. ; Recent progress and perspectives. Martensite hentai. ; Saikin no shinpo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Marukawa, K. (Hokkaido Inst. of Technology, Hokkaido (Japan))

    1991-11-20

    A seminar was held at Engineering Dept., Hokkaido Univ. in July, 1991 about martensite transformation. The lectures on the seminar are as follows: Bainite transformation in Cu-Zn-Al and Ag-An alloys'' (K. Kitazawa, Hokkaido Univ.) Overviews of the rate of transformation in these alloys, the experimental result of electron microscope observations, and examination on the transformation mechanism. Mechanism model of bainite transformation'' (K. Marukawa, Hokkaido Univ.) Results of experiments on bainite transformation in copper alloys. Dislocation texture and characteristics of iron-system shape memory alloy'' (Y. Inagaki et al, Steel Lab., NKK) The relation between the dislocation texture and storing characteristic of a newly developed shape memory alloy of stainless steel. Bainite texture and transformation mechanism of steel'' (M. Maki, Kyoto Univ.) Experimental data about Fe-M-C alloys. High-strength high-ductile steel plate utilizing retained austenite'' (N. Uchida et al, Nippon Steel Corp.)

  1. High temperature measurements of martensitic transformations using digital holography.

    Science.gov (United States)

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

  2. HOT DEFORMATION AND MARTENSITIC TRANSFORMATION BEHAVIORS OF Fe-32%Ni ALLOY

    Institute of Scientific and Technical Information of China (English)

    J. Huang; Z.Xu

    2006-01-01

    The Hot deformation and martensitic transformation behaviors of Fe-32% Ni alloy was investigated by measurements of electrical resistance and X-ray diffraction. With the increase in strain,the austenite goes through from the work-hardened to the partial dynamically re-crystallized and then to the completed dynamically re-crystallized. The martensitic transformation characteristics depend on the austenite states. The work-hardening in small strain is helpful to martensitic transformation due to the low dislocation density and little lattice distortion, while the high dislocation density and severe lattice distortion by the increase in strain will hinder the martensitic nucleation.Once dynamic re-crystallization (DRX) takes place, the martensitic transformation will be enhanced again, which is related to the heterogeneous dynamic substructures. The growing DRX grain can enhance the martensitic nucleation due to the low dislocation density near its grain boundary.

  3. Molecular dynamics investigation on the deviation from stoichiometry in martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuro, E-mail: tetsuro.suzuki@nifty.com [National Institute for Materials Science (Japan); Shimno, Masato; Otsuka, Kazuhiro; Ren, Xiaobing [National Institute for Materials Science (Japan); Saxena, Avadh [National Institute for Materials Science (Japan); Los Alamos National Laboratory (United States)

    2013-11-15

    Highlights: ► We have studied the martensitic transformation in Ti–Ni alloy near 50:50 stoichiometry. ► The atomistic process of the martensitic transformation is simulated by use of the molecular dynamics based on the 8-4 Lennard–Jones potential. ► The molecular dynamics provide atomistic picture when the formation of the martensite is suppressed for the deviation from 50:50 stoichiometry. -- Abstract: How the martensitic transformation in Ti–Ni alloy depends on the deviation from the stoichiometry is investigated by use of the molecular dynamics based on a simple model potential.

  4. Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304

    Institute of Scientific and Technical Information of China (English)

    Fang PENG; Xiang-huai DONG; Kai LIU; Huan-yang XIE

    2015-01-01

    The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various strain rates to investigate the effect on volume fraction of martensite, temperature increase and flow stress. The results show that with increasing strain rate, the local temperature increases, which suppresses the transformation of martensite. To take into account the dependence on strain level, strain rate sensitivity and thermal effects, a kinetic model of martensitic transformation was proposed and constitutive modeling on stress-strain response was conducted. The validity of the proposed model has been proved by comparisons between simulation results and experimental ones.

  5. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  6. Kinetics of martensitic transformations in magnetic field or under hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kakeshita, Jung-min Nam and Takashi Fukuda

    2011-01-01

    Full Text Available We have recently constructed a phenomenological theory that provides a unified explanation for athermal and isothermal martensitic transformation processes. On the basis of this theory, we predict some properties of martensitic transformation and confirm them experimentally using some Fe-based alloys and a Ni–Co–Mn–In magnetic shape memory alloy.

  7. Influences of Thermal Martensites and Grain Orientations on Strain-induced Martensites in High Manganese TRIP/TWIP Steels

    Institute of Scientific and Technical Information of China (English)

    Fayun Lu; Ping Yang; Li Meng; Fenge Cui; Hua Ding

    2011-01-01

    Strain-induced martensites in high manganese TRIP/TWIP steels were investigated in the presence of thermal martensites and under the influence of austenitic grain orientation by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). Before deformation, the morphology of α′-M depended mainly on the number of variants and growing period. Regardless of martensite morphologies and deformation, the Kurdjumov-Sachs (K-S) orientation relationships always maintained. The 6 α′-M variants formed from a plate of ε-M were of 3 pairs of twins with a common axis <110>α′ parallel to the normal of {111}γ habit plane to minimize transformation strain. When α′-M could be formed only by deformation, it nucleated at the intersection of ε-M variants and grew mainly in thick ε-M plates. Thick ε plates promoted significantly the α′-M and weakened the influence of grain orientations. During tension, the transformation in <100>-oriented grains was observed to be slower than that in <111>-oriented grains. Deformation twins promoted ε-M formation slightly and had no apparent effect on α′-M. Deformation increased the number of ε-M variants, but reduced that of α′-M variants.

  8. Martensitic transformation of Ti-18Nb(at.%) alloy with zirconium

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The addition of 3%~9% Zr on the martensitic transformation of Ti-18Nb(at.%) alloy was investigated. The results of microstructure and X-ray diffraction (XRD) analysis show that the phase constitution of as-quenched Ti-18Nb-9Zr(at.%) alloy consists of the retained matrix and martensite, while that of the other three alloys is single martensite. No trace of athermal phase was found in any of the as-quenched alloys. Unlike the effect of Nb addition on the martensitic transformation start temperature Ms of Ti-1...

  9. Nanocrystallization and martensitic transformation in Fe-23.4Mn-6.5Si-5.1Cr (wt.%) alloy by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wen Chunsheng; Li Wei [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Rong Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: yhrong@sjtu.edu.cn

    2008-05-25

    Nanocrystalline grains can be obtained in the surface layer of an Fe-23.4Mn-6.5Si-5.1Cr (wt.%) alloy with low stacking-fault energy through surface mechanical attrition treatment, accompanying three kinds of strain-induced martensitic transformations. The microstructure of the surface layer was investigated using optical microscopy, X-ray diffraction and transmission electron microscopy. The results indicate the majority of {alpha} martensites can be formed directly from the original matrix ({gamma}, fcc), instead of forming at intersections of strain-induced {epsilon} martensites in {gamma} matrix grains. The nanocrystallization of grains has three approaches: both the intersection of strain-induced {epsilon}(hcp) martensites and the formation of strain-induced {alpha}(bcc) martensites from austenite lead to refinement of austenite grains, and the martensitic transformation from {epsilon}(hcp) to {alpha}(bcc) makes the grain sizes of the product {alpha}(bcc) smaller than those of {epsilon}(hcp). The strain-induced {alpha}(bcc) martensites formed from both austenite matrix and {epsilon}(hcp) martensites undergo evolution from dislocation tangles, low angle grain boundaries to large angle grain boundaries.

  10. In-situ study of martensitic transformation and nucleation,propagation of crack in CuNiAl shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The stress-induced martensitic transformation and its relation with crack nucleation and propagation in CuNiAl shape memory alloy were investigated through in-situ tensile tests by SEM and TEM.The results indicated that the stress concentration ahead of the crack tip could induce formation of stacking faults and different types of martensites.TEM observations showed that the martensites could transform from one type to another and even reversely to the parent during loading.The micro-cracks nucleated along the martensite/parent interface and intersection between two martensites.When the crack propagated a certain distance,the stress concentration ahead of the crack tip was large enough to result in formation of slip bands,and in this condition the microcrack nucleated along slip bands more easily.

  11. Effect of Si on the reversibility of stress-induced martensite in Fe-Mn-Si shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, N. [Centre for Material and Fibre Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Dunne, D.P., E-mail: druce_dunne@uow.edu.au [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2010-12-15

    Fe-Mn-Si is a well-characterized ternary shape memory alloy. Research on this alloy has consistently shown that the addition of 5-6 wt.% Si is desirable to enhance the reversibility of stress-induced martensite vis-a-vis shape memory. This paper examines the effect of Si on the morphology and the crystallography of the martensite in the Fe-Mn-Si system. It is concluded that the addition of Si increases the c/a ratio of the martensite, reduces the transformation volume change and decreases the atomic spacing difference between the parallel close-packed directions in the austenite-martensite interface (habit) plane. It is proposed that, in addition to austenite strengthening, Si enhances reversibility by reducing the volume change and the interfacial atomic mismatch between the martensite and the austenite. Although shape memory is improved, transformation reversibility remains limited by the necessary misfit dislocations that accommodate the atomic spacing differences in the interface.

  12. AFM/MFM hybrid nanocharacterization of martensitic transformation and degradation for Fe-Pd shape memory alloy

    Science.gov (United States)

    Suzuki, Takayuki; Nagatani, Kohei; Hirano, Kazumi; Teramoto, Tokuo; Taya, Minoru

    2003-07-01

    Martensitic transformation and degradation characteristics for Fe-Pd ferromagnetic shape memory alloy were investigated by the developed AFM (Atomic Force Microscope)/MFM (Magnetic Force Microscope) hybrid nano-characterization technique. In AFM martensitic transformation was detected by the changes of surface topography of martensite plates. In MFM martensitic transformation was detected by the changes of magnetic domain structures. This technique has an advantage that martensitic transformation characteristics such as martensitic transformation temperature and reverse transformation temperature can be measured at microscopic and nanoscopic small area. Degradation characteristics of martensitic transformation under cyclic loading were also detected by the changes of AFM and MFM images. In AFM images surface topography of martensite plates became flat and in MFM images the morphology of magnetic domain structures became unfocused under cyclic loading. Then it was found that the hybrid nano-characterization was very high sensitive technique to evaluate degradation for Fe-Pd ferromagnetic shape memory alloy.

  13. Effect of Melt Quenching on Martensite Transformation in Fe-Ni Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The main features of martensite transformation in melt-quenched Fe-31.4% Ni alloy on cooling below room temperature have been studied. It is found that the ribbon 50~60 μm thick, prepared by spinning technique, is a natural composite in which isothermal and surface martensite are not formed, while athermal martensite forms at lower temperature, all factors being the same, as compared to the alloy of the same composition and grain size, prepared by recrystallization.

  14. Effects on the martensitic transformations and the microstructure of CuAlNi single crystals after ageing at 473 K

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, V.E.A., E-mail: aaraujo@citedef.gob.ar [Departamento de Investigaciones en Sólidos, CITEDEF, UNIDEF (MINDEF-CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires (Argentina); Gastien, R. [Departamento de Investigaciones en Sólidos, CITEDEF, UNIDEF (MINDEF-CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires (Argentina); Zelaya, E. [División Física de Metales, Centro Atómico Bariloche–CNEA, S.C. Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Beiroa, J.I.; Corro, I. [Departamento de Investigaciones en Sólidos, CITEDEF, UNIDEF (MINDEF-CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires (Argentina); Sade, M. [División Física de Metales, Centro Atómico Bariloche–CNEA, S.C. Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina); Lovey, F.C. [División Física de Metales, Centro Atómico Bariloche–CNEA, S.C. Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina)

    2015-08-25

    Highlights: • Thermally induced martensitic transformations are studied after ageing at 473 K. • β ↔ β′ stress induced martensitic transformations were analysed after ageing at 473 K. • Pseudoelastic cycling was studied after ageing at 473 K. • Microstructure before and after ageing at 473 K was analysed using TEM. • Effect of γ precipitates and ordering processes is discussed. - Abstract: Isothermal treatments at 473 K were performed in CuAlNi single crystals to study their effects on the main properties of this shape memory material. Both the stress and thermally induced martensitic transformations were monitored after these ageing treatments. An increase of the critical transformation temperature was detected and the type of induced martensite changed from γ′ into β′ after a long enough ageing time. Pseudoelastic cycling was studied after thermal ageing; mechanical behaviour evolved on cycling and a repetitive behaviour was obtained after a small number of cycles. Changes in microstructure were analysed in the β phase by transmission electron microscopy which allowed observing the morphology and distribution of γ precipitates. The changes obtained in shape memory properties were discussed considering the atomic ordering evolution and characteristics of the precipitates.

  15. Comment on shear-rotation mechanism for martensitic transformations

    Institute of Scientific and Technical Information of China (English)

    CHEN Zi; GUO Zhenghong

    2004-01-01

    The "shear-rotation mechanism" for f.c.c.→b.c.c.(b.c.t.) martensitic transformation is further discussed in this paper. Although "shear-rotation mechanism" involves some valuable ideas which is based on the Nishiyama's model, the concept of "rotation" in "shear-rotation mechanism" may not be consistent with the general definition in crystallography. In addition, the mathematical expression of this mechanism is questionable. Furthermore, a detailed mathematical analysis given in the present paper indicates that the nature of "shear-rotation mechanism" is equivalent to the first two steps of Nishiyama's model, I.e. It is an invariant line strain (ILS) rather than an invariant plane strain (IPS). In other words, it is difficult to obtain the IPS based on the "shear-rotation mechanism" even though the isotropic contraction is involved. Therefore, a new method should be developed to explain the IPS based on Nishiyama's model.

  16. Pre-martensitic phenomena of thermoelastic martensitic transformation of NiTiCu alloys studied with positron annihilation lifetime spectroscopy

    Directory of Open Access Journals (Sweden)

    J. Katsuyama, H. Araki, M. Mizuno and Y. Shirai

    2004-01-01

    Full Text Available Many anomalous phenomena have been observed in NiTi alloys above martensite start temperature, such as softening of the shear constants, increase of internal friction and diffuse scattering of TEM. However, little information has been obtained about the change in the electron system of the parent phase prior to the martensitic transformation, which should be the origin of all pre-martensitic phenomena. In this work, the temperature change of positron annihilation lifetime, which is quite sensitive to electronic-structural changes of matter, were carried out for NiTiCu alloys. The alloys show martensitic transformation from a B2 (cubic phase to a B19' (monoclinic phase via a B19 (orthorhombic phase as the temperature is lowered. We have found anomalous positron lifetime changes in Ni10Ti50Cu40 and Ni15Ti50Cu35 alloys which show a B2–B19–B19' phase transformation. Positron lifetime increases anomalously with decreasing temperature at temperatures higher than the transformation temperature into a B19' phase. On the other hand, positron lifetime does not show any anomaly in the B2 phase of Ni30Ti50Cu20 alloy which shows B2–B19 phase transformation. The positron lifetime of the parent B2 phase shows good agreement with the theoretically-calculated value. Those of the martensite phases of B19 and B19', although, are about 30 ps longer than calculated ones. This big difference between experimental and calculated positron lifetimes cannot be explained by any existing theory.

  17. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite

    Science.gov (United States)

    Kundin, J.; Raabe, D.; Emmerich, H.

    2011-10-01

    If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.

  18. The Formation of Crystal Defects in a Fe-Mn-Si Alloy Under Cyclic Martensitic Transformations.

    Science.gov (United States)

    Bondar, Vladimir I; Danilchenko, Vitaliy E; Iakovlev, Viktor E

    2016-12-01

    Formation of crystalline defects due to cyclic martensitic transformations (CMT) in the iron-manganese Fe-18 wt.% Mn-2 wt.% Si alloy was investigated using X-ray diffractometry. Conditions for accumulation of fragment sub-boundaries with low-angle misorientations and chaotic stacking faults in crystal lattice of austenite and ε-martensite were analyzed.

  19. Martensitic transformation and stress partitioning in a high-carbon steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Grumsen, Flemming Bjerg; Pantleon, Karen;

    2012-01-01

    Martensitic transformation in a high-carbon steel was investigated with (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ angular X-ray diffraction was applied to: (i) quantitatively determine the fractions of retained austenite and martensite; and (ii) measure the evolution...

  20. Effect of annealing on martensitic transformations in "steel - TiNi alloy" explosion welded bimetallic composite

    Science.gov (United States)

    Belyaev, S. P.; Rubanik, V. V.; Resnina, N. N.; Rubanik, V. V.; Rubanik, O. E.

    2011-01-01

    The effect of explosion welding on the kinetics of martensitic transformations in a "steel - TiNi alloy" bimetallic composite and the effect of the temperature and duration of annealing on recovery of the characteristics of the martensitic transformations are studied. It is shown that annealing in the range of 450 - 600°C accompanied by retrogression of structure causes full recovery of the transformation kinetics in the alloy.

  1. Effects of HSHPT on the martensitic transformation behaviour of an NiTi alloy

    Directory of Open Access Journals (Sweden)

    Gurau Carmela

    2015-01-01

    Full Text Available High speed high pressure torsion (HSHPT is a novel severe plastic deformation technique that is used to produce bulk ultrafine-grained nickel-titanium shape memory alloys. In this study, the effect of grain refinement on phase transformation was investigated in a near equiatomic NiTi shape memory alloy subjected to processing by this technique. Phase transformations involving different degrees of deformation and stability of thermally-induced phase transformations were analyzed by differential scanning calorimetry (DSC. The measurements suggest that the martensitic transformation occurred even when the highest degree of deformation was applied. Optical microscopy (OM, scanning electron microscopy (SEM and transmission electron microscopy (TEM investigations bring to light that the true strain applied controls the evolution of the microstructure. The results are presented and discussed in detail in this paper.

  2. Martensitic transformation and related magnetic effects in Ni-Mn-based ferromagnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Dun-Hui; Han Zhi-Da; Xuan Hai-Cheng; Ma Sheng-Can; Chen Shui-Yuan; Zhang Cheng-Liang; Du You-Wei

    2013-01-01

    Ferromagnetic shape memory alloys,which undergo the martensitic transformation,are famous multifunctional materials.They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure.Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance.In this paper,the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.

  3. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    Science.gov (United States)

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg−1 K−1 or 22 J kg −1 K−1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed. PMID:28091551

  4. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys.

    Science.gov (United States)

    Bruno, N M; Wang, S; Karaman, I; Chumlyakov, Y I

    2017-01-16

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg(-1) K(-1) or 22 J kg (-1) K(-1), and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  5. Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys

    Science.gov (United States)

    Bruno, N. M.; Wang, S.; Karaman, I.; Chumlyakov, Y. I.

    2017-01-01

    Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were tested along the [001] austenite crystallographic direction using a custom designed magneto-thermo-mechanical characterization device while carefully controlling their thermodynamic states through isothermal constant stress and stress-varying magnetic field ramping. Measurements revealed that these meta-magnetic shape memory alloys were capable of generating entropy changes of 14 J kg-1 K-1 or 22 J kg -1 K-1, and corresponding magnetocaloric cooling with reversible shape changes as high as 5.6% under only 1.3 T, or 3 T applied magnetic fields, respectively. Thus, we demonstrate that this alloy is suitable as an active component in near room temperature devices, such as magnetocaloric regenerators, and that the field levels generated by permanent magnets can be sufficient to completely transform the alloy between its martensitic and austenitic states if the loading sequence developed, herein, is employed.

  6. Effects of Annealing on the Martensitic Transformation of Ni-Based Ferromagnetic Shape Memory Heusler Alloys and Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tina Fichtner

    2015-03-01

    Full Text Available We report on the effects of annealing on the martensitic phase transformation in the Ni-based Heusler system: Mn50Ni40Sn10 and Mn50Ni41Sn9 powder and Co50Ni21Ga32 nanoparticles. For the powdered Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys, structural and magnetic measurements reveal that post-annealing decreases the martensitic transformation temperatures and increases the transition hysteresis. This might be associated with a release of stress in the Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys during the annealing process. However, in the case of Co50Ni21Ga32 nanoparticles, a reverse phenomenon is observed. X-ray diffraction analysis results reveal that the as-prepared Co50Ni21Ga32 nanoparticles do not show a martensitic phase at room temperature. Post-annealing followed by ice quenching, however, is found to trigger the formation of the martensitic phase. The presence of the martensitic transition is attributed to annealing-induced particle growth and the stress introduced during quenching.

  7. Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.; Li, X.D. [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Zhao, K.M., E-mail: kmzhao@dlut.edu.cn [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Wang, C.Y. [Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081 (China); Zheng, G.J.; Hu, P. [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Dong, H. [Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081 (China)

    2015-04-01

    Non-isothermal tension and compression tests of 22MnB5 boron steel were carried out in this study. How different stress state influences the martensitic transformation of advanced high strength steel (AHSS) parts was analyzed. The analysis reveals that the martensitic transformation starting temperature (M{sub s}) changes with different stress states. Specifically, the M{sub s} temperature rises with increasing tensile stress, however, it rises first and then drops with increasing compressive stress. Moreover, a higher initial forming temperature leads to a higher M{sub s} temperature under the same stress. Simulation of an actual hot-formed AHSS B-pillar together with the microscopic metallography, hardness and martensitic content shows that in higher tensile stress dominated area, the martensitic content and hardness are usually higher than in other areas. Although the stress can promote the M{sub s} temperature, a lower cooling rate may lead to less martensite fraction.

  8. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  9. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels

    Science.gov (United States)

    Bhattacharyya, A.; Sakaki, T.; Weng, G. J.

    1993-02-01

    A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.

  10. Martensitic transformation in Ni-rich Ni{sub 55}Mn{sub 25}In{sub 20} Heusler alloy: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.Y., E-mail: syyu@sdu.edu.cn; Hu, S.J.; Kang, S.S.; Gu, A.J.

    2015-06-05

    Highlights: • Ni{sub 55}Mn{sub 25}In{sub 20} ribbons with ordered L2{sub 1} structure were prepared. • A martensitic transformation has been observed in Ni{sub 55}Mn{sub 25}In{sub 20}. • A large MR up to 17% is observed. • The cubic structure becomes unstable by partial substitution of In with Ni. • The driving force of the martensitic transformation is discussed. - Abstract: A martensitic transformation has been observed in Ni-rich Ni{sub 55}Mn{sub 25}In{sub 20} Heusler alloy and been theoretically investigated by first-principles calculations. The samples are prepared by the melt-spun method and the ribbons show an ordered L2{sub 1} structure at room temperature. Magnetization and electrical resistance measurements show that a martensitic transformation occurs at about 156 K, with both phases exhibiting ferromagnetic ordering. A negative magnetoresistance of 17% is observed at a magnetic field of 50 kOe due to the magnetic field induced reverse martensitic transformation. Electronic structure calculations indicate that the 3d states of Ni occupied in In site strongly hybridize with the Ni: 3d states. Such hybridization plays an important role in driving the martensitic transformation.

  11. Possible martensitic transformation and ferrimagnetic properties in Heusler alloy Mn{sub 2}NiSn

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ying-Ni, E-mail: duanyingni@163.com [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Fan, Xiao-Xi; Kutluk, Abdugheni [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Du, Xiu-Juan [School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi (China); Zhang, Zheng-Wei [Chemistry and Chemical Engineering Laboratory, The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Song, Yu-Ling [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)

    2015-07-15

    The electronic structure and magnetic properties of Hg{sub 2}CuTi-type Mn{sub 2}NiSn have been studied by performing the first-principle calculations. It is found that the phase transformation from the cubic to the tetragonal structure reduces the total energy, indicating that the martensitic phase is more stable and the phase transition from austenite to martensite may happen at low temperature for Hg{sub 2}CuTi-type Mn{sub 2}NiSn. Concerning the magnetism of Hg{sub 2}CuTi-type Mn{sub 2}NiSn, both austenitic and martensitic phases are suggested to be ferrimagnets. Furthermore, martensitic transformation decreases the magnetic moment per formula unit compared with austenitic phase. The results are helpful to accelerate the use of Mn{sub 2}NiSn alloys in the series for magnetic shape memory applications. - Highlights: • It is found that the phase transition from austenite to martensite may happen at low temperature for Mn{sub 2}NiSn with the Hg{sub 2}CuTi-type structure. • Both austenitic and martensitic Mn{sub 2}NiSn are ferrimagnets. • Martensitic transformation decreases the magnetization.

  12. In Situ Study of Phase Transformations during Non-Isothermal Tempering of Bainitic and Martensitic Microstructures

    Directory of Open Access Journals (Sweden)

    S. Hesamodin Talebi

    2017-09-01

    Full Text Available Phase transformations during non-isothermal tempering of bainitic or martensitic microstructures obtained after quenching of a medium-carbon low-alloy steel was studied. The microstructures correspond to different locations of an as-quenched large-sized forged ingot used as a die material in the automotive industry. High-resolution dilatometry experiments were conducted to simulate the heat treatment process, as well as to investigate different phenomena occurring during non-isothermal tempering. The microstructures were characterized using optical and scanning electron microscopy. Dilatometry analyses demonstrated that tempering behavior varied significantly from bainitic to martensitic microstructures. Retained austenite, which exists between bainitic ferrite sheaves, decomposes to lower bainite causing a remarkable volume increase. It was found that this decomposition finishes below 386 °C. By contrast, martensite tempering was accompanied with a volume decrease due to the decomposition of medium-carbon martensite to low carbon martensite and carbides.

  13. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    Science.gov (United States)

    Pun, G P Purja; Mishin, Y

    2010-10-01

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  14. MARTENSITIC TRANSFORMATION AND THERMAL STABILITY IN Cu-Al-Co AND Cu-Al-Zr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Y. Q. Ma; C.B. Jiang; H.B. Xu

    2003-01-01

    Cu-Al-Co and Cu-Al-Zr alloys were explored with Co or Zr additions in Cu-Al alloys for high temperature shape memory alloys. Samples were quenched after homogenized at 850℃ for 48h. It was found that both Cu-Al-Co and Cu-Al-Zr show AlCu3 martensitic phase at room temperature and exhibit martensitic transformation temperatures higher than 200℃, showing the potentials for developing as high temperature shape memory alloys. Thermal cycles were performed by DSC instrument on both Cu-Al-Co and Cu-Al-Zr alloys. The results show that Cu-Al-Co loses its martensitic transformation after five thermal cycles, and Cu-Al-Zr exhibits no martensitic transformation in the second thermal cycle.

  15. CRYSTALLOGRAPHIC ANALYSIS OF THE LATH MARTENSITE TRANSFORMATION IN Fe-Ni-Mn ALLOY

    Institute of Scientific and Technical Information of China (English)

    X.P. Lin; Y. Dong; X.M. Cao; Y. Zhang; N.J. Gu; X.L. Ma

    2004-01-01

    Habit plane rotation of lath martensite transformation in Fe-Ni-Mn alloy was predicted by means of Displacement Vector Theory. Its surface relief effect was observed and a math model for the quantitative analysis of habit plane rotation of lath martensite transformation was established by means of atomic force microscopy (AFM). The experiment showed that the largest rotation of habit plane of lath martensite transformation predicted by means of Displacement Vector Theory is 13.50°, and it′s incompatible with the concept of invariant plane strain (IPS); surface relief of lath martensite revealed no character of IPS, i.e. it exhibited irregular "N"-shaped "surface relief packet", and "surface relief packet" was composed of layers of several small surface reliefs, the AFM quantitative analysis of habit plane rotation of lath martensite transformation was 11.11°, which was in agreement with the prediction of Displacement Vector Theory (13.50°) and it firmly confirmed the habit plane rotation of lath martensite transformation and the correctness of Displacement Vector Theory.

  16. Martensitic transformation and toughening of zirconia ceramics; Jirukonia kei ceramics no marutensaito hentai to kyojinka

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M.; Oka, M. [Tottori Univ., Tottori (Japan). Faculty of Engineering

    1994-12-20

    It has been twenty years since Garvie and et al showed that the martensitic transformation of zirconia can be used to toughen ceramics. In addition to a partially stabilized zirconia of deposited type at the initial stage of the development, materials of new forms such as single-phase type tetragonal zirconia polycrystal and zirconia toughened ceramics in which zirconia grains are dispersed in alumina have been developed during that period of time. Since the toughening properties of these materials are attributed to the martensitic transformation of zirconia, researches on the martensitic transformation behaviors of zirconia have vigorously been made. The results of the research on the transformation behaviors are useful to forecast the upper limit of the improvement of this material and the toughening which can theoretically be attained. After describing the toughening mechanism by the martensitic transformation, this report mainly introduces the results of the researches made by the writers on the crystallography of the transformation and the crystal grain size dependence by transformation behavior which are main subjects of the martensitic transformation. 23 refs., 8 figs.

  17. Confined martensitic phase transformation kinetics and lattice dynamics in Ni–Co–Fe–Ga shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Daoyong; Rule, Kirrily Clair; Li, Wen-Hsien; Lee, Chi-Hung; Zhang, Qinghua; Wang, Haoliang; Hao, Yulin; Wang, Yandong; Huang, E-Wen (UST - China); (NCU-Taiwan); (Beijing Inst. Tech.); (Chinese Aca. Sci.); (ANSTO); (NCTU)

    2016-09-02

    Here we describe insights into the phase transformation kinetics and lattice dynamics associated with the newly discovered confined martensitic transformation, which are of great significance to the in-depth understanding of the phase transformation behavior responsible for the rich new physical phenomena in shape memory alloys and could shed light on the design of novel multifunctional properties through tuning the confined martensitic transformation.

  18. Martensitic transformations in nanostructured nitinol: Finite element modeling of grain size and distribution effects

    DEFF Research Database (Denmark)

    Liu, Hong-Sheng; Mishnaevsky, Leon

    2013-01-01

    A computational model of martensitic phase transformation in nanostructured nitinol is developed which takes into account the grain size effect. On the basis of the theoretical analysis of the thermodynamic transformation criterion and the energy barrier for phase transformation, it was demonstra...... between the coarse and fine grained regions, and expand inside the region with small grains along the shear band direction....

  19. Martensitic transformations and morphology studies of NiTi shape memory alloy

    Science.gov (United States)

    Murari, M. S.; Pattabi, Manjunatha

    2017-05-01

    The forward transformation temperatures Martensite Start (Ms) and Martensite Finish (Mf) during cooling, reverse transformation temperatures Austenite Start (As) and Austenite Finish (Af) during heating are very sensitive to the thermal and mechanical history of the Shape Memory Alloy (SMA). Heat treatments, cold and hot roll, thermal and mechanical cycling have great influence on the transformation temperatures. Different characterizing techniques like Differential Scanning Calorimeter (DSC), X-Ray Diffractometer (XRD), Electrical Resistivity (ER) and Thermo Mechanical Analyzer (TMA) were employed to study the phase transformation temperatures of NiTi alloy. The microstructure of the samples was studied with Atomic Force Microscope (AFM), Optical Microscope (OM) and Field Emission Scanning Electron Microscope (FESEM).

  20. Evaluation of the transformation mechanisms and mechanical properties of ferrite: martensite microalloyed steels

    Directory of Open Access Journals (Sweden)

    Ovri Henry

    2008-03-01

    Full Text Available The influence of starting point microstructures on the transformation mechanisms and mechanical properties of a micro alloyed steel after annealing in the alpha + gamma region have been investigated. Three different microstructures: austenite, pearlite in a ferrite matrix and martensite were used as starting point microstructures for the production of dual (alpha + phase structures in the test steel. Photomicrographs obtained from metallographic examination of the heat treated samples were used as criteria for the assessment of results obtained from impact toughness and hardness testing. The results obtained showed that the transformation mechanisms and hence the morphology of ferrite - martensite microalloyed steels are strongly influenced by their initial microstructural details. Ferrite - martensite structures produced via the intercritical quench (IQ treatment, with martensite as the starting point microstructure, have the best combination of hardness and impact energy.

  1. Martensite transformation and superelasticity in polycrystalline Ni–Mn–Ga–Fe microwires prepared by melt-extraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanfen [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Qiqihar University, Qiqihar 161006 (China); Zhang, Xuexi; Xing, Dawei; Shen, Hongxian; Qian, Mingfang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, Jingshun [School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051 (China); Chen, Dongming [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Jianfei, E-mail: jfsun@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-06-11

    The effects of Fe doping on the microstructure, martensite transformation and superelasticity in melt-extracted Ni{sub 50}Mn{sub 25}Ga{sub 25−x}Fe{sub x} (x=1–6) microwires were investigated. The unique solidification process during melt-extraction creates the micron-sized diameter wires with small grains and semicircular cross-section. At ambient temperature Ni{sub 50}Mn{sub 25}Ga{sub 25−x}Fe{sub x} (x<4) microwires are austenite phases with a cubic L2{sub 1} structure, while microwires with x>5 are martensitic phases with seven-layered modulated (7M) structure. The results point out that martensite transformation temperatures are strongly related to Fe content due to the change of valence electron concentration (e/a). Reversible superelastic strains of 0.92% and 0.75% are obtained in Ni{sub 50}Mn{sub 25}Ga{sub 21}Fe{sub 4} and Ni{sub 50}Mn{sub 25}Ga{sub 20}Fe{sub 5} microwires, respectively. It is demonstrated that the temperature dependence of stress-induced martensite (SIM) stress follows the Clausius–Clapeyron relation. The temperature dependence of SIM stress in Fe-doped Ni–Mn–Ga microwires is 10.5 MPa/K.

  2. Magnetism and martensitic transformation of iron particles in a copper matrix; Cu boso chu no sekishutsu Fe ryushi no jikiteki henka to marutensaito hentai

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1995-07-20

    It is shown that the transformation process of Fe particles in Cu-Fe alloy can be traced by saturation magnetization measurement and magnetic anisotropy measurement. The effect of the magnetic transition of {gamma}-Fe on martensitic transformation and the magnetic field effect of antimagnetic {gamma}-Fe on martensitic transformation are also introduced. As a result of experiment, it is demonstrated that no {alpha}-Fe is formed during the aging up to 2.9Ms. The torque curves obtained by the experiment are analyzed theoretically from the viewpoints of crystalline magnetic anisotropy and shape magnetic anisotropy. The temperature dependency of the amount of martensitic transformation can be expected to change at the Neel temperature. The temperature dependency of yield strength agrees well with the temperature dependency of the amount of martensitic transformation. Simultaneous application of magnetic field and stress results in the induction of the state which causes transformation even below Neel temperature by stress, and it seems that additional magnetic field induced martensitic transformation occurs by the effect of the applied magnetic field. 45 refs., 6 figs.

  3. Effects of Austenite Stabilization on the Onset of Martensite Transformation in T91 Steel

    Institute of Scientific and Technical Information of China (English)

    Baoqun NING; Yongchang LIU; Qingzhi SHI; Zhiming GAO; Liushuan YANG

    2008-01-01

    The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase trans-formation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.

  4. Landau theory of martensitic transformation in Fe-Mn-Si based alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Considering the features of martensitic transformation in Fe-Mn-Si based alloys, the Landau theory is established by introducing the density of stacking faults as a new order parameter ηand the corresponding free energy function. By using such an order parameter, the stacking fault mechanism of the nucleation and growth for the γ(fcc)→ε(hcp) martensitic transformation can be reasonably explained, and a further detailed mechanism is proposed. The stacking faults are generated and overlapped in an irregular form at the beginning and then becoming regular to create some transition structures till a stable phase forms at a certain temperature. The importance of the interface soliton is to complete the transformations into various structures of martensite but not the twinned one. The thermodynamics of fcc→hcp transformation and those between different transition structures are described by the free energy function established in the present note.

  5. Influences of Composition and Annealing on the Martensitic Transformation in Ni-Fe-Ga Alloys

    Institute of Scientific and Technical Information of China (English)

    YU Huajun; XIE Yingmao; SHEN Hong

    2012-01-01

    A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were prepared through arc-melting suction-casting method.The dependences of the transformation behavior on the alloy composition and annealing treatment were studied in detail by an optical microscope,X-ray diffraction,and differential scanning calorimeters methods.The experimental results show that the martensitic transformation temperatures increase almost linearly with increasing Ni content in all the NiFeGa alloys.Annealing the Ni55.5Fe18Ga26.5 alloy at 100-500 ℃ for 3 h and at 300 ℃ for 1-10 h shifts the martensitic transformation start temperature by almost 20 ℃ to high temperature.The variations in the martensitic transformation temperatures in these alloys are discussed in terms of structural differences resulting from alloy composition and annealing treatment.

  6. Degenerate Blume-Emery-Griffiths model for the martensitic transformation

    DEFF Research Database (Denmark)

    Vives, E.; Castan, T.; Lindgård, Per-Anker

    1996-01-01

    between two ordered phases. This is relevant for the martensitic transition problem. Mean-field calculations and Monte Carlo simulations are presented. The model predicts a constant entropy change at the transition for various transition temperatures in agreement with the behavior found experimentally....

  7. Martensitic Transformation in Magnetically Controlled Shape Memory Alloys Co50Ni20Ga30

    Institute of Scientific and Technical Information of China (English)

    Fanbin MENG; Yangxian LI; Heyan LIU; Jingping QU; Ming ZHANG; Jinglan CHEN; Guangheng WU

    2004-01-01

    The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a>1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a cha nge in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.

  8. Effect of Multiple Martensitic Transformations on Structure of Fe-Ni Alloys

    Institute of Scientific and Technical Information of China (English)

    V.Danilchenko; Ie.Dzevin; V.Sagaradze

    2013-01-01

    Effect of multiple direct and reverse martensitic transformations on fragmentation of austenitic grains in Fe-Ni alloys have been studied by X-ray diffraction and scanning electron microscopy.An ultra-fine structure was formed by fragmentation inside austenitic grains due to progressing misorientation of austenitic sub-grains during multiple γ-α-γ-martensitic phase transitions.An increase in the number of γ-α-γ-transformations increases misorientation angle between austenitic sub-grains and leads to transformation of an austenitic single crystal into a textured polycrystal.It has been shown that multiple γ-α-γ-martensitic phase transitions change the mechanism of internal stress relaxation from dislocation-based to deformation twinning.

  9. Effects of plate thickness on reverse martensitic transformation of prestrained NiTi/NiTi alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Zhu; CUI Lishan; ZHENG Yanjun

    2007-01-01

    In this Paper, differential scanning calorimeter (DSC)was used to study the effects of predeformation and plate thickness on the reverse martensitic transformation of explosively welded NiTi/NiTi alloy.Results showed that there was a constraint between Ni50.4Ti(NiTi-1)and Ni49.8Ti (NiTi-2),which led to that the thickness of NiTi-1 or NiTi-2 strongly affected the reverse martensitic transformation behavior because residual stress variations in thickness wound enable bias force to be built inside the composite.The DSC measurements showed that after deformation,the reverse martensitic transformation temperature of the composite was increased with the increasing thickness of NiTi-2.Also.the XRD results revealed that the microstructure of NiTi/NiTi alloy changed from B2 phase to B19'phase along the thickness direction.

  10. Investigation on microstructure and martensitic transformation of neodymium-added NiTi shape memory alloys

    Science.gov (United States)

    Maashaa, Dovchinvanchig; Dorj, Ulzii-Orshikh; Lee, Malrey; Lee, Min Hi; Zhao, Chunwang; Dashjav, Munguntsetseg; Woo, Seon-Mi

    2016-10-01

    The effect of rare earth element neodymium (Nd) addition on the microstructure and martensitic transformation behavior of Ni50Ti50-xNdx (x = 0, 0.1, 0.3, 0.5 and 0.7 at.%) shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results show that the microstructure of Ni-Ti-Nd ternary alloy consists of NiNd phase, NiTi2 and the NiTi matrix. A one-step martensitic transformation is observed in the alloys. The martensitic transformation temperature Ms increases sharply increasing 0.1-0.7 at.% Nd content is added.

  11. Martensitic transformation of NiTi and NiTi-TiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Mari, D. [PSE-EPFL, Lausanne (Switzerland). Adv. Composite Mater. Eng.; Bataillard, L. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Dunand, D.C. [Massachusetts Inst. of Tech., Cambridge (United States). Dept. of Materials Science and Engineering; Gotthardt, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique

    1995-12-01

    Calorimetry and internal friction were used to study the martensitic phase transformation of shape-memory metal matrix composites consisting of nearly equiatomic NiTi with up to 20 vol.% TiC particles. The start and final temperatures for the austenite-martensite transformation (M{sub s}, M{sub f}) and martensite-austenite transformation (A{sub s}, A{sub f}) are lower when measured by internal friction than when measured by calorimetry. In composites, TiC particles lower M{sub f} and A{sub s} but do not affect M{sub s} and A{sub f}. It is concluded that dissipative work due to twinning takes place to accommodate internal stresses. (orig.).

  12. The influence of chemical disorder enhancement on the martensitic transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy

    Energy Technology Data Exchange (ETDEWEB)

    Passamani, E.C., E-mail: edson@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Nascimento, V.P.; Larica, C.; Takeuchi, A.Y. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Alves, A.L.; Proveti, J.R. [Departamento de Ciencias Matematicas e Naturais, Universidade Federal do Espirito Santo, 29932-540, Sao Mateus, ES (Brazil); Pereira, M.C. [Instituto de Ciencia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39803-371 Teofilo Otoni, Minas Gerais (Brazil); Fabris, J.D. [Departamento de Quimica, UFVJM, 39100-000 Diamantina, Minas Gerais (Brazil)

    2011-07-28

    Highlights: > Chemical disorder affects martensitic transformation in Ni-Mn-Sn Heusler alloys. > Martensitic transition temperature depends on the L21-ferromagnetic fraction. > Grain boundaries induce drastic reduction of magnetization in milled Heusler alloys. > Magnetic properties of the milled Ni50Mn36Sn14 alloy get better after annealing. - Abstract: The effect of chemical disorder over the martensitic phase transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy was systematically investigated by performing X-ray diffractometry (DRX), DC magnetization and {sup 57}Fe-doping and {sup 119}Sn-Moessbauer spectroscopy measurements. DRX patterns are characteristics of a L2{sub 1}-type chemically disordered structure, where the presence of this disorder was first evaluated by analyzing the relative intensity of the (1 1 1) DRX reflection, which varies in the case of Fe-doped and practically disappears for the milled samples. In consequence, the magnetic properties of Fe-doped well-milled samples related to the martensitic phase transformation change substantially. 300 K {sup 57}Fe-Moessbauer spectroscopy data suggest that the changes in the magnetic properties related to the martensitic transformation are intrinsically correlated to the ferromagnetic and paramagnetic fractions, which are respectively associated with Fe atoms replacing Mn- and Sn-sites. In the case of milled samples, the drastic reduction of alloy magnetization was explained by the increase of the number of Mn atoms in the shell regions, which have a reduced magnetic moment comparatively to those in the grain cores. The magnetization change and the temperature transition in the martensitic transformation are governed by the grain core. The initial magnetic properties and martensitic transformation can be recovered by a subsequent annealing on the milled sample.

  13. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-06-11

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample.

  14. Martensitic Transformation in Ni-Mn-Sn-Co Heusler Alloys

    Directory of Open Access Journals (Sweden)

    Alexandre Deltell

    2015-04-01

    Full Text Available Thermal and structural austenite to martensite reversible transition was studied in melt spun ribbons of Ni50Mn40Sn5Co5, Ni50Mn37.5Sn7.5Co5 and Ni50Mn35Sn10Co5 (at. % alloys. Analysis of X-ray diffraction patterns confirms that all alloys have martensitic structure at room temperature: four layered orthorhombic 4O for Ni50Mn40Sn5Co5, four layered orthorhombic 4O and seven-layered monoclinic 14M for Ni50Mn37.5Sn7.5Co5 and seven-layered monoclinic 14M for Ni50Mn35Sn5Co5. Analysis of differential scanning calorimetry scans shows that higher enthalpy and entropy changes are obtained for alloy Ni50Mn37.5Sn7.5Co5, whereas transition temperatures increases as increasing valence electron density.

  15. Martensitic transformation during coalescence of Fe-Ni nanoparticles. Atomistic simulation

    Science.gov (United States)

    Karkina, L. E.; Karkin, I. N.; Kuznetsov, A. R.

    2017-09-01

    Martensitic transformation during coalescence of two Fe-20 at.% Ni nanoparticles of size d ∼3-7 nm has been studied using molecular dynamics. Orientation relationship analysis showed that Kurdyumov-Sachs orientation relationship was observed between the initial γ-phase and the final α phase (at T = 0 K) for all of the studied cases of misorientation. A significant change in the type of contact boundaries between the two nanoparticles was obtained after the completion of the martensitic transformation, which was caused by a change in the indices of the misorientation axis of the particles and in the number of symmetry elements for it.

  16. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)]. E-mail: tsuchiya@pse.tut.ac.jp; Inuzuka, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Tomus, D. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Hosokawa, A. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Nakayama, H. [Department of Mechanical Engineering, University of Washington (United States); Morii, K. [Research and Development Laboratory, Daido Steel, Co., Ltd. (Japan); Todaka, Y. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Umemoto, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)

    2006-11-25

    Martensitic transformation and mechanical behavior was investigated on TiNi shape memory alloy subjected to severe plastic deformation by cold rolling. Transmission electron microscopy revealed the sample to be a mixture of nanocrystalline and amorphous material after 40% cold rolling. Diffrential scaning calorimetry measurements and X-ray diffractometry suggested that the martensitic transformation was suppressed when the thickness reduction was over 25%. The pseudoelastic stress-strain curves of nanocrystalline/amorphous TiNi are characterized by the absence of a stress-plateau and by small hysteresis.

  17. Influence of Zn Addition on Microstructures and Martensitic Transformation in CuZr-based Alloys

    Institute of Scientific and Technical Information of China (English)

    Kai-kai SONG; Dian-yu WU; Feng WAN; Xiao-jun BAI; Chong-de CAO

    2016-01-01

    Compositional dependences on microstructures and martensitic transformation behaviors in (Cu0.5 Zr0.5 )100-x Znx (x =1.5,2.5,4.5,7.0,10.0,and 14.0 at.%)alloys were investigated.It was found that CuZr martensites were present in the present alloys.With increasing Zn content,the volume fractions of CuZr martensitic crystals and B2 CuZr phase gradually decrease and increase,respectively.With the addition of high Zn contents (i.e.,7.0,10.0, and 14.0 at.%),the matrix proves to be eutectic.Thermal analysis results show that the initial martensitic transfor-mation temperature (Ms)decreases from (412±5)K to (329±5)K as the Zn content increases from 1.5 at.% to 14.0 at.%.The values of Ms of Cu-Zr-Zn shape memory alloys are inversely proportional to the number and concen-trations of valence electrons (i.e.,e v/a and c v ),respectively,implying that the martensitic transformation in CuZr-Zn alloys could be of electronic nature.

  18. A physically based model for the isothermal martensitic transformation in a maraging steel

    Science.gov (United States)

    Kruijver, S. O.; Blaauw, H. S.; Beyer, J.; Post, J.

    2003-10-01

    Isothermal transformation from austenite to martensite in steel products during or after the production process often show residual stresses which can create unacceptable dimensional changes in the final product. Tn order to gain more insight in the effects infiuencing the isothermai transformation, the overall kinetics in a low Carbon-Nickel maraging steel is investigated. The influence of the austenitizing température, time and quenching rate on the transformation is measured magnetically and yields information about the transformation rate and final amount of transformation. A physically based model describing the nucleation and growth of martensite is used to explain the observed effects. The results show a very good fit of the experimental values and the model description of the transformation, within the limitations of the inhomogeneities (carbides and intermetallics, size and distribution in the material and stress state) and experimental conditions.

  19. Influence of nonmartensitic transformation products on mechanical properties of tempered martensite

    Science.gov (United States)

    Hodge, J M; Lankford, W T

    1952-01-01

    The influence of nonmartensitic transformations products on the mechanical properties of tempered martensite is presented for samples of a SAE 4340 steel, partially isothermally transformed to specific high-temperature transformation products and quenched and tempered to hardness values of from 25 to 40 Rockwell c. The effects of upper bainite in amounts of 1,5, 10, 20 and 50 percent, of 5 percent ferrite, and of 5 percent pearlite on the tensile, impact, and fatigue properties are evaluated. (author)

  20. Possible martensitic transformation in Heusler alloy Mn{sub 2}PdSn from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L., E-mail: author.fenglin@tyut.edu.cn [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, E.K.; Wang, W.H.; Wu, G.H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, J.F.; Zhang, W.X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-01

    The tetragonal distortion, electronic structure and magnetic property of Mn{sub 2}PdSn have been systematically investigated by first-principles calculations. The results indicate that the total energy of tetragonal martensitic phase is lower than cubic austenitic phase for Mn{sub 2}PdSn. The corresponding c/a ratio and energy difference are 1.23 and 41.62 meV/f.u., respectively. This suggests that there is a great possibility for martensitic transformation to occur in Mn{sub 2}PdSn with temperature decreasing. The electronic structure shows that there are sharp DOS peaks originating from p–d hybridization in the vicinity of Fermi level in the cubic phase. And these peaks disappear or become more flat in the martensitic phase. - Highlights: • The martensitic transformation is prone to occur with temperature decreasing in Mn{sub 2}PdSn. • Electronic structure and magnetic property of Mn{sub 2}PdSn are investigated. • Both the austenitic and martensitic phases of Mn{sub 2}PdSn are ferrimagnetic.

  1. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Valeanu, M., E-mail: valeanu@infim.ro [National Institute of Materials Physics, 077125 Bucharest (Romania); Lucaci, M. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Crisan, A.D.; Sofronie, M. [National Institute of Materials Physics, 077125 Bucharest (Romania); Leonat, L. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Kuncser, V. [National Institute of Materials Physics, 077125 Bucharest (Romania)

    2011-03-31

    Research highlights: > Martensitic transformation sequence in Ti50Ni30Cu20 prepared high - energy milling. > Two transformations (B2-B19, B2-B19') are evidenced after 10 hours of milling. > B2-B19 transformation is not more observed after 20 hours of milling. > A longer milling process promotes the formation of the secondary Ti{sub 2}(NiCu) phase. - Abstract: Phase transformation behavior of Ti50Ni30Cu20 shape memory alloys prepared by powder metallurgy is analyzed with respect to the duration of mechanical alloying. The processed blends were studied by differential scanning calorimetry and room temperature X-ray diffraction. The martensitic transformations evidenced by thermal scans are discussed in correlation with the relative phase content obtained from the refinement of the X-ray diffraction patterns.

  2. Martensitic transformation in Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd and Pt): Theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongzhi, E-mail: luo_hongzhi@163.com [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bohua; Xin, Yuepeng; Jia, Pengzhong; Meng, Fanbin [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Enke; Wang, Wenhong; Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-01

    The martensitic transformation and electronic structure of Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd, Pt) have been investigated by both first-principles calculation and experimental investigation. Theoretical calculation reveals that, the energy difference ΔE between the tetragonal martensitic phase and cubic austenitic phase increases with Y varying from Ni to Pt in Mn{sub 2}YIn. Thus a structural transition from cubic to tetragonal is most likely to happen in Heusler alloy Mn{sub 2}PtIn. A single Heusler phase can be obtained in both Mn{sub 2}PtIn and Mn{sub 2}PdIn. A martensitic transformation temperature of 615 K has been identified in Mn{sub 2}PtIn. And in Mn{sub 2}PdIn, the austenitic phase is stable and no martensitic transformation is observed till 5 K. This indicates there may exist a positive relation between ΔE and martensitic transformation temperature. Calculated results show that Mn{sub 2}YIn are all ferrimagnets in both austenitic and martensitic phases. The magnetic properties are mainly determined by the antiparallel aligned Mn spin moments. These findings can help to develop new FSMAs with novel properties. - Highlights: • Positive relation between ΔE and martensitic transformation temperature has been observed. • Heusler alloy Mn{sub 2}PdIn has been synthesized successfully and investigated. • Martensitic transformation in Heusler alloys can be predicted by first -principles calculations.

  3. Fluctuation effects in first-order phase transitions: Theory and model for martensitic transformations

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Mouritsen, Ole G.

    1990-01-01

    -dimensional Monte Carlo simulation, showing clear precursor phenomena near the first-order transition and spontaneous nucleation. The kinetics of the domain growth is studied and found to be exceedingly slow. The results are applicable for martensitic transformations and structural surface...

  4. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    Science.gov (United States)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  5. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  6. Effect of copper on the formation of strain-induced martensite in two austenitic stainless steels AISI 304

    Energy Technology Data Exchange (ETDEWEB)

    Gilapa, Leonidas Cayo Mamani, E-mail: leonidas@ifsc.edu.br [Instituto Federal de Santa Catarina, Rua Pavão, 1337, Bairro Costa e Silva, Joinville, SC CEP 89220-200 (Brazil); Oliveira, Carlos Augusto Silva de, E-mail: carlos.a@ufsc.br [Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, SC CEP 88040-970 (Brazil); Silva, Manoel Ribeiro da, E-mail: mrsilva@unifei.edu.br [Universidade Federal de Itajubá, Instituto de Ciências, Itajubá (Brazil)

    2015-01-12

    The transformation of strain-induced martensite in two metastable austenitic stainless steels, AISI 304, with the same basic composition and concentrations of Cu variables was characterized by transmission electron microscopy and magnetic measurements. The deformations to induce the formation of martensite were performed using the test of conformability with Nakajima tooling at room temperature. The results obtained for the various samples showed that the steel with lower content of Cu presented higher degree of magnetization. Also it was observed that the martensite magnetic α′ and paramagnetic ε are formed at the intersection of dislocation, in the grain boundary, inside and at the edge of twinned and the stacking faults in the austenite.

  7. Martensitic transformation and physical properties of `steel-TiNi' bimetal composite, produced by explosion welding

    Science.gov (United States)

    Belyaev, S.; Rubanik, V.; Resnina, N.; Rubanik, V.; Rubanik, O.; Borisov, V.

    2010-04-01

    The aim of this work is an investigation of structure and martensitic transformation in bimetal composite 'TiNi-stainless steel' produced by explosion welding. The results have shown that the mixture of chemical elements is observed in very narrow intervals of 6 µm close to the joint - 2 µm from the TiNi side and 4 µm from the steel one. Micro-hardness distribution in the vicinity of the joint is non-monotonic in the interval of 60 µm. Connection of stainless steel and TiNi plates by explosion welding leads to a dramatic change of martensitic transformation kinetics. Temperatures and the temperature interval of phase transformation increase strongly and heat transformation decreases. Annealing at 500°C for 2 h of bimetal composite decreases the interval of micro-hardness variation and partially recovers kinetics of phase transitions.

  8. Microstructure and Martensitic Transformation Behaviors of Explosively Welded NiTi/NiTi Laminates

    Institute of Scientific and Technical Information of China (English)

    YAN Zhu; CUI Li-shan; ZHENG Yan-jun

    2007-01-01

    The study is a first attempt to prepare bulk NiTi/NiTi shape memory alloy (SMA) laminates with a macroscopic heterogeneous composition by explosive welding and investigate their microstructures and martensitic transformation behaviors. After explosive welding, a perfect interfacial bonding between the two components and a reversible martensitic transformation are realized in the tandem.Results show achievement of a fine granular structure and the maximum value of microhardness near the welding interface because of the excessive cold plastic deformation and the high impact velocity during the explosive welding. Meanwhile, the effects of aging on the transformation of the welded tandem are investigated by differential scanning calorimeter (DSC) and subject to discussion. The transformation temperatures of NiTi/NiTi SMAs increase with the rise of the aging temperature. The experimental results indicate the shape memory properties of NiTi/NiTi SMA fabricated by explosive welding can be improved by optimizing the aging technology.

  9. Ne Implantation Induced Transformation in Stainless Steel

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    1990-01-01

    This paper reports a microstructural investigation of the changes induced by Ne implantation in stainless steel of the austenitic type. At a critical dose of 2.3 · 10^17/cm^2 a martensitic phase transformation was observed. In particular, attention has been paid to the effect of the stress held of n

  10. Influence of stresses on martensitic transformation in ferromagnetic shape memory Ni50Mn19Fe6Ga25 ribbons

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    [1]Ullakko, K., Huang, J. K., O'Handley, R. C. et al., Large magnetic-field-induced strains in Ni2MnGa single crystals, Appl. Phys. Lett., 1996, 69(13): 1966-1968.[2]James, R. D., Wuttig, M., Magnetostriciton of martensite, Philos. Mag., 1998, A 77: 1273-1275.[3]Wu, G. H., Yu, C. H., Meng, L. Q. et al., Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition, Appl. Phys. Lett., 1999, 75(19): 2990-2992.[4]Tickle, R., James, R. D., Magnetic and magnetomechanical properties of Ni2MnGa, Journal of Magnetism and Magnetic Materials, 1999, 195(3): 627-638.[5]Liu, Z. H., Zhang, M., Wang, W. Q. et al., Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa, J. Appl. Phys., 2002, 92(9): 5006-5010.[6]Zasimchuk, I. K., Kokorin, V. V., Martynov, V. V. et al., Crystal structure of martensite in the Heusler alloy Ni2MnGa, Met. Metalloved., 1990, N6:110-114.

  11. Dependence of the enthalpy of the direct martensitic transformation in titanium nickelide on the stress

    Science.gov (United States)

    Egorov, S. A.; Volkov, A. E.

    2017-02-01

    An original technique of differential thermal analysis for studying thermal properties of samples loaded with a tangential stress has been created. In a series of experiments studying the direct martensitic transformation B2 → B19' in titanium nickelide during cooling under constant stress, it has been found that the enthalpy of transformation linearly decreases with an increase in stress and, at a stress of 100 MPa, it is 30% less than that of the sample in a free state.

  12. Effects of Plastic Deformation and Stresses on Dilatation during the Martensitic Transformation in a B-bearing Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To provide data for improved modelling of the behaviour of steelcomponents in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly,and consequently, the dilatation decreases markedly even at a cooling rate of 280℃/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression.

  13. Sub-zero austenite to martensite transformation in a Fe-Ni-0.6wt.%C alloy

    DEFF Research Database (Denmark)

    Villa, Matteo; Pantleon, Karen; Somers, Marcel A. J.

    2011-01-01

    Martensitic transformation in a model Fe-Ni-0.6wt%C alloy was investigated at sub-zero Celsius temperature. The influence of the thermal path in determining the conditions leading to the formation of martensite was studied. In the investigation, samples were austenitized and quenched, whereafter...

  14. Computer simulations of martensitic transformations in iron-nickel and nickel-aluminium alloys

    CERN Document Server

    Meyer, R J

    1998-01-01

    This thesis focuses on the martensitic transformations in iron-nickel and nickel-aluminum alloys. Molecular-dynamics simulations have been done, employing potentials based on the so-called embedded-atom method (EAM). These potentials were obtained by a fit of parameterized functions to experimental data of the elements iron, nickel, and aluminum as well as the intermetallic compound NiAl. Many aspects of the austenitic transformation in iron-nickel alloys and both, the martensitic and austenitic transformations, in nickel-aluminum alloys were reproduced well by the simulations. The results allow to draw conclusions on the reasons of differences and similarities in the behavior of both alloy systems.

  15. Effect of heat treatment on martensitic transformation in Fe–12.5%Mn–5.5%Si–9%Cr–3.5%Ni alloy

    Indian Academy of Sciences (India)

    T Kirindi; M Dikici

    2005-04-01

    In this study, thermally-induced martensitic transformation ($\\gamma(fcc) \\rightarrow \\varepsilon(hcp)$) in Fe–12.5%Mn–5.5%Si–9%Cr–3.5%Ni (weight) alloy was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of cooling rate was investigated. It was observed that fast cooled sample exhibited regular overlapping of stacking faults and martensite plates were formed parallel to each other. TEM investigations showed that the orientation relationship between – phases corresponds to Shoji–Nishiyama type orientation relationship.

  16. Moessbauer study of Martensitic transformation and collective magnetic excitations in Fe9Ni1 fine particles

    Institute of Scientific and Technical Information of China (English)

    H.M.Widatallah; 黄润生; 等

    1996-01-01

    The austenite to martensity ransformation in fine Fe90Ni.10 particles prepared by evaporation is studied by Moessbauer technique.Unlike bulk Fe.9Ni.1 which is entirely transformed to martensite.these particles show a remarkable austenite stability upon cooling upto liquid nitrogen temperature.This stability is associated with the oxide surface layer formed on the particles and also with their small size.A hyperfine field approach is employed to analyze the martensitic transformation in the particles.It is also shown that,in contrast with large particles ,the temperature variation of the Moessbauer average hyperfine field of the fine particles can be satisfactorily explained in terms of the collective magnetic excitations model.

  17. Effects of Pulsed Current and Pulsed Magnetic Field Complex Pretreatment on Martensite Transformation of Cr5 Steel during Continuous Cooling

    Institute of Scientific and Technical Information of China (English)

    Qing-chun LI; Li-juan LI; Guo-wei CHANG; Qi-jie ZHAI

    2015-01-01

    Carbide precipitation and martensite transformation in Cr5 steel have been observed in situ by high-temper-ature confocal laser-scanning microscopy.In this way,the influences of pulsed current and pulsed magnetic field complex pretreatment on carbide precipitation and martensite transformation during continuous cooling have been studied.The results show that the electropulsing complex pretreatment promotes the precipitation of M7 C3-type car-bides at high temperature,increases the start and finish temperatures of martensite transformation,and extends the phase transformation time.Martensite prefers to nucleate in the austenite with less precipitation of carbides due to the chemically homogeneous distribution of solute atoms.

  18. MARTENSITE AND REVERSE TRANSFORMATION IN PRESTRAINED TiNi SHAPE MEMORY ALLOY THIN FILM

    Institute of Scientific and Technical Information of China (English)

    X.P. Liu; M.Z. Cao; R. Yang

    2003-01-01

    The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un deformed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transforma tion on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.

  19. Martensitic Transformation of TiNi Shape Memory Alloy Fiber Reinforced Ni Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    Lishan CUI; Yan LI; Yan jun ZHENG; Huibin XU

    2003-01-01

    In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNialloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors of the TiNi alloy were studiedby differential scanning calorimeter (DSC), and the results showed that two endothermic peaks appear on the DSC heatingcurves and the reverse transformation temperatures increase with increasing prestrain levels. Moreover, comparing to the freetransformation, the temperature window of the constrained reverse transformation is widely expanded due to the influence ofrecovery stress.

  20. Microtwinning as a common mechanism for the martensitic and pearlitic transformations

    Energy Technology Data Exchange (ETDEWEB)

    Kraposhin, V., E-mail: kraposhin@gmail.com [Bauman Moscow State Technical University, 5, 2nd Baumanskaya Street, 105005 Moscow (Russian Federation); Jakovleva, I.; Karkina, L. [Institute of Metal Physics of Russian Academy of Science, Ekaterinburg (Russian Federation); Nuzhny, G. [Bauman Moscow State Technical University, 5, 2nd Baumanskaya Street, 105005 Moscow (Russian Federation); Zubkova, T. [Institute of Metal Physics of Russian Academy of Science, Ekaterinburg (Russian Federation); Talis, A. [A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow (Russian Federation)

    2013-11-15

    Highlights: ► Diagonal flipping in the coordination polyhedra was proposed as the main mechanism of polymorph transformation. ► Microtwinning of crystal lattice can be effected by diagonal flipping in polyhedra. ► Martensite and perlite transformation can be fulfilled by the similar microtwinning. ► Twinning of austenite during perlite transformation has been observed by electron microscopy, thus confirming the proposed model. ► Orientation relationships predicted by model are in accordance with the experiment. -- Abstract: Common model for austenite transformations to pearlite and martensite has been proposed. The model uses a topological operation which is a local flipping of interatomic bonds resulting in formation of the structural unit of the coherent twin boundary. Main structural unit of a coherent twin boundary along {1 1 3} in the FCC lattice is a trigonal prism which is also the main building unit for the cementite structure. The atomic structure of such multiple {1 1 3} twins coincides with the structure of multiple twins along {1 1 2} of the BCC lattice, so the FCC–BCC transformation route is the FCC twinning along {1 1 3} and detwinning of {1 1 2} BCC twins into BCC structure. Carbon atoms serve as stabilizers to the prismatic iron configurations thus forming the cementite structure during pearlite transformation. High density of microtwins in the rest austenite after pearlite transformation in 1.2C–4Mn steel and new orientation relationships between pearlite constituents and austenite have been observed by transmission electron microscopy in full consistency with the proposed model. The twinning–detwinning mechanism prescribes also parallelism between {1 1 3} FCC and {1 1 2} BCC for martensite transformation in full accordance with published data.

  1. Martensitic phase transformations and magnetocaloric effect in Al co-sputtered Ni–Mn–Sb alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Functional Nanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Choudhary, Nitin [Department of Materials Science and Engineering, University of North Texas, North Texas Discovery Park, 3940 North Elm St., Denton, TX 76207 (United States); Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in [Functional Nanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India)

    2015-08-15

    Highlights: • The Al content leads to a increase in the martensitic transformation temperature. • A maximum ΔS{sub M} = 23 mJ/cm{sup 3} K at 300 K was observed in the N{sub 49.8}Mn{sub 32.97}Al{sub 4.43}Sb{sub 12.8}. • The refrigeration capacity RC = 64.4 mJ/cm{sup 3} at 2 T for N{sub 49.8}Mn{sub 32.97}Al{sub 4.43}Sb{sub 12.8} film. - Abstract: We systematically investigated the influence of aluminium (Al) content on the martensitic transformations and magnetocaloric effect (MCE) in Ni–Mn–Sb ferromagnetic shape memory alloy (FSMA) thin films. The temperature-dependent magnetization (M–T) and resistance (R–T) results displayed a monotonic increase in martensitic transformation temperature (T{sub M}) with increasing Al content. From the isothermal magnetization (M–H) curves, a large magnetic entropy change (ΔS{sub M}) of 23 mJ/cm{sup 3} K was observed in N{sub 49.8}Mn{sub 32.97}Al{sub 4.43}Sb{sub 12.8}. A remarkable enhancement of MCE could be attributed to the significant change in the magnetization of Ni–Mn–Sb films with increasing Al content. Furthermore, a high refrigerant capacity (RC) was observed in Ni–Mn–Sb–Al thin films as compared to pure Ni–Mn–Sb. The substitution of Al for Mn in Ni–Mn–Sb thin films with field induced MCE are potential candidates for micro length scale magnetic refrigeration applications where low magnetic fields are desirable.

  2. Latent heat contribution to the direct magnetocaloric effect in Ni-Mn-Ga shape memory alloys with coupled martensitic and magnetic transformations

    Science.gov (United States)

    Caballero-Flores, R.; Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J. I.; Gómez-Polo, C.

    2016-05-01

    We report the direct magnetocaloric response of materials that present a second-order phase transition in the temperature range where a first-order structural transition also occurs. In particular, the influence of the latent heat on the field-induced adiabatic temperature change has been analyzed in a Ni-Mn-Ga alloy with coupled martensitic and magnetic transformations. It is found that discrepancies around 20% arise depending on whether the latent heat is taken into account or not. From the observed results, a general expression for the indirect determination of the adiabatic temperature change, that takes into account the contributions of both the martensitic and magnetic transformations, is proposed and experimentally confirmed. The observed key role of the latent heat allows us to understand why materials with first-order transformations do not present adiabatic temperature changes as higher as those which would correspond to materials undergoing second-order transformations with similar isothermal entropy change.

  3. Burst Martensitic Transformations in a Steel and in a Pu-Ga Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Blobaum, K; Krenn, C; Wall, M; Schwartz, A

    2005-06-14

    Upon cooling a Pu-2.0 at% Ga alloy from the ambient temperature, the metastable delta phase partially transforms martensitically to the alpha-prime phase. Because this transformation involves a 25% volume contraction, plastic accommodation by the delta matrix must occur. When the material is isochronally heated or isothermally annealed above ambient temperatures, the reversion of alpha-prime to delta is likely to occur by the alpha-prime/delta interface moving to consume the alpha-prime particles. This reversion exhibits a burst martensitic mode and is observed as sharp spikes in differential scanning calorimetry data and as steps in resistometry data. These large bursts appear to be the result of an interplay between the autocatalytically driven transformation of individual alpha-prime particles and self-quenching caused by small changes in temperature and/or stress accompanying each burst. The behavior of this Pu-Ga alloy is compared to that of a steel referred to as a ''burst martensite'' in the literature, which also exhibits bursts during both thermal cycling and isothermal holds.

  4. How to enable bulk-like martensitic transformation in epitaxial films

    Directory of Open Access Journals (Sweden)

    Marius Wodniok

    2017-05-01

    Full Text Available The present study is dedicated to the influence of different substrate and buffer layer materials on the martensitic transformation in sputter deposited epitaxial shape memory Heusler alloys. For this, the magnetocaloric Heusler alloy Ni-Co-Mn-Al [N. Teichert et al., Phys. Rev. B 91, 184405 (2015] is grown on MgO(001, MgAl2O4(001, and MgO(001/V substrates, which exhibit a lattice misfit to the Ni-Co-Mn-Al between −1.2% and 3.6%. By temperature dependent X-ray diffraction measurements it is shown that the optimum buffer layer for shape memory Heusler films is not one with minimum lattice misfit, but one with minimum Young’s modulus and moderate misfit because an elastic buffer layer can deform during the martensitic transformation of the Heusler layer. Furthermore, epitaxial strain caused by a moderate lattice misfit does not significantly change the martensitic transformation temperatures.

  5. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Koizumi, Yuichiro; Chiba, Akihiko

    2014-04-01

    Locally developed strains caused by athermal γ face-centered cubic (fcc)→ε hexagonal close-packed (hcp) martensitic transformation were investigated for the γ matrix of Ni-free Co-29Cr-6Mo (wt%) alloys prepared with or without added nitrogen. Electron-backscatter-diffraction-(EBSD)-based strain analysis revealed that in addition to ε-martensite interiors, the N-free alloy that had a duplex microstructure consisting of the γ matrix and athermal ε-martensite plates showed larger magnitudes of both elastic and plastic strains in the γ phase matrix than the N-doped counterpart that did not have a ε-martensite phase. Transmission electron microscopy (TEM) results indicated that the ε-martensite microplates were aggregates of thin ε-layers, which were formed by three different {111}γ〈112¯〉γ Shockley partial dislocations in accordance with a previously proposed mechanism (Putaux and Chevalier, 1996) that canceled the shear strains of the individual variants. The plastic strains are believed to have originated from the martensitic transformation itself, and the activity of dislocations is believed to be the origin of the transformation. We have revealed that the elastic strains in the γ matrix originate from interactions among the ε-martensite phase, extended dislocations, and/or thin ε-layers. The dislocations highly dissociated into stacking faults, making stress relaxation at intersections difficult and further introducing local strain evolution.

  6. Martensitic transformation in rapidly solidified Heusler Ni{sub 49}Mn{sub 39}Sn{sub 12} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Hongxing, E-mail: hxzheng@shu.edu.cn [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Wu Dianzhen; Xue Sichuang [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Frenzel, Jan; Eggeler, Gunther [Institute of Materials, Ruhr University Bochum, Bochum 44801 (Germany); Zhai Qijie [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2011-08-15

    In the present work, the microstructure evolution and kinetics of the martensitic transformation are investigated in as-spun and annealed ribbons of Heusler Ni{sub 49}Mn{sub 39}Sn{sub 12} using electron microscopy, X-ray diffraction and differential scanning calorimetry. Both ribbons undergo a reversible martensitic transformation during thermal cycling and the low-temperature martensite is confirmed to be a modulated four-layered orthorhombic (4O) structure through in situ cooling transmission electronic microscopy investigation. The annealing effect on the martensitic transformation behavior is discussed from the viewpoints of electron concentration, Mn-Mn interatomic distance, atomic order degree and grain size. A strong cooling-rate dependence of phase transition kinetics is found and the mechanism is analyzed. The satisfactory reproducibility obtained during thermal cycling test of this alloy ribbons offers great potential for practical applications.

  7. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Emre, Baris [Department of Engineering Physics, Ankara University, 06100 Ankara (Turkey); Bruno, Nickolaus M. [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Yuce Emre, Suheyla [Department of Physics, Ondokuz Mayis University, 55139 Samsun (Turkey); Karaman, Ibrahim, E-mail: ikaraman@tamu.edu [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-12-08

    The effect of Nb substitution for Ni in Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloys potential candidates for solid state refrigeration near room temperature.

  8. Fe-Ni-Si基奥氏体时效合金的马氏体相变和形状记忆效应%Martensitic transformation and shape memory effect in ausaged Fe-Ni-Si-based alloys

    Institute of Scientific and Technical Information of China (English)

    田中优树

    2005-01-01

    It is well known that the morphologies of the α martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α martensites, onlythe thinplate martensite, which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.

  9. Nucleation barrier of fcc(γ)→hcp(ε) martensitic transformation in Fe-based alloys

    Institute of Scientific and Technical Information of China (English)

    HUANG Xing; CHEN Shipu

    2004-01-01

    Based on the dislocation theory and Olson's stacking fault model, a model describing the nucleation of an hcp(ε) martensite embryo at low-angle grain boundary is proposed with the influence of external stress field taken into account. The dependences of temperature (T), shear stress (τ) and dislocation density at grain boundary on the martensite nucleation in FeMnSi based alloy, as an example, are numerically simulated. It has been shown that there exist the subcritical and critical embryos during the course of ε-phase nucleation. The free energy difference between them is just the energy barrier of embryo growth. Depending on T and τ, the characteristic embryo sizes may vary in wide ranges and decrease with increasing σ and decreasing T. The energy condition of martensitic transformation at Ms and critical shear stress (τc) is discussed from the viewpoint of kinetics and thus the TEM observed result that stacking fault energy is not zero at Ms temperature is reasonably explained. Besides, it is predicted that the high dislocation density at grain boundary can promote the nucleation of fcc→hcp transformation in Fe-based alloys.

  10. A structured continuum modelling framework for martensitic transformation and reorientation in shape memory materials.

    Science.gov (United States)

    Bernardini, Davide; Pence, Thomas J

    2016-04-28

    Models for shape memory material behaviour can be posed in the framework of a structured continuum theory. We study such a framework in which a scalar phase fraction field and a tensor field of martensite reorientation describe the material microstructure, in the context of finite strains. Gradients of the microstructural descriptors naturally enter the formulation and offer the possibility to describe and resolve phase transformation localizations. The constitutive theory is thoroughly described by a single free energy function in conjunction with a path-dependent dissipation function. Balance laws in the form of differential equations are obtained and contain both bulk and surface terms, the latter in terms of microstreses. A natural constraint on the tensor field for martensite reorientation gives rise to reactive fields in these balance laws. Conditions ensuring objectivity as well as the relation of this framework to that provided by currently used models for shape memory alloy behaviour are discussed.

  11. Simultaneous investigation of thermal, acoustic, and magnetic emission during martensitic transformation in single-crystalline Ni2MnGa

    Science.gov (United States)

    Tóth, László Z.; Daróczi, Lajos; Szabó, Sándor; Beke, Dezső L.

    2016-04-01

    Simultaneous thermal, acoustic, and magnetic emission (AE and ME) measurements during thermally induced martensitic transformation in Ni2MnGa single crystals demonstrate that all three types of the above noises display many coincident peaks and the same start and finish temperatures. The amplitude and energy distribution functions for AE and ME avalanches satisfy power-law behavior, corresponding to the symmetry of the martensite. At zero external magnetic field asymmetry in the exponents was obtained: their value was larger for heating than for cooling. Application of constant, external magnetic fields (up to B =722 mT) leads to the disappearance of the above asymmetry, due to the decrease of the multiplicity of the martensite variants. Time correlations (i.e., the existence of nonhomogeneous temporal processes) within AE as well as ME emission events are demonstrated by deviations from the uncorrelated behavior on probability distributions of waiting times as well as of a sequence of number of events. It is shown that the above functions collapse on universal master curves for cooling and heating as well as for AE and ME noises. The analysis of the existence of temporal correlations between AE and ME events revealed that at short times the acoustic signals show a time delay relative to the magnetic one, due to the time necessary for the propagation of the ultrasound. At intermediate times, as expected, the magnetic signal is delayed, i.e., the magnetic domain rearrangement followed the steps of structural transformation. At much longer times the deviation from an uncorrelated (Poisson-type) behavior is attributed to the nonhomogeneity of the avalanche statistics.

  12. Deformation behavior of duplex austenite and ε-martensite high-Mn steel

    Directory of Open Access Journals (Sweden)

    Ki Hyuk Kwon, Byeong-Chan Suh, Sung-Il Baik, Young-Woon Kim, Jong-Kyo Choi and Nack J Kim

    2013-01-01

    Full Text Available Deformation and work hardening behavior of Fe–17Mn–0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.

  13. Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension-compression loading of an Fe-Mn-Si-based shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sawaguchi, Takahiro [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)]. E-mail: sawaguchi.takahiro@nims.go.jp; Sahu, Puspendu [Materials Science and Technology Division, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Kikuchi, Takehiko [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Ogawa, Kazuyuki [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kajiwara, Setsuo [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kushibe, Atsumichi [Takenaka Corporation, 1-5-1, Otsuka, Inzai, Chiba 270-1395 (Japan); Higashino, Masahiko [Takenaka Corporation, 1-5-1, Otsuka, Inzai, Chiba 270-1395 (Japan); Ogawa, Takatoshi [Takenaka Corporation, 1-5-1, Otsuka, Inzai, Chiba 270-1395 (Japan)

    2006-06-15

    The present work concerns the damping behavior of an Fe-28Mn-6Si-5Cr-0.5NbC (mass%) shape memory alloy determined by low cycle fatigue tests, and the corresponding deformation mechanism under cyclic tension-compression loading. The specific damping capacity increases with increasing strain amplitude and reaches saturation at {approx}80%, above the strain amplitude of 0.4%. Quantitative X-ray diffraction analyses and microstructural observations using atomic force microscopy revealed that a significant amount of the tensile stress-induced {epsilon} martensite is reversely transformed into the austenite by subsequent compression; in other words, the stress-induced 'reverse' martensitic transformation takes place in the alloy.

  14. Effects of applied stress and plastic strain on. gamma. r reversible. epsilon. martensitic transformation in high Mn alloy polyctystals. Ko Mn tetsu gokin takessho ni okeru. gamma. r reversible. epsilon. martensite hentai ni oyobosu gairyoku to hizumi no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tomota, Y.; Piao, M.; Hasunuma, T.; Kimura, Y. (Ibaraki Univ., Ibaraki (Japan))

    1990-06-20

    The influences of applied stress and plastic strain on a transformation austenite ({gamma}) to hcp martensite ({epsilon}) were studied on Fe-16wt%Mn, Fe-24wt%Mn, and Fe-24%Mn-6%Si alloy, and a transformation mechanism and a shape memory phenomenon were more deeply examined. As the quenching structure of three kinds of the alloys consists of two phases of {gamma} and {epsilon}, the specimens were cooled after heated above the A {sub f} temperature to keep {gamma} single phase, and then the tensile tests were carried out. Positive temperature dependence was found under the 0.2% proof stress due to stress-induced {gamma}{yields} {epsilon} transformation in each of Fe-Mn alloy and Fe-24%Mn-6%Si alloy. When {gamma} phase of Fe-24%Mn alloy stabilized due to cyclic transformation was stretched at room temperature, the yield stress was remarkably lowered by the stress-induced {gamma}{r arrow}{epsilon} transformation. When the specimens were stretched at 523K under stress which was larger than the yield strength and then cooled, the elongation along the applied stress direction due to martensitic tranformation was recognized. A shape recovery was remarkable in Si content alloys. 22 refs., 5 figs.

  15. Effects of grain size on the martensitic phase transformation of nanocrystalline Ni/Al shape memory alloys

    OpenAIRE

    Morrison, Keith; Cherukara, Mathew; Kim, Hojin; Strachan, Alejandro

    2014-01-01

    Shape memory alloys (SMAs) owe their distinct properties to a diffusion less martensitic phase transformation from a high temperature, high symmetry phase (austenite) to a low temperature (martensite) phase upon cooling or strain. Their shape memory and pseudoelastic properties make SMAs useful as active components in microdevices, medical implants and for vibrational damping. Despite their widespread application, the miniaturization limit of SMAs is not known. In this study, we use large-sca...

  16. Stability analysis of the martensitic phase transformation in Co2NiGa Heusler alloy

    Science.gov (United States)

    Talapatra, Anjana; Arróyave, Raymundo; Entel, Peter; Valencia-Jaime, I.; Romero, Aldo H.

    2015-08-01

    Phase competition and the subsequent phase selection are important characteristics of alloy systems exhibiting numerous states of distinct symmetry but comparable energy. The stoichiometric Co2NiGa Heusler alloy exhibits a martensitic transformation with concomitant reduction in symmetry from an austenitic L 21 phase (cubic) to a martensitic L 10 phase (tetragonal). A structural search was carried out for this alloy and it showed the existence of a number of structures with monoclinic and orthorhombic symmetry with ground state energies comparable to and even less than that of the L 10 structure, usually reported as the ground state at low temperatures. We describe these structures and focus in particular on the structural transition path from the L 21 to tetragonal and orthorhombic structures for this material. Calculations were carried out to study the Bain (L 21-L 10 ) and Burgers (L 21-hcp ) transformations. The barrierless Burgers path yielded a stable martensitic phase with orthorhombic symmetry (O ) with energy much lower—beyond the expected uncertainty of the calculation methods—than the known tetragonal L 10 martensitic structure. This low-energy structure (O ) has yet to be observed experimentally and it is thus of scientific interest to discern the cause for the apparent discrepancy between experiments and calculations. It is postulated that the Co2NiGa Heusler system exhibits a classic case of the phase selection problem: although the unexpected O phase may be relatively more stable than the L 10 phase, the energy barrier for the (L 21-O ) transformation may be much higher than the barrier to the (L 21-L 10 ) transformation. To validate this hypothesis, the stability of this structure was investigated by considering the contributions of elastic and vibrational effects, configurational disorder, magnetic disorder, and atomic disorder. The calculations simulating the effect of magnetic disorder/high temperature as well as the atomic disorder

  17. Effect of chemical ordering annealing on martensitic transformation and superelasticity in polycrystalline Ni–Mn–Ga microwires

    Energy Technology Data Exchange (ETDEWEB)

    Qian, M.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Advanced Composites Centre for Innovation and Science (ACCIS), University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR (United Kingdom); Zhang, X.X., E-mail: xxzhang@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, L.S.; Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Peng, H.X., E-mail: hxpengwork@zju.edu.cn [Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-10-05

    Highlights: • Chemical ordering annealing on Ni–Mn–Ga microwires was found to reduce the defect density and internal stress. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to increase the MT temperatures, Curie point and saturation magnetization. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to decrease the SIM stress and improve the superelastic reversibility. • Chemical ordering annealing on Ni–Mn–Ga microwires was found to weaken the temperature dependences of the superelastic stresses. - Abstract: Polycrystalline Ni–Mn–Ga microwires of diameter 30–80 μm were prepared by melt-extraction technique on a large scale. The rapidly solidified microwires exhibit a fairly high ductility and excellent shape memory property. Here, with the aim to reduce the defect density, internal stress and compositional inhomogeneity in the as-extracted microwires, a stepwise chemical ordering annealing heat treatment was carried out and the effect of annealing on martensitic transformation, magnetic properties and superelastic behavior were investigated. The results indicate that annealing increase the transformation temperature and decrease the transformation hysteresis. These are related to composition homogenization, increase of atomic ordering and decrease in internal stress and defects. During mechanical tests, the stress-induced martensite (SIM) formation took place at a much lower stress after annealing treatment. The annealed microwires also demonstrate a lower superelastic hysteresis and a higher recovery rate compared to the as-extracted microwires. The temperature dependence of SIM stress is weaker after annealing, which is related to the enthalpy change (ΔH) and phase transformation temperature change according to the Clausius–Clapeyron relation.

  18. EELS study of the inverse martensitic transformation of 2H and 18R Cu-Al-Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Magana, F., E-mail: francisco.espinosa@cimav.edu.m [Centro de Investigacion en Materiales Avanzados, S.C., Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Ochoa-Lara, M.T. [Centro de Investigacion en Materiales Avanzados, S.C., Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Lovey, F. [Centro Atomico Bariloche, 8300 S.C. de Bariloche (Argentina); Flores-Zuniga, H. [Universidad Autonoma de Zacatecaa, Av. Lopez Velarde 801, Zacatecas, Zac. 98060 (Mexico); Rios-Jara, D. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, San luis Potosi, S.L.P. 78126 (Mexico)

    2010-01-01

    Changes in 3d states occupancy associated with the inverse martensitic transformation in two samples of Cu-Al-Zn alloys with 2H and 18R martensitic structures were investigated by electron energy loss spectroscopy (EELS). The Cu L{sub 2,3} white-lines intensities, which reflect the unoccupied density of states in 3d bands, were measured in situ, during the phase transformation in both the martensite and austenite phases. We find that the white-lines intensity decreases during the inverse transformation, when going from martensite to austenite. Even though the initial 3d occupation numbers in 2H and 18R martensitic structures are different, after the transformation, the 3d occupation numbers in the now austenitic structure have decreased in both samples, indicating that some electrons left Cu 3d bands during phase transformation. Interestingly enough, the occupation numbers in the final phases, which have the same structure, reach the same value, indicating that changes in EELS spectra are a consequence of structural changes.

  19. Thermoelastic Martensitic Transformations in Single Crystals of FeNiCoAlX(B) Alloys

    Science.gov (United States)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Platonova, Yu. N.; Poklonov, V. V.; Kukshauzen, I. V.; Kukshauzen, D. A.; Panchenko, M. Yu.; Reunova, K. A.

    2016-03-01

    Using single crystals of Fe-based disordered alloys (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% X (0.05% B) (at.%) (X = Ti, Nb(B), (Ti + Nb)B), undergoing thermoelastic γ-α '-martensitic transformations (MTs), it is shown that precipitation of particles of the ordered γ'-phase in the course of aging at T = 973 K for 5 h results in the development of shape memory (SME) and superelasticity (SE) effects. It is experimentally found that variation in chemical composition and size of disperse particles of the γ'-phase allows controlling both mechanical and functional properties - SME and SE.

  20. A study of a hamiltonian model for martensitic phase transformations including microkinetic energy

    CERN Document Server

    Theil, F

    1998-01-01

    How can a system in a macroscopically stable state explore energetically more favorable states, which are far away from the current equilibrium state? Based on continuum mechanical considerations we derive a Boussinesq-type equation which models the dynamics of martensitic phase transformations. The solutions of the system, which we refer to as microkinetically regularized wave equation exhibit strong oscillations after short times, thermalization can be confirmed. That means that macroscopic fluctuations of the solutions decay at the benefit of microscopic fluctuations. First analytical and numerical results on the propagation of phase boundaries and thermalization effects are presented. Despite the fact that model is conservative, it exhibits the hysteretic behavior. Such a behavior is usually interpreted in macroscopic models in terms of dissipative threshold which the driving force has to overcome to ensure that the phase transformation proceeds. The threshold value depends on the amount of the transforme...

  1. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  2. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M., E-mail: veis@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 12116 Prague (Czech Republic); Straka, L. [Laboratory of Engineering Materials, Aalto University, PL 14200, FIN-00076 Aalto (Finland); Heczko, O. [Institute of Physics ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2015-05-07

    Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  3. Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Sang Hwan Bak

    2016-07-01

    Full Text Available Plastic deformation and strain-induced martensite (SIM, α′ transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture, tensile strength, hardness, and the amount of SIM increased with decreasing the strain rate. The strain-rate dependence of RT tensile properties was observed to be related to the amount of SIM. Specifically, SIM formed during tensile tests was beneficial in increasing the elongation to fracture, hardness, and tensile strength. Hydrogen suppressed the SIM formation, leading to hydrogen softening and localized brittle fracture.

  4. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    Science.gov (United States)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  5. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Z. Y.; Liu, E. K., E-mail: ekliu@iphy.ac.cn; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Y. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Han, X. L.; Du, Z. W. [National Center of Analysis and Testing for Nonferrous Metals and Electronic Materials, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Luo, H. Z.; Liu, G. D. [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-08-15

    The all-d-metal Mn{sub 2}-based Heusler ferromagnetic shape memory alloys Mn{sub 50}Ni{sub 40−x}Co{sub x}Ti{sub 10} (x = 8 and 9.5) are realized. With a generic comparison between d-metal Ti and main-group elements in lowering the transformation temperature, the magnetostructural martensitic transformations are established by further introducing Co to produce local ferromagnetic Mn-Co-Mn configurations. A 5-fold modulation and (3, −2) stacking of [00 10] of martensite are determined by X-ray diffraction and HRTEM analysis. Based on the transformation, a large magneto-strain of 6900 ppm and a large volume change of −2.54% are observed in polycrystalline samples, which makes the all-d-metal magnetic martensitic alloys of interest for magnetic/pressure multi-field driven applications.

  6. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance

    OpenAIRE

    Hamilton Ferreira Gomes de Abreu; Sheyla Santana de Carvalho; Pedro de Lima Neto; Ricardo Pires dos Santos; Válder Nogueira Freire; Paulo Maria de Oliveira Silva; Sérgio Souto Maior Tavares

    2007-01-01

    In austenitic stainless steels, plastic deformation can induce martensite formation. The induced martensite is related to the austenite (gamma) instability at temperatures close or below room temperature. The metastability of austenite stainless steels increases with the decreasing of stacking fault energy (SFE). In this work, the deformation induced martensite was analyzed by X ray diffraction, electron back scatter diffraction (EBSD), magnetic methods and atomic force microscope (AFM) in sa...

  7. Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy

    Science.gov (United States)

    Kosogor, Anna

    2016-06-01

    An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.

  8. Effects of Annealing on the Martensitic Transformation of Ni-Based Ferromagnetic Shape Memory Heusler Alloys and Nanoparticles

    OpenAIRE

    Tina Fichtner; Changhai Wang; Aleksandr A. Levin; Guido Kreiner; Catalina Salazar Mejia; Simone Fabbrici; Franca Albertini; Claudia Felser

    2015-01-01

    We report on the effects of annealing on the martensitic phase transformation in the Ni-based Heusler system: Mn50Ni40Sn10 and Mn50Ni41Sn9 powder and Co50Ni21Ga32 nanoparticles. For the powdered Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys, structural and magnetic measurements reveal that post-annealing decreases the martensitic transformation temperatures and increases the transition hysteresis. This might be associated with a release of stress in the Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys during the an...

  9. Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study

    Institute of Scientific and Technical Information of China (English)

    TAN Chang-Long; TIAN Xiao-Hua; CAI Wei

    2008-01-01

    Effect of Fe on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by the experiments and first-principles caIculations. The results show that Fe is predicted to occupy Ru sites. The addition of Fe increases the stability of Nb50Ru50-xFex β phase, leading to the significant decrease of the β to β1 martensitic transformation temperature. In addition, the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.

  10. First-principles study of martensitic transformation and magnetic properties of carbon doped Ni-Mn-Sn Heusler alloys

    Science.gov (United States)

    Xiao, Haibo; Yang, Changping; Wang, Ruilong; Xu, Linfang; Liu, Guozhen; Marchenkov, V. V.

    2016-10-01

    The magnetic properties, structural stabilities and martensitic transformation of carbon doped Ni-Mn-Sn Heusler alloys are investigated by means of ab initio calculations in framework of the density functional theory. The results of calculations have shown that the martensitic transformation can be realized in all series of carbon doped Ni2Mn1.5Sn0.5 - xCx alloys with tetragonal ratio of 1.34, 1.40,1.42 and 1.44, respectively for x = 0.125 , 0.25 , 0.375 and 0.5. The DOS peak at the Fermi level almost disappearing in the tetragonal phase near the Fermi level is the evidence of triggering martensitic transformation which is due to the structural Jahn-Teller effect. We have also found that the difference between the austenitic and martensitic phases increases with increasing carbon content, which implies an enhancement of the martensitic phase transition temperature (TM). Besides, the electron density difference shows the enhancement of bonding between Mn and carbon atoms with the distortion taken place.

  11. Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel

    Science.gov (United States)

    Breda, Marco; Brunelli, Katya; Grazzi, Francesco; Scherillo, Antonella; Calliari, Irene

    2015-02-01

    Duplex stainless steels (DSSs) are biphasic steels having a ferritic-austenitic microstructure that allows them to combine good mechanical and corrosion-resistance properties. However, these steels are sensitive to microstructural modifications, such as ferrite decomposition at high temperatures and the possibility of strain-induced martensite (SIM) formation from cold-worked austenite, which can significantly alter their interesting features. In the present work, the effects of cold rolling on the developed microstructural features in a cold-rolled SAF 2205 DSS and the onset of martensitic transformation are discussed. The material was deformed at room temperature from 3 to 85 pct thickness reduction, and several characterization techniques (scanning and transmission electron microscopy, X-ray diffraction, hardness measurements, and time-of-flight-neutron diffraction) were employed in order to fully describe the microstructural behavior of the steel. Despite the low stacking fault energy of DSS austenite, which contributed to SIM formation, the steel was found to be more stable than other stainless steel grades, such as AISI 304L. Rolling textures were similar to those pertaining to single-phase materials, but the presence of the biphasic (Duplex) microstructure imposed deformation constraints that affected the developed microstructural features, owing to phases interactions. Moreover, even if an intensification of the strain field in austenite was revealed, retarded SIM transformation kinetics and lower martensite amounts with respect to AISI 304L were observed.

  12. EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS%加载方式对奥氏体不锈钢力学性能和马氏体相变的影响

    Institute of Scientific and Technical Information of China (English)

    徐勇; 张士宏; 程明; 宋鸿武; 王苏程

    2013-01-01

    Driven by a good combination of strength and ductility,austenitic stainless steels have attracted much interest in the past decade.These metastable alloys fall into the category of transformation induced plasticity (TRIP) steels in which high strength and excellent ductility can be achieved due to their strain-induced martensitic transformation at ambient temperature.However,there are few reports on the detail of promoting this phase transformation and enhancing the TRIP effect during deformation only by changing the loading mode.In present work,the effect of loading modes on mechanical property and microstructure of austenitic stainless steels was investigated under various temperatures.The tensile tests results reveal that cyclic tensile loading and unloading (CTLU)mode can strongly influence the deformation behavior of AISI 304 steel.There is no difference at high temperature tension by different loading modes.Compared with the conventional monotonic tensile loading (MTL) mode,the elongation has been slightly reduced by CTLU mode at cryogenic temperature.However,CTLU mode can improve both strength and ductility of AISI 304 steel at room temperature.An in situ X-ray diffraction has been carried out to identify and evaluate strain-induced martensitic transformation by different loading modes at room temperature.Experimental results showed that the fraction of strain-induced martensite increases when unloading happens.It indicated that CTLU mode can enhance strain hardening in AISI 304 stainless steel,which prolongs the time to neck formation to a significant extent.Consequently the TRIP effect is enhanced.%研究了不同温度范围单向拉伸加载方式对奥氏体不锈钢力学性能和组织演变的影响.结果表明,循环加卸载拉伸方式显著影响304不锈钢的力学性能:在高温拉伸变形时,不同加载方式所得到的力学性能相同;在0℃以下,循环加卸载方式导致试样的延伸率降低;而在室温条件下,循环

  13. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    Science.gov (United States)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  14. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.

    Science.gov (United States)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-05

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  15. Martensitic and magnetic transformation of Co41Ni32Al24Sb3 and Co41Ni32Al27 alloys

    Institute of Scientific and Technical Information of China (English)

    XU Guo-fu; YIN Zhi-min; LUO Feng-hua; MOU Shen-zhou; K.OIKAWA

    2006-01-01

    The martensitic transformation and magnetic property of Co41Ni32Al27 and Co41Ni32Al24Sb3 alloys were investigated by optical microscopy(OM), scanning electric microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray diffractometry (XRD), differential scanning calorimeter analysis(DSC) and vibration sample magnetometer(VSM) methods. The results show that martensitic crystal structure of Co41Ni32Al24Sb3 alloy is still L10 type. Both martensitic transformation temperature Tm and Curie point Tc are in linear relation to quenching temperature. Tm increases by 9 K and Tc increases by 7.5 K for every 10 K increasing in quenched temperature. Quenched from same temperature, Tm of Co41Ni32Al24Sb3 alloy is higher than that of Co41Ni32Al27 alloy by 76 K, meanwhile Tc is higher by 18 K. The melting point of Co-Ni-Al alloy is decreased by the Sb addition, eutectic structure appears in Co41Ni32Al24Sb3 alloy annealed at 1 573 K, which indicates that the alloy is partially melted, whereas Co41Ni32Al27 alloy can be annealed at 1 623 K without melted. The martensitic transformation temperature range of Co41Ni32Al24Sb3 alloy is 22-29 K, only half that of Co41Ni32Al27 alloy. This is a very important result to benefit the achievement of large magnetic field induced strain on Co-Ni-Al based alloy. The results of Tm and Tc were explained by total average s+d electron concentration and magnetic valence number Zm respectively.

  16. The contribution of dislocation - Impurities interaction to kinetics of martensitic transformation of quenched fcc Fe-Ni-Mo alloys

    NARCIS (Netherlands)

    Golovin, [No Value; Goncharov, S; Golovin, SA

    1996-01-01

    The kinetics of martensitic transformation in austenitic Fe-Ni-Mo alloys depends on the carbon content. Analysis of carbon redistribution between f.c.c. solid solution and dislocation has been carried out with the help of internal friction (amplitude and temperature effects) study and stress relaxat

  17. Low-temperature criticality of martensitic transformations of Cu nanoprecipitates in α-Fe.

    Science.gov (United States)

    Erhart, Paul; Sadigh, Babak

    2013-07-12

    Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.

  18. Grinding induced martensite on the surface of rails

    DEFF Research Database (Denmark)

    Rasmussen, C.J.; Zhang, Xiaodan; Danielsen, Hilmar Kjartansson

    2014-01-01

    determined. Two different rail types R260 and R350HT that both had been ground by a grinding train were investigated. The rail sections, studied using optical and scanning electron microscopy, showed that the surface of both types of rails is covered with WELs. The hardness of the WEL is increased compared...... to the base material and the microstructural investigations reveal that a martensitic structure is present at the surface....

  19. Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation

    Directory of Open Access Journals (Sweden)

    Firstov Georgiy

    2015-01-01

    Full Text Available It was shown very recently that despite high thermal stability some high entropy alloys, namely, intermetallic compounds of TiZrHfCoNiCu family, undergo martensitic transformation and exhibit shape memory effect [1]. It was also found that X-ray diffraction patterns taken from those compounds resemble qualitatively ones of B2 ordering type for austenitic state and B19` - for martensite. It is going to be shown [2] that the ordered structure of austenite phase is not B2 but is a result of group-subgroup transition down to triclinic P1 space group. Present paper reports onto the results of electron structure modelling combined with crystal structure analysis with the help of experimental data Rietveld refinement performed for TiZrHfCoNiCu intermetallics. Crystal structures of austenite and martensite phases for these high entropy intermetallics will be discussed.

  20. Analysis of phase transformation from austenite to martensite in NiTi alloy strips under uniaxial tension

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phase transformation from austenite to martensite in NiTi alloy strips under the uniaxial tension has been observed in experiments and numerically simulated as a localized deformation. This work presents an analysis using the theory of phase transformation. The jump of deformation gradient across the interface between two phases and the Maxwell relation are considered. Governing equations for the phase transformation are derived. The analysis is reduced to finding the minimum value of the loading at which the governing equations have a unique, real and physically acceptable solution. The equations are solved numerically and it is verified that the unique solution exists definitely.The Maxwell stress, the stresses and strains inside both austenite and martensite phases,and the transformation-front orientation angle are determined to be in reasonably good agreement with experimental observations.

  1. Stress-induced martensite variant reorientation in magnetic shape memory Ni Mn Ga single crystal studied by neutron diffraction

    Science.gov (United States)

    Molnar, P.; Sittner, P.; Lukas, P.; Hannula, S.-P.; Heczko, O.

    2008-06-01

    Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal was studied in situ by the neutron diffraction technique. Principles of determination of individual tetragonal martensitic variants in shape memory alloys are explained. Using neutron diffraction we show that the macroscopic strain originates solely from the martensite structure reorientation or variant redistribution. Neutron diffraction also reveals that the reorientation of martensite is not fully completed even at a stress value of 25 MPa, which is about 20 times larger than the mean stress needed for reorientation. Only one twinning system is active during the reorientation process.

  2. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.Y. [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: suncy@me.ustb.edu.cn; Fang, G.; Lei, L.P.; Zeng, P. [Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-01-15

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J{sub 2} flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results.

  3. Bulk-like behavior in the temperature driven martensitic transformation of Cu–Zn–Al thin films with 2H structure

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, N., E-mail: nhaberk@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA, Bustillo 9500, S.C. de Bariloche (Argentina); Condó, A.M. [Centro Atómico Bariloche, CNEA, Bustillo 9500, S.C. de Bariloche (Argentina); Instituto Balseiro, Bustillo 9500, S.C. de Bariloche (Argentina); Espinoza, C. [Instituto Balseiro, Bustillo 9500, S.C. de Bariloche (Argentina); Jaureguizahar, S.; Guimpel, J.; Lovey, F.C. [Centro Atómico Bariloche, CNEA, Bustillo 9500, S.C. de Bariloche (Argentina); Instituto Balseiro, Bustillo 9500, S.C. de Bariloche (Argentina)

    2014-04-05

    Highlights: • Cu–Zn–Al films with burst-type 2H martensitic transformation. • Reproducible martensitic transformation temperature. • Similar hysteresis to those found in bulk reference samples. -- Abstract: This paper reports on the possibility to obtain Cu–Zn–Al films with 2H martensitic structure by fixing the valence electron concentration per atom (e/a) ≈1.53. Films with thickness of ≈5 μm with micrometric grains show martensitic transformation temperature and hysteresis values close to the ones found in bulk samples. This result is different to the one found in Cu–Zn–Al thin films with 18R martensitic structure and similar microstructure, in which the hysteresis presents an increment (≈10 times) compared to bulk samples. This difference can be associated to the intrinsic nature of the 2H transformation which requires more undercooling to produce the nucleation of the martensitic phase. The driving force for the burst-type martensitic transformation decreases the influence of the microstructure in the transformation.

  4. Martensitic transformation and shape memory effect in NiTi alloy covered by chitosan/silver layer

    Directory of Open Access Journals (Sweden)

    Goryczka Tomasz

    2015-01-01

    Full Text Available The NiTi shape memory alloy was covered with chitosan/silver layer. Coatings were deposited at room temperature using combination of processing parameters such as deposition voltage and amount of silver in colloidal suspension. Structure of layers was studied by means of X-ray diffraction. Quality of the coatings was evaluated basing on observations done in scanning electron microscopy. Transformation behaviour of coated samples was studied with use of differential scanning calorimeter. The covered sample revealed presence of the reversible martensitic transformation and ability to deformation (in bending mode up to 8%. Forward martensitic transformation, in as-received NiTi alloy and in alloy after layer deposition occurred in two steps B2-R-B19’. After deformation quality of the chitosan/silver layer remained unchanged.

  5. In-situ study of martensitic transformation and nucleation,propagation of crack in CuNiAl shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    LU; Yonghao

    2001-01-01

    [1]Otsuka,K.,Kubo,H.,Wayman,C.M.,Diffuse electron scattering and “streaming” effect,Metall.Trans.A,1981,12:595-605.[2]Otsuka,K.,Wayman,C.M.,Kubo,H.,Diffuse electron scattering in β-phase alloys,Metall.Trans.A,1978,9:1075-1085.[3]Singh,J.,Chen,H.,Wayman,C.M.,Transformation sequence in a Cu-Al-Ni shape memory alloy at elevated temperatures,Metall.Trans.A,1986,17:65-72.[4]Sun,Y.S.,Lorimer,G.W.,Ridley,N.,Microstructure and its development in Cu-Al-Ni alloys,Metall.Trans.A,1990,21:575-588.[5]Miyazaki,S.,Kawai,T.,Otsuka,K.,On the origin of intergranular fracture in β phase shape memory alloys,Scripta Metall.,1982,16:431-436.[6]Otsuka,K.,Wayman,C.M.,Naka,K.et al.,Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys,Acta Metall.,1976,24:207-226.[7]Otsuka,K.,Sakamoto,H.,Shimizu,K.,Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys,Acta Metall.,1979,27:585-600.[8]Shield,T.W.,Orientation dependence of the pseudoelastic behavior of single crystal of Cu-Al-Ni in tension,J.Mech.Phys.Solids,1995,43(6):869-895.[9]Sun,Q.P.,Zhang,X.Y.,Xu,T.,Experimental study of martensitic transformation in single shape memory alloy,Adv.Solids Mech.,1997,7:155-162.[10]Chen,Q.Z.,Chu,W.Y.,Hsiao,C.M.,In-situ TEM observation of nucleation and bluntness of nanocrack in 310 stainless steel,Acta Metall.Mater.,1995,43:4371-4376.[11]Chu,W.Y.,Gao,K.W.,Wang,Y.B.et al.,Nucleating and propagation of nanocrack in dislocation free zone in brittle material,Science in China,Ser.A,1995,38(14):1501-1509.[12]Chen,Q.Z.,Gao,K.W.,Gu,B.et al.,Nucleating,blunting and propagation of A nanocrack in DFZ of thin crystals,Fatigue Frac.Eng.Mater.Stru.,1996,21:1415-1423.[13]Nishiyama,Z.,Stacking faults in the martensite of Cu-Al alloy,Journal of the Physical Society of Japan,1965,20:1192-1121.[14]Lovey,F.C.,Van Tendeloo,G.,Van Landuyt,J.et al.,HREM imaging

  6. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys

    Science.gov (United States)

    Muddle, B. C.; Nie, J. F.; Hugo, G. R.

    1994-09-01

    It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ’ (Ag2Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1, plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites. In the case of the coherent, planar interfaces associated with γ’ precipitate plates in Al-Ag alloys, there is direct experimental evidence that this is accomplished by the motion of transformation dislocations across the coherent broad faces of the precipitate plates; the transformation dislocations define steps that are two atom layers in height normal to the habit plane and have a Burgers vector at least approximately equivalent to an (α/6)(112) Shockley partial dislocation in the parent fcc

  7. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    Science.gov (United States)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  8. Analysis of grain size effects on transformation-induced plasticity based on a discrete dislocation-transformation model

    NARCIS (Netherlands)

    Shi, J.; Turteltaub, S.; Van der Giessen, E.

    2010-01-01

    There is much interest recently in the possibility of combining two strengthening effects, namely the reduction of grain size (Hall-Fetch effect) and the transformation-induced plasticity effect (strengthening due to a martensitic transformation). The present work is concerned with the analysis of t

  9. The concept of the habit plane and the phenomenological theories of the martensite transformation

    NARCIS (Netherlands)

    Klostermann, J.A.

    1972-01-01

    Three different interpretations of a martensite habit plane are in use: 1. (a) the plane of the plate of a plate-shaped crystal, 2. (b) a semi-coherent plane glissile interface, 3. (c) the plane boundary of a plate shaped product. These are not necessarily the same; for surface martensite they a

  10. Wet-chemical synthesis and martensitic phase transformation of Au-Cd nanoparticles with near-equiatomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Frommen, Christoph; Wilde, Gerhard; Roesner, Harald

    2004-09-08

    Nanometre-sized freestanding alloy particles of B2-ordered AuCd with an average composition of Au{sub 50}Cd{sub 50} (at.%) were synthesized by a wet-chemical process. The thermoelastic transformation behaviour with respect to particle size was investigated by means of calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The martensitic transformation start temperature, M{sub s}, of nanometre-sized AuCd particles was determined to about 49 K and thus drastically lowered compared to AuCd bulk alloys. The lowering of the transformation temperatures is discussed on the basis of the obtained calorimetric data regarding the following two aspects: firstly, a reduction in the thermodynamic equilibrium temperature, T{sub 0}, and secondly, a suppression of the martensite formation due to the absence of pre-existing nucleation sites in the small AuCd particles. Moreover, it is demonstrated that due to a coarsening of the nanometre-sized alloy particles during a heat treatment, the martensitic transformation was shifted towards ambient temperature.

  11. Transformation and Field-Induced Strains in as-Cast Ni-Mn-Ga Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-ren; LI Jian-liang; QI Yan; ZHANG Yang-huan; WANG Xin-lin; YU Yuan-jun

    2004-01-01

    The characteristics of the strains induced by transformation and magnetic field in as-cast Ni-Mn-Ga alloy were systematically investigated. It is found that internal stress and texture introduced during casting bring the anisotropy of temperature-induced strains. However, no anisotropy of field-induced strains is induced, and the internal stress and the texture modulate only the temperature dependence of field-induced strains. Large retardance of field-induced strains was observed, which indicates the rearrangement of martensitic variants as a competition process between the stress energy and Zeeman energy. The non-continuous field dependence of strain indicates the unstable microstructure during martensitic transformation.

  12. Analysis of deformation induced martensite in AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jagarinec, Darko; Kirbis, Peter; Predan, Jozef; Vuherer, Tomaz; Gubeljak, Nenad [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2016-08-01

    Metastable austenite stainless steel AISI 316L is sensitive to cold deformation, where transformation from austenite to martensite occurred. The bending deformation as the formation process leads to tensile and compression throughout the thickness of the billet. Tensile testing of the specimen causes differences in the true stress-strain along the contraction neck prior to fracture as well. The aim of the paper is to find correlation between microhardness as brief inspection parameters and extension of martensitic transformation. The total equivalent plastic strain extend diagram obtained by numerical simulation of bending was compared with tensile true stress-strain diagram. Results show very good correlation between hardness, true strain and martesite content. Therefore, one can conclude that by hardness measurement, it is possible to measure the level of equivalent plastic strain until ultimate tensile stress as a linear correlation between hardness, true strain and martesite content.

  13. Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xingang; Han, Lizhan; Gu, Jianfeng [Shanghai Jiao Tong Univ. (China). Shanghai Key Laboratory of Materials Laser Processing and Modification

    2015-06-15

    The splitting phenomenon was detected in martensitic transformation of X12CrMoWVNbN10-1-1 steel using high resolution dilatometry under certain conditions. In-situ observation of austenite grain growth was carried out. Direct experimental results indicated that this splitting is not connected with the concentration gradient in the austenite resulting from the dissolution of carbonitrides during heating, but instead may be caused by the occurrence of abnormal grain growth.

  14. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel

    NARCIS (Netherlands)

    Tirumalasetty, G.K.; Van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H.W.

    2012-01-01

    Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation

  15. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置*%Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn∗

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      合成了一系列Ni50−xCoxMn39Sn11(8 x 10)样品,并对它们的结构和磁性进行了研究.发现随Co含量的增加,样品的饱和磁化强度逐渐增强,并在Ni42Co8Mn39Sn11中实现了磁场诱发马氏体相变.另外,在Co大于8.0的成分中探测到了超自旋玻璃,并且观察到交换偏置现象.证实了超自旋玻璃的马氏体相和铁磁奥氏体母相共存,这也是产生交换偏置的原因.我们猜测超自旋玻璃的形成可能是来源于Mn-Mn团簇的存在,这和之前报道的Mn2Ni1.6Sn0.4的结果相一致[1].%The crystal structures and magnetic properties of Ni50−xCoxMn39Sn11 (8 x 10) Heusler alloys are investigated. As a result, we achieve the magnetic field induced martensitic transformation in Ni42Co8Mn39Sn11. It is found that the saturation magnetic moments of alloys increase with Co content increasing. Moreover, a superspin glass behavior and a large exchange bias effect are also found in samples with Co content being higher than 8. We confirm the coexistence of superspin glass of the martensite and ferromagnetic parent phase, which is the physical origin of the exchange bias effect. On the other hand, we propose that the origin of superspin glass in our NiMnCoSn system is due to the occurence of Mn-Mn cluster as reported by Ma et al. in Heusler Mn2Ni1.6Sn0.4 alloys [Ma L, Wang W H, Liu J B, Li J Q, Zhen M, Hou D L and Wu G H 2011 Appl. Phys. Lett. 99 182507].

  16. Martensitic transformation in NiMnGa/Si bimorph nanoactuators with ultra-low hysteresis

    Science.gov (United States)

    Lambrecht, F.; Sagardiluz, N.; Gueltig, M.; Aseguinolaza, I. R.; Chernenko, V. A.; Kohl, M.

    2017-05-01

    We report on the fabrication and in-situ characterization of temperature-dependent electrical resistance and deflection characteristics of free-standing NiMnGa/Si bimorph cantilevers with a NiMnGa layer thickness of 200 nm and a minimum lateral width of 50 nm. The martensitic transformation in the initial NiMnGa/Si bimorph films and nanomachined NiMnGa/Si bimorph cantilevers proceeds in a wide temperature range with a hardly detectable temperature hysteresis width below 1 K. This remarkable behavior is ascribed to the internal stress in the bimorph system that exceeds the stress limit of the critical point terminating the stress-temperature phase diagram as it is known for ferromagnetic shape memory alloys. Temperature-dependent deflection characteristics reveal a competition between the bimorph effect and the shape memory effect, causing beam deflection in opposite directions. The observation of the shape memory effect strongly depends on the NiMnGa/Si thickness ratio, causing a maximum deflection change per beam length of 3% in agreement with finite element simulations.

  17. INFLUENCE OF Ge ON THE ANTIFERROMAGNETIC TRANSITION AND γ → ε MARTENSITIC TRANSFORMATION OF Fe-24Mn ALLOYS

    Institute of Scientific and Technical Information of China (English)

    B. Zhang; X. Lu; Z.X. Qin; H.B. Chang; X.Y. Ruan

    2002-01-01

    The aims of the work were to study the effect of Ge (0-6wt. %) on the paramagnetic-antiferromagnetic transition and martensitic transformation of Fe-Mn alloy using the susceptibility, microstructure examination, X-ray diffraction (XRD) and lattice parameter measurement. Ge lowers the Neel temperature, TN, and enhances the mag-netic susceptibility X, changing the Pauli paramagnetism above TN to paramagnetism state obeying the Curie Weiss law, which is essentially similar to that of γ-Fe-Mn alloys containing Al or Si; Ge depresses γ → ε martensitic transformation, which attribute to Ge increasing the stacking fault energy; Moreover, Ge increases the lat-tice parameter of 7 phase, and low content Ge increases the lattice parameter of γphase more than that of high Ge content. Comparing Ge(4s2 4p2 ) with Si(3s2 3p2 ) and Al(3s2 3p1), which have the same outer-shell of electron structures, we found that their effects on the martensitic transformation of Fe-Mn alloy are completely different. The result suggests the outer-shell of electron is not the main factor of governing the Ms temperature of Fe-Mn alloy although it is essential in the alloy's antiferromagnetic transition. The relation among the Ms temperature, stacking fault energy and lattice parameter of austenite, has been discussed in brief.

  18. A uniaxial constitutive model for superelastic NiTi SMA including R-phase and martensite transformations and thermal effects

    Science.gov (United States)

    Helbert, Guillaume; Saint-Sulpice, Luc; Arbab Chirani, Shabnam; Dieng, Lamine; Lecompte, Thibaut; Calloch, Sylvain; Pilvin, Philippe

    2017-02-01

    The well-known martensitic transformation is not always the unique solid-solid phase change in NiTi shape memory alloys (SMA). For this material, R-phase can occur from both austenite and martensite. In some applications, macroscopic strain of the material can be limited to 2%. In these cases, R-phase contribution can not be neglected anymore when compared with martensite. Furthermore, different thermomechanical couplings have to be taken into account to carefully predict strain rate effects and to better describe application conditions. In this paper, a new model taking into account various phase transformations with thermomechanical couplings is presented. This model is based on several transformation criteria. In most applications, SMA are used as wires, submitted to tensile-tensile loadings, in the superelasticity working range. Consequently, a uniaxial reduction of the model is presented for its simplicity. A thermodynamic framework is proposed. It enables to describe the internal variables evolution laws. The simple and fast identification process of model parameters is briefly presented. To verify the validity of the proposed model, simulation results are compared with experimental ones. The influences of testing temperature and strain amplitude on the material behavior is discussed. The damping capacity is also studied, using an energy-based criterion.

  19. Controlling the martensitic transformation temperature at constant valence electron concentration in Heusler based Ni-Mn-In alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda; Acet, Mehmet; Krenke, Thorsten; Wassermann, Eberhard [Experimentalphysik (AG- Farle), Universitaet Duisburg-Essen, 47048 Duisburg (Germany); Moya, Xavier; Manosa, Lluis; Planes, Antoni [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona (Spain)

    2007-07-01

    Although the martensitic transformation temperature M{sub s} increases linearly with increasing valence electron concentration e/a in Ni-Mn-X Heusler alloys (X: group III or IV element), the slope varies depending on the X-species, i.e., M{sub s} vs. e/a is not universal. This aspect can be favorably exploited to control Ms by holding e/a constant and replacing X{sup *} by an isoelectronic X{sup *}, where X and X{sup *}, are elements within the same group. Using this property we have substituted In in Ni{sub 50}Mn{sub 34}In{sub 16} (M{sub s}{proportional_to}200 K) with Ga to bring M{sub s} close to room temperature. Here, we show how magnetic field induced phase transition properties and associated magnetocaloric effects in Ni{sub 50}Mn{sub 34}In{sub 16} are modified in Ni{sub 50}Mn{sub 34}(In,Ga){sub 16}.

  20. The effect of Si content on the martensitic transformation temperature of Ni55,5Fe18Ga26.5-xSix alloys

    Institute of Scientific and Technical Information of China (English)

    Shen Hua-Hai; Yu Hua-Jun; Fu Hao; Guo Yuan-Jun; Fu Yong-Qing; Zu Xiao-Tao

    2011-01-01

    This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry(DSC)methods. The structure type of Ni55.5FelsGa26.5-.Si. alloys is determined by x-ray diffraction(XRD), and the XRD patterns show the microstructure of Ni-Fe-Ga-Si alloys transformed from body-centred tetragonal martensite(with Si content x=0)to body-centred cubic austenite(with x=2)at room temperature.The martensitic transformation temperatures of the Ni55.5FelsGa26.5-xSix alloys decrease almost linearly with increasing Si content in the Si content range of x ≤3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni-Fe-Ga-Si alloy. The valence electronic concentrations, size factor, L21 degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni-Fe-Ga-Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni-Fe-Ga-Si alloy for a specific application at a given temperature.

  1. Softening and hardening by. gamma. yields. epsilon. martensitic transformation during deformation in high Mn steels. Ko Mn tetsu gokin ni okeru. gamma. yields. epsilon. martensite hentai ni yoru nanka to koka

    Energy Technology Data Exchange (ETDEWEB)

    Tomota, Y.; Ryufuku, S.; Piao, M. (Ibaraki University, Ibaraki (Japan). Faculty of Engineering)

    1991-01-15

    In high Mn steel, martensitic transformation of gamma to epsilon occurs under the ordinary pressure. Its application comprises utilization of its configuration memory properties and high work hardening characteristics. The present report studied, by using Fe-Mn type alloy, added with Si or Co, the influence of martensitic transformation of gamma to epsilon on the deformation behavior. Tensile test, 2mm/min in speed, being made on molten/cast alloy ingot, thermally treated as specified, epsilon was quantitatively analyzed by X-ray diffraction. The above test/analysis pointed out many notes in result and knowledge, as follows among others: The addition with Si or Co, lowering the Neel temperature, quantitatively increases the epsilon martensite, produced by the processing. The produced quantity of epsilon martensite in case of addition with Si is small, as compared with that in case of two-element Fe-Mn type alloy without addition and in case of addition with Co. All the tested alloys give the softening phenomenon by the martensitic transformation of gamma to epsilon. The pre-existing epsilon plate is a strong barrier for the further plastic flow, which accordingly accelerates the work hardening. 20 refs., 10 figs., 1 tab.

  2. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders

    DEFF Research Database (Denmark)

    Skovgaard, Mette; Ahniyaz, Anwar; Sørensen, Bent F.

    2010-01-01

    For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders...... effective in de-agglomeration of our nanocrystalline porous ZrO2 particles into discrete nanocrystals. However, the t → m phase transformation could not be avoided totally even at very mild milling condition. This suggests that the metastable t-ZrO2 is extreme sensitive to microscale shear stress induced...... was observed. Ball-milling induced microscale stress has a similar effect on the t → m phase transformation. Furthermore, it was found that even very mild milling condition, such as 120 rpm, 1 h (0.5 mm balls) was enough to induce phase transformation. Surfactant assisted ball-milling was found to be very...

  3. Identification of epsilon martensite in a Fe-based shape memory alloy by means of EBSD.

    Science.gov (United States)

    Verbeken, K; Van Caenegem, N; Raabe, D

    2009-01-01

    Ferrous shape memory alloys (SMAs) are often thought to become a new, important group of SMAs. The shape memory effect in these alloys is based on the reversible, stress-induced martensitic transformation of austenite to epsilon martensite. The identification and quantification of epsilon martensite is crucial when evaluating the shape memory behaviour of this material. Previous work displayed that promising results were obtained when studying the evolution of the amount of epsilon martensite after different processing steps with Electron BackScatter Diffraction (EBSD). The present work will discuss in detail, on the one hand, the challenges and opportunities arising during the identification of epsilon martensite by means of EBSD and, on the other hand, the possible interpretations that might be given to these findings. It will be illustrated that although the specific nature of the austenite to epsilon martensite transformation can still cause some points of discussion, EBSD has a high potential for identifying epsilon martensite.

  4. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    Science.gov (United States)

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  5. Influence of martensitic transformation on the magnetic transition in Ni-Mn-Ga

    Science.gov (United States)

    Kokorin, V. V.; Konoplyuk, S. M.; Dalinger, A.; Maier, H. J.

    2017-06-01

    The magnetic transition with a temperature hysteresis of about 7 K was observed in the martensitic phase of Ni51.9Mn27Ga211. The measurements of AC magnetic susceptibility in constant magnetic fields up to 570 kA/m have proved its magnetic origin. The transport and caloric measurements were used to gain better understanding of the nature of this phenomenon. The variation of the martensite lattice parameters with temperature is suggested to account for the hysteresis of the magnetic transition.

  6. Effect of partial solution treatment on martensitic transformation of 12%Cr steels; 12% Cr ko no martensite hentai ni oyobosu bubun yotaika shori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, T.; Takai, S. [Kyushu University, Fukuoka (Japan)

    1996-12-01

    When high chromium martensitic steels are subjected to partial solution treatment in (austenite+M23C6, carbide) two -phase region, not only the coarsening of austenite grains is effectively suppressed by insoluble-carbide particles, but also martensitic structure, which has formed during cooling, is refined through the treatment. In this study, the mechanism of refining of martensitic structure was discussed in Fe-12%Cr-C ternary alloys by investigating the relation between Ms temperature and solution treatment conditions, and the effect of insoluble-carbide particles on the substructures such as martensite-lath or -block. The Ms temperature of steels with full solution treatment simply depends on the content of C and Cr, but that of steels with partial solution treatment is dependent on the effective chemical composition of matrix, which is evaluated by taking the amount of C and Cr in insoluble-carbide away from their total content. Refining of martensite-block structure within grains is not caused directly by insoluble-carbide particles, but done indirectly through the refining of austenite grain size. While, on the martensite-lath structure, insoluble-carbide particles supply nucleation sites for laths, and work also as obstacles for growing laths. As a result, martensite-laths in steels with partial solution treatment are divided finely by insoluble carbide particles, and the arrangement of laths is tend to be confused. 14 refs., 10 figs., 1 tab.

  7. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  8. The enthalpy change of the hcp {yields} fcc martensitic transformation in Fe-Mn-Co alloys: composition dependence and thermal cycling effects

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, P.; Fernandez Guillermet, A.; Sade, M

    2004-05-25

    Extending a recent calorimetric study of the Fe-Mn system the enthalpy change associated with the fcc{yields}hcp martensitic transformation in the Fe-Mn-Co system has been determined in alloys with 13{<=}at.% Mn{<=}30 and up to 9 at.% Co. The heat effect has been measured by differential scanning calorimetry, whereas the fraction of material that transformed martensitically was determined by combining a dilatometric technique with the known molar volume versus composition relations. A detailed description of the various experimental and data processing procedures is reported. The enthalpy change is discussed as a function of composition and of the number of thermal cycles of transformation and retransformation. The picture of the energetics of the fcc{yields}hcp martensitic transformation emerging from the present study should be useful in future attempts to model the thermodynamics and phase stability relations in the Fe-Mn-Co system.

  9. Martensitic transformation of pure iron at a grain boundary: Atomistic evidence for a two-step Kurdjumov-Sachs-Pitsch pathway

    Science.gov (United States)

    Meiser, Jerome; Urbassek, Herbert M.

    2016-08-01

    Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.

  10. Martensitic transformation and residual stresses after thermomechanical treatment of heat treatable steel 42CrMo4 (SAE 4140)

    Energy Technology Data Exchange (ETDEWEB)

    Weise, A. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik; Fritsche, G. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik

    1996-01-01

    The influence of thermomechanical deformation on the residual stresses caused by quenching in bar shaped specimens of heat treatable steel 42CrMo4 has been investigated using a mechanical method for determining the distribution of residual stresses of the first kind. The results obtained show that the residual stress distribution after quenching is affected by the strengthening and softening of the austenite as a result of deformation and recrystallization and the modified transformation behaviour in martensite stage. An attempt is made to discuss qualitatively the influence of these changes on the generation of residual stresses as compared to results obtained after conventional hardening. (orig.).

  11. Lattice instability and martensitic transformation in LaAg predicted from first-principles theory

    DEFF Research Database (Denmark)

    Vaitheeswaran, G.; Kanchana, V.; Zhang, X.

    2012-01-01

    , calculated using density functional perturbation theory, are in good agreement with available inelastic neutron scattering data. Under pressure, the phonon dispersions develop imaginary frequencies, starting at around 2.3 GPa, in good accordance with the martensitic instability observed above 3.4 GPa...

  12. Microstructure and properties of plastic deformed martensite induced by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    Jichang Yang(杨继昌); Yinqun Hua(花银群); Ruifang Chen(陈瑞芳); Lan Cai(蔡兰); Yongkang Zhang(张永康); Hong Yan(颜红)

    2004-01-01

    Firstly, 45# steel was quenched by the NEL-2500A rapidly axial flow CO2 laser. The experimental parameters were the laser power of 750 W, the laser beam diameter of 4 mm, the scanning velocity of 7 mm/s.The thickness of coating layer was 0.1 mm and the width was 8 mm. Secondly, the martensite induced by laser quench was shocked by Nd:YAG laser. The parameters of laser shock processing were the wavelength of 1.06 μm, the pulse duration of 23 ns, and the output energy of 16-20 J. The laser was focused on a spot of φ7 mm. K9 optical glass was used as confinement. The sample was coated with black paint 86-1 (the thickness is about 0.025 mm). By testing and analysis of samples which were treated by laser quench and laser quench+shock with transmission electron microscope (TEM), it was discovered that the surface layer of martensite was deformed plastically by laser shock processing. In the secondary hardened zones,there were a lot of slender secondary twin crystal martensites, dislocation tangles, and cellular dislocations.Compared with that of the hardened zones through laser quench only, the residual stress and mechanical properties of the secondary hardened zones were improved and increased through laser compound method.

  13. Temperature dependence of magnetically induced deformation of Ni-Mn-Ga martensite

    Science.gov (United States)

    L'Vov, V. A.; Glavatska, N.; Aaltio, I.; Söderberg, O.; Glavatskiy, I.; Hannula, S.-P.

    2008-05-01

    In the present work the contributions of the temperature-dependent (i) crystal lattice parameters (related to the magnetic anisotropy energy), (ii) Young's modulus, (iii) saturation magnetization and (iv) thermal fluctuations of the microstress to the temperature dependence of the magnetic field induced strain (MFIS) in Ni-Mn-Ga martensite are considered in the framework of a statistical model. Both individual and cooperative effects of these factors on the achievable MFIS value and on the characteristic values of the magnetic fields, which trigger and saturate MFIS, are estimated. It is shown that all the factors affect both the achievable MFIS value and characteristic fields under the real experimental conditions, and none of them can be neglected in the quantitative theoretical analysis of the experimental strain-field dependencies obtained for different temperature values. In addition, the influence of specimen shape on the characteristic fields is illustrated for different temperature values. For the available experimental dependencies (i) (iii) and the reasonable set of model parameters the switching magnetic field proved to be equal to 160 kA/m when the temperature was by 15 K below the martensite start temperature and raised to 320 kA/m when the temperature was by 45 K below the martensite start temperature. Obtained results agree with the experimental data reported by O. Heczko and L. Straka, in J. Appl. Phys. 94, 7139 (2003).

  14. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    Science.gov (United States)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  15. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY%哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应

    Institute of Scientific and Technical Information of China (English)

    柳祝红; 胡凤霞; 王文洪; 陈京兰; 吴光恒; 高书侠; 敖玲

    2001-01-01

    通过研究铁磁性金属间化合物Ni2+xMn1-xGa(x=-0.1,0,0.08,0.13,0.18,0.2)和Ni2-xMn1+x/2Ga1+x/2(x=-0.1,0,0.04,0.06,0.1)两个系列多晶样品的交流磁化率随温度的变化行为,得到了化合物在不同组分下的马氏体相变温度TM和居里温度TC.发现随着Ni成分的增加,前者的马氏体相变温度Tm增加,而居里温度TC降低,后者的马氏体相变温度Tm和居里温度TC均是先增大后减小.报道了Tm在室温附近的单晶样品Ni52Mn24Ga24的磁场增强双向形状记忆效应.发现伴随着马氏体相变,样品在[001]方向可产生1.2%的收缩.如果在该方向施加1.2T的偏磁场可以使该应变值增大到4.0%.而垂直于[001]方向施加1.2T的偏磁场时,在[001]方向产生1.6%的膨胀.阐明了产生大应变的原因并非相界移动,而是单晶的杂散内应力小和外加磁场通过孪晶界移动使马氏体变体重组的共同结果.%The martensitic phase transformation temperature,Tm and the Curie temperature, TC, of polycrystalline samples Ni2+xMn1-xGa(x=-0.1,0,0.08,0.13,0.18,0.2) and Ni2-xMn1+x/2Ga1+x/2(x=-0.1,0,0.04,0.06,0.1) have been investigated by measuring the temperature dependence of alternating-current susceptibility. It was found that, with the increase of Ni content, TC decreases and Tm increases for Ni2+xMn1-xGa, and both TC and Tm increase first and decrease afterwards for Ni2-xMn1+x/2Ga1+x/2. Stress-free and two-way thermoelastic shape memory, with 1.2% strain, has been found in single crystal Ni52Mn24Ga24. The deformation can be enhanced more than three times, up to 4.0% shrinkage with a bias field 1.2T applied along the measurement direction. The origin of large recoverable strain should be attributed to the low level of internal stress and the field-induced rearrangement of martensitic variants through twin boundary motion rather than the phase boundary motion.

  16. Influence of stresses on martensitic transformation in ferromagnetic shape memory Ni50Mn19Fe6Ga25 ribbons

    Institute of Scientific and Technical Information of China (English)

    MENG Fanbin; LI Yangxian; LIU Heyan; QU Jingping; LIU Zhuhong; CHEN Jinglan; WU Guangheng

    2004-01-01

    The influence of stresses on martensitic transformation in Nis0Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the ribbon surface exhibits [100] preferentially oriented texture, while the [110] axis is about 45° tilted from the normal of the ribbon. By calculating the d spacing at different angles with the length direction of the ribbon, the tension was observed. It was found that the direction of the stress was along [010] direction of the oriented textured grains. During cooling, there is no obvious structural transition observed in as-spun ribbons. However, when the ribbons were annealed at 900 K for 24 h, the tension along [010] direction disappeared and the structural transition from cubic to tetragonal occurred obviously during cooling. It indicates that it is the tension along [010] direction to suppress the martensitic transformation in the as-spun ribbons.

  17. Effect of Quenching and Partitioning with Hot Stamping on Martensite Transformation and Mechanical Properties of AHSS

    Science.gov (United States)

    Chang, Ying; Li, Guanzhong; Wang, Cunyu; Li, Xiaodong; Dong, Han

    2015-08-01

    Two-step quenching and partitioning treatment with hot stamping was applied to advanced high-strength steel (AHSS). The newly treated steel possesses a fine microstructure and typically curved micromorphology. The martensite start temperature of the newly treated steel is increased through the effect of plastic deformation on austenitic microstructure. However, the martensite volume fraction of this steel is deceased because of the enhanced stability of the untransformed austenite after plastic deformation. Consequently, the fraction of retained austenite is increased. The newly treated steel also shows excellent mechanical properties. The volume fraction of retained austenite reaches the highest value of 17.2% when hot stamping is performed at 750 °C. Hence, the steel displays favorable plasticity with an elongation of 14.5%. Moreover, the highest hardness value of 426 HV is obtained when hot stamping is performed at 650 °C. The newly developed process may be employed to develop a new generation of AHSSs.

  18. Opportunities in Martensite Theory

    OpenAIRE

    Olson, G.

    1995-01-01

    A workshop has explored interactions of materials science, applied mechanics, physics and mathematics in understanding fundamentals of martensitic transformations. System theory offers a framework for addressing realistic complexity. Theory of invariant-plane kinematics has been extended to multivariant plate groups and hierarchical structures. Electronic total energy calculations explore the origins of martensitic phase stability, and Landau-Ginzberg models for transformations with and witho...

  19. The atomistic mechanism of hcp-to-bcc martensitic transformation in the Ti-Nb system revealed by molecular dynamics simulations.

    Science.gov (United States)

    Li, Yang; Li, JiaHao; Liu, BaiXin

    2015-02-14

    Applying the constructed Ti-Nb potentials, molecular dynamics simulations were conducted to investigate the martensitic transformation of Ti100-xNbx alloys (x = 5, 10…25) from the α' phase (hcp) to the β phase (bcc). It is found that the transformation involved four phases, i.e. α', α'', fco (face-centered orthorhombic), and β phases. The structures of the obtained phases exhibit consistency with experimental data, verifying the validity of atomic simulations. The simulations not only revealed the processes of atomic displacements during the transformation, but also elucidated the underlying mechanism of the martensitic transformation at the atomic level. The martensitic transformation incorporates three types of coinstantaneous deformations i.e. slide, shear as well as extension, and the subsequent lattice constant relaxation. Furthermore, according to the proposed mechanism, the crystallographic correlation between the initial α' phase and the final β phase has been deduced. The simulation results provide a clear landscape on the martensitic transformation mechanism, facilitating our comprehensive understanding on the phase transition in the Ti-Nb system.

  20. Unraveling the composition dependence of the martensitic transformation temperature: A first-principles study of Ti-Ta alloys

    Science.gov (United States)

    Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf

    2016-12-01

    The martensitic start temperature Ms is one of the key characteristics of shape memory materials. High-temperature shape memory alloys are a special class of materials where transformation temperatures between the martensite and austenite phase above 373 K are desirable. For the design of new high-temperature shape memory alloys it is therefore important to understand and predict the dependence of Ms on the composition of the material. Using density functional theory in combination with the quasiharmonic Debye model, we evaluate the different contributions to the free energy to determine the transition temperature T0 over a wide range of compositions in Ti-Ta alloys. Our approach provides physical insight into the various contributions that explain the strong composition dependence of Ms that is observed experimentally. Based on our calculations, we identify the relative phase stability at T =0 K and the vibrational entropy difference between the involved phases as critical parameters to predict changes in T0. We propose a simple, one-dimensional descriptor to estimate the transition temperature that can be used in the identification of new alloys suitable for high-temperature shape memory applications.

  1. In situ investigation of the martensitic transformation in Fe–12 wt.%Ni–0.6 wt.%C steel at subzero temperatures

    DEFF Research Database (Denmark)

    Villa, Matteo; Pantleon, Karen; Somers, Marcel A. J.

    2013-01-01

    Martensitic transformation in a Fe–12 wt.%Ni–0.6 wt.%C alloy was investigated with magnetometry and in situ (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ X-ray diffraction at the HZBBESSY II synchrotron facility was applied to quantitatively determine the fractions...

  2. Improvements in the mechanical properties of the 18R {r_reversible} 6R high-hysteresis martensitic transformation by nanoprecipitates in CuZnAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Castro Bubani, Franco de, E-mail: franco@cab.cnea.gov.ar [Centro Atomico Bariloche (CNEA), Av. E. Bustillo km. 9,5 (8400) S.C. de Bariloche (Argentina); CONICET (Argentina); Sade, Marcos, E-mail: sade@cab.cnea.gov.ar [Centro Atomico Bariloche (CNEA), Av. E. Bustillo km. 9,5 (8400) S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina); Lovey, Francisco, E-mail: lovey@cab.cnea.gov.ar [Centro Atomico Bariloche (CNEA), Av. E. Bustillo km. 9,5 (8400) S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer Mechanical properties of 6R martensite in CuZnAl are improved by nanoprecipitates. Black-Right-Pointing-Pointer Plastic deformation of 6R martensite is suppressed during 18R-6R transition. Black-Right-Pointing-Pointer 20% recoverable strain is obtained in full {beta}-18R-6R transition in single crystals. Black-Right-Pointing-Pointer 10% recoverable strain is obtained in 18R-6R transition with 150 MPa hysteresis. Black-Right-Pointing-Pointer The material could be used in mechanical damping or other applications. - Abstract: The 18R {r_reversible} 6R martensite-martensite transformation in Cu-based alloys exhibits large hysteresis, large pseudoelastic strain and weak transformation stress dependence on temperature. However, concomitant plastic deformation taking place in the 6R phase inhibits the use of these properties for applications. A novel approach to minimizing or even suppressing 6R plastic deformation during the 18R-6R transformation in CuZnAl shape-memory alloy single crystals with electronic concentration e/a = 1.48 is presented. The method is based on a thermal treatment that introduces nanoprecipitates in the alloy. Results suggest that the role of CuZnAl shape-memory alloys in engineering should be reconsidered, as many energy damping applications could benefit from the huge hysteresis associated with the 18R-6R transformation, once the 6R plastic deformation is suppressed.

  3. Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni-Fe-Ga ferromagnetic shape memory alloys.

    Science.gov (United States)

    Recarte, V; Pérez-Landazábal, J I; Gómez-Polo, C; Sánchez-Alarcos, V; Cesari, E; Pons, J

    2010-10-20

    Ferromagnetic shape memory alloys undergo a martensitic transformation accompanied by a change in the magnetic and vibrational properties. However, these property changes are not independent. In this paper, the interplay between magnetic and vibrational properties in the martensitic transformation entropy change has been analyzed for Ni-Fe-Ga ferromagnetic shape memory alloys. The martensitic transformation entropy change has a magnetic and a vibrational contribution, ΔS(p−>m)=ΔS(vib)(p−>m) + ΔS(mag)(p−>m). Using a mean field approximation for the magnetic entropy, the full entropy ΔS(p−>m) has been decomposed and the magnetic contribution ΔS(mag)(p−>m) calculated. Upon removing the magnetic term, the vibrational entropy ΔS(vib)(p−>m) does not change substantially in the composition range where T(M) is below T(C). This latter contribution to the martensitic transformation entropy change has been analyzed using a Debye distribution for the density of states and a proportion of Einstein modes that account for the anomalous phonon mode of the austenite. © 2010 IOP Publishing Ltd

  4. Atomistic simulation study of the effect of martensitic transformation volume change on crack-tip material evolution and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Grujicic, M. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering; Lai, S.G. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering; Gumbsch, P. [Max Planck-Institut fur Metallforshung Institut fuer Werstoffwissenshaft, Seestrasse 92, D-7000 Stuttgart I (Germany)

    1997-07-15

    The effect of the sign of the F.C.C.{yields}B.C.C. martensitic transformation volume change in Fe-20Ni on material evolution in a region surrounding the crack tip and the accompanying change in the fracture resistance of the material have been investigated using molecular dynamics simulations. The interaction between atoms has been modeled using the embedded atom method (EAM) interatomic potentials. To obtain both the positive and the negative values of the transformation volume change, small adjustments had to be made in the EAM functions. These changes did not significantly affect of the key materials properties, such as the relative thermodynamic stability of the F.C.C. and B.C.C. structures, elastic constants, (11 anti 2){sub bcc} twin boundary energy, (10 anti 1){sub fcc}/(1 anti 21){sub bcc} interfacial energy, etc. The simulation results show that the sign of the transformation volume change has a profound effect on the material evolution and the path of the advancing crack. When the volume change is negative, the region ahead of the crack tip undergoes the transformation only after the other regions around the crack tip have already transformed. The crack tip undergoes a significant blunting and tends to stay on the original crack plane. In sharp contrast, when the volume change is positive, the region ahead of the crack tip transforms first and significant decohesion along the F.C.C./B.C.C. interfaces takes place. Consequently the crack tends to branch out. The effect of material evolution at the crack tip on the ability of the material to withstand further fracture has been quantified by calculating the Eshelby`s F{sub 1} conservation integral. The sign of the transformation volume change is found to have a major effect on the change of the F{sub 1} integral with the simulation time. (orig.)

  5. Magnetic and magneto-transport studies of substrate effect on the martensitic transformation in a NiMnIn shape memory alloy

    Directory of Open Access Journals (Sweden)

    Andrei Sokolov

    2016-05-01

    Full Text Available The effect of substrates on the magnetic and transport properties of Ni2Mn1.5In0.5 ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM austenite and ferrimagnetic (FiM martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in Ni2Mn1.5In0.5 films grown on MgO (001 substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni2Mn1.5In0.5 film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

  6. Magnetic and magneto-transport studies of substrate effect on the martensitic transformation in a NiMnIn shape memory alloy

    Science.gov (United States)

    Sokolov, Andrei; Kirianov, Eugene; Zlenko, Albina; Quetz, Abdiel; Aryal, Anil; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad; Al-Aqtash, Nabil; Sabirianov, Renat

    2016-05-01

    The effect of substrates on the magnetic and transport properties of Ni2Mn1.5In0.5 ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in Ni2Mn1.5In0.5 films grown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni2Mn1.5In0.5 film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

  7. A micromechanical modelling of the hysteretic behavior in thermally induced martensitic phase transitions: Application to Cu-Zn-Al shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Bensalah, M.O.; Ghazali, A. [Mohammed V Univ., Rabat (Morocco). Lab. of Mechanics and Materials

    1998-12-11

    The hysteretic behavior of Cu-Zn-Al shape memory alloys (SMAs) in thermally induced martensitic phase transition is dealt with. The problem is studied by means of a kinematic analysis where the internal variables describing the material`s microstructure are regarded as implicit functions of the applied thermomechanical loading parameters ({Sigma}{sub ij}, {Tau}). On the other hand, a thermodynamic approach is used in which the local balance formalism is based on the thermoelastic equilibrium concept. Considering that thermoelastic equilibrium temperatures between phases, in the forward and reverse transformation, are dependent on the location in the transformation path enables the hysteretic behavior to be determined. Hence, a set of non-linear equations is deduced simulating the complete and partial cycles. Results obtained in this way, in the thermally induced phase transition with no applied stress, are in good agreement with experimental observations performed on Cu-based SMAs.

  8. Anelastic effects connected with isothermal martensitic transformations in 24Ni4Mo austenitic and 12Cr9Ni4Mo maraging steels

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, I.S. [Russian State Technol. Univ., Moscow (Russian Federation). Dept. of Mater.; Nilsson, J.-O. [Department of Physical Metallurgy, Steel Research and Development, AB Sandvik Steel, S-811 81, Sandviken (Sweden); Serzhantova, G.V.; Golovin, S.A. [Department of Physical Metallurgy, Tula State University, Lenin av. 90, 300600, Tula (Russian Federation)

    2000-09-28

    Anelasticity of the austenitic steel 24Ni5Mo and the stainless steel 12Cr9Ni4Mo has been investigated in the austenitic state after quenching with respect to isothermal martensitic transformation during cooling and subsequent heating. Maxima of anelasticity due to isothermal transformation at {approx}200 K (24Ni5Mo, 0.002% C) and {approx}250 K (12Cr9Ni4Mo; 0.01% C) coincided well with C-curve noses obtained by methods based on magnetic properties and electric resistivity. Corresponding internal friction maxima were found to be dependent on cooling or heating rate, quenching temperature and the frequency of oscillation and may therefore be described using the Delorme approximation. The activation energy of isothermal martensitic transformation calculated from the lower part of the C-curves estimated using the Borgenstam-Hillert and Arrhenius methods (3-8 kJ/mol for 24Ni5Mo and 15-20 kJ/mol for 12Cr9Ni4Mo) are comparable with the energy of impurity-dislocation interaction ({approx}10 kJ/mol) and interpreted as too low to be caused by diffusion processes: the activation energy for carbon diffusion in austenitic steel 24Ni5Mo is found to be {approx}135 kJ/mol and {approx}145 kJ/mol for austenite in two-phase 12Cr9Ni4Mo steel. An estimation showed that the activation energy for the isothermal martensitic transformation for the 24Ni5Mo alloy with so-called binary martensitic kinetics was higher in the vicinity of the nose of the C-curve, became lower with a decrease in temperature range and approached zero in the vicinity of the athermal martensitic point. A similar effect was not observed in the 12Cr9Ni4Mo steel. (orig.)

  9. Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sudip Kumar, E-mail: sudips@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Sarita [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Babu, P.D. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai, 400085 (India); Biswas, Aniruddha [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Siruguri, Vasudeva [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai, 400085 (India); Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2016-06-15

    In an effort to produce Giant Magnetocaloric effect (GMCE) near room temperature, in a first ever such study, the austenite transformation temperature (A{sub s}) was fine tuned to ferromagnetic Curie temperature (T{sub C}) in Ferromagnetic Shape Memory Alloys (FSMA) and a large GMCE of ΔSM = −81.8 J/Kg-K was achieved in Ni{sub 50}Mn{sub 18.5}Cu{sub 6.5}Ga{sub 25} alloy during reverse martensitic transformation (heating cycle) for a magnetic field change of 9 T at 303 K. Fine tuning of A{sub s} with T{sub C} was achieved by Cu substitution in Ni{sub 50}Mn{sub 25−x}Cu{sub x}Ga{sub 25} (0 ≤ x ≤ 7.0)-based FSMAs. Characterizations of these alloys were carried out using Optical and Scanning Electron Microscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and DC magnetization measurements. Addition of Cu to stoichiometric Heusler type Ni{sub 2}MnGa increases the martensitic transformation temperatures and decreases T{sub C}. Concurrently, ΔSM increases with Cu addition and peaks at 6.5 at% Cu for which there is a virtual overlap between T{sub C} and A{sub s}. Maximum Refrigerant Capacity (RCP) of 327.0 J/Kg was also achieved in the heating cycle for 9 T field change at 303 K. Corresponding values for the cooling cycle measurements (measured during forward transformation) were 30.4 J/Kg-K and 123.5 J/Kg respectively for the same 6.5 at% Cu sample under the same thermo-magnetic conditions. - Highlights: • A{sub s} was fine tuned to T{sub C} in Cu substituted Ni{sub 50}Mn{sub 25−x}Cu{sub x}Ga{sub 25} (0 ≤ x ≤ 7.0) alloys. • MT temperature increases with Cu addition while T{sub C} decreases. • A virtual overlapping of A{sub s} with T{sub C} was found in Ni{sub 50}Mn{sub 18.5}Cu{sub 6.5}Ga{sub 25} alloys. • ΔSM = −81.8 J/Kg-K achieved from reverse MT for Δ(μ{sub 0}H) = 9 T at 303 K. • A highest RCP value of 94.6 J/Kg was observed for Δ(μ{sub 0}H) = 5 T in Cu:6.5 alloys.

  10. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    Science.gov (United States)

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-11-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs-1, high temperature rise rate of 600 Kμs-1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

  11. Phase transformation and long-term service of high-temperature martensitic chromium steels

    Science.gov (United States)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2001-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  12. Transformation-induced plasticity in high-temperature shape memory alloys: a one-dimensional continuum model

    Science.gov (United States)

    Sakhaei, Amir Hosein; Lim, Kian-Meng

    2016-07-01

    A constitutive model based on isotropic plasticity consideration is presented in this work to model the thermo-mechanical behavior of high-temperature shape memory alloys. In high-temperature shape memory alloys (HTSMAs), both martensitic transformation and rate-dependent plasticity (creep) occur simultaneously at high temperatures. Furthermore, transformation-induced plasticity is another deformation mechanism during martensitic transformation. All these phenomena are considered as dissipative processes to model the mechanical behavior of HTSMAs in this study. The constitutive model was implemented for one-dimensional cases, and the results have been compared with experimental data from thermal cycling test for actuator applications.

  13. Effect of austenite grain size in Fe-Mn alloys on {epsilon} martensitic transformation and their mechanical properties; Fe-Mn gokin no {epsilon} marutensaito hentai oyobi kikaiteki seishitsu ni oyobosu kessho ryukei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsu, H. [Kyushu Univ., Fukuoka (Japan). Graduate School; Takaki, S. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1996-02-20

    The Fe-Mn two-components alloy samples varied with Mn content of 12 to 31 mass% were prepared by charging {gamma}-crystalline grain size using its recrystallization, and were surveyed on effects of the {gamma}-crystalline grain size on athermal {epsilon}-martensitic ({epsilon})-transformation and machining- induced {epsilon}-transformation. As a result of examining the relationship between the {gamma}-crystalline grain size or the {epsilon}-transformation and their mechanical properties, conclusion shown as follows is obtained. The athermal {epsilon} was formed at the alloy containing more than 10 mass% of Mn, maximum {epsilon} was shown at the composition containing about 17 mass% of Mn and the {epsilon} was almost not formed at the steel containing more than 27 mass% of Mn. When crushing the {gamma}-crystalline grain to fine powder, the {epsilon} martensitic transformation beginning temperature tended to reduce somewhat and production amount of the {epsilon} decreased extremely. On the steel containing Mn ranged 15 to 31 mass%, the fine powdering affected scarcely its durability but improved its elongation and its tensile strength. 26 refs., 11 figs., 1 tab.

  14. Orientation relationship, plasticity, twin relationship, and interfacial structure of the ???' isothermal martensitic transformation in Pu-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K; Krenn, C; Wall, M; Schwartz, A

    2006-01-24

    The orientation relationship, habit plane, parent-product interface at the atomic level, twin relationship, and plastic deformation resulting from the {delta} {yields} {alpha}{prime} isothermal martensitic transformation in Pu-Ga alloys are examined using optical microscopy, transmission electron microscopy, and finite element calculations. The {delta} {yields} {alpha}{prime} transformation exhibits a {approx}20% volume collapse when the face-centered cubic {delta} phase transforms to the monoclinic {alpha}{prime} phase, which results in unique and intriguing crystallography and morphology. Here, we show that the orientation relationship is very close to that previously reported by Zocco et al. (1990), but has small rotational misalignments between the two phases both parallel and perpendicular to the [110]{sub {delta}} {parallel}[100]{sub {alpha}{prime}} direction. The amount of plastic deformation is exceedingly large due to the {approx}20% volume collapse and transmission electron microscopy is used to quantify the difference in dislocation density between untransformed {delta}-matrix and regions of {delta} adjacent to the transformed {alpha}{prime}. The twins contained in {alpha}{prime} plates are shown to have a (205){sub {alpha}} orientation as the lattice invariant deformation and are found to be composed of two alternating variants that share a common <020>{sub {alpha}{prime}} direction, but differ by a 60 degree rotation about <020>{sub {alpha}{prime}}. A combination of electron diffraction and optical microscopy has been employed to examine the macroscopic habit plane and the analysis suggests that a large fraction of the observed habit planes are on or near {l_brace}111{r_brace}{sub {delta}}. Finally, high resolution transmission electron microscopy reveals that the interface is faceted on {l_brace}111{r_brace}{sub {delta}}, exhibiting a series of terrace and ledges.

  15. The Influence of Co Addition on Phase Transformation Behavior and Mechanical Properties of TiNi Alloys

    Institute of Scientific and Technical Information of China (English)

    JING Rui-rui; LIU Fu-shun

    2007-01-01

    The influences of Co-addition on phase transformation behavior and mechanical properties of TiNi alloys were investigated. Results indicate that, as a substitute for Ni, Co added to TiNi alloys can dramatically decrease the martensite transformation temperature,and R phase transformation and martensite transformation are accordingly separated. When Co-content reach 10 at.%, the martensite transformation temperature is lower than that of liquid nitrogen. During deformation at room temperature, Ti50Ni48Co2 alloy exhibits good ductility with a lower stress plateau caused by stress-induced martensite and martensite reorientation.

  16. The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study

    Institute of Scientific and Technical Information of China (English)

    Tan Chang-Long; Tian Xiao-Hua; Cai Wei

    2012-01-01

    The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations.The site preference of Fe in TaRu alloys has been clarified for the first time,and the results show that Fe is predicted to occupy Ru sites.The addition of Fe increases the stability of the Ta5oRu50-xFex ββ phase,leading to a significant decrease in the β to β' martensitic transformation temperature.In addition,the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.

  17. The Effect of Cold Work on Martensitic Transformations in CU-ZN-AL Shape Memory Alloys.

    Science.gov (United States)

    1983-12-01

    the transformations. Marea and Aarea are defined as the area under the generated curves for the P -.M and M--’P phase transformations. These areas...among the other measured parameters (Ms, Mf height’ width and Marea ) occured. This is consistent with findings by Perkins and Muesing [Ref. 11]. Working...toward lower temperatures, Mheight and Marea significantly decreased, and Mwidt h markedly expanded. The DSC data available for precise analysis of as

  18. Effect of warm rolling on the martensite transformation temperatures, shape memory effect, and superelasticity in Ti49.2Ni50.8 alloy

    Science.gov (United States)

    Lotkov, Aleksander; Zhapova, Dorzhima; Grishkov, Victor; Cherniavsky, Alexander; Timkin, Victor

    2016-11-01

    The paper presents research data demonstrating the effect of warm caliber rolling on the martensite transformation temperatures, shape memory effect, and superelasticity in Ti49.2Ni50.8 (at %). The experimental values of inelastic strain in coarse-grained and microcrystalline Ti49.2Ni50.8 (at %) specimens exceed the theoretical limit of recoverable strain or maximum lattice strain for TiNi-based alloys.

  19. Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni-Mn-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.B. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Y.D. [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, Universite Paul Verlaine - Metz, 57045 Metz (France); Esling, C., E-mail: claude.esling@univ-metz.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, Universite Paul Verlaine - Metz, 57045 Metz (France); Zhao, X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zuo, L., E-mail: lzuo@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2011-04-15

    For Ni-Mn-Ga ferromagnetic shape memory alloys, a large magnetic-field-induced strain could be reached through the reorientation of martensitic variants in the martensite state. Owing to the collective and displacive nature of the austenite to martensite transformation, a certain orientation relationship (OR) between the parent and the product phase is required to minimize the transformation strain and the strain energy generated, which brings about self-accommodating groups of martensitic variants with specific orientation correlations. In this work, the microstructural and crystallographic characteristics of martensitic variants in a polycrystalline Ni{sub 50}Mn{sub 30}Ga{sub 20} alloy were investigated by electron backscatter diffraction analysis. With accurate orientation measurement on inherited martensitic variants, the local orientations of parent austenite grains were predicted using four classical OR for the martensitic transformation. Furthermore, a specific OR, namely the Pitsch relation with (1 0 1){sub A}//(1 2-bar 10-bar){sub 7M} and [1 0 1-bar]{sub A}//[10-bar 10-bar 1]{sub 7M}, was unambiguously determined by considering the magnitude of discontinuity between the lattices of the product and parent phases and the structural modulation of the incommensurate 7M modulated martensite. The present procedure to determine the OR, without recourse to the presence of retained austenite, is in general applicable to a variety of materials with modulated superstructure for insight into their martensitic transformation processes.

  20. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  1. Correlation of martensitic transformation temperatures of Ni- Mn-Ga/Al-X alloys to non-bonding electron concentration

    Science.gov (United States)

    Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.

    2015-02-01

    The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.

  2. Enhancement of the martensitic transformation and magnetocaloric effect of Ni-Mn-V-Sn ribbons by annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xuan, H.C. [College of Materials Science and Engineering, Taiyuan University of Technology (China); National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for Jiang Su Province, Nanjing University (China); Zhang, Y.Q.; Li, H.; Han, P.D. [College of Materials Science and Engineering, Taiyuan University of Technology (China); Wang, D.H.; Du, Y.W. [National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for Jiang Su Province, Nanjing University (China)

    2015-09-15

    The rapidly solidified Ni{sub 41.98}Mn{sub 42.97}V{sub 2.08}Sn{sub 12.97} ribbons are prepared by the melt-spinning technique. The microstructure, martensitic transformation (MT), and magnetocaloric effect of the ribbons are greatly affected by annealing treatment. The equiaxed crystallized grains with the relatively homogeneous size distribution are observed for these ribbons. After annealing, the grain size becomes obviously large, the lattice constants decreases, and the exchange bias effect gets improved. The MT temperatures increase obviously for the annealed ribbons. Large magnetic entropy change (ΔS) is obtained in the annealed Ni-Mn-V-Sn ribbons. The peak values of ΔS in the annealed ribbons are 41.6 and -2.3 J kg{sup -1} K{sup -1} in the vicinity of MT temperature and Curie temperature of austenite, respectively, for the field change of 30 kOe. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Critical driving force for martensitic transformation fcc (γ)→hcp(ε) in Fe-Mn-Si shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    金学军; 徐祖耀; 李麟

    1999-01-01

    By the application of Chou’s new geometry model and the available data from binary Fe-Mn, Fe-Si and Mn-Si systems, as well as SGTE DATA for lattice stability parameters of three elements from Dinsdale, the Gibbs free energy as a function of temperature of the fcc(γ) and hep(ε) phases in the Fe-Mn-Si system is reevaluated. The relationship between the Neel temperature of the γ phase and concentration of constituents in mole fraction, is fitted and verified by the experimental results. The critical driving force for the martensitic transformation fcc (γ)→ hep (ε), △ GCγ→ε, defined as the free energy difference between γ and ε phases at Ms of various alloys can also be obtained with a known Ms. It is found that the driving force varies with the composition of alloys, e. g. △ GCγ→ε = - 100.99 J/mol in Fe-27.0Mn-6.0Si and △ GCγ→ε = - 122.11 J/mol in Fe-26.9Mn-3.37Si. The compositional dependence of critical driving force accorded with the expression formulated by Hsu of the

  4. Martensitic transformation and magnetocaloric effect in Mn-Ni-Nb-Sn shape memory alloys: The effect of 4d transition-metal doping

    Energy Technology Data Exchange (ETDEWEB)

    Han Zhida, E-mail: zhida.han@gmail.com [Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Department of Physics, Nanjing University, Nanjing 210093 (China); Chen Xi; Zhang Yao; Chen Jie [Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Qian Bin; Jiang Xuefan [Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Wang Dunhui; Du Youwei [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer The first study of 4d transition-metal addition in Ni-Mn-based ferromagnetic shape memory alloys. Black-Right-Pointing-Pointer The martensitic transformation temperatures decrease with the increase of Nb content. Black-Right-Pointing-Pointer 4d transition-metal doping provide an alternative way to tailor the phase transitions and magnetocaloric effect Ni-Mn-X (X = In, Sn, Sb) alloys. - Abstract: The influence of 4d transition-metal Nb substitution for Ni in Mn{sub 50}Ni{sub 50-y}Sn{sub y} (y = 9, 10) alloys on the phase transitions and magnetocaloric effect was investigated. Austenitic phase of Nb-doped Mn{sub 50}Ni{sub 50-y}Sn{sub y} alloys have the cubic structure, and Nb addition results in the expansion of cell volume. The martensitic transformation temperatures decrease with the increase of Nb content, which could be explained by the decrease of valence electron concentration. Our results indicate that 4d transition-metal doping may provide an alternative way to tailor the martensitic transformation and the magnetocaloric effect in ferromagnetic shape memory alloys.

  5. Effect of Y addition on the martensitic transformation and shape memory effect of Ti-Ta high-temperature shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.H. [National Key Laboratory Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sui, J.H., E-mail: suijiehe@hit.edu.cn [National Key Laboratory Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, X.; Tian, X.H.; Cai, W. [National Key Laboratory Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer We added the rare earth element Y into Ti-Ta alloys for the first time. Black-Right-Pointing-Pointer The addition of Y results in a change in the microstructure. Black-Right-Pointing-Pointer The reverse martensitic transformation finish temperature is increased by addition of Y. Black-Right-Pointing-Pointer The addition of Y also enhances the shape memory effect of Ti-Ta alloys. - Abstract: The effect of Y addition on the microstructure, martensitic transformation and shape memory effect of Ti-30Ta alloy was investigated. The Y addition results in a change of the microstructure. The reverse martensitic transformation finish temperature (A{sub f}) increases 30 K with the 0.5 at.% Y addition. It is found that the shape memory effect with the maximum recovery strain of 4.32% is obtained in the (Ti-30Ta){sub 99.5}Y{sub 0.5} alloy, which is also higher than that of Ti-30Ta alloy.

  6. The effect of Pd on martensitic transformation and magnetic properties for Ni50Mn38−xPdxSn12Heusler alloys

    Directory of Open Access Journals (Sweden)

    C. Jing

    2016-05-01

    Full Text Available In the past decade, Mn rich Ni-Mn based alloys have attained considerable attention due to their abundant physics and potential application as multifunctional materials. In this paper, polycrystalline Ni50Mn38−xPdxSn12 (x = 0, 2, 4, 6 Heusler alloys have been prepared, and the martensitic phase transformation (MPT together with the shape memory effect and the magnetocaloric effect has been investigated. The experimental result indicates that the MPT evidently shifts to a lower temperature with increase of Pd substitution for Mn atoms, which can be attributed to the weakness of the hybridization between the Ni atom and excess Mn on the Sn site rather than the electron concentration. The physics properties study focused on the sample of Ni50Mn34Pd4Sn12 shows a good two-way shape memory behavior, and the maximum value of strain Δ L/L reaches about 0.13% during the MPT. The small of both entropy change Δ ST and magnetostrain can be ascribed to the inconspicuous influence of magnetic field induced MPT.

  7. Cold-rolling behavior of biomedical Ni-free Co-Cr-Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena.

    Science.gov (United States)

    Mori, Manami; Yamanaka, Kenta; Chiba, Akihiko

    2015-03-01

    Ni-free Co-Cr-Mo alloys are some of the most difficult-to-work metallic materials used commonly in biomedical applications. Since the difficulty in plastically deforming them limits their use, an in-depth understanding of their plastic deformability is of crucial importance for both academic and practical purposes. In this study, the microstructural evolution of a Co-29Cr-6Mo-0.2N (mass%) alloy during cold rolling was investigated. Further, its work-hardening behavior is discussed while focusing on the strain-induced face-centered cubic (fcc) γ→hexagonal close-packed (hcp) ε martensitic transformation (SIMT). The planar dislocation slip and subsequent SIMT occurred even in the initial stage of the deformation process owing to the low stability of the γ-phase and contributed to the work hardening behavior. However, the amount of the SIMTed ε-phase did not explain the overall variation in work hardening during cold rolling. It was found that the intersecting of the SIMTed ε-plates enhanced local strain evolution and then produced fine domain-like deformation microstructures at the intersections. Consequently, the degree of work hardening was reduced during subsequent plastic deformation, resulting in the alloy exhibiting a two-stage work hardening behavior. The results obtained in this study suggest that the interaction between ε-martensites, and ultimately its relaxation mechanism, is of significant importance; therefore, this aspect should be addressed in detail; the atomic structures of the γ-matrix/ε-martensite interfaces, the phenomenon of slip transfer at the interfaces, and the slipping behavior of the ε-phase itself are needed to be elucidated for further increasing the cold deformability of such alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Assessment of Pipe Coupling by Using the Recovery of Stress-Induced Martensites in Superelastic Cu-11.8Al-0.6Be-0.5Nb Alloy

    Science.gov (United States)

    de Oliveira, Danniel F.; Brito, Ieverton Caindre A.; França, Fabio José C.; de Lima, Severino Jackson G.; Mello, Tadeu Antonio A.; Gomes, Rodinei M.

    2017-05-01

    Superelastic Cu-11.8wt.%Al-0.6wt.%Be-0.5wt.%Nb shape memory alloy was tested under loading and unloading tensile tests at different temperatures and different strain rates of 5 × 10-4 s-1 and 1 × 10-5 s-1. The results of tests performed at 243 and 298 K demonstrate that this Cu-Al-Be alloy exhibits an appreciable amount of residual strain at room temperature, reaching strain levels as high as high as 4% when tested at 243 K for an imposed deformation of 7%. The residual stress associated with retained martensite is reverted by heating at the new austenite start ( A s) temperature, which is 60 °C higher than that of the initial alloy. In addition, with increasing temperature, the critical stress for the austenite → martensite transformation increases. Tube joining experiments show that the reversion of retained martensite is very effective to make pipe coupler fittings. The reversion of stress-induced martensite results in a coupling with a pull-out force equivalent to that obtainable by conventional shape memory effect.

  9. In-situ strain localization analysis in low density transformation-twinning induced plasticity steel using digital image correlation

    Science.gov (United States)

    Eskandari, M.; Yadegari-Dehnavi, M. R.; Zarei-Hanzaki, A.; Mohtadi-Bonab, M. A.; Basu, R.; Szpunar, J. A.

    2015-04-01

    The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning. Effect of deformation mechanism by changing temperature on strain localization is investigated by digital image correlation. EBSD technique is served to validate deformation mechanism as well as microstructural evolution. Strain induced martensite as well as deformation twinning is activated in the present steel affecting strain localization.

  10. Martensitic transformations in ZrO/sub 2/: numerical methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.D.D.

    1981-05-01

    The strain energy formulation for systems undergoing phase transformations has, for the first time, been established by the finite element method. The primary advantages of this method over others are the removal of limitations based on elastic isotropy or homogeneity, and its applicability to all types of stress-free strain (including twinning). This method has been applied to study the strain energy changes associated with the phase transformation of a spherical inclusion. The strain energy of an inhomogeneous (m)-ZrO/sub 2/ precipitate embedded in the (c)-ZrO/sub 2/ matrix has, for the first time, been determined using the finite element method. It was found that the total strain energy can be decoupled into two parts, one contributed by the diagonal stress free strain and the other by the shear stress free strain. These two strain energies are additive for an isotropic system.

  11. Microstructures and martensitic transformation behavior of superelastic Ti-Ni-Ag scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuanglei; Kim, Eun-soo [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Yeon-wook [Department of Material Engineering, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2016-10-15

    Highlights: • The B2-R-B19′ transformation occurred in 49Ti-50.3Ni-0.7Ag alloy fibers. • Annealing treated alloy fibers showed superelastic recovery ratio of 93%. • Ageing treated scaffold had an elastic modulus of 0.67 GPa. • Ageing treated scaffold exhibited good superelasticity at human body temperature. - Abstract: Ti-Ni-Ag scaffolds were prepared by sintering rapidly solidified alloy fibers. Microstructures and transformation behaviors of alloy fibers and scaffolds were investigated by means of electron probe micro-analyzer (EPMA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The B2-R-B19′ transformation occurs in alloy fibers. The alloy fibers have good superelasticity with superelastic recovery ratio of 93% after annealing heat treatment. The as-sintered Ti-Ni-Ag scaffolds possess three-dimensional and interconnected pores and have the porosity level of 80%. The heat treated Ti-Ni-Ag scaffolds not only have an elastic modulus of 0.67 GPa, which match well with that of cancellous bone, but also show excellent superelasticity at human body temperature. In terms of the mechanical properties, the Ti-Ni-Ag scaffolds in this study can meet the main requirements of bone scaffold for the purpose of bone replacement applications.

  12. Thermodynamical aspects of martensitic transformations in CuAlNi single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C

    2004-04-15

    Entropy changes during {beta}{sub 1}{r_reversible}{beta}{sub 1}{sup '} and {beta}{sub 1}{r_reversible}{gamma}{sub 1}{sup '} transformations in Cu-14.3Al-4.1Ni (wt.%) and Cu-14.1Al-4.2Ni (wt.%) single crystals were obtained, in order to evaluate changes on the relative stability of the metastable phases involved. These values were determined by DSC measurements and isothermal tensile tests performed at different temperatures.

  13. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  14. Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

    Science.gov (United States)

    Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.

    2015-01-01

    Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.

  15. Mechanical behavior under cyclic loading of the 18R-6R high-hysteresis martensitic transformation in Cu-Zn-Al alloys with nanoprecipitates

    Energy Technology Data Exchange (ETDEWEB)

    Castro Bubani, Franco de, E-mail: franco@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo Km. 9, 5 (8400) S.C.de Bariloche (Argentina); CONICET, Buenos Aires (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Rio Negro (Argentina); Sade, Marcos, E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo Km. 9, 5 (8400) S.C.de Bariloche (Argentina); CONICET, Buenos Aires (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Rio Negro (Argentina); Lovey, Francisco, E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo Km. 9, 5 (8400) S.C.de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Rio Negro (Argentina)

    2013-08-10

    Mechanical damping applications could benefit from the large hysteresis, large pseudoelastic strain and the fact that the transformation stresses of the 18R↔6R martensite–martensite transformation depend very little on temperature in Cu-based alloys. This work presents the 18R↔6R mechanical cycling behavior of CuZnAl shape-memory alloy single crystals with electronic concentration e/a=1.48. A fine distribution of gamma phase nanoprecipitates is introduced to prevent plastic deformation of the 6R phase. Results show that, although significant 6R stabilization is observed at very low frequencies (below 10{sup −2} Hz), it is possible to obtain more than 1000 stable pseudoelastic cycles with only minor changes in transformation stresses and hysteresis width at frequencies above 10{sup −1} Hz. A more pronounced decrease in transformation stresses is observed after 1000 cycles. Nevertheless, the decrease in hysteresis is small up to 2000 cycles. Reported and present results indicate that pair interchange of atoms can explain the stabilization of 6R under quasistatic experimental conditions. However, at higher frequencies of cycling, stabilization of this martensite shows additional features, leading to a dynamic stabilization with slight effects on the mechanical behavior at the required frequency and number of cycles. On the whole, the behavior of this transformation is unique and very promising.

  16. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    Science.gov (United States)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  17. Characterization of Transformation-Induced Defects in Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Bowers, Matthew L.

    Shape memory alloys have remarkable strain recovery properties that make them ideal candidates for many applications that include devices in the automotive, aerospace, medical, and MEMS industries. Although these materials are widely used today, their performance is hindered by poor dimensional stability resulting from cyclic degradation of the martensitic transformation behavior. This functional fatigue results in decreased work output and cyclic accumulation of permanent strain. To date, few studies have taken a fundamental approach to investigating the interaction between plasticity and martensite growth and propagation, which is vitally important to mitigating functional fatigue in future alloy development. The current work focuses on understanding the interplay of these deformation mechanisms in NiTi-based shape memory alloys under a variety of different thermomechanical test conditions. Micron-scale compression testing of NiTi shape memory alloy single crystals is undertaken in an effort to probe the mechanism of austenite dislocation generation. Mechanical testing is paired with post mortem defect analysis via diffraction contrast scanning transmission electron microscopy (STEM). Accompanied by micromechanics-based modeling of local stresses surrounding a martensite plate, these results demonstrate that the previously existing martensite and resulting austenite dislocation substructure are intimately related. A mechanism of transformation-induced dislocation generation is described in detail. A study of pure and load-biased thermal cycling of bulk polycrystalline NiTi is done for comparison of the transformation behavior and resultant defects to the stress-induced case. Post mortem and in situ STEM characterization demonstrate unique defect configurations in this test mode and STEM-based orientation mapping reveals local crystal rotation with increasing thermal cycles. Changes in both martensite and austenite microstructures are explored. The results for

  18. Effects of Heat Treatment and Thermal Cycling on Martensitic Transformation Behavior of Ni59Al11Mn30 High Temperature Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    He Zhi-rong; Zhou Jing-en

    2004-01-01

    A reversible martensitic transformation (MT) takes place during cooling and heating in the solution quenched and the solution quenched plus aged Ni59Al11Mn30 alloy The MT temperature increases with increasing solution temperature. The excellent MT characteristics can be obtained from a process of 1000℃ solution quenched plus 400℃aged. Follow this process, the MT start temperature (Ms) and the reverse MT finish temperature (Af) are 469℃ and 548℃,respectively. The martensitic stabilization effect in the solution quenched and aged Ni59Al11Mn30 alloy is observed as an increase in the Af temperature of the first reverse MT during thermal cycles. This stabilization effect vanishes from the second thermal cycle. Thermal cycling can enhance the stability of the reversible MT. The microstructure of the quenched Ni59Al11Mn30 alloy consists of martensite (M) and gamma phase. The volume fraction of gamma phase is about 40%. The substructure of M and gamma phase is twins and dislocations, respectively. The hardness of M is higher than that of gamma phase. After aging treatment the basic phases of alloy do not change, but the hardness of the phases increases.

  19. Isothermal martensitic transformation in a 12Cr-9Ni-4Mo-2Cu stainless steel in applied magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, D. [Fundamentals of Advanced Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)], E-mail: d.sanmartin@tudelft.nl; Aarts, K.W.P.; Rivera-Diaz-del-Castillo, P.E.J. [Fundamentals of Advanced Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van [Fundamental Aspects of Materials and Energy group, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Brueck, E. [Van der Waals-Zeeman Institute, University of Amsterdam, Valcknierstraat 65, 1018 XE Amsterdam (Netherlands); Zwaag, S. van der [Fundamentals of Advanced Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2008-05-15

    This work concerns an in situ study of the isothermal formation of martensite in a stainless steel under the influence of magnetic fields up to 9 T at three different temperatures (213, 233 and 253 K). It is shown that the presence of a constant applied magnetic field promotes the formation of martensite significantly. The activation energy for the nucleation of martensite has been derived using a semi-empirical kinetic model. The experimental results have been analyzed using the Ghosh and Olson model. While this model describes the time and field dependences of the experimental data well, the thermal frictional energy and the defect size values are much lower than those expected from earlier work.

  20. Magnetic-field-induced shape recovery by reverse phase transformation.

    Science.gov (United States)

    Kainuma, R; Imano, Y; Ito, W; Sutou, Y; Morito, H; Okamoto, S; Kitakami, O; Oikawa, K; Fujita, A; Kanomata, T; Ishida, K

    2006-02-23

    Large magnetic-field-induced strains have been observed in Heusler alloys with a body-centred cubic ordered structure and have been explained by the rearrangement of martensite structural variants due to an external magnetic field. These materials have attracted considerable attention as potential magnetic actuator materials. Here we report the magnetic-field-induced shape recovery of a compressively deformed NiCoMnIn alloy. Stresses of over 100 MPa are generated in the material on the application of a magnetic field of 70 kOe; such stress levels are approximately 50 times larger than that generated in a previous ferromagnetic shape-memory alloy. We observed 3 per cent deformation and almost full recovery of the original shape of the alloy. We attribute this deformation behaviour to a reverse transformation from the antiferromagnetic (or paramagnetic) martensitic to the ferromagnetic parent phase at 298 K in the Ni45Co5Mn36.7In13.3 single crystal.

  1. Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron; Estudio de la influencia del Cu y Ni en la cinetica de transformacion martensitica inducida por deformacion en fundiciones nodulares austemperadas

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.; Navea, L.; Garin, J.; Aguilar, C.; Guzman, A.

    2013-09-01

    The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability. (Author)

  2. Solution of an Inverse Problem of Heat Conduction of 45 Steel with Martensite Phase Transformation in High Pressure during Gas Quenching

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature.

  3. Determination of the normal and anomalous hall effect coefficients in ferromagnetic Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x} Heusler alloys at the martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Granovskii, A. B., E-mail: granov@magn.ru; Prudnikov, V. N.; Kazakov, A. P. [Moscow State University (Russian Federation); Zhukov, A. P. [Ikerbasque, Basque Foundaiton for Science (Spain); Dubenko, I. S. [Southern Illinois University, Department of Physics (United States)

    2012-11-15

    The magnetization, the electrical resistivity, the magnetoresistance, and the Hall resistivity of Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x} (x = 1.0, 3.0, 4.0) Heusler alloys are studied at T = 80-320 K. The martensitic transformation in these alloys occurs at T = 220-280 K from the high-temperature ferromagnetic austenite phase into the low-temperature martensite phase having a substantially lower magnetization. A method is proposed to determine the normal and anomalous Hall effect coefficients in the presence of magnetoresistance and a possible magnetization dependence of these coefficients. The resistivity of the alloys increases jumpwise during the martensitic transformation, reaches 150-200 {mu}{Omega} cm, and is almost temperature-independent. The normal Hall effect coefficient is negative, is higher than that of nickel by an order of magnitude at T = 80 K, decreases monotonically with increasing temperature, approaches zero in austenite, and does not undergo sharp changes in the vicinity of the martensitic transformation. At x = 3, a normal Hall effect nonlinear in magnetization is detected in the immediate vicinity of the martensitic transformation. The temperature dependences of the anomalous Hall effect coefficient in both martensite and austenite and, especially, in the vicinity of the martensitic transformation cannot be described in terms of the skew scattering, the side jump, and the Karplus-Lutinger mechanisms from the anomalous Hall effect theory. The possible causes of this behavior of the magnetotransport properties in Heusler alloys are discussed.

  4. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys

    Science.gov (United States)

    Kolli, R. Prakash; Joost, William J.; Ankem, Sreeramamurthy

    2015-06-01

    In this article, we provide a brief review of the recent developments related to the relationship between phase stability and stress-induced transformations in metastable body-centered-cubic β-phase titanium alloys. Stress-induced transformations occur during tensile, compressive, and creep loading and influence the mechanical response. These transformations are not fully understood and increased understanding of these mechanisms will permit future development of improved alloys for aerospace, biomedical, and energy applications. In the first part of this article, we review phase stability and discuss a few recent developments. In the second section, we discuss the current status of understanding stress-induced transformations and several areas that require further study. We also provide our perspective on the direction of future research efforts. Additionally, we address the occurrence of the hcp ω-phase and the orthorhombic α″-martensite phase stress-induced transformations.

  5. Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels

    Science.gov (United States)

    Ungár, Tamás; Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Ribárik, Gábor; Shi, Zengmin

    2017-01-01

    Based on high-resolution neutron diffraction experiments, we will show that in lath martensite steels, the initially homogeneous dislocation structure, i.e., homogeneous on the length scale of grain size, is disrupted by plastic deformation, which, in turn, produces a composite on the length scale of martensite lath packets. The diffraction patterns of plastically strained martensitic steel reveal characteristically asymmetric peak profiles in the same way as has been observed in materials with heterogeneous dislocation structures. The quasi homogeneous lath structure, formed by quenching, is disrupted by plastic deformation producing a composite structure. Lath packets oriented favorably or unfavorably for dislocation glide become soft or hard. Two lath packet types develop by work softening or work hardening in which the dislocation densities become smaller or larger compared to the initial average dislocation density. The decomposition into soft and hard lath packets is accompanied by load redistribution and the formation of long-range internal stresses between the two lath packet types. The composite behavior of plastically deformed lath martensite opens a new way to understand the elastic-plastic response in this class of materials.

  6. Long-Range Atomic Order and Entropy Change at the Martensitic Transformation in a Ni-Mn-In-Co Metamagnetic Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Vicente Sánchez-Alarcos

    2014-05-01

    Full Text Available The influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.

  7. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  8. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  9. Effect of Carbon on the Paramagnetic-Antiferromagnetic Transition and γ→ε Martensitic Transformation of Fe-24Mn Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of C content (0.014~0.39 wt pct) on the paramagnetic-antiferromagnetic transition and γ -→ ε martensitic transformation of Fe-24Mn alloys has been investigated by the resistivity,dilation, tensile properties measurement and microstructure examination. The results have shown that C decreases TN; increases the thermal expansion coefficients both above and below the TN; increases the resistivity above the TN and antiferromagnetic scattering resistivity below TN. It strongly depresses the γ→ε martensitic transformation and reduces the Ms of Fe-24Mn alloys.Moreover, it increases the lattice parameter of austenite, enhances the tensile ductility, but almost does not affect the tensile strength. With increasing C content from 0.014 to 0.19 wt pct, theyield strength of Fe-24Mn alloy decreases obviously arising from the decreasing of preexisting εmartensite, but it increases from 0.19 to 0.39 wt pct C due to the solution hardening of C.

  10. Carbon Diffusion and Kinetics During the Lath Martensite Formation

    OpenAIRE

    Hsu (xu Zuyao), T.Y.

    1995-01-01

    Calculations verify that carbon diffusion may occur during the lath martensite formation. Accordingly, the diffusion of interstitial atoms or ions must be taken into account when martensitic transformation is defined as a diffusionless transformation. In derivation of the kinetics equation of the athermal martensitic transfomation, regarding the carbon diffusion, i .e. the enrichment of the austenite during the lath martensite formation, and ΔG(γ→α) being function of the temperature and the c...

  11. Isothermal and athermal type martensitic transformations in yttria doped zirconia%添加Y2O3的ZrO2的等温和变温马氏体相变

    Institute of Scientific and Technical Information of China (English)

    早川元造

    2005-01-01

    The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recently identified to be a fast isothermal transformation. The isothermal nature becomes more apparent when a stabilizing oxide, such as yttria, is doped, by which the transformation temperature is reduced and accordingly the transformation rate becomes low.Thus it becomes easy to experimentally establish a C-curve nature in a TTT (Time-Temperature-Transformation) diagram. The C-curve approaches that of well known isothermal transformation of Y-TZP (Yttria Doped Tetragonal Zirconia Polycrystals), which typically contains 3mol% of Y2O3.In principle, an isothermal transformation can be suppressed by a rapid cooling so that the cooling curve avoids intersecting the C-curve in TTT diagram. Y-TZP is the case, where the stability of the metastable tetragonal phase is relatively high and thus the tetragonal phase persists even at the liquid nitrogen temperature. On the other hand, the high temperature tetragonal phase of pure zirconia can never be quenched-in at room temperature by a rapid cooling; instead it always turns into monoclinic phase at room temperature. This suggests the occurrence of an athermal transformation after escaping the isothermal transformation, provided the cooling rate was fast enough to suppress the isothermal transformation. Thus, with an intermediate yttria composition, it would be possible to obtain the tetragonal phase which is not only metastable at room temperature but athermally transforms into the monoclinic phase by subzero cooling.The objective of the present work is to show that, with a certain range of yttria content, the tetragonal phase can be quenched in at room temperature and undergoes isothermal transformation and athermal transformation depending on being heated at a moderate temperature or under-cooled below room

  12. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Science.gov (United States)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  13. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    Science.gov (United States)

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  14. Martensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties

    Directory of Open Access Journals (Sweden)

    Mohammad Shirdel

    2015-06-01

    Full Text Available Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjected to heavy cold rolling to produce a nearly complete martensitic structure. Subsequently, a wide range of annealing temperatures (600 to 800°C and times (1 to 240 min were employed to assess the reversion behavior and to find the best annealing condition for the production of the nano/ultrafine grained austenitic microstructure. Microstructural characterizations have been performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and magnetic measurement, whereas the mechanical properties were assessed by tensile and hardness tests. After thermomechanical treatment, a very fine austenitic structure was obtained, which was composed of nano sized grains of ~ 85 nm in an ultrafine grained matrix with an average grain size of 480 nm. This microstructure exhibited superior mechanical properties: high tensile strength of about 1280 MPa with a desirable elongation of about 41%, which can pave the way for the application of these sheets in the automotive industry.

  15. Evidence of Change in the Density of States during the Martensitic Phase Transformation of Ni-Mn-In Metamagnetic Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Rie Y Umetsu

    2017-10-01

    Full Text Available Specific heat measurements were performed at low temperatures for Ni50Mn50−xInx alloys to determine their Debye temperatures (θD and electronic specific heat coefficients (γ. For x ≤ 15, where the ground state is the martensite (M phase, θD decreases linearly and γ increases slightly with increasing In content. For x ≥ 16.2, where the ground state is the ferromagnetic parent (P phase, γ increases with decreasing In content. Extrapolations of the composition dependences of θD and γ in both the phases suggest that these values change discontinuously during the martensitic phase transformation. The value of θD in the M phase is larger than that in the P phase. The behavior is in accordance with the fact that the volume of the M phase is more compressive than that of the P phase. On the other hand, γ is slightly larger in the P phase, in good agreement with the reported density of states around the Fermi energy obtained by the first-principle calculations.

  16. An in-situ neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Brown, Donald W.; Clausen, Bjørn; Tomé, Carlos N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pereloma, Elena V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Electron Microscopy Centre, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Davies, Christopher H. J. [Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800 (Australia); Gazder, Azdiar A. [Electron Microscopy Centre, University of Wollongong, Wollongong, New South Wales 2500 (Australia)

    2015-04-27

    In-situ neutron diffraction during cyclic tension-compression loading (∼+3.5% to −2.8%) of a 17Mn-3Al-2Si-1Ni-0.06C steel that exhibits concurrent transformation and twinning -induced plasticity effects indicated a significant contribution of intragranular back stresses to the observed Bauschinger effect. Rietveld analysis revealed a higher rate of martensitic transformation during tension compared to compression. Throughout cycling, α′-martensite exhibited the highest phase strains such that it bears an increasing portion of the macroscopic load as its weight fraction evolves. On the other hand, the ε-martensite strain remained compressive as it accommodated most of the internal strains caused by the shape misfit associated with the γ→ε and/or ε→α′ transformations.

  17. Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Souza Filho, I.R. [Escola de Engenharia de Lorena, University of Sao Paulo, 12602-810 Lorena (Brazil); Sandim, M.J.R., E-mail: msandim@demar.eel.usp.br [Escola de Engenharia de Lorena, University of Sao Paulo, 12602-810 Lorena (Brazil); Cohen, R.; Nagamine, L.C.C.M. [Instituto de Física, University of Sao Paulo, 05314-970 Sao Paulo (Brazil); Hoffmann, J. [Karlsruher Institut für Technologie, D-72061 Karlsruhe (Germany); Bolmaro, R.E. [Instituto de Física Rosario, CONICET-UNR, 2000 Rosario (Argentina); Sandim, H.R.Z. [Escola de Engenharia de Lorena, University of Sao Paulo, 12602-810 Lorena (Brazil)

    2016-12-01

    Strain-induced martensite (SIM) and its reversion in a cold-rolled AISI 201 austenitic stainless steel was studied by means of magnetic properties, light optical (LOM) and scanning electron (SEM) microscopy, electron backscatter diffraction (EBSD), texture measurements, and Vickers microhardness testing. According to Thermo-calc© predictions, the BCC phase (residual δ-ferrite and SIM) is expected to be stable until 600 °C. The current material was cold rolled up to 60% thickness reduction and submitted to both isothermal and stepwise annealing up to 800 °C. Magnetic measurements were taken during annealing (in situ) of the samples and also for their post mortem conditions. The Curie temperatures (T{sub c}) of residual δ-ferrite and SIM have similar values between 550 and 600 °C. Besides T{sub c}, the focused magnetic parameters were saturation magnetization (M{sub s}), remanent magnetization (M{sub R}), and coercive field (H{sub c}). SIM reversion was found to occur in the range of 600–700 °C in good agreement with Thermo-calc© predictions. The microstructures of the material, annealed at 600 and 700 °C for 1 h, were investigated via EBSD. Microtexture measurements for these samples revealed that the texture components were mainly those found for the 60% cold rolled material. This is an evidence that the SIM reversion occurred by an athermal mechanism. - Highlights: • H{sub c} and M{sub R}/M{sub S} ratio give information about distribution of strain-induced martensite. • According to Thermo-calc©, the BCC phase in AISI 201 steel is stable until 600 °C. • Thermo-calc predictions agrees with magnetic properties of AISI 201 steel. • Possible magnetic anisotropy induced by rolling in AISI 201 steel is investigated.

  18. Thermoelastic martensitic transformations, mechanical properties, and shape-memory effects in rapidly quenched Ni45Ti32Hf18Cu5 alloy in the ultrafine-grained state

    Science.gov (United States)

    Pushin, V. G.; Pushin, A. V.; Kuranova, N. N.; Kuntsevich, T. E.; Uksusnikov, A. N.; Dyakina, V. P.; Kourov, N. I.

    2016-12-01

    Methods of transmission and scanning electron microscopy and chemical microanalysis, electron diffraction, and X-ray diffraction were used to study the structure and the chemical and phase composition of ribbons of the four-component quasi-binary alloy Ni45Ti32Hf18Cu5. The influence of the synthesis regimes and subsequent heat treatment of the alloy on the formation of the amorphized state and ultrafine-grained structure has been determined. The critical temperatures of the devitrification and of the B2 ↔ B19' thermoelastic martensitic transformation have been established based on the data of the temperature dependences of the electrical resistivity. The lattice parameters of the B2 and B19' phases and the (Ti,Hf)2Ni phase have been determined by X-ray diffraction. The mechanical properties of the alloy were determined in tensile tests, and the shape-memory effects in the ribbons of the alloy were measured using bending tests.

  19. Effect of Thermal Cycling under Load on Martensite Transformation and Two-way Shape Memory Effect in a TiNi Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of thermal cycling under loading on martensitictransformation and two-way shape memory effect was investigated for Ti-49.8 at. pct Ni alloy. It is shown that Ms and Mf temperature increase with increasing the number of cycles, while As and Af temperature decrease during thermal cycling. The total strain εt and permanent strain εp increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations.

  20. Thermodynamic prediction of M_s in Fe-Mn-Si shape memory alloys associated with fcc(γ)→hcp(ε) martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    张骥华; 金学军; 徐祖耀

    1999-01-01

    By means of X-ray diffraction profile analysis of three different composition Fe-Mn-Si alloys, the relationship between stacking fault probability Psf with the concentrations of constituents in alloys, 1/Psf=540.05+23.70×Mn wt%-138.74×Si wt%, was determined. According to the nucleation mechanism by stacking fault in this alloy,the equation between critical driving force ΔGc and Psf, ΔGc=67.487+0.1775/Psf(J/mol), was made. Therefore,the relationship between critical driving force and compositions was established. Associated with the thermodynamic calculation, the Ms of fcc(γ)→hcp(ε) martensitic transformation in any suitable composition Fe-Mn-Si shape memory alloys can be predicted and results seem reasonable as compared with some experimental data.

  1. Martensitic transformation and magnetocaloric properties in Ni40.4Mn46.5Sn10.9Sb2.2 ribbons

    Science.gov (United States)

    Xuan, H. C.; Zhang, T.; Wu, Y. F.; Xu, Y. K.; Li, H.; Han, P. D.; Du, Y. W.; Zhang, C. L.

    2017-01-01

    The Ni40.4Mn46.5Sn10.9Sb2.2 ribbons were prepared by melt-spun method. The martensitic transformation (MT) and magnetocaloric effect in melt-spun and annealed Ni40.4Mn46.5Sn10.9Sb2.2 ribbons were investigated. After the heat treatment, the MT temperature increases obviously in the annealed ribbons. The large values of magnetic entropy changes and the effective refrigerant capacity around the MT and Curie temperature of the austenite are found to be 30.9 and -2.2 J/kg K, 70.6 and 132.6 J/kg, respectively, under the field change of 30 kOe for the annealed ribbons. The annealing effect on the MT and magnetocaloric effect, together with the origin of the large magnetic entropy changes, has been discussed in this paper.

  2. Improving on calculation of martensitic phenomenological theory

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exemplified by the martensitic transformation from DO3 to 18R in Cu-14.2Al-4.3Ni alloy and according to the principle that invariant-habit-plane can be obtained by self-accommodation between variants with twin relationships, and on the basis of displacement vector, volume fractions of two variants with twin relationships in martensitic transformation, habit-plane indexes, and orientation relationships between martensite and austenite after phase transformation can be calculated. Because no additional rotation matrixes are needed to be considered and mirror symmetric operations are used, the calculation process is simple and the results are accurate.

  3. In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kun [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Liss, Klaus-Dieter [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); Timokhina, Ilana B. [Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Pereloma, Elena V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-04-26

    Transmission electron microscopy and in situ synchrotron high-energy X-ray diffraction were used to investigate the martensitic transformation and lattice strains under uniaxial tensile loading of Fe-Mn-Si-C-Nb-Mo-Al Transformation Induced Plasticity (TRIP) steel subjected to different thermo-mechanical processing schedules. In contrast with most of the diffraction analysis of TRIP steels reported previously, the diffraction peaks from the martensite phase were separated from the peaks of the ferrite-bainite α-matrix. The volume fraction of retained γ-austenite, as well as the lattice strain, were determined from the diffraction patterns recorded during tensile deformation. Although significant austenite to martensite transformation starts around the macroscopic yield stress, some austenite grains had already experienced martensitic transformation. Hooke’s Law was used to calculate the phase stress of each phase from their lattice strain. The ferrite-bainite α-matrix was observed to yield earlier than austenite and martensite. The discrepancy between integrated phase stresses and experimental macroscopic stress is about 300 MPa. A small increase in carbon concentration in retained austenite at the early stage of deformation was detected, but with further straining a continuous slight decrease in carbon content occurred, indicating that mechanical stability factors, such as grain size, morphology and orientation of the retained austenite, played an important role during the retained austenite to martensite transformation.

  4. Stress induced martensite at the crack tip in NiTi alloys during fatigue loading

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2014-10-01

    Full Text Available Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi were analyzed by Digital Image Correlation (DIC, under fatigue loads. In particular, Single Edge Crack (SEC specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF, starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence.

  5. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    Science.gov (United States)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  6. Lattice instability during the martensitic transformation in the high temperature shape memory alloy Zr(Cu{sub 0.5}Co{sub 0.25}Ni{sub 0.25})

    Energy Technology Data Exchange (ETDEWEB)

    Azeem, M.A. [Dept. Materials, Royal School of Mines, Imperial College, Prince Consort Road, South Kensington, London SW7 2BP (United Kingdom); Manchester X-ray Imaging Facility, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA (United Kingdom); Dye, D., E-mail: david.dye@imperial.ac.uk [Dept. Materials, Royal School of Mines, Imperial College, Prince Consort Road, South Kensington, London SW7 2BP (United Kingdom)

    2015-01-05

    Highlights: • A novel intermetallic SMA actuator based on ZrCu, nominally Zr(Cu{sub 0.5}Co{sub 0.25}Ni{sub 0.25}) is examined. • Synchrotron X-ray diffraction is used to examine the thermal transformation behaviour. • Large deviations in the lattice parameters are observed in the vicinity of transformation. • Very high actuation temperatures can be obtained, in excess of 290 °C for the martensite finish on cooling. - Abstract: The martensitic transformation on thermal cycling of the polycrystalline Zr(Cu{sub 0.5}Co{sub 0.25}Ni{sub 0.25}) high temperature shape memory alloy was examined using in situ synchrotron X-ray diffraction. A single step B2 ↔ B19{sup ′} transformation was observed with a thermal hysteresis of 161 °C and a martensite finish temperature of 294 °C. Large anisotropic lattice constrictions and dilations, up to 1.3%, were observed during the course of transformation in the B19{sup ′} martensite, but corresponding changes in the B2 austenite were not observed. The coefficients of thermal expansion in both phases were found to be quite large, 33×10{sup -6}°C{sup -1} in B2 and 39, 88 and 29 × 10{sup −6} °C{sup −1} for a{sub B19{sup ′}}, b{sub B19{sup ′}} and c{sub B19{sup ′}} respectively. Possible mechanisms governing the transformation behaviour are discussed.

  7. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V

    Science.gov (United States)

    Tan, Xipeng; Kok, Yihong; Toh, Wei Quan; Tan, Yu Jun; Descoins, Marion; Mangelinck, Dominique; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2016-01-01

    As an important metal three-dimensional printing technology, electron beam melting (EBM) is gaining increasing attention due to its huge potential applications in aerospace and biomedical fields. EBM processing of Ti-6Al-4V as well as its microstructure and mechanical properties were extensively investigated. However, it is still lack of quantitative studies regarding its microstructural evolution, indicative of EBM thermal process. Here, we report α′ martensitic transformation and α/β interface evolution in varied printing thicknesses of EBM-printed Ti-6Al-4V block samples by means of atom probe tomography. Quantitative chemical composition analysis suggests a general phase transformation sequence. By increasing in-fill hatched thickness, elemental partitioning ratios arise and β volume fraction is increased. Furthermore, we observe kinetic vanadium segregation and aluminum depletion at interface front and the resultant α/β interface widening phenomenon. It may give rise to an increased α/β lattice mismatch and weakened α/β interfaces, which could account for the degraded strength as printing thickness increases. PMID:27185285

  8. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V

    Science.gov (United States)

    Tan, Xipeng; Kok, Yihong; Toh, Wei Quan; Tan, Yu Jun; Descoins, Marion; Mangelinck, Dominique; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2016-05-01

    As an important metal three-dimensional printing technology, electron beam melting (EBM) is gaining increasing attention due to its huge potential applications in aerospace and biomedical fields. EBM processing of Ti-6Al-4V as well as its microstructure and mechanical properties were extensively investigated. However, it is still lack of quantitative studies regarding its microstructural evolution, indicative of EBM thermal process. Here, we report α‧ martensitic transformation and α/β interface evolution in varied printing thicknesses of EBM-printed Ti-6Al-4V block samples by means of atom probe tomography. Quantitative chemical composition analysis suggests a general phase transformation sequence. By increasing in-fill hatched thickness, elemental partitioning ratios arise and β volume fraction is increased. Furthermore, we observe kinetic vanadium segregation and aluminum depletion at interface front and the resultant α/β interface widening phenomenon. It may give rise to an increased α/β lattice mismatch and weakened α/β interfaces, which could account for the degraded strength as printing thickness increases.

  9. A role of {alpha}' martensite introduced by thermo-mechanical treatment in improving shape memory effect of an Fe-Mn-Si-Cr-Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Huabei; Wen, Yuhua; Liu, Gang; Wang, Chaoping; Li, Ning [College of Manufacturing Science and Engineering, Sichuan University Chengdu (China)

    2011-05-15

    The evolution of {alpha}' martensite with different thermo-mechanical treatment and its effect on the shape memory effect were studied in an Fe-14Mn-5Si-8Cr-4Ni alloy. The {alpha}' martensite was introduced by only 5% pre-deformation, and its amount increased with increasing pre-deformation up to 20%. The {alpha}' martensite started to transform into austenite when the annealing temperature was 773 K. As the annealing temperature increased to 1 073 K, the {alpha}' martensite almost transformed fully into austenite. The {alpha}' martensite introduced by the thermo-mechanical treatment could prevent collisions between different {epsilon} martensite bands during deformation. The intrusion of {alpha}' martensite was another key reason that the stress-induced {epsilon} martensite bands in Fe-Mn-Si based shape memory alloys formed in a domain-specific manner in addition to that of uniformly distributed stacking faults after thermo-mechanical treatment. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent tran

  11. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    Science.gov (United States)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  12. Frictional Heat-Induced Phase Transformation on Train Wheel Surface

    Institute of Scientific and Technical Information of China (English)

    SU Hang; PAN Tao; LI Li; YANG Cai-fu; CUI Yin-hui; JI Huai-zhong

    2008-01-01

    By combining thermomechanical coupling finite element analysis with the characteristics of phase transformation [continuous cooling transformation (CCT) curve],the thermal fatigue behavior of train wheel steel under high speed and heavy load conditions was analyzed.The influence of different materials on the formation of the phase transformation zone of the wheel tread was discussed.The result showed that the peak temperature of wheel/track friction zone could be higher than the austenitizing temperature for braking.The depth of the austenitized region could reach a point of 0.9 mm beneath the wheel tread surface.The supercooled austenite is transformed to a hard and brittle martensite layer during the following rapid cooling process,which may lead to cracking and then spalling on the wheel tread surface.The decrease in carbon contents of the train wheel steel helps inhibit the formation of martensite by increasing the austenitizing temperature of the train wheel steel.When the carbon contents decrease from 0.7% to 0.4%,the Ac3 of the wheel steel is increased by 45 ℃,and the thickness of the martensite layer is decreased by 30%,which is helpful in reducing the thermal cycling fatigue of the train wheel tread such as spalling.

  13. Annealing effect on the magnetic induced austenite transformation in polycrystalline freestanding Ni-Co-Mn-In films produced by co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Crouïgneau, G., E-mail: guillaume.crouigneau@neel.cnrs.fr [Univ. Grenoble Alpes, Inst. NEEL, F-38042 Grenoble, Cedex 9 (France); Univ. Grenoble Alpes, CRETA, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38000 Grenoble (France); CNRS, CRETA, F-38000 Grenoble (France); Porcar, L.; Pairis, S.; Mossang, E.; Eyraud, E.; Bourgault, D. [Univ. Grenoble Alpes, Inst. NEEL, F-38042 Grenoble, Cedex 9 (France); CNRS, Inst. NEEL, F-38000 Grenoble (France); Courtois, P. [Institut Laue Langevin, 38000 Grenoble (France)

    2015-01-21

    Ni-Co-Mn-In freestanding films, with a magneto-structural transformation at room temperature were successfully produced by co-sputtering and post-annealing methods leading to film composition mastering. For a post-annealing temperature of 700 °C, the phase transformation occurs slightly above room temperature, with a twisted martensitic microstructure phase observed at 300 K by Field Emission Scanning Electron Microscopy. Magnetization measurements on a polycrystalline film showed a phase transformation from a weakly magnetic martensite to a magnetic austenite phase. Moreover, an inverse magnetocaloric effect with an entropy variation of 4 J/kg K under 5 T was also measured. A simple magneto-actuation experiment based on the magnetic induced austenite transformation was also successfully completed. The possibility to insert such films in microsystems is clearly demonstrated in this work.

  14. Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation

    CERN Document Server

    Ortwein, Rafał

    The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...

  15. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites.

    Science.gov (United States)

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Dolors Baró, Maria; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr48Cu48 - x Al4M x (M ≡ Fe or Co, x = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr48Cu48Al4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x = 0.5 (5.5% in Zr48Cu47.5Al4Co0.5 and 6.2% in Zr48Cu47.5Al4Fe0.5) is considerably larger than for Zr48Cu48Al4 or the alloys with x = 1. Slight variations in the Young's modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  16. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites

    Science.gov (United States)

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr48Cu48 - x Al4M x (M ≡ Fe or Co, x = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr48Cu48Al4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x = 0.5 (5.5% in Zr48Cu47.5Al4Co0.5 and 6.2% in Zr48Cu47.5Al4Fe0.5) is considerably larger than for Zr48Cu48Al4 or the alloys with x = 1. Slight variations in the Young’s modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  17. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    Science.gov (United States)

    Liu, Y.; Wang, H.; Zhang, X.

    2016-01-01

    Although abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. Numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction, have been applied to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. Here we briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. In the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  18. Radiation induced segregation and precipitation behavior in self-ion irradiated Ferritic/Martensitic HT9 steel

    Science.gov (United States)

    Zheng, Ce; Auger, Maria A.; Moody, Michael P.; Kaoumi, Djamel

    2017-08-01

    In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470 °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α‧ phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.

  19. The Martensitic Transformation Characterization in a Polycrystal%多晶Ni2.1Mn0.9Ca0.9C0.1合金的马氏体相变特征

    Institute of Scientific and Technical Information of China (English)

    陆兴; 陈晓琴; 邱立新; 邱明辉; 覃作祥

    2000-01-01

    采用电阻、热膨胀、磁致伸缩及光学金相等试验方法研究了多晶合金的马氏体相变特征.结果表明:合金在400~100K之间发生两次相变,第一次为马氏体相变,它的热滞后比较小,马氏体相的电阻率高于母相的电阻率;而第二次相变的结构变化尚未澄,它的热滞后比较大,新相的电阻率低于母相的电阻率.马氏体相变时,合金结晶方向长度收缩,磁致伸缩急剧减小.合金中马氏体基本为相互平行的片状组织.%The martensitic transformation of a polycrystalalloy has beeninvestigated by using the measurement of resistivity, dilation, magnetostriction and optical microscopyobservation. The results show that there is an unknown transformation below the temperture ofmartensitic transformation between 400K~100K for the alloy. In the case of martensitictransformation, the thermal hysteresis of martensitic transformation is narrow, and the resistivity ofmartensite is higher than that of austenite. The second transformation shows a wider thermalhysteresis, and the resisitivity of new phase is smaller than that of austenite. During the martensitictransformation, both the length of alloy and the magnetostriction decrease along the direction ofsolidification. The morphology of martensites is of parallel plates.

  20. FCC/HCP martensitic transformation and shape memory effect in Co-Al binary system%Co-Al二元系中的fcc/hcp马氏体相变和形状记忆效应

    Institute of Scientific and Technical Information of China (English)

    大森俊洋

    2005-01-01

    It is known that pure Co undergoes martensitic transformation from γ phase (fcc) to ε phase (hcp) by the movement of a/6 Shockley partial dislocations at around 400 ℃, however, there have been few systematic works on the SM effect in Co and Co-based alloys. In this study, the fcc/hcp martensitic transformation and the SM effect were investigated in Co-Al binary alloys(mole fraction of Al=0~16%).The γ/ε martensitic transformation temperatures were found from the DSC measurements to decrease with increasing Al content, while the transformation temperature hystereses were observed to increase from 60 ℃ at x(Al)=0 to 150 ℃at x(Al)= 16%. The SM effect evaluated by a conventional bending test was enhanced by the addition of Al over 4%(mole fraction) and Co-Al alloys containing over 10%(mole fraction) exhibit a good SM effect associated with the hcp →fcc reverse transformation above 200 ℃. The SM effect was significantly improved by precipitation ofβ (B2) phase and the maximal shape recovery strain of 2. 2% was obtained, which can be explained by precipitation hardening. The crystallographic orientations between theβ, ε and γ phases were also determined. Finally, the magnetic properties were investigated and it was found that the Curie temperature and saturation magnetization of Co-14% Al(mole fraction) are 690 ℃and 120 emu/g, respectively. It is concluded that the Co-Al alloys hold promise as new high-temperature and ferromagnetic SM alloys.

  1. Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroyuki, E-mail: hkato@eng.hokudai.ac.jp [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yasuda, Yohei, E-mail: yasuda-yoh@mech-me.eng.hokudai.ac.jp [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Sasaki, Kazuaki, E-mail: kazki@eng.hokudai.ac.jp [Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-06-15

    When a martensitic shape memory alloy is deformed, the reverse transformation occurs at higher temperature than that of undeformed martensite. This is a typical case of the stabilization effect of martensite that is commonly observed in shape memory alloys. Regarding previous results measured by electric resistance and/or dilatometoric methods in NiTi and CuAlNi shape memory alloys, this study has performed calorimetric measurement in these alloys in order to re-examine the stabilization effect in terms of thermodynamics. Experimental evidence for appreciable changes in the reverse transformation temperature due to variant change of the martensite is presented. The elastic energy stored in the deformed martensite and the irreversible energy dissipated during the reverse transformation are estimated from the transformation temperatures, the stress-strain curves of the martensite and the latent heat of transformation. The temperatures of the reverse martensitic transformation have been related to these energies in explicit form.

  2. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan;

    2010-01-01

    austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...... with a continuation of the martensitic transformation. On prolonged isothermal holding a volume reduction was observed for AISI 52100, but not for AISI 1070. A mechanism is proposed that explains the occurrence of isothermal martensite formation....

  3. CHARACTERISTICS OF STRESS-INDUCED TRANSFORMATION AND MICROSTRUCTURE EVOLUTION IN Cu-BASED SMA

    Institute of Scientific and Technical Information of China (English)

    Cheng Peng; Xingyao Wang; Yongzhong Huo

    2008-01-01

    The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental ob-servations, it was found that the stress-induced martensitic transformation process of single crys-tal Cu-based SMA under uniaxial tension condition consisted of three periods: nucleation, mixed nucleation and growth, and merging due to growth. During the nucleation, the stress dropped rapidly and the number of interfaces increased very fast while the phase fraction increased slowly.In the second period, both the stress and the interface number changed slightly but the phase fraction increased dramatically. Finally, the stress and the phase fraction changed slowly while the number of interfaces decreased quickly. Moreover, it was found that the transformation could be of multi-stage: sharp stress drops at several strains and correspondingly, the nucleation and growth process occurred quasi-independently in several parts of the sample.

  4. Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boenisch, Matthias

    2016-06-10

    . Also, experimental evidence indicates a deformation-induced martensite to austenite (α'' → β) conversion. The influence of Nb content on the thermal stability and on the occurrence of decomposition reactions in martensitic Ti-Nb alloys is examined by isochronal differential scanning calorimetry, dilatometry and in-situ synchrotron X-ray diffraction complemented by transmission electron microscopy. The thermal decomposition and transformation behavior exhibits various phase transformation sequences during heating into the β-phase field in dependence of composition. Eventually, the transformation temperatures, interval, hysteresis and heat of the β <-> α'' martensitic transformation are investigated in relation to the Nb content. The results obtained in this study are useful for the development and optimization of β-stabilized Ti-based alloys for structural, Ni-free shape memory and/or superelastic, as well as for biomedical applications.

  5. Influence of the Initial Microstructure on the Reverse Transformation Kinetics and Microstructural Evolution in Transformation-Induced Plasticity-Assisted Steel

    Science.gov (United States)

    Kim, Jeong In; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Kyooyoung; Heo, Yoon-Uk; Suh, Dong-Woo

    2016-11-01

    The reverse transformation behavior upon heating to intercritical temperature was studied in Fe-0.21C-2.2Mn-1.5Si (wt pct) alloy with three initial microstructures. One is the cold-rolled (CR) structure and two others are martensite having different fractions of retained austenite. The CR structure exhibits slower reverse transformation kinetics than martensite due to the lesser population of potent nucleation sites and coarse cementite particles. The film type of retained austenite at the martensite lath boundary contributes to the earlier start of the reverse transformation, because it can proceed as the growth of pre-existing retained austenite, which makes the nucleation process less critical. Besides, the growth of interlath austenite plays an essential role in the evolution of fine lath-type reverse-transformed microstructure, which was difficult to obtain from similar initial microstructures of martensite having negligible fraction of interlath austenite.

  6. Dynamic theory of morphological characteristics of crystals of ɛ and γ phases, including Headley-Brooks orientation relationships upon the α-ɛ and α-ɛ-γ martensitic transformations

    Science.gov (United States)

    Kashchenko, M. P.; Chashchina, V. G.

    2015-10-01

    Different variants of the formation of martensite crystals upon the α-γ transformation caused by the tension-compression deformation of {110}α planes have been considered according to the dynamic theory of martensitic transformations. In contrast to previous works, here we take into account the deviation (angle θ) of the principal directions of deformation from the symmetry axes α. It has been shown that the requirement of the symmetry of the arrangement of atoms in the basal plane {0001}ɛ is satisfied in the range of angular deviations-arctan √ {2/3} ≤slant θ ≤slant arctan √ {2/3}. The algorithm for calculating the morphological characteristics is illustrated based on the example of an elastically isotropic medium, which does not require assigning concrete values of elastic moduli. The estimations performed make it possible, in particular, to explain the physical nature of the Headley-Brooks orientation relationships as a result of the inheritance of one of the variants of permissible material orientation relationships for the α-ɛ transformation in the course of the ɛ-γ transformation at θ 35°. The changes in the other morphological signs are also discussed.

  7. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda

    2010-04-22

    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  8. Study on Measuring Methods for Martensitic Transformation Temperature of Nb-containing Super-Invar Alloy%含Nb超低膨胀合金马氏体相变温度测量方法的研究

    Institute of Scientific and Technical Information of China (English)

    蔡波; 于一鹏; 张敬霖; 卢凤双; 张建生; 张建福

    2012-01-01

    本文利用DSC(差示扫描量热仪)、热膨胀法、共振法研究稀土Ce对超低膨胀合金马氏体相变温度的影响,并对3种方法测试结果加以比较.研究发现,3种相变温度测试方法所得出的实验规律一致,即添加适量Ce,能降低超低膨胀合金的马氏体相变温度,有助于提高超低膨胀合金的低温组织稳定性.热膨胀法和共振法所测得结果较为接近,两者的测试结果较DSC法所测得的结果更准确.%The influence of cerium on the martensitic transformation temperature of Super-Invar alloy was investigated by DSC, thermal dilation method and resonance method. It is found that the experimental laws are identical with results by the three methods of martensitic transformation temperature measuring. The additon of appropriate cerium will decrease the martensitic transformation temperature of Super-Invar alloy and increase the cryogenic structure stability of Super-Invar alloy. The results obtained by thermal dilation method and resonance method are similar. The Ms temperature obtained by thermal dilation method and the resonance method is more reliable than DSC results.

  9. Effect of NbC particles on {gamma}{yields}{epsilon} Martensitic transformation in Fe-22mass%Mn alloys; Fe-22 mass % Mn gokin no {gamma}{yields}{epsilon} marutensaito hentai ni oyobosu NbC ryushi no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y.; Nakatsu, E.; Takaki, S. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-07-20

    The yield and transformation of epsilon ({epsilon}) martensite which is expected to be utilized as reinforcing texture of high Mn non-magnetic steel, are alternated greatly by the fining of crystal particles since said epsilon martensite is effected obviously by austenite ({gamma}) grain during the deformation in cooling process. In this study, in respect of Fe-22mass%Mn-Nb-C alloys wherein Nb and C are added to make the maximum volume rate of NbC being 1 vol%, samples wherein the size of {gamma} grains is fined to 10{mu}m or less by recrystalization are prepared, and the effect of the size of {gamma} grains and the effect of NbC particles dispersed in {gamma} grains on {epsilon} transformation are investigated. The following points are clarified by the results of said investigation. {gamma}{yields}{epsilon} transformation is suppressed remarkably by the existence of NbC particles dispersed homogeneously and finely in {gamma} grains. A large elastic stress field causing conformity deviation is formed around NbC particles by NbC particles themselves. 25 refs., 10 figs., 1 tab.

  10. Doping induced structural transformation in tungsten trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wu, Shiyun [School of Physics and Mech-Tronic Engineering, Sichuan University of Arts and Science, Dazhou 635000 (China); Wang, Zhiguo, E-mail: zgwang@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics and Electrical Engineering, Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-07-05

    Effects of dopants on structural stability of monoclinic WO{sub 3} were studied using density functional theory. Transformation from monoclinic to cubic crystal structures was obtained by gradually increasing doping concentrations of both rhenium (Re) and electrons inside the monoclinic WO{sub 3}, whereas a large distortion of WO{sub 6} octahedra was observed by gradually increasing doping concentrations of both niobium (Nb) and holes inside the monoclinic WO{sub 3}. It was verified that Re{sub x}W{sub 1-x}O{sub 3} has a cubic structure if x is larger than 0.375, and the transformation from monoclinic to cubic structure is mainly dependent on the occupancy of the W 5d orbital. The elastic characteristics of the Re{sub x}W{sub 1-x}O{sub 3} decrease with the increase of the content of Re in the range of 0.375 ≤ x ≤ 0.875. - Highlights: • Solid state transformations induced by doping in WO{sub 3} were investigated. • Mechanisms of structure transformation induced by doping were clarified. • Re{sub x}W{sub 1-x}O{sub 3} has a cubic structure as x is larger than 0.375. • Electron doping induces the monoclinic to cubic transformation.

  11. 30CrNi3MoV低合金超高强钢中的马氏体相变%Martensitic transformation in the 30CrNi3MoV low-alloy ultra-high strength steel

    Institute of Scientific and Technical Information of China (English)

    乔志霞; 刘永长; 严泽生; 付继成; 王惠斌

    2012-01-01

    Martensitic phase transformation characteristics in the 30CrNi3MoV low-alloy ultra-high strength steel were investigated by means of microstructure observation and dilatometric measurements. The results showed that the transformation products in the quenched 30CrNi3MoV steel were two kinds of martensite with different morphologies, lath martensite and acicular martensite, formation of which clearly separate each other in transformation dynamics curves. Lath martensites form in the relatively high temperature range (310℃ ~ 260℃ ) below the Ms, during which diffusion of carbon atoms occurred and resulted into carbonrich austenite micro regions around martensite lath bunches. Acicular martensites form in the relatively low temperature range (260℃ ~ 170℃ ) below the Ms, which are transformed from the carbon-rich austenite micro regions retained after the formation of lath martensites. Transformation rate of the lath martensite is obviously higher than that of the acicular martensite.%通过对马氏体的显微组织进行分析,并结合线膨胀试验得到的相变动力学信息研究了30CrNi3MoV低合金超高强钢中的马氏体相变特征,结果表明:淬火冷却30CrNi3MoV钢的相变产物包括低碳板条状和高碳针状两种马氏体形态,两者的形成在动力学曲线中截然分开,板条马氏体形成于Ms以下的较高温(310℃~260℃),相变过程中发生了碳的重新分配,造成富碳奥氏体微区的形成;高碳针状马氏体形成于Ms以下的较低温(260℃~170℃),由富碳奥氏体微区转变而成,板条马氏体形成速率远高于针状马氏体。

  12. Isothermal Martensite Formation

    DEFF Research Database (Denmark)

    Villa, Matteo

    Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanis...

  13. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  14. Effect of the strain rate on the mechanical properties of a sheet TRIP steel with a high martensite content

    Science.gov (United States)

    Eliseev, E. A.; Terent'ev, V. F.; Voznesenskaya, N. M.; Slizov, A. K.; Sirotinkin, V. P.; Baikin, A. S.; Seval'nev, G. S.

    2017-04-01

    The laws of changing the mechanical properties of sheet austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) TRIP steel are studied when the static strain rate changes in the range 0.1-20 mm/min (8.3 × 10-5-17 × 10-3 s-1). The 0.35-mm strip under study is characterized by a high martensite content (≈100%) in the surface layer at an average content of 80-85%. The transformation induced plasticity effect is maximal at a strain rate of 0.1 mm/min (8.3 × 10-5 s-1).

  15. Grain size effect on the structural parameters of the stress induced epsilonhcp: martensite in iron-based shape memory alloy

    Directory of Open Access Journals (Sweden)

    Fabiana Cristina Nascimento

    2008-03-01

    Full Text Available The aim of this work was to study the effect of austenitic grain size (GS reduction on the structural parameters of the epsilonhcp - martensite in stainless shape memory alloy (SMA. Rietveld refinement data showed an expansion in c-axis and a reduction in a and b-axis with thermo-mechanical cycles for all samples analyzed. Samples with 75 < GS (µm < 129 were analyzed. It was also observed an increase of the unit cell volume in this phase with GS reduction. The smallest grain size sample (GS = 75 µm presented a c/a ratio of 1.649, and approximately 90% of total shape memory recovery.

  16. Microstructure and cleavage in lath martensitic steels

    Directory of Open Access Journals (Sweden)

    John W Morris Jr, Chris Kinney, Ken Pytlewski and Y Adachi

    2013-01-01

    Full Text Available In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  17. Phase-field simulation of lenticular martensite and inheritance of the accommodation dislocations

    Directory of Open Access Journals (Sweden)

    Kundin Julia

    2015-01-01

    Full Text Available A phase-field simulation is performed to study the substructure evolution of lenticular martensite in TRIP steels. The evolution of martensitic phase variants and dislocations is calculated by a coupled phase-field micro-elasticity model. The simulations at isothermal conditions show that during the phase transformation, the accommodation dislocations evolving in the austenite are inherited by the martensitic phase and cause the further evolution of a single martensitic variant in the direction of the dislocation slip. As a result of the interaction, a change of the growth mode from twining to slip can be observed in accordance to the substructure formation of lenticular martensite. This interaction between the dislocations and martensitic phase depends on dislocation slip systems and the orientation of the martensitic variants as well as on the energy barriers for the phase transformation and for the dislocation motion.

  18. Strain measurements in ferromagnetic martensitic Heuslers and magnetization easy axis

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda; Acet, Mehmet; Wassermann, Eberhard F. [Experimentalphysik, Universitaet Duisburg-Essen, Duisburg (Germany)

    2008-07-01

    The temperature-dependence of strain under constant magnetic-fields is studied in Ni-Mn-X (X:Ga,In,Sn,Sb) and Ni-Mn-In-X (X:Ga,Sn,Sb) polycrystalline ferromagnetic Heusler alloys which undergo a martensitic transformation close to room-temperature. The applied magnetic-field influences the nucleation of martensite so that decreasing the temperature under a magnetic field leads to large length changes between the austenite and martensite states. The length-change within the martensitic state varies with the magnitude of the cooling-field. This is related to the variant-orientation during martensite nucleation. These strain-data provide information on the easy axis of magnetization.

  19. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen;

    2015-01-01

    isochronal cooling that transformation rate maxima occur, which are interrupted by virtually transformation free temperature regions. Microscopy confirms martensite formation after athermal nucleation of clusters followed by their time dependent growth. The observations are interpreted in terms of time...... dependent autocatalytic lath martensite formation followed by mechanical stabilisation of austenite during the transformation process.......The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow...

  20. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究∗%Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy

    Institute of Scientific and Technical Information of China (English)

    张元磊; 李哲; 徐坤; 敬超

    2015-01-01

    The Ni50−xFexMn37In13(x=1, 3, 5) polycrystalline samples are prepared by arc melting method. The martensitic transformations and crystal structures for Ni50−xFexMn37In13(x = 1, 3, 5) samples are systematically analyzed by measuring the structure and magnetism. The results show that the three samples present different structures at room temperature. In the mean time, with the increase of the content of Fe, the martensitic transformation temperature rapidly decreases, while the ferromagnetism is gradually enhanced for these alloys. Furthermore, both the magnetoresistance and the magnetocaloric effect are also investigated in Fe3 and Fe5 alloys. For an applied magnetic field of 3 T, it is found that the magnetoresistance effects of two samples are about −46% and −15%, while their isothermal entropy changes are about 6 J·kg−1 and 9.5 J·kg−1·K−1 during reverse martensitic transformation, respectively. Accompanied with the disappearing of a very wide transforming range and a slight magnetic hysteresis loss, the net refrigerating capacity of Fe3 sample reaches 96 J·kg−1 in the process of reverse martensitic transformation.%利用电弧炉制备了Ni50−xFexMn37In13(x =1,3,5)多晶样品,通过结构和磁性测量,系统分析了Ni50−xFexMn37In13(x=1,3,5)样品的晶体结构和马氏体相变.结果表明,三样品在室温下呈现出了不同的晶体结构.同时,随着Fe含量的增加,样品的马氏体相变温度急剧下降,而铁磁性却逐渐增强.研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应.在外加3 T的磁场下,两样品在反马氏体相变区域所表现出的磁电阻效应分别约为−46%和−15%,而等温熵变则约为6 J·kg−1·K−1和9.5 J·kg−1·K−1.然而,伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg−1.

  1. Separation of the Martensite in TiNi Fiber Reinforced Aluminum Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Yanjun ZHENG; Lishan CUI; Yan LI; Dazhi YANG

    2004-01-01

    The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the selfaccommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.

  2. Aspects of thermal martensite in a FeNiMnCo alloy.

    Science.gov (United States)

    Güler, M; Güler, E; Kahveci, N

    2010-07-01

    Thermal martensite characteristics in Fe-29%Ni-2%Mn-2%Co alloy were investigated with scanning electron microscopy (SEM) and Mössbauer spectroscopy characterization techniques. SEM observations obviously revealed the lath martensite morphology in the prior austenite phase of examined alloy. As well, the martensitic transformation kinetics was found to be as athermal type. On the other hand, Mössbauer spectroscopy offered the paramagnetic austenite phase and ferromagnetic martensite phase with their volume fractions. Also, the internal magnetic field of the martensite was measured as 32.9T from the Mössbauer spectrometer.

  3. Kinetics of anomalous multi-step formation of lath martensite in steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Pantleon, Karen; Reich, Michael

    2014-01-01

    A steel containing 16wt.% Cr, 5wt.% Ni and 3wt.% Cu was transformed into martensite by applying isochronal, i.e. constant rate, cooling followed by isothermal holding. The formation of martensite was monitored with dilatometry. A series of retardations and accelerations of the transformation...... was of lath type, and to investigate the microstructure of the material. No influence of the cooling rate on the scale of the microstructure was observed. The series of retardations and accelerations of the transformation is interpreted in terms of the combined effect of the strain and interfacial energy...... introduced in the system during martensite formation, which stabilizes austenite, and autocatalytic nucleation of martensite....

  4. Influence of martensitic transformation on impact toughness of austenitic steels down to 4 K. Pt. 1. [X6CrNiTi1810, X2CrNiN1810, SG-X2CrNi199

    Energy Technology Data Exchange (ETDEWEB)

    Haering, H.W.; Huppertz, P.H.

    1991-01-01

    Austenitic steels are widely used in construction of pressure vessels for low-temperature service down to 4.2 K. Some of these steels covered by AD-Merkblatt W 10 do not have austenitic stability and are therefore susceptible to phase transformation from ductile austenite to brittle martensite at low operating temperatures or as a result of cold working (straining). Investigations have been made to evaluate the changes in properties of the two steels Material No. (German Werkstoffnummer) 1.4541 (similar to ASTM Tp 321), Mat. No. 1.4311 (similar to ASTM Tp 304 LN), and weld deposit obtained with filler metal Mat. No. 1.4316 (similar to ASTM Tp 304 L) when soaked in liquid nitrogen (LIN) and liquid helium (LHE). Special attention was given to the changes in impact toughness. (orig.).

  5. ZGMn13钢形变诱发马氏体相变及在捶击件上的应用%Martensitic Phase Transformation Inducted by Deformation of ZGMn13 and Application at Hammering Parts for Ore-Crusher

    Institute of Scientific and Technical Information of China (English)

    储凯; 傅建

    2000-01-01

    对ZGMn13钢的化学成分、显微组织、热处理方法及在工作过程中形变诱发马氏体相变机理进行了分析,对比了在矿石破碎中高锰钢捶击件与其它常用材料捶击件的耐磨性和使用效果。%ZGMn13's chemical composition, metallographic structure, heat-treat methods and the mechanism for Martensitic transformation inducted by deformation of ZGMn13 are analyzed. And wear-resistance and application-effects of ore crusher' hammering parts made respectively of high-manganese steel and other materials are compared.

  6. Effect of quenching rate on martensitic transformation temperature in Cu-Al-Ni shape memory alloys; Cu-Al-Ni keijo kioku gokin no maltensite hentai ondo ni oyobosu yakiire reikyakusokudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakaniwa, M.; Sugimoto, K.; Kamei, K.; Nakamura, Y.; Sugimoto, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1995-08-20

    Experiments were carried out for Cu-xAl-5Ni-2Mn-1Ti shape memory alloys (x= 11.45, 11.77, 11.88 mass%) in order to examine the effect of quenching rate on the transformation temperatures (Ms, Mf, As and Af). The quenching rate was varied from 5 to 1{times}10{sup 4} K/s by changing the temperature of quenching media. The transformation temperatures were determined by DSC measurements for all the samples quenched and are plotted as a faction of quenching rate. It was found that all the transformation temperatures decreased by about 10 K, when the quenching rate was increased 10 times as large as its initial value. The reason was explained by considering the degree of order in the beta-phase. The primary {alpha}- and {gamma}2-phases do not precipitate even during air-cooling on quenching in the alloys with 11.77 and 11.88%Al, being close to the eutectoid composition. Therefore, no remarkable change in martensitic transformation temperature with reducing quenching rate was observed in these alloys. In other words, it can be concluded that these alloys are suitable for heat treatments in practice, where the specimens are cooled more slowly. 20 refs., 5 figs., 2 tabs.

  7. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  8. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  9. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [IPTME, Loughborough University, Loughborough LE11 3U (United Kingdom)], E-mail: zheng.lu@lboro.ac.uk; Faulkner, R.G.; Morgan, T.S. [IPTME, Loughborough University, Loughborough LE11 3U (United Kingdom)

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 x 10{sup -6} dpa/s) at 400 deg. C and 28 dpa (1.7 x 10{sup -6} dpa/s) at 465 deg. C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided ({approx}15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  10. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan;

    2011-01-01

    , quenched in oil, and thereafter investigated with vibrating sample magnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the sub-zero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5 K...... with a continuation of the martensitic transformation. On prolonged isothermal holding, a volume reduction was observed for AISI 52100, but not for AISI 1070. Copyright © 2011....

  11. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan;

    2012-01-01

    , quenched in oil, and thereafter investigated with vibrating sample magnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the sub-zero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5 K...... with a continuation of the martensitic transformation. On prolonged isothermal holding, a volume reduction was observed for AISI 52100, but not for AISI 1070. Copyright © 2011 by ASTM International....

  12. Annealing-induced evolution of transformation characteristics in TiNi shape memory alloys

    Science.gov (United States)

    Wang, Z. G.; Zu, X. T.; Feng, X. D.; Zhu, S.; Zhou, J. M.; Wang, L. M.

    2004-11-01

    The effect of annealing on transformation characteristics of TiNi shape memory alloys (SMAs) was investigated by differential scanning calorimetry (DSC) and the evolution of the microstructure was studied using positron annihilation technology (PAT) and transmission electron microscopy (TEM). The results showed that transformation characteristics depend on the annealing temperature. The R-phase transformation appeared at low annealing temperature. The R-phase disappeared and austensite transformed into martensite directly as the annealing temperature exceeded 550 °C. With increasing annealing temperature, the vacancy cluster and dislocation related positron lifetime decreased. Changes in transformation characteristics can be attributed to the evolution of the microstructrue of the TiNi specimen.

  13. Factors influencing martensite transitions in Fe-based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Mihalache Elena

    2015-01-01

    Full Text Available Fe-14Mn-6Si-9Cr-5Ni (mass % shape memory alloy (SMA specimens were obtained by powder metallurgy in as-blended state (0_MA and with particle volume fractions of 10 and 20 % MA’d powders, respectively. After hot rolling and solution treatment, between 973 and 1373 K, the specimens were pre-strained up to 4 %, on a tensile testing machine. The influences of: (i MA’d fractions, (ii solution treatment temperature and (iii pre-straining degree were analysed by X-ray diffraction (XRD, optical (OM and scanning electron (SEM microscopy. In this purpose, the gauges of pre-strained specimens were cut and metallographically prepared. Dynamic mechanical analysis (DMA was employed to emphasize the reverse transformation, during heating, of thermally induced martensite, obtained after solution treatment. The results proved that, as an effect of PM-MA processing, mechanical properties were improved, the amount of stress induced martensite increased and the reverse martensitic transformation was enhanced.

  14. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  15. Superelastic behavior and stabilization of stress-induced martensite in Cu-13.4Al-4.0Ni single crystals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress-induced martensite (SIM) of Cu-13.4Al-4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo-yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between (Ms-20  ℃) and (Af+20  ℃) promotes the superelasticity and the stabilization of SIM as well; the pre-thermal cycling also reduces the pseudo-yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling-heating cycling or load and immediately unload cycling in (Af~Md). Isothermal treatment in (Af~Md) brings restabilization of SIM. The maximum superelastic value from β→β′1(18  R) is 9% for the studied single crystal. When test temperature is in Af~(Af+50  ℃) and stress is in 0~350  MPa, the superelastic behavior exist.

  16. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. In-situ study of surface relief due to cubic-tetragonal martensitic transformation in Mn69.4Fe26.0Cu4.6 antiferromagnetic shape memory alloy

    Science.gov (United States)

    Liu, C.; Yuan, F.; Gen, Z.; Wang, L.; Cui, Y. G.; Wan, J. F.; Zhang, J. H.; Rong, Y. H.

    2016-06-01

    Temperature-dependence surface relief during cubic↔tetragonal martensitic transformation (MT) in Mn69.4Fe26.0Cu4.6 antiferromegnetic shape memory alloy was studied by means of in-situ atomic force microscopy. The surface morphology memory effect was found and the crystallography reversibility of the transformation and its shearing characters were directly verified. Twin shearing is suggested as the main mechanism of formation of tent-type surface relief. The surface relief angle (θα|θβ)<0.5° was firstly measured and might be the smallest compared with that in other shape memory alloys. A Landau model was proposed to consider the shearing strain related with surface relief of MT varying with the coupling effect between second-order antiferromagnetic transition and first-order MT. According to this model, the Mn69.4Fe26.0Cu4.6 alloy belongs to the weak coupling system and this kind of weak coupling effect makes the main contribution to the small relief angle.

  18. KINETICS OF α'-MARTENSITE FORMATION DURING FATIGUE DEFORMATION IN METASTABLE AUSTENITIC STAINLESS STEEL

    OpenAIRE

    Tsuzaki, K.; T. Maki; Tamura, I.

    1982-01-01

    The effect of applied total strain range on the critical condition necessary for the onset of α'-martensitic transformation kinetics during the fatigue deformation was studied in AISI type 304 metastable austenitic stainless steel at room temperature. In the case of fatigue deformation, the α'-martensite formation was observed even in the condition that the saturated stress amplitude of austenite phase is smaller than the critical applied stress for the onset of α'-martensite formation for th...

  19. Stress-induced deformation at Ap~Mp and thermal cycling behavior of Cu-Al-Ni single crystals

    Institute of Scientific and Technical Information of China (English)

    陈庆福; 蔡伟; 赵连城

    2001-01-01

    Stress-induced deformation in Ap~Mp and concomitant shape recovery behavior of Cu-13.4Al-4.0Ni single crystals were studied. Abnormal high stress-induced deformation exists in Ap~Mp under the conditions of either heating with load or cooling with load. The recovered deformation is successively composed of four parts, the recoveries from superelasticity, normal reverse transformation, thermally activated reverse transformation of partially stabilized martensite and reverse transformation of stabilized martensite by over-heating. With increasing cycling number, the recovery part from normal reverse transformation decreases, while that from reverse transformation of stabilized martensite by over-heating increases, which shows a typical stabilization of martensite.

  20. Advanced Micromechanical Model for Transformation-Induced Plasticity Steels with Application of In-Situ High-Energy X-Ray Diffraction Method

    Science.gov (United States)

    Choi, K. S.; Liu, W. N.; Sun, X.; Khaleel, M. A.; Ren, Y.; Wang, Y. D.

    2008-12-01

    Compared to other advanced high-strength steels, transformation-induced plasticity (TRIP) steels exhibit better ductility at a given strength level and can be used to produce complicated automotive parts. This enhanced formability comes from the transformation of retained austenite to martensite during plastic deformation. In this study, as a first step in predicting optimum processing parameters in TRIP steel productions, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. The method uses a microstructure-based representative volume element (RVE) to capture the complex deformation behavior of TRIP steels. The mechanical properties of the constituent phases of the TRIP 800 steel and the fitting parameters describing the martensite transformation kinetics are determined using the synchrotron-based in-situ high-energy X-ray diffraction (HEXRD) experiments performed under a uniaxial tensile deformation. The experimental results suggest that the HEXRD technique provides a powerful tool for characterizing the phase transformation behavior and the microstress developed due to the phase-to-phase interaction of TRIP steels during deformation. The computational results suggest that the response of the RVE well represents the overall macroscopic behavior of the TRIP 800 steel under deformation. The methodology described in this study may be extended for studying the effects of the various processing parameters on the macroscopic behaviors of TRIP steels.

  1. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys

    Science.gov (United States)

    Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai

    2015-07-01

    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.

  2. Method of γ(fcc)→ε(hcp) Martensitic Transformation Shear Angle Determination by Atomic Force Microscope%γ(fcc)→ε(hcp)马氏体相变切变角的原子力显微镜测定方法

    Institute of Scientific and Technical Information of China (English)

    石玮; 郭正洪; 戎咏华; 陈世朴; 徐祖耀

    2001-01-01

    建立了一种测量γ(fcc)→ε(hcp)马氏体相变切变角的方法.运用Thompson四面体和几何模型推导出马氏体变体的迹线方向,通过计算求得相变浮凸角与真实切变角的对应关系.应用原子力显微镜(AFM)测量了Fe-30%Mn-6%Si合金应力诱发马氏体相变的浮凸角.文中两个实例计算结果分别为17.85°和21.10°,与理论值19.47°相比误差小于2°,表明该方法具有精度较高、操作简单的特点.%A modified method for the determination of γ(fcc)→ε(hcp) martensitic transformation shear angle was established. Thompson tetrahedron and geometry analysis were used to calculate the directions of variant traces on specimen surface, then the relationship between the transformation shear angle and surface relief angle was deduced. The surface relief angles caused by stress-induced γ(fcc)→e(hcp) transformation for two surface regions in an Fe-30%Mn-6%Si alloy were measured by AFM (Atomic Force Microscope) and the corresponding shear angles were calculated to be 17.85° and 21.10° respectively. The deviation compared to the theoretical value (19.47°) is reasonably small, suggesting that the method is reliable and quite simple.

  3. Investigation of Martensite Formation in Fe Based Alloys During Heating From Boiling Nitrogen Temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas L.; Hansen, Mikkel F.

    2015-01-01

    he austenite-to-martensite transformation at temperatures below room temperature was investigated in situ by magnetometry in Fe-N, Fe-Cr-C and Fe-Cr-Ni based alloys. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequ...

  4. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation...

  5. A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Albin Stormvinter; Peter Hedstr(o)m; Annika Borgenstam

    2013-01-01

    The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope.It is found that the martensitic substructure changes from consisting mostly of transformation twins for 1.20 mass% carbon (C) steel to both transformation twins and planar defects on {101}M for 1.67 mass% C steel.In the 1.67 mass% C steel it is further found that small martensite units have a rather homogeneous substructure,while large martensite units are more inhomogeneous.In addition,the martensite units in both steels are frequently found to be of zigzag patterns and have distinct crystallographic relationships with neighboring martensite units,e.g.kink or wedge couplings.Based on the present findings the development of martensite in high-carbon low alloy steels is discussed and a schematic of the martensite formation is presented.Moreover,whether the schematic view can be applied to plate martensite formation in general,is discussed.

  6. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究%STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2MnGa ALLOY

    Institute of Scientific and Technical Information of China (English)

    韦昭召; 马骁; 张新平

    2013-01-01

    Ferromagnetic shape memory alloys (FSMAs), such as Ni2MnGa alloy, promise to be the key materials in manufacturing new type of actuator and sensor because of their high responsive speed and large strain output. In order to find the best functions of FSMAs, the understanding of their martensite transformation crystallography is of enormous necessity and importance. In the present study, the topological model of martensite transformation was applied to the analysis of the interphase interfacial defect structure and crystallography of martensite transformation, such as the habit plane index and orientation relationship, in a Ni2MnGa alloy. The results obtained in this work were compared with the prediction from the phenomenological theory of martensite crystallography (PTMC). When the transformation dislocation bD1+1/+1 with smaller Burgers vectors and the lattice invariant deformation (LID) dislocation bL=0.186[111]M are activated to accommodate the coherency strain with a twist angle ω=3.2°, the habit plane is determined to be {0.691 -0.117 0.713}p represented in the parent crystal frame, having an inclination angle ψp=42.000°with the terrace plane (111)p. Furthermore, the orientation relationship between the parent and martensite phases is found to be, namely, {0.69 -0.117 0.713}p 0.317° away from (101)M and [lT0]p about 3.200° away from [111]M, which are close to the calculated values based on the phenomenologi-cal theory of martensite crystallography. It is evident that the transformation dislocation with smaller Burgers vectors can be activated more easily during a martensite transformation. Additionally, for a range of twist ω, the alternative combination of disconnection and LID might be introduced in the topological model to obtain multiple predictions of martensite transformation crystallography, which could provide an explanation for the diversity and complexity of martensite transformation crystallography resulting from the different measured

  7. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  8. Effect of the state of stress on the strain-induced martensite formation in 03Kh14N11K5M2YuT steel

    Science.gov (United States)

    Maltseva, L. A.; Loginov, Yu. N.; Maltseva, T. V.; Sharapova, V. A.

    2013-09-01

    The structural changes that occur in a metastable austenitic Fe-Cr-Ni-based steel during cold plastic deformation by drawing and tension are analyzed. A relation between the structure of the steel and its mechanical and magnetic properties is established. It is concluded that the stress state scheme considerably affects the rate of martensite formation.

  9. Intermartensitic transformation and magnetic field effect in NiMnInSb ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.Y., E-mail: syyu@sdu.edu.c [School of Physics, Shandong University, Jinan 250100 (China); Yan, S.S.; Zhao, L. [School of Physics, Shandong University, Jinan 250100 (China); Feng, L.; Chen, J.L.; Wu, G.H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-09-15

    Partially substituting Sb for In, we found an irreversible transformation of martensite to intermartensite at 90 K in Ni{sub 50}Mn{sub 34}In{sub 12}Sb{sub 4} alloy during heating. The reverse transformation of martensite and intermartensite to the parent phase induced by a magnetic field has been investigated. The results indicate that, if a sufficiently high magnetic field is applied, the intermartensite state is no longer necessary as an intermediate state. Thus, a difference of the transformation originating from magnetic and from thermal energies has been found. In this competition, lattice distortions play an important role to promote the occurrence of the intermediate intermartensitic path.

  10. Optimized electroporation-induced transformation in Microcystis aeruginosa PCC7806

    Directory of Open Access Journals (Sweden)

    El Semary, A.

    2010-01-01

    Full Text Available Gene disruption in cyanobacteria is difficult and comprises an obstacle for genetic manipulation. Very few reports tackled this problem but the methods used are usually obscure and hardly reproducible. Here we describe an optimized electroporation-induced transformation in Microcystis aeruginosa PCC7806 where conditions for successful electroporation and transformation are investigated.

  11. Positive automorphisms for self-induced interval exchange transformations

    CERN Document Server

    Jullian, Yann

    2011-01-01

    We give an algorithm to determine if the dynamical system generated by a positive automorphism of the free group can also be generated by a self-induced interval exchange transformation. The algorithm effectively yields the interval exchange transformation in case of success.

  12. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A.H. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Paulikas, A.P.; Veal, B.W. [Materials Science Div., Argonne National Lab., Argonne, IL (United States)

    2007-12-15

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys. (orig.)

  13. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A. H.; Paulikas, A. P.; Veal, B. W. (Materials Science Division); (Case Western Reserve Univ.)

    2007-12-01

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys.

  14. Small-angle Neutron Scattering Study of Magnetic Ordering and Inhomogeneity Across the Martensitic Phase Transformation in Ni50-xCoxMn40Sn10 Alloys

    Science.gov (United States)

    2012-04-27

    phase transformation in conventional magnetocaloric ,7,8 inverse magnetocaloric ,7,8 and energy conversion devices.9 As well as being of considerable...commercial thermal analyst instrument at heating /cooling rates of 10 K/min between 225 and 475 K. For Ni44Co6Mn40Sn10 such measurements reveal ms = 398 K, mf...50 100 150 dΣ /d Ω [c m ] T [K] (b) q = 0.1 -1 dΣ /d Ω [c m -1 ] T [K] Ni 44 Co 6 Mn 40 Sn 10 dΣ /d Ω [c m -1 ] Heating Cooling (a) q = 0.005 -1

  15. Thermally Induced Magnetite-Haematite Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J.; Barrero, C. A. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Diaz-Teran, J.; Jerez, A. [Universidad Nacional de Educacion a Distancia UNED, Po Senda del Rey 9, Departamento de Quimica Inorganica y Quimica Tecnica (Spain)

    2003-06-15

    The products of thermal treatments of pure and copper doped magnetites have been investigated using Moessbauer spectrometry, XRD and thermal analysis techniques. The samples were heated in air between RT and 800{sup o}C at several heating rates. Samples treated at 520{sup o}C during 12 and 24 hours consist only of well-crystallized haematite. On the other hand, magnetites treated at 350{sup o}C consisted of mixtures of haematite, maghemite and magnetite, with relative amount of each phase depending on the presence of copper as well as on the heating time. Results show that the transformation of magnetite to haematite goes through the formation of maghemite, and that the presence of copper delays this transformation.

  16. Interfacial Modulus Mapping during Structural Transformation in Shape Memory Alloys

    Science.gov (United States)

    Wan, Jianfeng; Cui, Shushan; Zhang, Jihua; Rong, Yonghua

    2017-10-01

    Through the modified phase-field model the local soft mode mechanism of nucleation during martensitic transformation was confirmed in shape memory alloys. It was discovered that the modulus loss (8 pct) depended on the martensitic nucleation exceeding the loss (1 pct) during the martensitic growth. The elastic modulus and the stress across the martensite/parent interface differed from those across the martensitic twin boundary. The modulus losses in systems with three variants, two variants, and one variant were compared.

  17. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wei [ORNL; Chen, Gaoqiang [ORNL; Chen, Jian [ORNL; Yu, Xinghua [ORNL; Frederick, David Alan [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  18. Investigation of Martensite Formation in Fe Based Alloys During Heating From Boiling Nitrogen Temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas L.; Hansen, Mikkel F.;

    2015-01-01

    he austenite-to-martensite transformation at temperatures below room temperature was investigated in situ by magnetometry in Fe-N, Fe-Cr-C and Fe-Cr-Ni based alloys. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during...... heating was convincingly demonstrated for all investigated materials by showing heating rate dependent transformation kinetics. Moreover, magnetometry showed that the heating rate influences the fraction of martensite formed during the thermal treatment. The activation energy for thermally activated...

  19. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    Science.gov (United States)

    2013-06-01

    bainitic , martensitic) phase trans- formations and the diffusional phase-transformations which produce microstructural constituents (e.g., pearlite...single-phase austenite region); (ii) the fine-grained sub-zone, which contains martensite and bainite formed during cooling from austenite with a...exposed and the products of austenite decompositionduringcooling (i.e.,martensite, bainite , ferrite); and (iv) the so-called sub-critical zone, within

  20. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    Science.gov (United States)

    Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837

  1. A growth manner of butterfly martensite

    Institute of Scientific and Technical Information of China (English)

    陈奇志; 吴杏芳; 柯俊

    1997-01-01

    The growth of butterfly martensite in an Fe-Ni-V-C alloy was investigated using an optical microscope and transmission electron microscope through observing its morphology. The present butterfly martensite is dislocation-type, with a few fine twins. One wing of a butterfly martensite is layered more heavily than the other and the concave part is layered more obviously than other regions. Most butterfly martensites have a lath plate outside of and next to one wing. The outside martensite plates grow first, and then two wings of butterfly martensite. The smooth parts of a butterfly martensite grow earlier than the layered regions. A wing of a butterfly martensite grows like a group of lath martensites.

  2. Electrochemically induced annealing of stainless-steel surfaces

    Science.gov (United States)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  3. Crystallographic similarity between the lath martensite and lower bainite in medium-carbon alloy steels

    Institute of Scientific and Technical Information of China (English)

    LIU Jiangwen; LUO Chengping; WU Dongxiao

    2005-01-01

    Progress in the crystallography of lath martensitic and lower bainitic transformations is briefly reviewed, followed by a presentation of the experimentally measured crystallographic characteristics of both lath martensite and lower bainite formed in mediumcarbon steels containing Si, Mn and Mo. It is found that the bainite plates relate to each other by a relative rotation of 54.7°or 60°about the normal to their common close-packed planes {110} b, which ensures a pseudo- {112}b twin relationship between two adjacent plates,and that all bainite variants formed in a single packet keep a unique G-T orientation relationship with the austenite matrix. These two types of OR of lower bainite are similar to that of the lath martensite, respectively. Furthermore, the measured habit planes of both the lower bainite and lath martensite are all {335} f type, which can verify the crystallographic similarity between the lath martensite and lower bainite.

  4. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  5. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-02-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  6. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides.

    Science.gov (United States)

    Sutter, E; Huang, Y; Komsa, H-P; Ghorbani-Asl, M; Krasheninnikov, A V; Sutter, P

    2016-07-13

    By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

  7. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  8. Magnetic and magnetocaloric properties of martensitic Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chernenko, Volodymyr A., E-mail: vladimir_chernenko@ehu.es [Universidad del Pais Vasco, Dept. Electricidad y Electronica, PO Box 644, Bilbao 48080 (Spain); Ikerbasque, Basque Foundation for Science, Bilbao 48011 (Spain); Barandiaran, Jose M. [Universidad del Pais Vasco, Dept. Electricidad y Electronica, PO Box 644, Bilbao 48080 (Spain); Rodriguez Fernandez, Jesus; Rojas, Daniel P. [CITIMAC, Fac. Ciencias, Univ. Cantabria, Santander 39005 (Spain); Gutierrez, Jon; Lazpita, Patricia [Universidad del Pais Vasco, Dept. Electricidad y Electronica, PO Box 644, Bilbao 48080 (Spain); Orue, Inaki [SGiker, Vicerrectorado de Inv. UPV/EHU, Sarriena s/n, Leioa 48940 (Spain)

    2012-10-15

    The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to {Theta}{sub D}=310{+-}2 K and {gamma}= 16.6{+-}0.3 mJ/K{sup 2}mol, respectively, do not depend on the magnetic field.

  9. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    Science.gov (United States)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  10. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  11. Prediction of the martensite start temperature for {beta} titanium alloys as a function of composition

    Energy Technology Data Exchange (ETDEWEB)

    Neelakantan, Suresh [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Materials Innovation Institute, Kluyverweg 1, 2629 HS, Delft (Netherlands)], E-mail: s.neelakantan@tudelft.nl; Rivera-Diaz-del-Castillo, P.E.J.; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2009-04-15

    A thermodynamics-based model to predict the martensite start temperature of {beta} titanium alloys is presented. The tendency of the {beta} phase to transform into martensite is estimated by applying the Ghosh-Olson approach to martensite nucleation modelling. The energetics and M{sub s} temperature for binary alloys are predicted with good accuracy. A succinct formula predicting M{sub s} temperature in multicomponent {beta} alloys is presented. The new equation is compared to the classical Mo equivalence criterion for assessing {beta} stability.

  12. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    Directory of Open Access Journals (Sweden)

    Anna Behler

    2013-12-01

    Full Text Available A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni50Mn32Sn18 thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  13. An analysis of non-classical austenite-martensite interfaces in CuAlNi

    CERN Document Server

    Ball, J M; Seiner, H

    2011-01-01

    Ball and Carstensen theoretically investigated the possibility of the occurrence of non-classical austenite-martensite interfaces and studied the cubic-to-tetragonal case extensively. Here, we aim to present an analysis of such interfaces recently observed by Seiner et al. in CuAlNi single crystals, undergoing a cubic-to-orthorhombic transition. We show that they can be described by the non-linear elasticity model for martensitic transformations and we make some predictions regarding the volume fractions of the martensitic variants involved, as well as the habit plane normals.

  14. Dynamics of Electrically Driven Martensitic Phase Transitions in Fe Nanoislands

    NARCIS (Netherlands)

    Gerhard, L.; Wesselink, R.J.H.; Ostanin, S.; Ernst, A.; Wulfhekel, W.

    2013-01-01

    Magnetoelectric coupling has attracted interest due to its potential to write magnetic information with electric fields. In the model system of Fe islands on Cu(111), electric fields can induce martensitic phase transitions between ferromagnetic body-centered cubic and antiferromagnetic face-centere

  15. Characteristics of radiation-induced neoplastic transformation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.

    1986-01-01

    Data are presented to support the hypothesis that the initial step in the morphologic transformation of irradiated rodent (BALB/3T3) cells is a frequent cellular event involving a large fraction of the irradiated population. This process appears to involve DNA damage, but not to represent a targeted mutation in specific structural gene(s). Morphologic transformation and immortalization appear to be distinct steps in the overall process of transformation. In contradistinction to rodent cells, immortalization is a very rare event in human diploid cells which is induced at extremely low frequencies. The hypothesis is presented that immortality develops among clones of cells bearing stable chromosomal rearrangements which emerge during the proliferation of a population of radiation damaged cells.

  16. Phase-transformation-induced lubrication of earthquake sliding.

    Science.gov (United States)

    Green, Harry W

    2017-09-28

    Frictional failure is not possible at depth in Earth, hence earthquakes deeper than 30-50 km cannot initiate by overcoming dry friction. Moreover, the frequency distribution of earthquakes with depth is bimodal, suggesting another change of mechanism at about 350 km. Here I suggest that the change at 30-50 km is from overcoming dry friction to reduction of effective stress by dehydration embrittlement and that the change at 350 km is due to desiccation of slabs and initiation by phase-transformation-induced faulting. High-speed friction experiments at low pressure indicate that exceeding dry friction provokes shear heating that leads to endothermic reactions and pronounced weakening. Higher-pressure studies show nanocrystalline gouge accompanying dehydration and the highest pressure experiments initiate by exothermic polymorphic phase transformation. Here I discuss the characteristic nanostructures of experiments on high-speed friction and high-pressure faulting and show that all simulated earthquake systems yield very weak transformation-induced lubrication, most commonly nanometric gouge or melt. I also show that phase-transformation-induced faulting of olivine to spinel can propagate into material previously transformed to spinel, apparently by triggering melting analogous to high-speed friction studies at low pressure. These experiments taken as a whole suggest that earthquakes at all depths slide at low frictional resistance by a self-healing pulse mechanism with rapid strength recovery.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Author(s).

  17. Laser induced structural transformation in chalcogenide based superlattices

    Science.gov (United States)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-05-01

    Superlattices made of alternating layers of nominal GeTe and Sb2Te3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  18. Implementation of an outline of transformer induced voltage tests

    Directory of Open Access Journals (Sweden)

    Orestes Hernández Areu

    2010-02-01

    Full Text Available The results of the developed work for the implementation of the induced voltage test to be applied to single phase distribution transformers in the Researches and Electroenergetic Tests Center (CIPEL of Cuba, are presented, The test outline was obtained starting from the employment of a motor - generator group, with an external voltage regulator and using a frequency converter to obtain the necessary frequency for this type of test.

  19. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.

    Science.gov (United States)

    Li, Y J; Ponge, D; Choi, P; Raabe, D

    2015-12-01

    B-added low carbon steels exhibit excellent hardenability. The reason has been frequently attributed to B segregation at prior austenite grain boundaries, which prevents the austenite to ferrite transformation and favors the formation of martensite. The segregation behavior of B at prior austenite grain boundaries is strongly influenced by processing conditions such as austenitization temperatures and cooling rates and by alloying elements such as Mo, Cr, and Nb. Here an local electrode atom probe was employed to investigate the segregation behavior of B and other alloying elements (C, Mn, Si, and Cr) in a Cr-added Mo-free martensitic steel. Similar to our previous results on a Mo-added steel, we found that in both steels B is segregated at prior austenite grain boundaries with similar excess values, whereas B is neither detected in the martensitic matrix nor at martensite-martensite boundaries at the given cooling rate of 30K/s. These results are in agreement with the literature reporting that Cr has the same effect on hardenability of steels as Mo in the case of high cooling rates. The absence of B at martensite-martensite boundaries suggests that B segregates to prior austenite grain boundaries via a non-equilibrium mechanism. Segregation of C at all boundaries such as prior austenite grain boundaries and martensite-martensite boundaries may occur by an equilibrium mechanism.

  20. Microstructural path analysis of martensite burst

    Directory of Open Access Journals (Sweden)

    Paulo Rangel Rios

    2010-03-01

    Full Text Available Modeling the martensite reaction requires reckoning with spatial aspects of the reaction. For that, we used formal kinetics, more specifically, the microstructural path method (MPM to analyze the microstructure observed in a burst. The microstructural path analysis revealed that the size of the spread cluster in extended space, characterized by the Vandermeer and Juul-Jensen's impingement compensated mean intercept length, λG, remained constant, independently of the parent austenite grain size. Moreover, current analysis introduced a purely formal description of the reaction progress by taking the parent austenite grain size as the progress variable. This description worked very well and resulted in a relationship between the volume fraction of partially transformed austenite, V VG, and austenite grain size, λG. The significance of these findings in the light of the advantages and disadvantages of formal kinetics is discussed.

  1. Structural-scale levels of development of inelastic martensitic deformation during isothermal loading of submicrocrystalline titanium nickelide in premartensitic condition

    Energy Technology Data Exchange (ETDEWEB)

    Bakach, G. P.; Dudarev, E. F., E-mail: dudarev@spti.tsu.ru; Skosyrskii, A. B. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Maletkina, T. Yu., E-mail: t.maletkina@yandex.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)

    2015-10-27

    The results are presented of an experimental investigation into the regularities and mechanisms of the development of thermoelastic martensitic transformation in submicrocrystalline alloy Ti{sub 49.4}Ni{sub 50.6} with different ways of thermo-power actions using the methods of optical microscopy in situ and X-ray diffraction. The peculiarities of localization of martensite transformation at the meso- and macroscale levels in this alloy with submicrocrystalline structure are considered. Experimental data on the relay mechanism of propagation of the martensitic transformation are presented. The interrelation between the localization of the martensitic transformation on the meso-and macroscale levels and deformation behavior under isothermal loading alloy Ti{sub 49.4}Ni5{sub 0.6} in submicrocrystalline condition are shown and discussed.

  2. Thermally induced evolution of phase transformations in gas hydrate sediment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.

  3. On the Prediction of α-Martensite Temperatures in Medium Manganese Steels

    Science.gov (United States)

    Field, Daniel M.; Baker, Daniel S.; Van Aken, David C.

    2017-02-01

    A new composition-based method for calculating the α-martensite start temperature in medium manganese steel is presented and uses a regular solution model to accurately calculate the chemical driving force for α-martensite formation, Δ G_{Chem}^{γ to α } . In addition, a compositional relationship for the strain energy contribution during martensitic transformation was developed using measured Young's moduli (E) reported in literature and measured values for steels produced during this investigation. An empirical relationship was developed to calculate Young's modulus using alloy composition and was used where dilatometry literature did not report Young's moduli. A comparison of the Δ G_{Chem}^{γ to α } normalized by dividing by the product of Young's modulus, unconstrained lattice misfit squared (δ 2), and molar volume (Ω) with respect to the measured α-martensite start temperatures, M_{S}^{α } , produced a single linear relationship for 42 alloys exhibiting either lath or plate martensite. A temperature-dependent strain energy term was then formulated as Δ G_{str}^{γ to α } ( {{J}/{mol}} ) = EΩ δ2 (14.8 - 0.013T) , which opposed the chemical driving force for α-martensite formation. M_{S}^{α } was determined at a temperature where Δ G_{Chem}^{γ to α } + Δ G_{str}^{γ to α } = 0 . The proposed M_{S}^{α } model shows an extended temperature range of prediction from 170 K to 820 K (-103 °C to 547 °C). The model is then shown to corroborate alloy chemistries that exhibit two-stage athermal martensitic transformations and two-stage TRIP behavior in three previously reported medium manganese steels. In addition, the model can be used to predict the retained γ-austenite in twelve alloys, containing ɛ-martensite, using the difference between the calculated M_{S}^{ɛ} and M_{S}^{α }.

  4. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    Science.gov (United States)

    L'vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  5. Phase transformation-induced tetragonal FeCo nanostructures.

    Science.gov (United States)

    Gong, Maogang; Kirkeminde, Alec; Wuttig, Manfred; Ren, Shenqiang

    2014-11-12

    Tetragonal FeCo nanostructures are becoming particularly attractive because of their high magnetocrystalline anisotropy and magnetization achievable without rare-earth elements, . Yet, controlling their metastable structure, size and stoichiometry is a challenging task. In this study, we demonstrate AuCu templated FeCo shell growth followed by thermally induced phase transformation of AuCu core from face-centered cubic to L10 structure, which triggers the FeCo shell to transform from the body-centered cubic structure to a body-centered tetragonal phase. High coercivity, 846 Oe, and saturation magnetization, 221 emu/g, are achieved in this tetragonal FeCo structure. Beyond a critical FeCo shell thickness, confirmed experimentally and by lattice mismatch calculations, the FeCo shell relaxes. The shell thickness and stoichiometry dictate the magnetic characteristics of the tetragonal FeCo shell. This study provides a general route to utilize phase transformation to fabricate high performance metastable nanomagnets, which could open up their green energy applications.

  6. Study on in-situ observation of martensitic transformation in low carbon steel by high temperature confocal laser scanning microscopy%低碳钢在高温共焦激光扫描显微镜下马氏体相变的原位观察研究

    Institute of Scientific and Technical Information of China (English)

    班丽丽; 温娟; 史学星; 刘卫平

    2011-01-01

    利用高温共焦激光扫描显微镜,对低碳钢进行了马氏体相变的原位动态观察.结果表明,实验用低碳钢在连续冷却过程中形成板条马氏体,Ms点约为373℃,Mf点约为300℃.板条马氏体主要在退火孪晶处以及奥氏体晶界及其角隅处形核,或者在先形成的板条处形核,再以60°或120°角向奥氏体晶内生长.板条束的形成也有两种类型,一类以先形成的板条为基准逐步形成彼此平行的板条束,另一类则由先形成的板条触发60°或120°方向的板条.最终构成正三角形、平行四边形等几何形状.%The in-situ dynamical observation of martensitic transformation in low carbon steel was carried out by high temperature confocal laser scanning microscopy (CLSM). It was found that lath martensite was formed in experimental low carbon steel in continuous cooling process as the temperature reached about 373 °C (Ms). And the transformation stopped at about 300 °C (Mf). The lath martensite was mainly nucleated in annealing twin boundaries and austenitic boundaries &. Corners, or nucleated in previously formed laths and then developed to austenitic crystal at 60° or 120°. Furthermore, there were two types for the formation of lath bundle: one was parallel lath bundle which was gradually formed based on the previously formed laths; the other was laths which finally formed geometrical shapes such as regular triangle and parallelogram after being triggered by the previously-formed laths.

  7. Cu-12%Al合金线材的马氏体结构及其对力学性能的影响%Martensite structure of CU-12%Al alloy and its effect on mechanical properties

    Institute of Scientific and Technical Information of China (English)

    刘锦平; 刘雪峰; 黄海友; 谢建新

    2011-01-01

    Cu-12%Al (mass fraction) alloy single crystal wires were prepared by the continuous unidirectional solidification. Various martensite structures were obtained by changing the melt temperature. The effects of martensite orientation and morphologies on the mechanical properties of the alloy wires were investigated. The results show that the Cu-12%Al alloy wires with a diameter of 6 mm have single crystal structure fabricated at drawing velocity of 10 mm/min,cooling water temperature of 20 ℃, water flow rate of 400 L/h, and melt temperature of 1 150 or 1 200 ℃. The preferred growth planes of martensite parent phases are (100) and (0(1)1) for the alloy wires fabricated at melt temperature of 1 150 ℃ and martensite morphologies are of the mixture of the forked and lamellar, and their elongations and fracture feature are 5.1% and quasi-cleavage fracture, respectively. The preferred growth planes of martensite parent phases are (011 ), (0(1)1) and (01(1)) for the alloy wires at melt temperature of 1 200 ℃ and the martensite morphology is lamellar,and their elongations and fracture feature are 16.9% and ductile fracture, respectively. The forked martensite structure can obstruct the dislocation slip and inhibit the occurrence of the martensite transformation. The parallel martensite structure exhibits better plastic deformation capacity induced by martensite transformation because it benefits the movement of the partial dislocation, which results in the occurrence of martensite transformation.%采用连续定向凝固技术制备Cu-12%Al(质量分数)合金线材,通过改变熔体温度获得不同结构的马氏体,研究马氏体取向和形貌对线材力学性能的影响.结果表明:在引拉速度为10 mm/min、冷却水温为20℃、水流量为400 L/h、熔体温度为1 150或1 200℃的条件下所制备的直径为6 mm的Cu-12%Al线材均为马氏体组织.熔体温度为1 150℃时,定向凝固线材马氏体的母相择优生长面为(100)

  8. Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Chengbao; Muhammad, Yousaf; Deng Lifeng; Wu Wei; Xu Huibin

    2004-05-17

    The Mn-rich Ni{sub 50}Mn{sub 25+x}Ga{sub 25-x} (x=0-5) alloys were developed to investigate the structural transitions and magnetic properties. Structural transitions from austenite to 5M, 7M, and non-modulated martensite were observed with the increase of Mn content. The lattice parameter a elongates, as where b and c contract, and the unit cell volume reduces with increasing Mn content. The martensitic transformation start temperatures M{sub s} increase monotonically from 10.7 deg. C for x=2 to 102.7 deg. C for x=5. The saturation magnetization was measured at 5 K, where all the samples exhibit a martensitic structure. The average magnetic moments per Mn atom vary from 4.38 {mu}{sub B} to 2.93 {mu}{sub B} for x=0 to x=5. The negative effect of excess Mn atoms changes from -3.00 {mu}{sub B} for x=2 to -7.25 {mu}{sub B} for x=5. The excess Mn atoms modify the electronic structures of the unsubstituted Mn atoms, resulting in the sharp decrease of the magnetic moments of the unsubstituted Mn atoms with increasing Mn content. Structural incommensurability was observed with 7M for powder and non-modulated for bulk samper in a specific range of compositions and proved to be reversible when performing martensitic transformation. The 7M and non-modulated martensites Ni{sub 50}Mn{sub 30}Ga{sub 20} possess similar saturation magnetizations and Curie temperatures. The non-modulated martensite was estimated to have a lower free energy than 7M, and should be more stable for a reverse martensitic transformation, leading to a higher austenite start temperature A{sub s}, which is consistent with the experimental result.

  9. Thermally activated formation of martensite in Fe-C alloys and Fe-17%Cr-C stainless steels during heating from boiling nitrogen temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2016-01-01

    The thermally activated austenite-to-martensite transformation was investigated by magnetometry in three Fe-C alloys and in two 17%Cr stainless steels. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequent (re...

  10. Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.

    Science.gov (United States)

    Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij

    2016-12-01

    Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect.

  11. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels. Th

  12. Monitoring of martensite formation during welding by means of acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den [Netherlands Institute for Metals Research, Delft University of Technology, Delft (Netherlands)

    2001-11-21

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  13. Multiphase model for transformation induced plasticity. Extended Leblond's model

    Science.gov (United States)

    Weisz-Patrault, Daniel

    2017-09-01

    Transformation induced plasticity (TRIP) classically refers to plastic strains observed during phase transitions that occur under mechanical loads (that can be lower than the yield stress). A theoretical approach based on homogenization is proposed to deal with multiphase changes and to extend the validity of the well known and widely used model proposed by Leblond (1989). The approach is similar, but several product phases are considered instead of one and several assumptions have been released. Thus, besides the generalization for several phases, one can mention three main improvements in the calculation of the local equivalent plastic strain: the deviatoric part of the phase transformation is taken into account, both parent and product phases are elastic-plastic with linear isotropic hardening and the applied stress is considered. Results show that classical issues of singularities arising in the Leblond's model (corrected by ad hoc numerical functions or thresholding) are solved in this contribution excepted when the applied equivalent stress reaches the yield stress. Indeed, in this situation the parent phase is entirely plastic as soon as the phase transformation begins and the same singularity as in the Leblond's model arises. A physical explanation of the cutoff function is introduced in order to regularize the singularity. Furthermore, experiments extracted from the literature dealing with multiphase transitions and multiaxial loads are compared with the original Leblond's model and the proposed extended version. For the extended version, very good agreement is observed without any fitting procedures (i.e., material parameters are extracted from other dedicated experiments) and for the original version results are more qualitative.

  14. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    Boogaard, van den A.H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress tr

  15. Structural transformations in magnetorheological slurries induced by perturbations

    Science.gov (United States)

    de la Calleja Mora, E. M.; Carrillo, J. L.; Mendoza, M. E.; Donado, F.

    2013-04-01

    The pattern formation produced by the aggregation of the particles in magnetorheological dispersions when they are in the presence of a static magnetic field, and the process of reconstruction of these structures induced by the application of magnetic perturbations, are investigated experimentally and theoretically. Under the influence of a static magnetic field the aggregation of the dispersed particles generates a multifractal structure, whose corresponding hierarchical structure has been characterized by means of its mass fractal dimensions and other correlations. When this system is perturbed by an oscillatory magnetic field, in addition to the static one, the dispersion rearranges becoming, for certain values of the amplitude and frequency of the perturbation, a more compact and relatively more ordered structure. Here, the analysis of these phenomena is approached as if the pattern formation were a kind of glassy transformation in a supercooled liquid, and the effect of the perturbation were an annealing process. The role of the temperature is taken here by the ratio of the intensities of the applied fields. From high resolution photographs taken at different stages of the structure evolution, it is possible to calculate some complexity measures such as the singularity spectrum, the lacunarity index, enthalpy and the configurational entropy. On this basis it is possible to describe quantitatively these glassy-like transformations. The relaxation time that distinguishes between a cooling process that leads the structure to a glassy or a crystalline one, is experimentally obtained.

  16. Shape transformation of lipid vesicles induced by diffusing macromolecules.

    Science.gov (United States)

    Góźdź, W T

    2011-01-14

    The attachment of macromolecules to the surface of a lipid vesicle may cause its deformations such as budding or creation of cylindrical protrusions. Diffusion of the macromolecules in the membranes may cause its shape transformations. The process of shrinking the protrusions due to diffusion of the macromolecules is investigated. It is assumed that macromolecules modify locally the spontaneous curvature and bending rigidity of the lipid membrane. Both spontaneous curvature and bending rigidities depend on the concentration of membrane components. It has been shown that cylindrical protrusions are created when the macromolecules which induce large spontaneous curvature are accumulated at a piece of the vesicle surface. It has been observed that here the elastic constants influence very little the evolution of the vesicle shape caused by diffusing macromolecules and the most important is the value the spontaneous curvature imposed by the macromolecules.

  17. Austempering of hot rolled transformation-induced plasticity steels

    Institute of Scientific and Technical Information of China (English)

    Zhuang Li; Di Wu

    2008-01-01

    Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering inAustempering in the salt bath after hot rolling Was investigated. The effect of isothermal holding time on mechanical properties was studied throughing of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and ad TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holdingprecipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%,respevtively.

  18. Detection of earthquake induced radon precursors by Hilbert Huang Transform

    Science.gov (United States)

    Barman, Chiranjib; Ghose, Debasis; Sinha, Bikash; Deb, Argha

    2016-10-01

    Continuous measurement of radon-222 concentration in soil was carried out across duration of one year at a geologically faulted area having high regional heat flow to detect anomalies caused by seismic activities. The data reveals a range of periodicities present in the radon time series. To identify seismic induced radon changes we treat the time series data through various filtering methods to remove inherent periodicities. The Ensemble Empirical Mode Decomposition (EEMD) is deployed to decompose the signal into its characteristic modes. Hilbert Huang Transform (HHT) is applied for the first time on the physically significant modes obtained by EEMD to represent time-energy-frequency of the recorded soil radon time series. After removing the periodic and quasi-periodic constituents from the original time series, the simulated result shows a forceful correlation in recorded radon-222 anomalies with regional and local seismic events.

  19. Mössbauer studies on athermal martensite formation in an Fe–Ni–Mn alloy

    Indian Academy of Sciences (India)

    A Aydin; E Guler; H Aktas; H Gungunes

    2002-10-01

    In this study, austenite–martensite phase transformations which are formed by cooling effect in Fe–30% Ni–0.2% Mn alloy are investigated with Mössbauer spectroscopy and scanning electron microscopy. The single peak of the paramagnetic phase and the six peaks of the ferromagnetic phase of Fe–30% Ni–0.2% Mn alloy were observed in the Mössbauer spectrum. The internal magnetic field strength of ferromagnetic martensite phase was determined as 33.8 and the isomer shift values were determined as – 0.11 mm.sec–1 and – 0.06 mm.sec–1, respectively, for the austenite and martensite phases. In this alloy, athermal transformation was observed. The results obtained are in agreement with literature.

  20. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    Science.gov (United States)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  1. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    Science.gov (United States)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  2. UV-induced transformation of four halobenzoquinones in drinking water.

    Science.gov (United States)

    Qian, Yichao; Wang, Wei; Boyd, Jessica M; Wu, Minghuo; Hrudey, Steve E; Li, Xing-Fang

    2013-05-07

    Halobenzoquinones (HBQs) are a group of emerging disinfection byproducts (DBPs) found in treated drinking water. Because the use of UV treatment for disinfection is becoming more widespread, it is important to understand how the HBQs may be removed or changed due to UV irradiation. Water samples containing four HBQs, 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dichloro-1,4-benzoquinone (DBBQ), were treated using a modified bench scale collimated beam device, mimicking UV treatment. Water samples before and after UV irradiation were analyzed for the parent compounds and products using a high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method. As much as 90% of HBQs (0.25 nmol L(-1)) in both pure water and tap water were transformed to other products after UV254 irradiation at 1000 mJ cm(-2). The major products of the four HBQs were identified as 3-hydroxyl-2,6-dichloro-1,4-benzoquinone (OH-DCBQ) from DCBQ, 5-hydroxyl-2,6-dichloro-3-methyl-1,4-benzoquinone (OH-DCMBQ) from DCMBQ, 5-hydroxyl-2,3,6-trichloro-1,4-benzoquinone (OH-TCBQ) from TCBQ, and 3-hydroxyl-2,6-dibromo-1,4-benzoquinone (OH-DBBQ) from DBBQ. These four OH-HBQs were further modified to monohalogenated benzoquinones when the UV dose was higher than 200 mJ cm(-2). These results suggested possible pathways of UV-induced transformation of HBQs to other compounds. Under the UV dose commonly used in water treatment plants, it is likely that HBQs are partially converted to other halo-DBPs. The occurrence and toxicity of these mixed DBPs warrant further investigation to understand whether they pose a health risk.

  3. A study on fatigue crack growth in dual phase martensitic steel in air environment

    Indian Academy of Sciences (India)

    K V Sudhakar; E S Dwarakadasa

    2000-06-01

    Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, respectively to evaluate the potential of DP steels. The crack growth rates (/) at different stress intensity ranges ( ) were determined to obtain the threshold value of stress intensity range ( th). Crack path morphology was studied to determine the influence of microstructure on crack growth characteristics. After the examination of crack tortuosity, the compact tension (CT) specimens were pulled in static mode to determine fracture toughness values. FCG rates decreased and threshold values increased with increase in vol.% martensite in the DP steel. This is attributed to the lower carbon content in the martensite formed at higher intercritical annealing (ICA) temperatures, causing retardation of crack growth rate by crack tip blunting and/or deflection. Roughness induced crack closure was also found to contribute to the improved crack growth resistance at higher levels of martensite content. Scanning electron fractography of DP steel in the near threshold region revealed transgranular cleavage fracture with secondary cracking. Results indicate the possibility that the DP steels may be treated to obtain an excellent combination of strength and fatigue properties.

  4. The morphology of lath martensite: a new perspective

    Directory of Open Access Journals (Sweden)

    Koumatos Konstantinos

    2015-01-01

    Full Text Available A mathematical framework is proposed to predict the features of the (5 5 7 lath transformation in low-carbon steels based on energy minimisation. This theory generates a one-parameter family of possible habit plane normals and a selection mechanism then identifies the (5 5 7 normals as those arising from a deformation with small atomic movement and maximal compatibility. While the calculations bear some resemblance to those of double shear theories, the assumptions and conclusions are different. Interestingly, the predicted microstructure morphology resembles that of plate martensite, in the sense that a type of twinning mechanism is involved.

  5. Influence of the austenite-martensite transformation in the dimensional stability of a new tool steel alloyed with niobium (0.08% wt.) and vanadium (0.12% wt.); Influencia de la transformacion austenita-martensita en la estabilidad dimensional de un nuevo acero para herramientas aleado con niobio (0,08%) y vanadio (0,12%)

    Energy Technology Data Exchange (ETDEWEB)

    Conejero Ortega, G.; Candela Vazquez, N.; Pichel Martinez, M.; Barea del Cerro, R.; Carsi Cebrian, M.

    2014-07-01

    Austenite-martensite transformation influence on the dimensional stability of a new experimental tool steel alloyed with niobium (0.08% wt.) and vanadium (0.12% wt.) has been studied. The dimensional stability of this new steel was compared with the dimensional stability of commercial steel, after and before two thermal treatments, T1 (860 degree centigrade) and T2 (900 degree centigrade). The thermal treatments consisted on heating and cooling, at 1 atmosphere of pressure, in N{sub 2} atmosphere furnace, following by heating in a conventional furnace at 180 degree centigrade during 1 hour. Initially, the experimental steel composition and Ac{sub 1} and Ac{sub 3} transformation temperatures were determined by glow-discharge luminescence (GDL) and dilatometric tests, respectively, in order to select the austenization temperatures of T1 and T2 treatments. After hardness measurement, the microstructure of both steels was characterized by X-Ray Diffraction (XRD) and optical metallography, before and after of T1 and T2 thermal treatments. Finally, longitudinal and angular dimensional stability analyses were realized for both commercial and experimental steels. After a contrastive hypothesis analysis, the results showed that the longitudinal relative variation of the experimental steel calculated was around 0.2% and the angular relative variation was not significant. (Author)

  6. Formation of epsilon martensite by high-pressure torsion in a TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Roberto B., E-mail: figueiredo-rb@ufmg.br [Department of Materials Engineering and Civil Construction, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Sicupira, Felipe L.; Malheiros, Livia Raquel C. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Kawasaki, Megumi [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Santos, Dagoberto B. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2015-02-11

    An Fe–17% Mn–0.06% C–2% Si–3% Al–1% Ni steel exhibiting a phase transformation induced by room temperature deformation was processed by high-pressure torsion (HPT) using a pressure of 6.0 GPa and with the samples subjected to different amounts of torsional straining up to a maximum of 10 turns. A microstructural analysis revealed a phase transformation in the early stages of deformation and a gradual evolution towards a fully-deformed structure. Microhardness measurements showed two stages of hardening with eventual softening at large strains. From X-ray diffraction (XRD) analysis, there is evidence for a reverse martensitic transformation and the stabilization of an h.c.p. epsilon (ε) structure. The formation of an h.c.p. structure takes place in this steel at lower pressures than for pure iron but the results agree with earlier reports of the presence of an ε phase in stainless steel processed by HPT and with the expected reduction in the transition pressure due to the Mn addition.

  7. Weldability of Low Carbon Transformation Induced Plasticity Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mei; LI Lin; FU Ren-yu; ZHANG Ji-cheng; WAN Zi

    2008-01-01

    Transformation induced plasticity (TRIP) steel exhibited high or rather high carbon equivalent (CE) because of its chemical composition,which was a particularly detrimental factor affecting weldability of steels.Thus the weldability of a TRIP steel (grade 600) containing (in mass percent,%) 0.11C-1.19Si-1.67Mn was extensively studied.The mechanical properties and impact toughness of butt joint,the welding crack susceptibility of weld and heat affected zone (HAZ) for tee joint,control thermal severity (CTS) of the welded joint,and Y shape 60° butt joint were measured after the gas metal arc welding (GMAW) test.The tensile strength of the weld was higher than 700 Mpa.Both in the fusion zone (FZ) and HAZ for butt joint,the impact toughness was much higher than 27 J,either at room temperature or at -20 ℃,indicating good low temperature impact ductility of the weld of TRIP 600 steel.In addition,welding crack susceptibility tests revealed that weldments were free of surface crack and other imperfection.All experimental results of this steel showed fairly good weldability.For application,the crossmember in automobile made of this steel exhibited excellent weldability,and fatigue and durability tests were also accomplished for crossmember assembly.

  8. Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations

    Energy Technology Data Exchange (ETDEWEB)

    Englert, A.; Hubbard, S.S.; Williams, K.H.; Li, L.; Steefel, C.I.

    2009-04-15

    For guiding optimal design and interpretation of in-situ treatments that strongly perturb subsurface systems, knowledge about the spatial and temporal patterns of mass transport and reaction intensities are important. Here, a procedure was developed and applied to time-lapse concentrations of a conservative tracer (bromide), an injected amendment (acetate) and reactive species (iron(II), uranium(VI) and sulfate) associated with two field scale biostimulation experiments, which were conducted successively at the same field location over two years. The procedure is based on a temporal moment analysis approach that relies on a streamtube approximation. The study shows that biostimulated reactions can be considerably influenced by subsurface hydrological and geochemical heterogeneities: the delivery of bromide and acetate and the intensity of the sulfate reduction is interpreted to be predominantly driven by the hydrological heterogeneity, while the intensity of the iron reduction is interpreted to be primarily controlled by the geochemical heterogeneity. The intensity of the uranium(VI) reduction appears to be impacted by both the hydrological and geochemical heterogeneity. Finally, the study documents the existence of feedbacks between hydrological heterogeneity and remediation-induced biogeochemical transformations at the field scale, particularly the development of precipitates that may cause clogging and flow rerouting.

  9. Low temperature stability of 4O martensite in Ni49.1Mn38.9Sn12 metamagnetic Heusler alloy ribbons

    Science.gov (United States)

    Czaja, P.; Przewoźnik, J.; Gondek, Ł.; Hawelek, L.; Żywczak, A.; Zschech, E.

    2017-01-01

    The structural transformation sequence in Ni49.1Mn38.9Sn12 ribbons is studied using calorimetric, thermomagnetic, resistivity and in-situ XRD measurements. It is confirmed that the ferromagnetic L21 austenite phase transforms into 4O martensite at 242 K. The austenite phase persists in the sample to well below the TC of martensite. Upon further cooling the 4O martensite phase is stable down to the low temperature range, what is ascribed to its limited Ni/Mn and e/a ratios. On heating lattice constants assume lower values resulting from stress relief upon thermal cycling.

  10. Zig-zag twins and helical phase transformations.

    Science.gov (United States)

    Ganor, Yaniv; Dumitrică, Traian; Feng, Fan; James, Richard D

    2016-04-28

    We demonstrate the large bending deformation induced by an array of permanent magnets (applied field ∼0.02 T) designed to minimize poles in the bent state of the crystal. Planar cantilevers of NiMnGa (5M modulated martensite) ferromagnetic shape memory alloy deform into an arched shape according to theory, with a zig-zag microstructure that complies with the kinematic and magnetic compatibility between adjacent twin variants. A general theory of bent and twisted states is given, applicable to both twinning and austenite/martensite transformations. Some of these configurations achieve order-of-magnitude amplification of rotation and axial strain. We investigate also atomistic analogues of these bent and twisted configurations with perfect interfaces between phases. These mechanisms of large deformation, induced by small magnetic fields or temperature changes, have potential application to the development of new actuation technologies for micro-robotic systems.

  11. The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongho; Lee, Seung-Joon; Lee, Chan-Young; Lee, Sukjin; Jo, Seo Yeon; Lee, Young-Kook, E-mail: yklee@yonsei.ac.kr

    2015-05-01

    The size effect of α′ martensite constituents before annealing on the microstructure and tensile properties of intercritically annealed medium Mn steel was systematically investigated. The cold-rolled Fe–9Mn–0.05C (wt%) steel was austenized at three different temperatures, water-quenched to room temperature to vary the sizes of the martensite constituents, and then annealed at 640 °C for 10 min. When the austenizing temperature increased, the sizes of the prior austenite (γ) grains and of the packets and blocks of α′ martensite increased; however, the width of the laths changed only insignificantly. The annealed specimens had a dual-phase microstructure with lath-shaped ferrite (α) and retained γ (γ{sub R}) phases. The volume fraction of γ{sub R} decreased with increasing austenizing temperature because the specimen austenized at the higher temperature underwent a slower reverse transformation in the early stage of intercritical annealing. The slowed kinetics of the reverse transformation with increasing austenizing temperature was attributed to the reduction in area of block boundaries which provide nucleation sites for the reverted γ. The widths of the α and γ{sub R} laths were almost independent of the austenizing temperature. The partitioning of Mn and C atoms from α into γ{sub R} laths became active with increasing austenizing temperature, resulting in a more stable γ{sub R}. The specimen austenized at higher temperature exhibited a lower strain hardening rate (SHR) due to the less active transformation-induced plasticity (TRIP) in γ{sub R} with the higher phase stability. The ultimate tensile strength decreased with increasing austenizing temperature because the SHR was lowered by the less active TRIP with increasing austenizing temperature. The uniform elongation increased with increasing austenizing temperature due to delayed necking caused primarily by the flow stress, which dropped with increasing austenizing temperature.

  12. Structural and compositional changes during isothermal annealing of {alpha}{double_prime}-martensite in Ti-8 wt.% Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Ustinov, A.I.; Skorodzievskii, V.S.; Kosenko, M.S.; Matviychuk, Yu.V.; Azamatova, F.I. [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Metal Physics

    1997-09-15

    There are many discrepancies in the literature concerning the structure of martensite in titanium alloys with isomorphous {beta}-stabilizing elements and the mechanism of its decomposition on ageing. It has been proposed that the {alpha}{double_prime}-martensite crystal structure results from the isomorphic decomposition of the hexagonal solid solution during the {beta} {yields} {alpha}{double_prime} martensite transformation. Decomposition begins during cooling (due to relatively high M{sub s} temperature) and continues during ageing. To check this hypothesis, the structural changes in the Ti-8 wt.% Mo alloy during ageing have been studied in this work to establish a correlation between the CI parameters and rhombic distortions of the {alpha}{double_prime}-martensite lattice.

  13. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.

    Science.gov (United States)

    Elmay, W; Prima, F; Gloriant, T; Bolle, B; Zhong, Y; Patoor, E; Laheurte, P

    2013-02-01

    Thermomechanical treatments have been proved to be an efficient way to improve superelastic properties of metastable β type titanium alloys through several studies. In this paper, this treatment routes, already performed on superelastic alloys, are applied to the Ti-24Nb alloy (at%) consisting of a pure martensite α'' microstructure. By short-time annealing treatments performed on the heavily deformed material, an interesting combination of a large recoverable strain of about 2.5%, a low elastic modulus (35 GPa) and a high strength (900 MPa) was achieved. These properties are shown to be due to a complex microstructure consisting of the precipitation of nanoscale (α+ω) phases in ultra-fine β grains. This microstructure allows a superelastic behavior through stress-induced α'' martensitic transformation. In this study, the microstructures were characterized by X-ray diffraction and transmission electron microscopy and the evolution of the elastic modulus and the strain recovery as a function of the applied strain was investigated through loading-unloading tensile tests.

  14. Interplay between diffusive and displacive phase transformations: time-temperature-transformation diagrams and microstructures.

    Science.gov (United States)

    Bouville, Mathieu; Ahluwalia, Rajeev

    2006-08-01

    Materials which can undergo extremely fast displacive transformations as well as very slow diffusive transformations are studied using a Ginzburg-Landau framework. This simple model captures the essential physics behind microstructure formation and time-temperature-transformation diagrams in alloys such as steels. It also predicts the formation of mixed microstructures by an interplay between diffusive and displacive mechanisms. The intrinsic volume changes associated with the transformations stabilize mixed microstructures such as martensite-retained austenite (responsible for the existence of a martensite finish temperature) and martensite-pearlite.

  15. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.

    Science.gov (United States)

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-06-01

    The springback behavior of Ti-12Cr and Ti-29Nb-13Ta-4.6Zr (TNTZ) during deformation by bending was investigated; and the microstructures of the non-deformed and deformed parts of both alloys were systematically examined to clarify the relationship between microstructure and springback behavior. For the deformed Ti-12Cr alloy, deformation-induced ω-phase transformation occurs in both the areas of compression and tension within the deformed part, which increases the Young׳s modulus. With the deformed TNTZ alloy, deformation-induced ω-phase transformation is observed in the area of compression within the deformed part; while a deformation-induced α″ martensite transformation occurs in the area under tension, which is likely to be associated with the pseudoelasticity of TNTZ. Among these two alloys, Ti-12Cr exhibits a smaller springback and a much greater bending strength when compared with TNTZ; making Ti-12Cr the more advantageous for spinal fixation applications.

  16. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.

    Science.gov (United States)

    Li, S J; Cui, T C; Hao, Y L; Yang, R

    2008-03-01

    Due to recent concern about allergic and toxic effects of Ni ions released from TiNi alloy into human body, much attention has been focused on the development of new Ni-free, metastable beta-type biomedical titanium alloys with a reversible phase transformation between the beta phase and the alpha'' martensite. This study investigates the effect of the stress-induced alpha'' martensite on the mechanical and fatigue properties of Ti-24Nb-4Zr-7.6Sn (wt.%) alloy. The results show that the as-forged alloy has a low dynamic Young's modulus of 55GPa and a recoverable tensile strain of approximately 3%. Compared with Ti-6Al-4V ELI, the studied alloy has quite a high low-cycle fatigue strength because of the effective suppression of microplastic deformation by the reversible martensitic transformation. Due to the low critical stress required to induce the martensitic transformation, it has low fatigue endurance comparable to that of Ti-6Al-4V ELI. Cold rolling produces a beta+alpha'' two-phase microstructure that is characterized by regions of nano-size beta grains interspersed with coarse grains containing alpha'' martensite plates. Cold rolling increases fatigue endurance by approximately 50% while decreasing the Young's modulus to 49GPa along the rolling direction but increasing it to 68GPa along the transverse direction. Due to the effective suppression of the brittle isothermal omega phase, balanced properties of high strength, low Young's modulus and good ductility can be achieved through ageing treatment at intermediate temperature.

  17. Avidin is induced in chicken embryo fibroblasts by viral transformation and cell damage.

    Science.gov (United States)

    Korpela, J; Kulomaa, M; Tuohimaa, P; Vaheri, A

    1983-01-01

    Synthesis and secretion of avidin was studied in cultured chicken embryo fibroblasts infected with transforming retroviruses (Rous sarcoma virus, its mutants temperature-sensitive for transformation, OK-10 virus) or a nontransforming retrovirus (RAV-1). Avidin was detectable in both transformed and untransformed cultures, and was identical to chicken egg white avidin by several criteria: biotin-binding, heat-induced biotin exchange, subunit size (mol. wt. 15 600), immunoprecipitation of metabolically labeled proteins and immunoblotting. Transformation increased the production of avidin up to 50-fold, but several experiments suggested that the induction was not a direct consequence of virus-induced cell transformation. The production of avidin seemed to relate to cellular damage both in cultures of virus-transformed and of normal fibroblasts. It may represent a response to cellular damage and viral transformation may activate the process. Images Fig. 2. Fig. 3. PMID:6315397

  18. Avidin is induced in chicken embryo fibroblasts by viral transformation and cell damage.

    Science.gov (United States)

    Korpela, J; Kulomaa, M; Tuohimaa, P; Vaheri, A

    1983-01-01

    Synthesis and secretion of avidin was studied in cultured chicken embryo fibroblasts infected with transforming retroviruses (Rous sarcoma virus, its mutants temperature-sensitive for transformation, OK-10 virus) or a nontransforming retrovirus (RAV-1). Avidin was detectable in both transformed and untransformed cultures, and was identical to chicken egg white avidin by several criteria: biotin-binding, heat-induced biotin exchange, subunit size (mol. wt. 15 600), immunoprecipitation of metabolically labeled proteins and immunoblotting. Transformation increased the production of avidin up to 50-fold, but several experiments suggested that the induction was not a direct consequence of virus-induced cell transformation. The production of avidin seemed to relate to cellular damage both in cultures of virus-transformed and of normal fibroblasts. It may represent a response to cellular damage and viral transformation may activate the process.

  19. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  20. Transformation

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  1. Transformation

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  2. Modeling Kinetics of Deformation Induced Ferrite Transformation in Fe-C-Mn Alloy

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2005-01-01

    The influence of hot deformation on the incubation period of ferrite transformation was calculated to de termine the onset of deformation induced transformation.Temperature Ar3d depends on deformation condition and alloying composition,and decreases with increasing carbon content.When deformation induced ferrite transformation occurs,the flow curves of dislocation density will show strong softening characteristic.Through temperature heavy deformation,ferrite transformation is enhanced and more volume fraction is obtained.The simulated results are in good agreement with the experiment ones.

  3. Transformation between divacancy defects induced by an energy pulse in graphene

    Science.gov (United States)

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-01

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  4. Effect of uni- and biaxial strain on phase transformations in Fe thin films

    Science.gov (United States)

    Sak-Saracino, Emilia; Urbassek, Herbert M.

    2016-01-01

    Using molecular-dynamics simulation, we study the phase transformations in Fe thin films induced by uni- and biaxial strain. Both the austenitic transformation of a body-centered cubic (bcc) film at the equilibrium temperature of the face-centered cubic (fcc)-bcc transformation and the martensitic transformation of an undercooled fcc film are studied. We demonstrate that different strain states (uni- or biaxial) induce different nucleation kinetics of the new phase and hence different microstructures evolve. For the case of the austenitic transformation, the direction of the applied strain selects the orientation of the nucleated grains of the new phase; the application of biaxial strain leads to a symmetric twinned structure. For the martensitic transformation, the influence of the strain state is even more pronounced, in that it can either inhibit the transformation, induce the homogeneous nucleation of a fine-dispersed array of the new phase resulting in a single-crystalline final state, or lead to the more conventional mechanism of heterogeneous nucleation of grains at the free surfaces, which grow and result in a poly-crystalline microstructure of the transformed material.

  5. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  6. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    Science.gov (United States)

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  7. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    Science.gov (United States)

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  8. A low-temperature study to examine the role of epsilon-martensite during strain-induced transformations in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Datta, K.; Delhez, R.; Bronsveld, P.M.; Beyer, J.; Geijselaers, H.J.M.; Post, J.

    2009-01-01

    A low-temperature study of the mechanical behaviour of a metastable semi-austenitic stainless steel was carried out. This class of stainless steels is found to show a characteristic hump followed by softening in their stress–strain curves, especially at low temperatures, much like dynamically recrys

  9. A low-temperature study to examine the role of epsilon-martensite during strain-induced transformations in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Datta, K.; Delhez, R.; Bronsveld, P. M.; Beyer, J.; Geijselaers, H. J. M.; Post, J.

    2009-01-01

    A low-temperature study of the mechanical behaviour of a metastable semi-austenitic stainless steel was carried out. This class of stainless steels is found to show a characteristic hump followed by softening in their stress-strain curves, especially at low temperatures, much like dynamically recrys

  10. Effect of Incomplete Thermal Cycle on Transformation Behavior of Deformed TiNi Thin Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Compared with the undeformed TiNi film, the martensite-austenite transformation (M-A) of the deformed one is elevated to a higher temperature on the first heating, but it nearly returns back to the original temperature on the second heating. An incomplete M-A transformation of the deformed TiNi film on the first heating divides the total martensite population into the self-accommodating martensite M2 and the oriented martensite M1. Thus, two transformations corresponding to M1-A and M2-A transition occur on the second heating. However, the forward transformation is not affected by the incomplete thermal cycle.

  11. Avidin is induced in chicken embryo fibroblasts by viral transformation and cell damage.

    OpenAIRE

    Korpela, J; Kulomaa, M; Tuohimaa, P; Vaheri, A.

    1983-01-01

    Synthesis and secretion of avidin was studied in cultured chicken embryo fibroblasts infected with transforming retroviruses (Rous sarcoma virus, its mutants temperature-sensitive for transformation, OK-10 virus) or a nontransforming retrovirus (RAV-1). Avidin was detectable in both transformed and untransformed cultures, and was identical to chicken egg white avidin by several criteria: biotin-binding, heat-induced biotin exchange, subunit size (mol. wt. 15 600), immunoprecipitation of metab...

  12. Stabilizing internal stress as the thermodynamic factor of martensite aging effects

    Energy Technology Data Exchange (ETDEWEB)

    Kosogor, Anna [Department of Radiophysics, Taras Shevchenko University, 03022 Kyiv (Ukraine); L' vov, Victor A., E-mail: victorlvov@univ.kiev.ua [Department of Radiophysics, Taras Shevchenko University, 03022 Kyiv (Ukraine); Institute of Magnetism, Vernadsky Str. 36-b, 03142 Kyiv (Ukraine); Soederberg, Outi; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University School of Chemical Technology, PO Box 16200, Espoo FI-00076 Aalto (Finland)

    2011-05-15

    Highlights: > A martensite aging is accompanied by reconfiguration of the crystal defects system. > The reconfiguration causes an internal stressing of crystal lattice. > The internal stressing elevates the martensitic transformation temperature. > A theory that accounts for the internal stress adequately describes aging effects. > A quantitative description of aging effects observed in Au-Cd alloys is presented. - Abstract: The symmetry-conforming Landau theory has been developed for the description of interplay between the symmetry of the deformable crystal lattice and the configuration of crystallographic defects in martensitic alloys. For this purpose, the multi-component non-scalar order parameter describing the slow reconfiguration of defects after the deformation of crystal lattice has been introduced within the framework of the Landau theory of martensitic transformations (MTs). Due to the transformational equivalence of the configurational order parameter and strain/stress tensor components, the conception of stabilizing internal stress (SIS), which is linearly related to this parameter, has been formulated. The complete agreement between the developed theory and the symmetry-conforming short-range-order principle formulated by Ren and Otsuka has been established. The effect of stabilizing the product (martensitic) phase after aging has been described by considering the stress-temperature phase diagram, which was constructed by taking into account the time dependence of SIS. The applicability of the theory to the aging effects in the Au-Cd shape memory alloy has been demonstrated. The time dependencies of the experimentally observed slow changes in the MT temperatures, lattice parameters and yield stress values have been derived from the SIS conception.

  13. [Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship to mutations induced

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A brief overview if provided of selected reports presented at the International Symposium on Molecular Mechanisms of Radiation- and Chemical Carcinogen-Induced Cell Transformation held at Mackinac Island, Michigan on September 19-23, 1993.

  14. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  15. Thickness-induced structural phase transformation of layered gallium telluride.

    Science.gov (United States)

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  16. Transformation in the pharmaceutical industry: transformation-induced quality risks--a survey.

    Science.gov (United States)

    Shafiei, Nader; Ford, James L; Morecroft, Charles W; Lisboa, Paulo J; Taylor, Mark J; Mouzughi, Yusra

    2013-01-01

    This paper is the fourth in a series that explores ongoing transformation in the pharmaceutical industry and its impact on pharmaceutical quality from the perspective of risk identification. The aim of this paper is to validate proposed quality risks through elicitation of expert opinion and define the resultant quality risk model. Expert opinion was obtained using a questionnaire-based survey with participants with recognized expertise in pharmaceutical regulation, product lifecycle, or technology. The results of the survey validate the theoretical and operational evidence in support of the four main pharmaceutical transformation triggers previously identified. The quality risk model resulting from the survey indicated a firm relationship between the pharmaceutical quality risks and regulatory compliance outcomes during the marketing approval and post-marketing phases of the product lifecycle and a weaker relationship during the pre-market evaluation phase. In this paper through conduct of an expert opinion survey the proposed quality risks carried forward from an earlier part of the research are validated and resultant quality risk model is defined. The survey results validate the theoretical and operational evidence previously identified. The quality risk model indicates that transformation-related risks have a larger regulatory compliance impact during product approval, manufacturing, distribution, and commercial use than during the development phase.

  17. Anthocyan does not suppress transformation of aryl hydrocarbon receptor induced by dioxin.

    Science.gov (United States)

    Mukai, Rie; Fukuda, Itsuko; Nishiumi, Shin; Hosokawa, Keizo; Kanazawa, Kazuki; Ashida, Hitoshi

    2004-01-01

    Dioxins cause a variety of toxic effects through transformation of a cytosolic aryl hydrocarbon receptor (AhR). We have previously demonstrated that certain natural flavones and flavonols at the dietary levels suppress AhR transformation. In this study, we investigated whether 5 anthocyanidins, 15 anthocyanins, and protocatechuic acid suppress AhR transformation in mouse hepatoma Hepa-1c1c7 cells. All the compounds tested here at 5 microM unexpectedly failed to suppress the transformation induced by 0.1 nM TCDD, indicating that anthocyan does not have a potential to prevent dioxin toxicity.

  18. Effect of Aluminum and Silicon on Transformation Induced Plasticity of the TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    Lin LI; B.C. De Cooman; P. Wollants; Yanlin HE; Xiaodong ZHOU

    2004-01-01

    With the sublattice model, equilibrium compositions of ferrite (α) and austenite (γ) phases, as well as the volume percent of austenite (γ) at 780℃ in different TRIP steels were calculated. Concentration profiles of carbon, Mn, Al and Si in the steels were also estimated under the lattice fixed frame of reference so as to understand the complex mechanical behavior of TRIP steels after different isothermal bainitic transformation treatments. The effect of Si and Mn on transformation induced plasticity (TRIP) was discussed according to thermodynamic and kinetic analyses. It is recognized that Al also induces phase transformation in the steels but its TRIP effect is not as strong as that of Si.

  19. Parallel molecular dynamics simulations of pressure-induced structural transformations in cadmium selenide nanocrystals

    Science.gov (United States)

    Lee, Nicholas Jabari Ouma

    Parallel molecular dynamics (MD) simulations are performed to investigate pressure-induced solid-to-solid structural phase transformations in cadmium selenide (CdSe) nanorods. The effects of the size and shape of nanorods on different aspects of structural phase transformations are studied. Simulations are based on interatomic potentials validated extensively by experiments. Simulations range from 105 to 106 atoms. These simulations are enabled by highly scalable algorithms executed on massively parallel Beowulf computing architectures. Pressure-induced structural transformations are studied using a hydrostatic pressure medium simulated by atoms interacting via Lennard-Jones potential. Four single-crystal CdSe nanorods, each 44A in diameter but varying in length, in the range between 44A and 600A, are studied independently in two sets of simulations. The first simulation is the downstroke simulation, where each rod is embedded in the pressure medium and subjected to increasing pressure during which it undergoes a forward transformation from a 4-fold coordinated wurtzite (WZ) crystal structure to a 6-fold coordinated rocksalt (RS) crystal structure. In the second so-called upstroke simulation, the pressure on the rods is decreased and a reverse transformation from 6-fold RS to a 4-fold coordinated phase is observed. The transformation pressure in the forward transformation depends on the nanorod size, with longer rods transforming at lower pressures close to the bulk transformation pressure. Spatially-resolved structural analyses, including pair-distributions, atomic-coordinations and bond-angle distributions, indicate nucleation begins at the surface of nanorods and spreads inward. The transformation results in a single RS domain, in agreement with experiments. The microscopic mechanism for transformation is observed to be the same as for bulk CdSe. A nanorod size dependency is also found in reverse structural transformations, with longer nanorods transforming more

  20. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  1. Thermally induced structural transformation of polytriazoleimide to polyindoleimide

    Institute of Scientific and Technical Information of China (English)

    Yan Peng E; Li Qiang Wan; Yu Jing Li; Fa Rong Huang; Lei Du

    2012-01-01

    A new kind of polytriazoleimide containing bisphenyl-1,2,3-triazole (BPT) was synthesized by copper-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) and polycondensation.The thermal stability and degradation mechanism of the polytriazoleimide were investigated.The results show that the structure of BPT in polytriazoleimide transforms to phenylindole after thermal treatment,accompanying the release of N2.

  2. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment; Developpement d'une nouvelle nuance martensitique ODS pour utilisation sous rayonnement a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lambard, V

    2000-07-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  3. Microstructural Features During Strain Induced Ferrite Transformation in 08 and 20Mn Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure evolution during strain induced ferrite transformation was followed in thermal-simulation tests of clean 08 and 20Mn steels. The influences of carbon equivalence and initial austenite grain size on ferrite grain refinement and the volume fraction of ferrite during straining were inspected. The results revealed that the accelerating effect of ferrite transformation by strain was increased as the carbon equivalence decreased. However, finer ferrite grains were obtained at higher carbon content. At strain of ~1.5 ferrite grains less than 3m and 2m can be obtained in 08 and 20Mn steels respectively. Whereas the ferrite grain refinement in 08 steel was due to both effects of strain induced transformation and ferrite dynamic recrystallization, that in 20Mn was mainly due to strain induced transformation. Heavy strain can produce fine ferrite grains in coarse austenite grained 08 steel, but it would lead to band microstructure in coarse austenite grained 20Mn.

  4. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation.

    Directory of Open Access Journals (Sweden)

    Xiuling Xu

    Full Text Available Although it is well known that epidermal growth factor receptor (EGFR is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals, a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE, the active form of the cigarette smoke (CS carcinogen benzo(apyrene (BaPs. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.

  5. Thermally activated martensite formation in ferrous alloys

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    Magnetometry was applied to investigate the formation of α/α´martensite in 13ferrous alloys during immersion in boiling nitrogen and during re-heating to room temperature at controlled heating rates in the range 0.0083-0.83 K s-1. Data showsthat in 3 of the alloys, those that form {5 5 7}γ...

  6. Stress-induced transformation of retained austenite and residual stress in polishing and grinding of ADI. ADI no kenma kensaku kako ni okeru zanryu austenite no kako yuki hentai to zanryu oryoku

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Tada, S.; Abe, T. (Government Industrial Research Institute, Tohoku, Sendai (Japan)); Kurihana, S. (Fukushima Prefectural Office, Fukushima (Japan))

    1993-06-25

    In the present research, relation between the retained austenite ([gamma]) and residual stress (Sr) on the mechanically worked surface was investigated by an X-ray diffraction to furthermore reform the ADI (Austempered Ductile Iron) which is high toughness automobile part material. As samples, selected were two types of ductile iron which are equivalent to FCD450 and FCD600, respectively. In the main process of thermal treatment, they are austenitized in argon at 1173K in the furnace, held quickly cooled (to between 573 and 648K) a cooled at room temperatures. After the treatment, both of them have no structural differences. As a result of investigating the relation of [gamma]'s stress-induced transformation on the polished and ground surface to both Sr and carbon concentration, the vol% of [gamma] on the worked surface by silicon carbide waterproof abrasive paper and buff is small on the surface where the Sr is high, and both of them are mutually correlative. The [gamma] is so quasi-stable as to be martensitized, if worked, and degraded in mechanical properties. The low carbon ductile iron (less than 1.4% in carbon content) is easy to transform, while the high carbon ductile iron (more than 1.6% in carbon content) is difficult to transform and its [gamma] is stable for the working. 16 refs., 8 figs., 2 tabs.

  7. Evaluation of earthquake-induced structural damages by wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Hongnan Li; Tinghua Yi; Ming Gu; Linsheng Huo

    2009-01-01

    The dynamic behavior of inelastic structures during an earthquake is a complicated non-stationary process that is affected by the random characteristics of seismic ground motions.The conventional Fourier analysis describes the feature of a dynamic process by decomposing the signal into infinitely long sine and cosine series,which loses all time-located information.However,both time and frequency localizations are necessary for the analysis of an evolutionary spectrum of non-stationary processes.In this paper,an analytical approach for seismic ground motions is developed by applying the wavelet transform,which focuses on the energy input to the structure.The procedure of identification of the instantaneous modal parameters based on the continuous wavelet transform (CWT) is given in detail.And then,a novel method using the auto-regressive moving average (ARMA),called "prediction extension",is presented to remedy the edge effect during the numerical computation of the CWT.The effectiveness of the method is verified by the use of the benchmark model developed by the American Society of Civil Engineers (ASCE).Finally,a scale modal with three-storey reinforced concrete frame-share wall structure is made and tested on a shaking table to investigate the relation between the dynamic properties of structures and energy accumulation and its change rates during the earthquake.The results have shown that the wavelet transform is able to provide a deep insight into the identity of transient signals through time-frequency maps of the time variant spectral decomposition.

  8. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...... phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5 +/- 1.4) GPa and 4.4 +/- 0.4, respectively....

  9. The Pressure-Induced Polymorphic Transformations in Fluconazole.

    Science.gov (United States)

    Gorkovenko, Ekaterina A; Kichanov, Sergey E; Kozlenko, Denis P; Belushkin, Alexandr V; Wąsicki, Jan; Nawrocik, Wojciech; Mielcarek, Jadwiga; Dubrovinsky, Leonid S; Lathe, Christian; Savenko, Boris N

    2015-12-01

    The structural properties and Raman spectra of fluconazole have been studied by means of X-ray diffraction and Raman spectroscopy at pressures up to 2.5 and 5.5 GPa, respectively. At a pressure of 0.8 GPa, a polymorphic phase transition from the initial form I to a new triclinic form VIII has been observed. At higher pressure of P = 3.2 GPa, possible transformation into another new polymorphic form IX has been detected. The unit cell parameters and volumes, and vibration modes as functions of pressure have been obtained for the different forms of fluconazole.

  10. A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys

    Science.gov (United States)

    Chen, Xue; Moumni, Ziad; He, Yongjun; Zhang, Weihong

    2014-03-01

    The large strain in Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite reorientation driven by mechanical stresses and/or magnetic fields. Although most experiments studying the martensite reorientation in FSMA are under 1D condition (uniaxial stress plus a perpendicular magnetic field), it has been shown that the 2D/3D configurations can improve the working stress and give much flexibility of the material's applications [He, Y.J., Chen, X., Moumni, Z., 2011. Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. Journal of Applied Physics 110, 063905]. To predict the material's behaviors in 3D loading conditions, a constitutive model is developed in this paper, based on the thermodynamics of irreversible processes with internal variables. All the martensite variants are considered in the model and the temperature effect is also taken into account. The model is able to describe all the behaviors of martensite reorientation in FSMA observed in the existing experiments: rotating/non-rotating magnetic-field-induced martensite reorientation, magnetic-field-assisted super-elasticity, super-elasticity under biaxial compressions and temperature-dependence of martensite reorientation. The model is further used to study the nonlinear bending behaviors of FSMA beams and provides some basic guidelines for designing the FSMA-based bending actuators.

  11. Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Muntifering, B.; Pond, R. C.; Kovarik, L.; Browning, N. D.; Müllner, P.

    2014-06-01

    The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in which the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.

  12. Crystal structure and thermal stability of martensite in Cu-25Al-3Mn alloy

    Institute of Scientific and Technical Information of China (English)

    李周; 汪明朴; 曹玲飞; 徐根应; 苏玉长

    2002-01-01

    The martensite structure in Cu-25Al-3Mn alloy and its thermal cycling and aging behavior are studied. It is convinced that the M2H martensite can be obtained by water-quenched, and the atoms distribution on the basal plane of the mart ensite is: Ⅰ(corner)-Al; Ⅱ(center of the plane)-Cu; Ⅲ(middle of b- side)-22/25Cu+3/25Mn. The lattice parameters are determined to be a=0.445 9 nm, b=0.527 9 nm, c=0.424 1 nm, β=88.64°. The triangle and other complicated configurations consisting of the variant group in the martensite are discovered. It is showed that the tested alloy has a high thermal stability when aging at average temperature in the parent phase, and the thermoelastic martensite amount is up to 90% af ter aging for 96 hat 400 ℃. The thermal cycling has a little influence on the transform ation temperature (Ms). When the number of thermal cycles is up to 1000, the increasing of Ms is only 8 ℃.

  13. X-ray measurements of the self-organization of martensitic variants during thermal cycling

    Science.gov (United States)

    Perez, Daniel; Sutton, Mark; Rogers, Michael

    The deformation of most types of metals involves an irreversible flow of crystallographic dislocations. This allows for their ductility. The deformation of a metallic shape memory alloy (SMA), on the other hand, is accommodated by a solid-solid phase transition. If deformed in the low-temperature martensitic phase, an SMA can be returned to its original shape by raising its temperature to the point where it changes back to its high-temperature parent phase. When the reverse occurs and the transformation is from parent to martensitic phase, an SMA goes from a high-symmetry to a low-symmetry state in which a number of martensitic variants are produced. We monitored the self-organization of these variants during cycles of periodic thermal driving. This was done using in situ X-ray Photon Correlation Scectroscopy (XPCS), which uses correlation from X-ray speckle to quantify the degree of microstructural change in a material. Our measurements revealed enhanced reversibility in the organization of the martensitic variants as the system evolved during repeated thermal cycling.

  14. Ab initio simulations of phase stability and martensitic transitions in NiTi

    Science.gov (United States)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-12-01

    For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.

  15. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    Science.gov (United States)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  16. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys - A new actuation mechanism with large work output

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Haluk E. [Department of Mechanical Engineering, Texas A and M University College Station, TX (United States); Department of Mechanical Engineering, University of Kentucky Lexington, KY 40506 (United States); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A and M University College Station, TX (United States); Materials Science and Engineering Graduate Program, Texas A and M University College Station, TX 77843 (United States); Basaran, Burak [Materials Science and Engineering Graduate Program, Texas A and M University College Station, TX 77843 (United States); Ren, Yang [Advanced Photon Source Argonne National Laboratory Argonne, Illinois 60439 (United States); Chumlyakov, Yuny I. [Siberian Physical-Technical Institute Tomsk, 634050 (Russian Federation); Maier, Hans J. [Lehrstuhl fuer Werkstoffkunde, University of Paderborn 33095 Paderborn (Germany)

    2009-04-09

    Magnetic shape memory alloys (MSMAs) have recently been developed into a new class of functional materials that are capable of magnetic-field-induced actuation, mechanical sensing, magnetic refrigeration, and energy harvesting. In the present work, the magnetic and hyphen; field-induced martensitic phase transformation (FIPT) in Ni{sub 45}Mn{sub 36.5}Co{sub 5}In{sub 13.5} MSMA single crystals is characterized as a new actuation mechanism with potential to result in ultra-high actuation work outputs. The effects of the applied magnetic field on the transformation temperatures, magnetization, and superelastic response are investigated. The magnetic work output of NiMnCoIn alloys is determined to be more than 1 MJ m{sup -3} per Tesla, which is one order of magnitude higher than that of the most well-known MSMAs, i.e., NiMnGa alloys. In addition, the work output of NiMnCoIn alloys is orientation independent, potentially surpassing the need for single crystals, and not limited by a saturation magnetic field, as opposed to NiMnGa MSMAs. Experimental and theoretical transformation strains and magnetostress levels are determined as a function of crystal orientation. It is found that [111]-oriented crystals can demonstrate a magnetostress level of 140 MPa T{sup -1} with 1.2% axial strain under compression. These field-induced stress and strain levels are significantly higher than those from existing piezoelectric and magnetostrictive actuators. A thermodynamical framework is introduced to comprehend the magnetic energy contributions during FIPT. The present work reveals that the magnetic FIPT mechanism is promising for magnetic actuation applications and provides new opportunities for applications requiring high actuation work-outputs with relatively large actuation frequencies. One potential issue is the requirement for relatively high critical magnetic fields and field intervals (1.5-3 T) for the onset of FIPT and for reversible FIPT, respectively. (Abstract Copyright

  17. Stable oncogenic transformation induced by microcell-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    吕有勇; Donald G.Blair

    1995-01-01

    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  18. Cellular neoplastic transformation induced by 916 MHz microwave radiation.

    Science.gov (United States)

    Yang, Lei; Hao, Dongmei; Wang, Minglian; Zeng, Yi; Wu, Shuicai; Zeng, Yanjun

    2012-08-01

    There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells.

  19. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    Science.gov (United States)

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2016-09-17

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  20. COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND bcc/9R MARTENSITE INTERFACES

    OpenAIRE

    Barcelo, G.; Crocker, A.

    1982-01-01

    The structures of two interfaces of martensitic transformations in Cu Zn based alloys have been investigated using computer simulation techniques. A new interatomic potential has been developed which is assumed to represent all interactions between atoms in the parent bcc phase and the product hcp and 9R phases. Stable relaxed structures of bcc/hcp and bcc/9R interfaces have been found. In both cases the interface migrates into the bcc phase during the relaxation process. The boundary in the ...