WorldWideScience

Sample records for martensitic steels ii

  1. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  2. Martensitic transformation and stress partitioning in a high-carbon steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Grumsen, Flemming Bjerg; Pantleon, Karen

    2012-01-01

    Martensitic transformation in a high-carbon steel was investigated with (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ angular X-ray diffraction was applied to: (i) quantitatively determine the fractions of retained austenite and martensite; and (ii) measure the evolutio...

  3. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  4. Nitrogen-alloyed martensitic steels

    International Nuclear Information System (INIS)

    Berns, H.

    1988-01-01

    A report is presented on initial results with pressure-nitrided martensitic steels. In heat-resistant steels, thermal stability and toughness are raised by nitrogen. In cold work steel, there is a more favourable corrosion behaviour. (orig./MM) [de

  5. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  6. Radiation induced microstructural evolution in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  7. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  8. Orientation relationship in Eurofer martensitic steels

    International Nuclear Information System (INIS)

    Barcelo, F.; De Carlan, Y.; Bechade, J.L.; Fournier, B.

    2009-01-01

    Both TEM and SEM/EBSD orientation measurements are carried out on a Eurofer97 martensitic steel. The influence of the prior austenitic grain size is studied using dedicated heat treatments. The intra laths misorientation is estimated by TEM. SEM/EBSD orientation mapping enable to study the actual orientation relationship (OR) between the parent austenitic phase and the martensitic phase. Neither the Nishiyama-Wasserman nor the Kurdjumov-Sachs OR is able to account for both the misorientation angle distributions, the pole figure and the misorientation axes measured. The mixed OR recently proposed by Gourgues et al. (Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Mater. Sci. Tech. 16 (2000), p. 26-40.) and Sonderegger et al. (Martensite laths in creep resistant martensitic 9-12% Cr steels - Calculation and measurement of misorientations, Mater. Characterization (2006), in Press.) seems to be able to account for most of these results. Based on this OR, a new angular criterion is proposed to detect blocks of laths. (authors)

  9. Analysis of the non-isothermal austenite-martensite transformation in 13% Cr-type martensitic stainless steels

    International Nuclear Information System (INIS)

    Garcia-De-Andris, C.; Alvarez, L.F.

    1996-01-01

    In martensitic stainless steels, as in other alloyed containing carbide-forming elements, the carbide dissolution and precipitation processes that take place during heat treatment can cause modifications to the chemical composition of the austenite phase of these steels. The chemical composition of this phase is a fundamental factor for the evolution of the martensitic transformation. As a result of their influence on the dissolution and precipitation processes, the parameters of the quenching heat treatment exert a strong influence on the behavior of the martensitic transformation in these steels. In the present study, the effect of the heating temperature and the cooling rate on the martensitic transformation in two 13% Cr-type martensitic stainless steels with different carbon contents were properly evaluated. (author)

  10. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  11. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    Science.gov (United States)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  12. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  13. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  14. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  15. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  16. Alloying effect on martensite transformation in stainless steels

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Shlyamnev, A.P.; Sorokina, N.A.

    1975-01-01

    The effect of cobalt, nickel, molybdenum on the martensite transformation kinetics in stainless steels containing 9 to 13% Cr has been studied. Cobalt in Fe-Cr base alloys decreases the temperature of the Msub(in) and Msub(fin) points without a considerable decrease of the martensite phase amount after the transformation. Nickel reduces the martensite transformation temperature range, the nickel effect being enhanced in the presence of cobalt, which is characterized by a change of the linear dependence Msub(in)=f(%Ni) for a quadratic one. Molybdenum decreases the temperature of the Msub(in) and Msub(fin) points intensively, thus, substantially increasing the residual austenite amount. In the steels investigated Ni and Co decrease, whereas Mo increases, to some extent, the temperature of the reverse a-γ-transformation. The reduction of chromium content from 13 to 9% stimulates the martensite transformation initiation, that is why, in alloys containing 9% Cr, the increase in the contents of Ni, Co., Mo with the martensite structure maintained is possible. A further alloying of steel containing 13% Cr with these elements is rather limited due to the inhibition of the martensite transformation

  17. Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

    International Nuclear Information System (INIS)

    Ghosh, Rahul; Krishna, S. Chenna; Venugopal, A.; Narayanan, P. Ramesh; Jha, Abhay K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-01-01

    The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a Cr_2N phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

  18. Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Rahul; Krishna, S. Chenna; Venugopal, A.; Narayanan, P. Ramesh; Jha, Abhay K.; Ramkumar, P.; Venkitakrishnan, P. V. [Vikram Sarabhai Space Centre (ISRO), Kerala (India)

    2016-12-15

    The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a Cr{sub 2}N phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

  19. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  20. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  1. Physical metallurgy of BATMAN II Ti-bearing martensitic steels

    International Nuclear Information System (INIS)

    Pilloni, L.; Attura, F.; Calza-Bini, A.; Santis, G. de; Filacchioni, G.

    1998-01-01

    Seven laboratory experimental casts of 7-9% Cr Ti-bearing martensitic steels were obtained via VIM process. Plates of 25 mm thickness were produced by hot rolling. On each cast CCT diagrams and critical temperatures were determined. Several austenitizing treatments were performed to study the grain size evolution. The effect of microstructure on impact properties were finally investigated. This paper discusses the role of chemical composition on microstructural and physical properties and shows the beneficial effect either of low-temperature austenitizing or double-austenitizing steps on impact properties. (orig.)

  2. Gaseous surface hardening of martensitic stainless steels

    DEFF Research Database (Denmark)

    Tibollo, Chiara; Villa, Matteo; Christiansen, Thomas L.

    The present work addresses heat and surface treatments of martensitic stainless steel EN 1.4028. Different combinations of heat treatments and surface treatments were performed: conventional austenitisation, cryogenic treatment and in particular high temperature solution nitriding (HTSN) and low...... that cubic lath martensite in conventionally austenitised EN 1.4028 dissolves nitrogen and develops expanded martensite (ferrite) during LTSH. HTSN leads to a microstructure of tetragonal plate martensite and retained austenite. The content of retained austenite can be reduced by a cryo...

  3. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  4. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    Morris, John W Jr; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-01-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  5. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Solomon, N.; Solomon, I.

    2010-01-01

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  6. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  7. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Germán Prieto

    2017-08-01

    Full Text Available Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  8. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.

    Science.gov (United States)

    Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  9. Microstructural development during laser cladding of low-C martensitic stainless steel.

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2007-07-01

    Full Text Available Heat input plays an important role in the microstructural development of 12%Cr martensitic stainless steel. The microstructure of low-C 12%Cr martensitic stainless steel resulting from laser cladding was investigated. For 410L a ferritic...

  10. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study

    International Nuclear Information System (INIS)

    Zilnyk, K.D.; Oliveira, V.B.; Sandim, H.R.Z.; Möslang, A.; Raabe, D.

    2015-01-01

    Highlights: • Martensitic transformation of RAFM steels promotes significant grain fragmentation. • Austenite grain growth occurs in Eurofer-97 steel but not in ODS-Eurofer steel. • Boundary misorientation distribution of the as-quenched steels show two maxima peaks. • The amount of retained austenite varies from one steel to another. - Abstract: Reduced-activation ferritic–martensitic Eurofer-97 and ODS-Eurofer steels are potential candidates for structural applications in advanced nuclear reactors. Samples of both steel grades in the as-tempered condition were austenitized in vacuum for 1 h from 900 °C to 1300 °C followed by air cooling to room temperature. The microstructure was characterized by dilatometry, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). Thermodynamic calculations provided by Thermo-Calc software were used to determine their transformation temperatures. Even having similar chemical composition, important changes were observed after martensitic transformation in these steels. Significant austenitic grain growth was observed in Eurofer-97 steel leading to the development of coarser martensitic packets. Contrastingly, austenitic grain growth was prevented in ODS-Eurofer steel due to fine and stable dispersion of Y-based particles

  11. Crystallographic features of lath martensite in low-carbon steel

    International Nuclear Information System (INIS)

    Kitahara, Hiromoto; Ueji, Rintaro; Tsuji, Nobuhiro; Minamino, Yoritoshi

    2006-01-01

    Electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel. The crystallographic features of the lath martensite structure, of the order of the prior austenite grain size or larger, were clarified. Although the orientations of the martensite crystals were scattered around the ideal variant orientations, the martensite in this steel maintained the Kurdjumov-Sachs (K-S) orientation relationship. The procedures of the crystallographic analysis of the martensite (ferrite) phase with the K-S orientation relationship were explained in detail. Variant analysis showed that all 24 possible variants did not necessarily appear within a single prior austenite grain and that all six variants did not necessarily appear within each packet. Specific combinations of two variants appeared within local regions (sub-blocks), indicating a strict rule for variant selection. Prior austenite grain boundaries and most of the packet boundaries were clearly recognized. However, it was difficult to determine the block boundaries within the sub-blocks

  12. MARTENSITIC CREEP RESISTANT STEEL STRENGTHENED BY Z-PHASE

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to steel alloys having a martensitic or martensitic- ferritic structure and comprising Z-phase (CrXN) particles, where X is one or more of the elements V, Nb, Ta, and where the Z-phase particles have an average size of less than 400 nm. The alloy comprises by wt...... % the following components: 9 to 15% Cr, 0.01-0.20% N, C in an amount less than 0.1%, one or more of: 0.01- 0.5%V,0.01-1%Nb, 0.01-2%Ta, and a balance being substantially iron and inevitable impurities. The invention further relates to a method of manufacturing such a steel alloy, a component comprising...... such a steel alloy, and to the use of such a steel alloy for high temperature components....

  13. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    Science.gov (United States)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  14. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  15. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  16. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    International Nuclear Information System (INIS)

    Dai, Y.

    1996-01-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature (≤380 degrees C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300 degrees C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300 degrees C to 500 degrees C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180 degrees C to 330 degrees C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited

  17. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are... Martensitic Stainless Steel Report Title An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material

  18. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  19. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    OpenAIRE

    Abidin Kamal Ariff Zainal; Ismail Elya Atikah; Zainuddin Azman; Hussain Patthi

    2014-01-01

    Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagat...

  20. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  1. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  2. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  3. Microstructural change during creep deformation in a 10%Cr martensitic steel

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitic steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  4. Effect of microstructure on the fracture toughness of ferrite-martensite-bainite steels

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Kim, In Sup

    1988-01-01

    The effect of microstructure on the fracture toughness of ferrite-martensite -bainite steels was investigated with Fe-0.11C-1.64Mn-0.78Si composition. One inch compact tension specimens (1T-CTSs) were machined from hot rolled plates. The microstructure of ferrite-martensite-bainite was introduced to the specimens by the heat treatment of intercritical annealing at 800deg C and isothermal holding at 350deg C. Holding at 350deg C increased volume fraction of bainite, while decreased that of martensite, and refined martensite particles. Single specimen unloading compliance method was used in fracture test to obtain J-resistance (J-R) curve and to determine the fracture toughness(J IC ). Introduction of bainite to the ferrite-martensite steel improved the fracture toughness due to the deformation of bainite which relaxed the stress concentration on the interface of ferrite and martensite. Observation of fracto-graphs through the scanning electron microscope(SEM) identified the fracture mechanism of ferrite-martensite-bainite steels as dimple nucleation and crack growth by decohesion of ferrite matrix and second phase particles and by microvoid coales cence. (Author)

  5. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    Science.gov (United States)

    2013-06-01

    report of FSW on a ferritic- martensitic stainless steel is the work of Chung, which applied this approach to a dissimilar weld between F82H (ferritic... martensitic ) and SUS304 (austenitic stainless ) [43]. 7 D. CORROSION OF FERRITIC/ MARTENSITIC STEELS IN HIGH TEMPERATURE MOLTEN SALT COOLANTS In...Philadelphia, PA, 1992, pp. 1267–1286, March 1990. [15] S. Rosenwasser, ―The application of martensitic stainless steels in a lifelong fusion first wall

  6. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1996-01-01

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations

  7. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    Science.gov (United States)

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  8. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    International Nuclear Information System (INIS)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk; Jeong, Jong Ryul; Maeng, Cheol Soo; Lee, Myoung Goo

    2016-01-01

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10"-"5 dpa.

  9. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk [KAIST, Daejeon (Korea, Republic of); Jeong, Jong Ryul [Chungnam University, Daejeon (Korea, Republic of); Maeng, Cheol Soo; Lee, Myoung Goo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10{sup -5} dpa.

  10. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  11. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  12. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  13. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Abidin Kamal Ariff Zainal

    2014-07-01

    Full Text Available Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagation behavior. The results indicate that the microstructure and phase composition as well as corrosion resistance were influenced by nitriding temperatures.

  14. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    International Nuclear Information System (INIS)

    Maresca, F; Kouznetsova, V G; Geers, M G D

    2016-01-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers thick, and they are often characterized by high contrasts in plastic properties. As a consequence, fracture in these lamellar microstructures generally occurs along the layer interfaces or within one of the layers, typically parallel to the interface. This paper presents a computational framework that addresses the lamellar nature of these microstructures, by homogenizing the plastic deformation at the mesoscale by using the microscale response of the laminates. Failure is accounted for by introducing a family of damaging planes that are parallel to the layer interface. Mode I, mode II and mixed-mode opening are incorporated. The planes along which failure occurs are captured using a smeared damage approach. Coupling of damage with isotropic or anisotropic plasticity models, like crystal plasticity, is straightforward. The damaging planes and directions do not need to correspond to crystalline slip planes, and normal opening is also included. Focus is given on rate-dependent formulations of plasticity and damage, i.e. converged results can be obtained without further regularization techniques. The validation of the model using experimental observations in martensite-austenite lamellar microstructures in steels reveals that the model correctly predicts the main features of the onset of failure, e.g. the necking point, the failure initiation region and the failure mode. Finally, based on the qualitative results obtained, some material design guidelines are provided for martensitic and multi-phase steels. (paper)

  15. Martensitic transformation induced by irradiation and deformation in stainless steels

    International Nuclear Information System (INIS)

    Maksimkin, O.P.

    1997-01-01

    In the present work the peculiarities of martensite γ → α , (γ → ε → α , ) transformation in the steels with a low stacking fault energy (12Cr18Ni10T, Cr15AG14) irradiated by neutrons, α-particles and electrons (pulse and stationary) and then deformed with the various strain rates in the temperature range - 20 - 1000 C are considered. It is established by the electron-microscope research that the phase γ → α ' transition in irradiated and deformed steels is observed on the definite stage of evolution of the dislocation structure (after the cell formation) and the martensite formation preferentially occurs on a stacking fault aggregation. The regularities of the irradiation by high energy particles effect on the formation parameters and martensite α , -phase accumulation kinetics ones and also their role in forming of the strength and ductile properties in steels are analysed. (A.A.D.)

  16. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow...

  17. Characterization of long term aged martensitic stainless steels

    International Nuclear Information System (INIS)

    Tsubota, M.; Hattori, K.; Okada, T.

    1992-01-01

    Types CA6NM (13Cr), 431 and 630 (17Cr) were aged at 400 degrees C and 350 degrees C for up to 10000 hours, and their hardness change and SCC susceptibility in 288 degrees C water were investigated. Hardness of the alloys increased with aging. Hardness of type 431 aged at 400 degrees C for 10000 hours exceeded 340 in Hv, over which tempered martensitic stainless steels had become susceptible to SCC, and showed high SCC susceptibility. Type 630 had high SCC susceptibility in before and after aged condition, and the hardness in both conditions was more than Hv 340. Therefore, hardness was considered to be a parameter which could describe the SCC susceptibility of martensitic stainless steels. Using activation energy for hardness change 105-125kJ/mol and the critical hardness level Hv=340, the marginal life-time for martensitic stainless steels at 288 degrees C was estimated. Predicted life of type 431 and CA6NM were around 10 5 hours and more than 10 6 hours, respectively. Activation energies obtained for toughness change and hardness change were different. Consequently, it was concluded that at least two factors should be taken into consideration for determining the total life-limit for usage of martensitic stainless steels in the light water reactor environment. The meaning of the existence of critical hardness for SCC susceptibility has been also discussed. Higher than 340 in Hv, yield strength and strain for uniform deformation showed a tendency of saturation. Therefore, it was conjectured that some extreme internal strain level, which may change the plastic deformation manner, is the absolute factor for determining the SCC susceptibility of the alloys in high temperature water

  18. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  19. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation

    Science.gov (United States)

    Waseem, Owais Ahmed; Jeong, Jong-Ryul; Park, Byong-Guk; Maeng, Cheol-Soo; Lee, Myoung-Goo; Ryu, Ho Jin

    2017-11-01

    The hardness of irradiated AISI type 410 martensitic steel, which is utilized in structural and magnetic components of nuclear power plants, is investigated in this study. Proton irradiation of AISI type 410 martensitic steel samples was carried out by exposing the samples to 3 MeV protons up to a 1.0 × 1017 p/cm2 fluence level at a representative nuclear reactor coolant temperature of 350 °C. The assessment of deleterious effects of irradiation on the micro-structure and mechanical behavior of the AISI type 410 martensitic steel samples via transmission electron microscopy-energy dispersive spectroscopy and cross-sectional nano-indentation showed no significant variation in the microscopic or mechanical characteristics. These results ensure the integrity of the structural and magnetic components of nuclear reactors made of AISI type 410 martensitic steel under high-temperature irradiation damage levels up to approximately 5.2 × 10-3 dpa.

  20. Activation energy of time-dependent martensite formation in steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2018-01-01

    The kinetics of {557}γ lath martensite formation in (wt%) 17Cr-7Ni-1Al-0.09C and 15Cr-7Ni-2Mo-1Al-0.08C steels was assessed with magnetometry at sub-zero Celsius temperatures. Samples were cooled to 77 K by immersion in boiling nitrogen to suppress martensite formation. Thereafter, thermally...... applied to evaluate the data available in the literature. The overall analysis showed that EA varies in the range 2–27 kJ mol−1 and increases logarithmically with the total fraction of interstitials in the steel....

  1. Joining method for pressure tube and martensitic stainless steel tube

    International Nuclear Information System (INIS)

    Kimoto, Hiroshi; Koike, Hiromitsu.

    1993-01-01

    In a joining portion of zirconium alloy and a stainless steel, the surface of martensitic stainless steel being in contact with Zr and Zr alloy is applied with a laser quenching solidification treatment before expanding joining of them to improve the surface. This can provide the surface with refined coagulated cell tissues and make deposits and impurities homogeneous and solubilized. As a result, the surface of the martensitic stainless steel has highly corrosion resistance, to suppress contact corrosion with Zr and Zr alloy. Accordingly, even if it is exposed to high temperature water of 200 to 350degC, failures of Zr and Zr alloy can be suppressed. (T.M.)

  2. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  3. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  4. Study of martensitic transformation in stainless steel by CEMS and RBS channeling

    International Nuclear Information System (INIS)

    Hayashi, N.; Sakamoto, I.; Tanoue, H.

    1993-01-01

    The effect of Xe ion irradiation in a single crystal of 17/13 stainless steel has been studied, using RBS channeling techniques and conversion electron Moessbauer spectroscopy (CEMS). 300 keV Xe ions were used to induce martensitic transformation in the austentic steel. A dynamic behavior of the transformation was observed as functions of the fluence and depth dependence. The martensite appears abruptly at a critical fluence, in contrast with polycrystalline 17/7 stainless steel. (orig.)

  5. Assessment of martensitic steels for advanced fusion reactors

    International Nuclear Information System (INIS)

    Wareing, J.; Tavassoli, A.A.

    1995-01-01

    Martensitic steels are currently considered in Europe to be prime structural candidate materials for the first wall and breeding blanket of the DEMO fusion reactor. In this design, reactor power and wall loading will be significantly higher than those of an experimental reactor. ITER and will give rise to component operating temperatures in the range 250 to 550 0 C with neutron doses higher than 70 dpa. These conditions render austenitic stainless steel, which will be used in ITER, less favourable. Factors contributing to the promotion of martensitic steels are their excellent resistance to irradiation induced swelling, low thermal expansion and high thermal conductivity allied to advanced industrial maturity, compared to other candidate materials vanadium alloys. This paper described the development and optimisation of the steel and weld metal. Using data design rules generated on modified 9 Cr 1 Mo steel during its qualification as a steam generator material for the European Fast Reactor (EFR), interim design guidelines are formulated. Whilst the merits of the steel are validated, it is shown that irradiation embrittlement at low temperature, allied to the need for prolonged post-weld hat treatment and the long term creep response of welds remain areas of some concern. (author). 18 refs., 6 figs., 2 tabs

  6. Development of oxide dispersion strengthened steels for FBR core application. 2. Morphology improvement by martensite transformation

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Nishida, Toshio; Yoshitake, Tunemitsu; Okuda, Takanari

    1998-01-01

    Previously manufactured oxide dispersion strengthened (ODS) ferritic steel cladding tubes had inferior internal creep rupture strength in the circumferential hoop direction. This unexpected feature of ODS cladding tubes was substantially ascribed to the needle-like grain structure aligned with the forming direction. In this study, the grain morphology was controlled by using the martensite transformation in ODS martensitic steels to produce an equi-axial grain structure. A major improvement in the strength anisotropy was successfully achieved. The most effective yttria addition was about 1 mass% in improving the strength of the ODS martensitic steels. A simple addition of titanium was particularly effective in increasing the strength level of the ODS martensitic steels to that of ODS ferritic steels. (author)

  7. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  8. An assessment of magnetic effects in ferromagnetic martensitic steels for use in fusion machines

    International Nuclear Information System (INIS)

    Lechtenberg, T.; Dahms, C.; Attaya, H.

    1984-01-01

    Interest in the 9-12%Cr class of martensitic stainless steels has accelerated since these materials were included in the U.S. Alloy Development for Irradiation Performance (ADIP) task funded by the Office of Fusion Energy in 1979. This program is focused on developing structural materials for fusion reactor first wall/breeding blanket components where the neutron damage is most severe. This area of a fusion reactor will be required to tolerate damage levels on the order of 110 dpa( 1 ). As a part of ADIP, study of the martensitic steels is focused on establishing the feasibility of using these materials. The interest in martensitic steels stems from their potential to tolerate high levels of radiation damage without significant degradation of material properties. Martensitic steels have a body-centered-cubic crystal structure that, unlike face-centered-cubic structure of austenitic steels, exhibits very little swelling under neutron irradiation( 2 ). One of the outstanding issues with martensitic steels is the possible parasitic stresses associated with ferromagnetic interaction with the magnetic fields. This paper is divided into two parts, the first reviews previous work on magnetic effects to the structure and plasma; the second presents new calculations of stresses on a coolant pipe in a Starfire model assumed to be made of 12Cr-1Mo steel(HT-9)

  9. On the Prediction of α-Martensite Temperatures in Medium Manganese Steels

    Science.gov (United States)

    Field, Daniel M.; Baker, Daniel S.; Van Aken, David C.

    2017-05-01

    A new composition-based method for calculating the α-martensite start temperature in medium manganese steel is presented and uses a regular solution model to accurately calculate the chemical driving force for α-martensite formation, Δ G_{{Chem}}^{γ \\to α } . In addition, a compositional relationship for the strain energy contribution during martensitic transformation was developed using measured Young's moduli ( E) reported in literature and measured values for steels produced during this investigation. An empirical relationship was developed to calculate Young's modulus using alloy composition and was used where dilatometry literature did not report Young's moduli. A comparison of the Δ G_{{Chem}}^{γ \\to α } normalized by dividing by the product of Young's modulus, unconstrained lattice misfit squared ( δ 2), and molar volume ( Ω) with respect to the measured α-martensite start temperatures, M_{{S}}^{α } , produced a single linear relationship for 42 alloys exhibiting either lath or plate martensite. A temperature-dependent strain energy term was then formulated as Δ G_{{str}}^{γ \\to α } ( {{{J}}/{{mol}}} ) = EΩ δ2 (14.8 - 0.013T) , which opposed the chemical driving force for α-martensite formation. M_{{S}}^{α } was determined at a temperature where Δ G_{{Chem}}^{γ \\to α } + Δ G_{{str}}^{γ \\to α } = 0 . The proposed M_{{S}}^{α } model shows an extended temperature range of prediction from 170 K to 820 K (-103 °C to 547 °C). The model is then shown to corroborate alloy chemistries that exhibit two-stage athermal martensitic transformations and two-stage TRIP behavior in three previously reported medium manganese steels. In addition, the model can be used to predict the retained γ-austenite in twelve alloys, containing ɛ-martensite, using the difference between the calculated M_{{S}}^{ɛ} and M_{{S}}^{α }.

  10. Development of Continuous Galvanization-compatible Martensitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y. F.; Song, T. J.; Kim, Han S.; De Cooman [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kwak, J. H. [POSCO Gwangyang Works, Gwangyang (Korea, Republic of)

    2012-01-15

    The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% H{sub 2} + N{sub 2} atmosphere with the dew point of -35 .deg. C resulted in the formation of a thin c-xMno.SiO{sub 2} (x>1) oxide film and amorphous a-xMnO.SiO{sub 2} oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin c-xMnO.SiO{sub 2} (x>1) oxide films was reduced by the Al. The a-xMnO.SiO{sub 2} (x<0.9) and a-SiO{sub 2} (x>1) oxide film was also reduced and the amorphous a-xMnO.SiO{sub 2} and a-SiO{sub 2} particles were embedded in the Fe{sub 2}Al{sub 5-x}Zn{sub x} inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline c-xMn.SiO{sub 2} (x>1) oxides but not the amorphous a-xMnO.SiO{sub 2} (x<0.9) and a-SiO{sub 2} oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

  11. Activation volume of martensitic ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Noh, S.; Kim, T. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Apparent activation volume as a function of temperature is 86b{sup 3}-42b{sup 3}. Activation volume decreases with increasing temperature. Activation volume changes scarcely with decreasing strain rate. Strain rate sensitivity increases with increasing temperature and decreasing strain rate. Nano-sized oxide dispersion strengthened (ODS) martensitic steel has a high strength, low thermal expansion coefficient, high thermal conductivity, and a good swelling resistance. Martensitic ODS steel is a candidate material for fuel cladding of sodium cooled fast breeder reactor (SFR). The plastic flow stress is determined through the interaction of dislocations with the obstacles encountered inside lattice. Dislocation movement through the lattice or past an obstacle requires surmounting of the energy barrier by a combination of applied stress and thermal activation. The plastic deformation of materials is a thermally activated process dependent upon time, temperature, and strain rate. Characterization of the rate controlling mechanism for plastic deformation due to dislocation motion in crystalline materials is done by the assessment of activation volume based on thermal activation analysis.

  12. Martensitic transformation in SUS304 steels with the same Ni equivalent

    International Nuclear Information System (INIS)

    Ueda, T.; Okino, Y.; Takahashi, S.; Echigoya, J.; Kamada, Y.

    2003-01-01

    The behavior of martensitic transformation due to plastic deformation at room temperature was investigated in SUS304 austenitic stainless steels with the same nickel equivalent. The absolute volume of the martensitic phase was obtained by saturation magnetization. We discuss the shapes of the martensitic phase caused by different values of coercive force. Martensitic transformation depends on the applied stress but is independent of nickel content with same nickel equivalent. We investigated applications to nondestructive testing on the basis of the present study. (author)

  13. Influence of Z-phase on long-term creep stability of martensitic 9-12% Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Danielsen, Hilmar K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Hald, John [DONG Energy A/S (Denmark); Vattenfall (Denmark)

    2010-07-01

    The long-term creep strength of the new generation of martensitic creep resistant 9-12%Cr steels since the well-known steel Grade 91 relies strongly on particle strengthening by fine Mn nitrides based on V and Nb. During long-term high-temperature exposures the Mn nitrides may be replaced by the thermodynamically more stable Z-phases (Cr(V,Nb)N) causing a breakdown in creep strength. Cr contents above 10.5% strongly accelerate Z-phase precipitation, which explains the lack of success for all attempts to develop martensitic creep resistant steels with high Cr content for oxidation protection. However 9%Cr steels do not seem to be affected by the Z-phase. Careful control of the Z-phase precipitation process has led to the design of experimental 12%Cr martensitic steels strengthened by fine Z-phase nitrides based on Nb or Ta. Such steels may again enable the combination of high strength and oxidation resistance in the same alloy. This opens a new pathway for further alloy development of the heat resistant martensitic steels. (orig.)

  14. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  15. Martensitic transformation in helium implanted 316 stainless steel

    International Nuclear Information System (INIS)

    Ishimatsu, Manabu; Tsukuda, Noboru

    1997-01-01

    In order to simulate surface deterioration phenomenon due to particle loading of SUS-316 steel which is one of candidate materials for nuclear fusion reactor vacuum wall structure material, helium ion implanting was conducted at room temperature, 473 K and 573 K. To martensitic phase formed as a results, implantation dose dependence, implanting temperature dependence, and annealing under 1073 K were conducted. Formation of the martensitic phase was suppressed at high implanting temperature. At room temperature implantation, the martensitic phase disappeared at more than 873 K, but at high temperature implantation, it increased abnormally near at 973 K. This showed that deterioration of materials depended extremely upon using temperature and temperature history. (G.K.)

  16. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  17. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  18. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    Science.gov (United States)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  19. In-service thermal ageing of martensitic stainless steels

    International Nuclear Information System (INIS)

    Tampigny, R.; Molinie, E.; Foct, F.; Dignocourt, P.

    2011-01-01

    Martensitic stainless steels are largely used in Nuclear Power Plants (NPPs) mainly as valve stems, bolts or nuts due to their high mechanical properties and their good resistance to corrosion in primary water. At the end of the eighties, research studies have demonstrated a thermal ageing irreversible embrittlement due to the precipitation of a chromium-rich phase for X6 CrNiCu 17-04, X6 CrNiMo 16.04 and X12 Cr 13 martensitic stainless steels and a semi-empirical modeling has been proposed. Numerous metallurgical examinations have been performed in hot laboratories to consolidate the good correlation between in-service experience and the modeling developed by EDF RD. According to the feedback analysis, thermal ageing embrittlement can appear at different in-service temperatures or do not appear in relation with chemical composition of martensitic stainless steels and end of manufacturing heat treatments associated. A new campaign of metallurgical examinations has been proposed to consolidate previous studies and to contribute to maintenance policy for the next ten years after the third decennial outages for 900 MWe NPP. Influence of real in-service temperatures and end of manufacturing heat treatments have been examined to understand reasons why in some cases thermal ageing embrittlement does not occur or occur with a lowest intensity. These new results have contributed to reinforce EDF RD modeling validity and technical specifications defined in RCC-M for new valve stems, bolts or nuts. (authors)

  20. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  1. Development of martensitic steels for high neutron damage applications

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1998-01-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr-1Mo-0.5W-0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are being less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort. (author)

  2. Development of martensitic steels for high neutron damage applications

    Science.gov (United States)

    Gelles, D. S.

    1996-12-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr1Mo0.5W0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are benign less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort.

  3. Aging in PWR conditions of martensitic stainless steels

    International Nuclear Information System (INIS)

    Boursier, J.M.; Buisine, D.; Fronteau, M.; Michel, D.; Rouillon, Y.; Yrieix, B.; Meyzaud, Y.

    1998-01-01

    Martensitic stainless steels are largely used in Nuclear Power Plant (pump impeller, valve stem...) because of their high mechanical characteristics and their good resistance to corrosion. Nevertheless some of those components could operate at temperature higher than 250 deg.C, which could embrittle the material by the precipitation of a chromium-rich phase during aging. In collaboration with Framatome, Electricite de France has undertaken numerous studies in order to understand this process of embrittlement. This paper presents a review of the metallurgical investigations on martensitic stainless steels components which were performed in the EDF hot laboratory. In peculiar, it should be noted the good correlation between inservice experience and the modelling developed by EDF R and D division. Finally and in association with safety analysis, these results will allow to establish the maintenance strategy of the French Nuclear Power Plants. (authors)

  4. Influence of microscopic strain heterogeneity on the formability of martensitic stainless steel

    Science.gov (United States)

    Bettanini, Alvise Miotti; Delannay, Laurent; Jacques, Pascal J.; Pardoen, Thomas; Badinier, Guillaume; Mithieux, Jean-Denis

    2017-10-01

    Both finite element modeling and mean field (Mori-Tanaka) modeling are used to predict the strain partitioning in the martensite-ferrite microstructure of an AISI 410 martensitic stainless steel. Numerical predictions reproduce experimental trends according to which macroscopic strength is increased when the dissolution of carbides leads to carbon enrichment of martensite. However, the increased strength contrast of ferrite and martensite favours strain localization and high stress triaxiality in ferrite, which in turn promotes ductile damage development.

  5. On the Nature of Internal Interfaces in Tempered Martensite Ferritic Steels

    Czech Academy of Sciences Publication Activity Database

    Dronhofer, A.; Pešička, J.; Dlouhý, Antonín; Eggeler, G.

    2003-01-01

    Roč. 94, č. 5 (2003), s. 511-520 ISSN 0044-3093 R&D Projects: GA ČR GA106/99/1172 Institutional research plan: CEZ:AV0Z2041904 Keywords : Tempered martensite ferritic steels * martensite variants * orientation imaging Subject RIV: JG - Metallurgy Impact factor: 0.637, year: 2003

  6. EBSD characterization of deformed lath martensite in if steel

    DEFF Research Database (Denmark)

    Lv, Z.A.; Zhang, Xiaodan; Huang, Xiaoxu

    2017-01-01

    Rolling deformation results in the transformation of a lath martensite structure to a lamellar structure characteristic to that of IF steel cold-rolled to medium and high strains. The structural transition takes place from low to medium strain, and electron backscatter diffraction analysis shows...... and the strength are characterized for lath martensite rolled to a thickness reduction of 30%, showing that large changes in the misorientation take place, while the strain hardening rate is low....

  7. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  8. A study on fatigue crack growth in dual phase martensitic steel in air

    Indian Academy of Sciences (India)

    Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, ...

  9. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  10. High carbon microalloyed martensitic steel with ultrahigh strength-ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Ying [School of Mechanical Engineering, Shanghai Dianji University, Shanghai 200245 (China); Chen, Nailu, E-mail: nlchen@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zuo, Xunwei; Rong, Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-29

    Based on the idea of rising the mechanical stability of retained austenite by the addition of Si in Fe-Mn based steels, an Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb was designed, then its hot rolled plate was successively tread by normalization process as pretreatment of novel quenching-partitioning-tempering (Q-P-T) process. Product of tensile and elongation (PSE) of 53.94 GPa% were obtained for this high carbon Q-P-T martensitic steel, and the PSE (40.18 GPa%) obtained by the conversion of tensile sample size using Oliver formula still is more excellent PSE than those of other microalloyed advanced high strength steels reported. The microstructural characterization reveals origin of ultrahigh PSE resulting from both the increase of considerable and dispersed carbon enriched retained austenite with relative high mechanical stability in volume fraction and the decrease of brittle twin-type martensite with the sensitivity of notch.

  11. Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: The response to indentation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Venkatsurya, P. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Wu, K.M. [International Research Institute for Steel Technolgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Karjalainen, L.P. [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2013-01-10

    In medium to high carbon steels, characterized by martensite-austenite microstructure processed by quenching and partitioning process, martensite potentially provides high strength, while austenite provides work hardening [Fu, Wu, and Misra, DOI: 10.1179/1743284712/068]. Given the significant interest in these steels in the steel community, the paper reports for the first time the nanoscale deformation experiments and accompanying microstructural evolution to obtain micromechanical insights into the deformation behavior of ultrahigh strength-high ductility dual-phase steels with significant retained austenite fraction of {approx}0.35. During deformation experiments with nanoindenter, dislocations were distributed on several slip systems, whereas strain-induced twinned martensite and twinning were the deformation mechanisms in carbon-enriched and thermally stabilized retained austenite. Furthermore, ultrafine dual-phase steels exhibited high strain rate sensitivity.

  12. Influence of Z-phase on long-term creep stability of martensitic 9-12%Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [DONG Energy (Denmark)]|[Vattenfall Europe AG, Berlin (Germany)]|[DTU Mechanical Engineering (Denmark); Danielsen, H.K. [DTU Mechanical Engineering (Denmark)

    2008-07-01

    The long-term creep strength of the new generation of martensitic creep resistant 9- 12% Cr steels since the well-known steel Grade 91 relies strongly on particle strengthening by fine MN nitrides based on V and Nb. During long-term hightemperature exposures the MN nitrides may be replaced by the thermodynamically more stable Z-phases (Cr(V,Nb)N) causing a breakdown in creep strength. Cr contents above 10.5% strongly accelerate Z-phase precipitation, which explains the lack of success for all attempts to develop martensitic creep resistant steels with high Cr content for oxidation protection. The Z-phase nucleation process by Cr-diffusion into pre-existing MN nitrides is rate controlling for the Z-phase transformation. More work is needed before effects of chemical composition on the nucleation process can be reliably modeled. Careful control of the Z-phase precipitation process has led to the design of experimental 12%Cr martensitic steels strengthened by Z-phase. Such steels may again enable the combination of high strength and oxidation resistance in the same alloy. This opens a new pathway for further alloy development of the heat resistant martensitic steels. (orig.)

  13. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  14. Design of aging-resitant martensitic stainless steels for pressurized water reactors

    International Nuclear Information System (INIS)

    Cozar, R.; Meyzaud, Y.

    1983-06-01

    With the exception of AISI 403 or 410 grades, the use of high strength martensitic stainless steels in PWR is poorly developped because these materials, like ferritic stainless steels, become embrittled by the precitation of a b.c.c. chromium-rich phase during aging at the operating temperature (290 to 350 0 C). The influence of alloying elements and microstructure on the aging behavior of forged low-carbon martensitic stainless steels containing 12 to 16% Cr, 0 to 2% Mo and 0 to 8% Ni was determined during accelerated aging at 450 0 C. Quantitative relationships were derived between the maximum increase in hardness, the maximum shift in CVN transition temperature and the chemical composition (Cr, Mo, C) and microstructure

  15. Strength of 10CR-N martensitic steels

    International Nuclear Information System (INIS)

    Bahrami, F.; Hendry, A.

    1993-01-01

    10Cr stainless steel has been employed to examine the effect of nitrogen on microstructure and strength. Applying Solid state gaseous nitrogenising treatments a whole range of nitrogen martensite structures containing up to 0.45 wt% were obtained. It was found that a linear relationship exists between strength and nitrogen content in precipitate free martensitic structures. Yield strength increased from 705 to 1295 MPa for nitrogen free base material and alloys with 0.35 wt%N respectively. Pronounce secondary hardening was observed at a tempering temperature of 500 C. A linear relationship was also observed between the lattice parameter and nitrogen concentration in these alloys. A model for mechanical behaviour is presented. (orig.)

  16. R and D status of China low activation martensitic steel

    International Nuclear Information System (INIS)

    Huang Qunying; Li Chunjing; Li Yanfen; Liu Shaojun; Wu Yican; Li Jiangang; Shan Yiyin; Yu Jinnan; Zhu Shengyun; Zhang Pinyuan; Yang Jianfeng; Han Fusheng; Kong Mingguang; Li Heqin; Muroga, T.; Nagasaka, T.

    2007-01-01

    The Reduced Activation Ferritic/Martensitic (RAFM) steel is considered as the primary candidate structural material for DEMO and the first fusion plant, and widely studied in the world. China low activation martensitic steel (CLAM) is being developed in Institute of Plasma Physics, Chinese Academy of Sciences, under wide collaboration with many other domestic and foreign institutes and universities. This paper summarized the main R and D progress on CLAM, which covered composition optimization of the CLAM, smelting and processing techniques, physical and mechanical property test and evaluation before and after irradiation, compatibility with liquid LiPb, welding techniques etc. Finally, further research and development, and the prospects on its application were stated. (authors)

  17. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  18. Charpy impact behavior of manganese-stabilized martensitic steels

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1986-05-01

    Tests were conducted to evaluate the irradiation-induced shift in ductile-to-brittle transition behavior of two manganese stabilized martensitic steels. Miniature Charpy specimens were fabricated from two heats of steel similar in composition to HT-9 but with 0.1% C and Mn contents ranging from 3.3 to 6.6.%. The 3.3% Mn steel showed a transition temperature similar to that of HT-9 in both the unirradiated condition and in specimens irradiated to 11.3 dpa. The steel containing 6.6% Mn exhibited a higher transition temperature after irradiation than the steel containing 3.3% Mn. The upper shelf energy (USE) after irradiation for the manganese stabilized alloys was much higher than for HT-9. 6 refs., 3 figs., 2 tabs

  19. The Microstructure and Properties of Super Martensitic Stainless Steel Microalloyed with Tungsten and Copper

    Science.gov (United States)

    Ye, Dong; Li, Jun; Liu, Yu-Rong; Yong, Qi-Long; Su, Jie; Cao, Jian-Chun; Tao, Jing-Mei; Zhao, Kun-Yu

    2011-06-01

    The microstructure and properties of super martensitic stainless steel (SMSS) microalloyed with tungsten and copper were studied by means of optical microscopy, dilatometer, X-ray diffraction, and tensile tests. The results showed that the microstructure of SMSS, after quenching and tempering, was a typical biphase structure with tempered martensite and reversed austenite dispersedly distributed in the martensite matrix. W and Cu were added into the SMSS to reduce the transformation temperature (Ms) and improve the strength and hardness of the matrix by grain refining and solid solution strengthening. Thermocalc calculations confirmed that M23C6 compound and Laves phase were precipitated during tempering in the investigated steel. Compared with the traditional SMSS, the steel microalloyed with W and Cu performed better mechanical properties.

  20. Martensite in steels: its significance, recent developments and trends

    International Nuclear Information System (INIS)

    Schulz-Beenken, A.S.

    1997-01-01

    Martensite is generally known as a hard but brittle microstructure. This is only true for high carbon plate martensite. Recently developed steels with a lath martensite microstructure offer an excellent toughness at yield strength of 1000 MPa yield strength. A transformation into lath martensite by glide as invariant shear mechanism is only possible at a carbon content below 0,03%. The source of both high strength and good toughness is the high dislocation density and the narrow lath width off less than 1 μm. By a thermomechanical treatment, that leads to a finer lath structure both strength and ductility can be improved to a yield strength of 1150 MPa and an elongation of 18%. As, unlike high carbon plate martensite, the hardness of lath martensite is not achieved by the distortion of the tetragonal cell by carbon atoms, the hardness of lath martensite remains stable up during an annealing treatment up to 600 C. This thermal stability of the lath martensit microstructure makes an additional increase of hardness by the precipitation of different types of intermetallic phases possible. The increase of the hardness from 300 HV to 600 HV by precipitation without volume changes and good cold deformability reveals many new application in manufacturing. In plate martensite too, comparatively high toughness values can be achieved, if carbon is replaced by nitrogen. The refining influence of nitrides on the austenite grain sizes and the precipitation of fine nitrides during the annealing process leads to impact values three times higher than those of comparable high carbon plate martensite. (orig.)

  1. OPTIFER, a further step in development of Low Activation Martensitic Steels. Results of Characterization Experiments

    International Nuclear Information System (INIS)

    Fernandez, M.P.; Lapena, J.; Hernandez, M.T.; Schirra, M.

    1996-01-01

    Within the framework of the development of low activation structural materials to be used in nuclear fusion reactors four martensitic Fe-9,5 Cr alloys were conceived with different contentsof tungsten-tantalum and/or germanium as substitutions for Mo, Ni, Nb and Al. As a result of recent activation calculations, the maximum concentrations of all accompanying elements, which are not desirable under radiological aspects, were determined for the first time for these OPTIFER steels, and laid down in specifications for the manufacturers of the alloys. After double-vacuum melting, only the real alloys with some of these accompanying elements added are within the specifications. For the majority of alloys the gap between request in radiological terms and the metallurgical/analytical reality is still considerable. The behavior during transformation and heat treatment roughly corresponds to that of conventional martensitic 9-12degree centigree Cr steels. Progress has been conspicuous as regards the notch impact tougness behavior. Both at upper shelf level and in ductile brittle transition (DBTT) the W(Ce) alloyed OPTIFER variant exhibits more favorable values than the conventional MANET-II steel from the fusion program, with better strength characteristics above 500 degree centigree. With only a moderate decrease in strenght values (compared to MANET-II), the Ge (Ce) variant excels by a distinct improvement in notch impact tougness values and, theoretically, a stronger reduction in dose rate than the W(Ce) variant and comes close to the decay curve of pure iron

  2. OPTIFER, a further step in development of Low Activation Martensitic Steels. Results of Characterization Experiments

    International Nuclear Information System (INIS)

    Fernandez, M.P.; Lapena, J.; Hernandez, M.T.; Schirra, M.

    1996-01-01

    Within the framework of the development of low activation structural materials to be used in nuclear fusion reactors four martensitic Fe-9,5 Cr alloys were conceived with different contents of tungsten-tantalum and/or germanium as substitutions for Mo, Ni, Nb and Al. As a result of recent activation calculations, the maximum concentrations of all accompanying elements, which are not desirable under radiological aspects, were determined for the first time for these OPTIFER steels, and laid down in specifications for the manufacturers of the alloys, after double-vacuum melting, only the real alloys with some of these accompanying elements added are within the specifications. For the majority of alloys the gap between request in radiological terms and the metallurgical/analytical reality is still considerable. The behavior during transformation and heat treatment roughly corresponds to that of conventional martensitic 9-12%Cr steels. Progress has been conspicuous as regards the notch impact toughness behavior, both at upper shelf level and in ductile brittle transition (DBTT) the W(Ce) alloyed OPTIFER variant exhibits more favorable values than the conventional MANET-II steel from the fusion program, with better strength characteristics above 500 degree centigree. With only a moderate decrease in strength values (compared to MANET-II), the Ge (Ce) variant excels by a distinct improvement in notch impact toughness values and, theoretically, a stronger reduction in dose rate than the W(Ce) variant and comes close to the decay curve of pure iron. (Author) 21 refs

  3. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    Science.gov (United States)

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  4. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  5. Tempering response to different morphologies of martensite in tensile deformation of dual-phase steel

    International Nuclear Information System (INIS)

    Ahmad, E.; Manzoor, T.; Sarwar, M.; Arif, M.; Hussain, N.

    2011-01-01

    A low alloy steel containing 0.2% C was heat treated with three cycles of heat treatments with the aim to acquire different morphologies of martensite in dual phase microstructure. Microscopic examination revealed that the morphologies consisting of grain boundary growth, scattered laths and bulk form of martensite were obtained. These morphologies have their distinct patterns of distribution in the matrix (ferrite). In tensile properties observations the dual phase steel with bulk morphology of martensite showed minimum of ductility but high tensile strength as compared to other two morphologies. This may be due to poor alignments of bulk martensite particles along tensile axes during deformation. Tempering was employed with various holding times at 550 deg. C to induce ductility in the heat treated material. The tempering progressively increased the ductility by increasing holding time. However, tempering response to strengths and ductilities was different to all three morphologies of martensite. (author)

  6. Crystallography and Interphase Boundary of Martensite and Bainite in Steels

    Science.gov (United States)

    Furuhara, Tadashi; Chiba, Tadachika; Kaneshita, Takeshi; Wu, Huidong; Miyamoto, Goro

    2017-06-01

    Grain refinements in lath martensite and bainite structures are crucial for strengthening and toughening of high-strength structural steels. Clearly, crystallography of transformation plays an important role in determining the "grain" sizes in these structures. In the present study, crystallography and intrinsic boundary structure of martensite and bainite are described. Furthermore, various extrinsic factors affecting variant selection and growth kinetics, such as elastic/plastic strain and alloying effects on interphase boundary migration, are discussed.

  7. The effect of deformation mode on the sensitisation of partially martensitic stainless steels

    International Nuclear Information System (INIS)

    Briant, C.L.

    1981-01-01

    The metallurgical process by which austenitic stainless steels become susceptible to corrosion is defined as sensitisation. It is now well established that if the austenite is partially transformed to martensite by deformation, the kinetics of sensitisation will be accelerated. In this paper the effects of martensite induced by various deformation modes on sensitisation are examined. It will be shown that in all cases the martensite accelerates sensitisation which in turn leads to rapid corrosion. This effect is independent of the way the martensite is induced. The results also show that this effect is observed over a wide range of martensite content. (author)

  8. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction.

    Science.gov (United States)

    Harjo, Stefanus; Tsuchida, Noriyuki; Abe, Jun; Gong, Wu

    2017-11-09

    Two TRIP-aided multiphase steels with different carbon contents (0.2 and 0.4 mass%) were analyzed in situ during tensile deformation by time-of-flight neutron diffraction to clarify the deformation induced martensitic transformation behavior and its role on the strengthening mechanism. The difference in the carbon content affected mainly the difference in the phase fractions before deformation, where the higher carbon content increased the phase fraction of retained austenite (γ). However, the changes in the relative fraction of martensitic transformation with respect to the applied strain were found to be similar in both steels since the carbon concentrations in γ were similar regardless of different carbon contents. The phase stress of martensite was found much larger than that of γ or bainitic ferrite since the martensite was generated at the beginning of plastic deformation. Stress contributions to the flow stress were evaluated by multiplying the phase stresses and their phase fractions. The stress contribution from martensite was observed increasing during plastic deformation while that from bainitic ferrite hardly changing and that from γ decreasing.

  9. Martensitic transformation of type 304 stainless steel by high-energy ion implantation

    International Nuclear Information System (INIS)

    Chayahara, A.; Satou, M.; Nakashima, S.; Hashimoto, M.; Sasaki, T.; Kurokawa, M.; Kiyama, S.

    1991-01-01

    The effect of high-energy ion implantation on the structural changes of type 304 stainless steel were investigated. Gold, copper and silicon ions with an energy of 1.5 MeV was implanted into stainless steel. The fluences were in the range from 5x10 15 to 10 17 ions/cm 2 . It was found that the structure of stainless steel was transformed form the austenitic to the martensitic structure by these ion implantations. This structural change was investigated by means of X-ray diffraction and transmission electron microscopy (TEM). The depth profile of the irradiated ions was also analyzed by secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS). The degree of martensitic transformation was found to be strongly dependent on the surface pretreatment, either mechanical or electrolytic polishing. When the surface damages or strains by mechanical polishing were present, the martensitic transformation was greatly accelerated presumably due to the combined action of ion irradiation and strain-enhanced transformation. Heavier ions exhibit a high efficiency for the transformation. (orig.)

  10. In-situ analysis of redistribution of carbon and nitrogen during tempering of low interstitial martensitic stainless steel

    DEFF Research Database (Denmark)

    Niessen, F.; Villa, M.; Danoix, F.

    2018-01-01

    The redistribution of C and N during tempering of X4CrNiMo16-5-1 martensitic stainless steel containing 0.034 wt% C and 0.032 wt% N was studied using in-situ synchrotron X-ray diffraction (XRD) and atom probe tomography (APT). The unit cell volume of martensite decreased continuously during...... tempering. APT showed that this volume decrease is accounted entirely for by segregation of the interstitial atoms, implying that in low interstitial martensitic stainless steel stress relaxation only contributes negligibly to changes in the martensite unit cell volume....

  11. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance

    OpenAIRE

    Abreu,Hamilton Ferreira Gomes de; Carvalho,Sheyla Santana de; Lima Neto,Pedro de; Santos,Ricardo Pires dos; Freire,Válder Nogueira; Silva,Paulo Maria de Oliveira; Tavares,Sérgio Souto Maior

    2007-01-01

    In austenitic stainless steels, plastic deformation can induce martensite formation. The induced martensite is related to the austenite (gamma) instability at temperatures close or below room temperature. The metastability of austenite stainless steels increases with the decreasing of stacking fault energy (SFE). In this work, the deformation induced martensite was analyzed by X ray diffraction, electron back scatter diffraction (EBSD), magnetic methods and atomic force microscope (AFM) in sa...

  12. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    NARCIS (Netherlands)

    Maresca, F.; Kouznetsova, V.; Geers, M.G.D.

    2016-01-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers

  13. Constitutive modelling of stainless steels for cryogenic applications. Strain induced martensitic transformation

    CERN Document Server

    Garion, C

    2001-01-01

    The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).

  14. Sub-Zero Celsius treatment: a promising option for future martensitic stainless steels

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2016-01-01

    A series of samples of (in wt.%) 11.5Cr-0.67C martensiticstainless steel grade were austenitized in Argon for 1 hour attemperatures ranging from 1010°C to 1190°C. Additionally, aseries of samples of (in wt.%) 15.0Cr-5.8Ni-1.0Mo-0.03C (EN1.4418) martensitic stainless steel grade were solution...... and Vickers micro-hardness indentation.Complementary electron back-scatter diffraction was appliedfor determining the phase fractions of austenite and martensite.Data shows that sub-zero Celsius treatment yields anadditional hardening response when austenite is retained in thematerial. The relevance...

  15. Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Stumpf, Waldo; Berg, Nic van der

    2009-01-01

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M s temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M s temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  16. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  17. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  18. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  19. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ye, Dong; Li, Jun; Jiang, Wen; Su, Jie; Zhao, Kunyu

    2012-01-01

    Highlights: ► Cu contributes to refine the grains. ► Cu solutes in matrix under quenching and precipitates as ε-Cu during tempering. ► Cu promotes the kinetics of reversed austenite formation. ► Mechanical properties are significantly influenced by austenite amount. ► Cu alloyed super martensitic stainless steel exhibits greatly improved mechanical properties. -- Abstract: The effect of adding different content of Cu (0 wt.%, 1.5 wt.% and 3 wt.%) to the 15%Cr super martensitic stainless steel (SMSS) was investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Its consequence on mechanical properties was examined to clarify the role of Cu in the tested steels. The experimental results indicate that the microstructures of three tested steels are tempered martensite, retained austenite and reversed austenite; two kinds of austenites are dispersedly distributed among martensite matrix. Cu can solute in matrix under quenching condition and can precipitate as Cu-rich nanometer phase (ε-Cu) during tempering. Cu is helpful for the grain refinement and to promote the formation of reversed austenite during tempering. The maximum volume fraction of austenite is 55.9% in the steel with 3 wt.% Cu, which is responsible for the improvement of ductility. The results of the mechanical properties tests reveal that the mechanical properties are significantly influenced by the volume fraction of austenite. Cu can cause solid solution strengthening, precipitation strengthening and grain refinement strengthening in SMSS. Cu alloyed super martensitic stainless steel exhibits greatly improved mechanical properties.

  20. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel

    International Nuclear Information System (INIS)

    Wang, Chengduo; Qiu, Hai; Kimura, Yuuji; Inoue, Tadanobu

    2016-01-01

    The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath martensite (α′) with prior austenite (γ) is distinctive. In the present paper we investigate the microstructure and fracture mode of a quenched and tempered 0.4%C-2%Si-1%Cr-1%Mo steel using electron backscatter diffraction technique. The results showed that the orientation relationship between γ and α′ is Greninger-Troiano (G-T) relationship. A single γ grain was divided into 4 packets and each packet was subdivided into 3 blocks. The misorientation angles between adjacent blocks were ~54.3° or ~60.0° in a packet. Most γ grains were twins sharing a {111} γ plane. There were 7 packets in a twinned γ grain and the twin boundaries were in a special packet. Besides the common packet, there were three packets in each twin. Being different from the cleavage fracture along the {001} planes in conventional martensitic steels, both cleavage and intergranular cracks were present in our medium-carbon steel. The former was in the larger blocks and it propagated along the {001}, {011}, and {112} planes. The latter propagated along the block, packet, or prior austenite boundaries. The intergranular cracks were generally in the fine block region. These results suggested that the block size is the key factor in controlling the brittle fracture mode of lath martensitic steel.

  1. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Jang, Min-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, Seongdong-ku, Seoul 133-791 (Korea, Republic of); Park, Min-Gu [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Department of Material Science and Engineering, Pusan National University, 30 Jangjeon-Dong, Geumjeong-gu, Pusan 609-735 (Korea, Republic of); Han, Heung Nam [Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-12-15

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  2. Soft-martensitic stainless Cr-Ni-Mo steel for turbine rotors in geothermic power stations

    International Nuclear Information System (INIS)

    Schonfeld, K.; Potthast, E.

    1986-01-01

    Steel Grade X5 Cr-Ni-Mo 12 6 containing 0.05% carbon, 12% chromium, 6% nickel, and 1.50% molybdenum is an advantageous material for turbine rotors in geothermic power stations because of its excellent strength and toughness properties in combination with good erosion and corrosion resistance. In terms of the phase diagram, this soft-martensitic steel has its place at the martensite/austenite/ferrite interface. Therefore, its chemical composition must be chosen so as to have a completely martensitic structure after hardening. The manufacture of and the mechanical properties of a turbine rotor 1200 mm in diameter by 5600 mm in length with a finished weight of approximately 21.5 tons are described in detail

  3. Depth distribution analysis of Martensitic transformations in Xe implanted austenitic stainless steel

    DEFF Research Database (Denmark)

    Johnson, E.; Gerritsen, E.; Chechenin, N.G.

    1989-01-01

    In recent years the implantation of noble gases in metals has been found to induce some exciting phenomena such as formation of inclusions containing solid gas at extremely high pressures. In stainless steels these inclusions are the origin of a stress-induced martensitic fcc → bcc phase...... transformation in the implanted layer. In this work we present results from a depth distribution analysis of the martensitic phase change occurring in Xe implanted single crystals of austenitic stainless steel. Analysis was done by in situ RBS/channeling analysis, X-ray diffraction and cross-section transmission...... electron microscopy (XTEM) of the implanted surface. It is found that the martensitic transformation of the surface layer occurs for fluences above 1 × 1020 m−2. The thickness of the transformed layer increases with fluence to ≈ 150 nm at 1 × 10 21 m−2, which far exceeds the range plus straggling...

  4. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  5. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  6. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  7. Influence of helium embrittlement on post-irradiation creep rupture behaviour of austenitic and martensitic stainless steels

    International Nuclear Information System (INIS)

    Wassilew, C.

    1982-01-01

    The author has investigated the influence of helium embrittlement on the creep rupture properties of the austenitic stainless steels 1.4970 and 1.4962 and the martensitic stainless steel 1.4914 after irradiation in the BR-2 reactor in Mol, Belgium. The results show that austenitic steels react much more strongly to the embrittlement effect of the helium than do martensitic steels. The causes of the lower embrittlement tendency of the martensitic than of both austenitic stainless steels were analysed carefully. A new embrittlement model was developed on the basis of data derived from the creep rupture experiments, and reinforced by a simple metallographic investigation of the fracture zone and its immediate environment. This model pays specific attention to the role of the twin planes as the most efficient area of increased vacancy production, and takes into account the ability of the twin boundaries to transport these vacancies with reduced energy and low loss into the high-angle grain boundaries. (author)

  8. Moessbauer and TEM study of martensitic transformations in ion implanted 17/7 stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Graabaek, L.

    1986-01-01

    It has earlier been shown that implantation of antimony into austenitic stainless steels induces martensitic phase transformations γ (fcc)→α (bcc). In the present work we have investigated which mechanisms are responsible for the transformation. Samples of 17/7 steels were implanted with noble gases (Kr, Ar) or the stainless steel constituent elements (Fe, Ni, Cr). The energies were selected to give ranges ∝40 nm. The phases present after implantation and the microstructures of the implanted samples were studied by CEMS and TEM respectively. A martensitic (α) phase was found to form after implantation both with Ni, Fe and Cr, in spite of the fact that these elements have opposite tendencies for stabilization of the austenite (γ) phase. The efficiency of martensite formation is therefore mainly related to stress relief associated with secondary radiation damage. This was substantiated from the noble gas implantations, where the highest degree of transformation was observed for fluences where bubble formation occurs. The CEMS analyses show that the transformation efficiency in such cases is nearly 100%. The hyperfine parameters of the implantation induced α phase are similar to those from conventionally induced martensites. (orig.)

  9. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    Science.gov (United States)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  10. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  11. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  12. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997

  13. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation...... can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics...... of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new...

  14. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    Science.gov (United States)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-09-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.

  15. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-01-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement. ((orig.))

  16. Kinetics of anomalous multi-step formation of lath martensite in steel

    International Nuclear Information System (INIS)

    Villa, Matteo; Pantleon, Karen; Reich, Michael; Kessler, Olaf; Somers, Marcel A.J.

    2014-01-01

    A steel containing 16 wt.% Cr, 5 wt.% Ni and 3 wt.% Cu was transformed into martensite by applying isochronal, i.e. constant rate, cooling followed by isothermal holding. The formation of martensite was monitored with dilatometry. A series of retardations and accelerations of the transformation was observed during isochronal cooling for cooling rates ranging from 1.5 to 50 K min −1 . The cooling rate in the isochronal stage was observed to influence the transformation rate in the isothermal stage. Electron backscatter diffraction was applied to determine the morphology of the martensite, which was of lath type, and to investigate the microstructure of the material. No influence of the cooling rate on the scale of the microstructure was observed. The series of retardations and accelerations of the transformation is interpreted in terms of the combined effect of the strain and interfacial energy introduced in the system during martensite formation, which stabilizes austenite, and autocatalytic nucleation of martensite

  17. Microstructural stability of fast reactor irradiated 10 to 12% Cr ferritic-martensitic stainless steels

    International Nuclear Information System (INIS)

    Little, E.A.; Stoter, L.P.

    1982-01-01

    The strength and microstructural stability of three 10 to 12% Cr ferritic-martensitic stainless steels have been characterized following fast reactor irradiation to damage levels of 30 displacements per atom (dpa) at temperatures in the range 380 to 615 0 C. Irradiation results in either increases or decreases in room temperature hardness depending on the irradiation temperature. These strength changes can be qualitatively rationalized in terms of the combined effects of irradiation-induced interstitial dislocation loop formation and recovery of the dislocation networks comprising the initial tempered martensite structures. Precipitate evolution in the irradiated steels is associated with the nonequilibrium segregation of the elements nickel, silicon, molybdenum, chromium and phosphorus, brought about by solute-point defect interactions. The principal irradiation-induced precipitates identified are M 6 X, intermetallic chi and sigma phases and also α' (Cr-rich ferrite). The implications of the observed microstructural changes on the selection of martensitic stainless steels for fast reactor wrapper applications are briefly considered

  18. Current status of reduced-activation ferritic/martensitic steels R and D for fusion energy

    International Nuclear Information System (INIS)

    Kimura, Akihiko

    2005-01-01

    Reduced-activation ferritic/martensitic (RAF/M) steels have been considered to be the prime candidate for the fusion blanket structural material. The irradiation data obtained up to now indicates rather high feasibility of the steels for application to fusion reactors because of their high resistance to degradation of material performance caused by both the irradiation-induced displacement damage and transmutation helium atoms. The martensitic structure of RAF/M steels consists of a large number of lattice defects before the irradiation, which strongly retards the formation of displacement damage through absorption and annihilation of the point defects generated by irradiation. Transmutation helium can be also trapped at those defects in the martensitic structure so that the growth of helium bubbles at grain boundaries is suppressed. The major properties of the steels are well within our knowledge, and processing technologies are mostly developed for fusion application. RAF/M steels are now certainly ready to proceed to the next stage, that is, the construction of International Thermo-nuclear Experimental Reactor Test Blanket Modules (ITER-TBM). Oxide dispersion strengthening (ODS) steels have been developed for higher thermal efficiency of fusion power plants. Recent irradiation experiments indicated that the steels were quite highly resistant to neutron irradiation embrittlement, showing hardening accompanied by no loss of ductility. High-Cr ODS steels whose chromium concentration was in the range from 14 to 19 mass% showed high resistance to corrosion in supercritical pressurized water. It is shown that the 14Cr-ODS steel is susceptible to neither hydrogen nor helium embrittlement. A combined utilization of ODS steels with RAF/M steels will be effective to realize fusion power early at a reasonable thermal efficiency. (author)

  19. AM363 martensitic stainless steel: A multiphase equation of state

    Science.gov (United States)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  20. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  1. Chemical compatibility study of lithium titanate with Indian reduced activation ferritic martensitic steel

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Haldar, Rumu; Kumar, Sanjay

    2015-01-01

    Highlights: • Chemical compatibility between Li_2TiO_3 and Indian RAFM steel has been studied at ITER operating temperature. • The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. • The layer grew in a parabolic manner as a function of heating time. • Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer. - Abstract: Chemical compatibility between lithium titanate and Indian reduced activation ferritic-martensitic steel (In-RAFMS) was studied for the first time under ITER operating temperature. Lithium titanate required for the study was synthesized in-house. Coupons of In-RAFMS were packed inside lithium titanate powder and heated at 550 °C up to 900 h under inert argon atmosphere. The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. The layer grew in a parabolic manner as a function of heating time. Microstructural and phase evolution of this oxide layer was studied using XRD, SEM and EPMA. Iron and chromium enriched zones were found within the oxide layer. Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer.

  2. Effects of strain and strain-induced α′-martensite on passive films in AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Lv, Jinlong; Luo, Hongyun

    2014-01-01

    In this paper, the effects of strain and heat treatment on strain-induced α′-martensite of AISI 304 stainless steel tubes were measured by X-ray diffraction. Moreover, the effects of strain and content of α′-martensite on passivated property on the surface of the material in borate buffer solution were evaluated by electrochemical technique. The results showed that the volume fraction of α′-martensite increased gradually with the increase of tensile strain for as-received and solid solution samples. However, α′-martensite in as-received sample was more than that in the solid solution sample. The electrochemical impedance spectroscopy results showed that the solid solution treatment improved corrosion resistance of the steel, especially for samples with small strain. Moreover, acceptor densities were always higher than donor densities for as-received and solid solution samples. With the increase of strain, the increase tendency of acceptor density was more significant than that of donor density. We also found that the total density of the acceptor and donor almost increased linearly with the increase of α′-martensite. The present results indicated that the increased acceptor density might lead to the decreased corrosion resistance of the steel. - Highlights: • The solid solution treatment improved corrosion resistance of the stainless steel. • The deteriorated passivated property after strain could be attributed to the increased acceptor density. • The α′-martensite reduced corrosion resistance of the stainless steel

  3. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.; Nesterova, E.V.; Klepikov, E.Yu.

    2000-01-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 x 10 -2 deg. C/s) and then tempering. The steels were irradiated to a fluence of 4x10 23 n/m 2 (≥0.5 MeV) at 270 deg. C and to fluences of 1.3x10 23 and 1.2x10 24 n/m 2 (≥0.5 MeV) at 70 deg. C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300 deg. C is reversed at T irr =70 deg. C

  4. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  5. Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qiuzhi, E-mail: neuqgao@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000 (China); Wang, Cong; Qu, Fu; Wang, Yingling [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2014-10-15

    Highlights: • The obtained M{sub s} temperatures of samples austenitized at 1150 °C are higher than at 900 °C. • Martensite-start transformation is slower for austenitizing at 1150 °C than at 900 °C. • Martensite transformation was controlled by nucleation rate. • Growth of martensite plates was controlled by thermal activation of atoms. - Abstract: Martensite transformation features in the 9Cr–1.7W–0.4Mo–Co ferritic steel, was conducted on a Netzsch Differential Thermal Analysis (DTA), after austenitized at 900 °C and 1150 °C followed by cooling at various rates to room temperature were studied. A martensite transformation kinetics model based on assumption of continuous nucleation and consideration of impingement was introduced to investigate the influence of austenitizing temperature and cooling rate on the martensite transformation behaviors. The obtained interface velocity and the activation energy for interface-controlling growth are lower than 10{sup −5} m/s and 40 kJ/mol, respectively, according to the fitted data. Both indicated that martensite transformation in the 9Cr–1.7W–0.4Mo–Co ferritic steel was controlled by nucleation rate, and that growth of plates was controlled by thermal activation of atoms.

  6. Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel

    International Nuclear Information System (INIS)

    Gao, Qiuzhi; Wang, Cong; Qu, Fu; Wang, Yingling; Qiao, Zhixia

    2014-01-01

    Highlights: • The obtained M s temperatures of samples austenitized at 1150 °C are higher than at 900 °C. • Martensite-start transformation is slower for austenitizing at 1150 °C than at 900 °C. • Martensite transformation was controlled by nucleation rate. • Growth of martensite plates was controlled by thermal activation of atoms. - Abstract: Martensite transformation features in the 9Cr–1.7W–0.4Mo–Co ferritic steel, was conducted on a Netzsch Differential Thermal Analysis (DTA), after austenitized at 900 °C and 1150 °C followed by cooling at various rates to room temperature were studied. A martensite transformation kinetics model based on assumption of continuous nucleation and consideration of impingement was introduced to investigate the influence of austenitizing temperature and cooling rate on the martensite transformation behaviors. The obtained interface velocity and the activation energy for interface-controlling growth are lower than 10 −5 m/s and 40 kJ/mol, respectively, according to the fitted data. Both indicated that martensite transformation in the 9Cr–1.7W–0.4Mo–Co ferritic steel was controlled by nucleation rate, and that growth of plates was controlled by thermal activation of atoms

  7. Corrosion behaviour of dissimilar welds between martensitic stainless steel and carbon steel from secondary circuit of candu npp

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2015-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. It is not unusual to find that, although the base metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not resistant. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. Our experiments were performed in chloride environmental on two types of samples: non-welded (420 martensitic steel and 52.2k carbon steel) and dissimilar welds (dissimilar metal welds: joints beetween 420 martensitic steel and 52.2k carbon steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and metallography microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and carbon steel in solutions containing chloride ions. We have been evaluated the corrosion rates of samples (welded and non-welded) by electrochemically. (authors)

  8. Effect of Microstructures and Tempering Heat Treatment on the Mechanical Properties of 9Cr-2W Reduced-Activation Ferritic-Martensitic Steel

    International Nuclear Information System (INIS)

    Park, Min-Gu; Kang, Nam Hyun; Moon, Joonoh; Lee, Tae-Ho; Lee, Chang-Hoon; Kim, Hyoung Chan

    2015-01-01

    The aim of this study was to investigate the effect of microstructures (martensite, ferrite, or mixed ferrite and martensite) on the mechanical properties. Of particular interest was the Charpy impact results for 9Cr-2W reduced-activation ferritic-martensitic (RAFM) steels. Under normalized conditions, steel with martensitic microstructure showed superior tensile strength and Charpy impact results. This may result from auto-tempering during the transformation of martensite. On the other hand, both ferrite, and ferrite mixed with martensite, showed unusually poor Charpy impact results. This is because the ferrite phases, and coarse M_23C_6 carbides at the ferrite-grain boundaries acted as cleavage crack propagation paths, and as preferential initiation sites for cleavage cracks, respectively. After the tempering heat treatment, although tensile strength decreased, the energy absorbed during the Charpy impact test drastically increased for martensite, and ferrite mixed with martensite. This was due to the tempered martensite. On the other hand, there were no distinctive differences in tensile and Charpy impact properties of steel with ferrite microstructure, when comparing normalized and tempered conditions.

  9. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for

  10. New stainless steels of ferrite-martensite grade and perspectives of their application in thermonuclear facilities and fast reactors

    International Nuclear Information System (INIS)

    Ajtkhozhin, Eh.S.; Maksimkin, O.P.

    2007-01-01

    Review of scientific literature for last 5 years in which results on study of radiation effect on ferrite-martensite steels - construction materials of fast reactors and most probable candidates for first wall and blanket of the thermonuclear facilities ITER and Demo - are presented. Alongside with this a prior experimental data on study of microstructure changing and physical- mechanical properties of ferrite-martensite steel EhP-450 - the material of hexahedral case of spent assembly of BN-350 fast reactor- are cited. Principal attention was paid to considering of radiation effects of structural components content changing and ferrite-martensite steel swelling irradiated at comparatively low values of radiation damage climb rate

  11. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  12. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  13. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels

    International Nuclear Information System (INIS)

    Yen, Hung-Wei; Ooi, Steve Woei; Eizadjou, Mehdi; Breen, Andrew; Huang, Ching-Yuan; Bhadeshia, H.K.D.H.; Ringer, Simon P.

    2015-01-01

    This work explains the occurrence of transformation-induced plasticity via stress-assisted martensite, when designing ultrafine-grained duplex steels. It is found that, when the austenite is reduced to a fine scale of about 300 nm, the initial deformation-induced microstructure can be dominated by parallel lamellae of ε martensite or mechanical twinning, which cannot efficiently provide nucleation sites for strain-induced martensite. Hence, α′ martensite nucleation occurs independently by a stress-assisted process that enhances transformation-induced plasticity in ultrafine-grained austenite. This metallurgical principle was validated experimentally by using a combination of transmission Kikuchi diffraction mapping, transmission electron microscopy and atom probe microscopy, and demonstrated theoretically by the thermodynamics model of stress-assisted martensite

  14. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  15. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure.

    Science.gov (United States)

    Izquierdo, Paula P; de Biasi, Ronaldo S; Elias, Carlos N; Nojima, Lincoln I

    2010-12-01

    Our purpose was to study the mechanical properties and phase transformations of orthodontic wires submitted to in-vivo exposure in the mouth for different periods of time. Stainless steel wires were tied to fixed orthodontic appliances of 30 patients from the orthodontics clinic of Universidade Federal do Rio de Janeiro School of Dentistry in Brazil. According to the duration of the clinical treatment, the patients were divided into 3 groups. After in-vivo exposure, the samples were studied by mechanical testing (torsion) and ferromagnetic resonance. Statistical analyses were carried out to evaluate the correlation between time of exposure, mechanical properties, and austenite-to-martensite transformation among the groups. The results were compared with as-received control samples. The torque values increased as time in the mouth increased. The increase in torque resistance showed high correlations with time of exposure (P = 0.005) and austenite-martensite phase transformation. The resistance of stainless steel orthodontic wires increases as the time in the mouth increases; this effect is attributed to the austenite-to-martensite transformation. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Characteristics of martensite as a function of the M{sub s} temperature in low-carbon armour steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Maweja, Kasonde, E-mail: mawejak@yahoo.fr [Council for Scientific and Industrial Research, CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001 (South Africa); Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Stumpf, Waldo [Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Berg, Nic van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2009-08-30

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M{sub s} temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M{sub s} temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  17. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  18. Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review

    DEFF Research Database (Denmark)

    Niessen, Frank

    2018-01-01

    Low-carbon martensitic stainless steels with 11.5–16 wt-% Cr and martensite upon inter-critical annealing. The review treats...... the mechanisms governing the formation and stabilisation of reverted austenite and is assisted by the computation of phase equilibria. Literature data on Cr and Ni concentrations of the reverted austenite/martensite dual-phase microstructure are assessed with respect to predicted concentrations. Reasonable...... agreement was found for concentrations in martensite. Systematic excess of Cr in austenite of approx. 2 wt-% relative to calculations was suspected to originate from the growth of M23C6 with a coherent interface to austenite. Within large scatter, measured values of Ni in austenite were on average 2 wt...

  19. γ→α′ Martensitic transformation and magnetic property of cold rolled Fe–20Mn–4Al–0.3C steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Biao; Li, Changsheng, E-mail: lics@ral.neu.edu.cn; Han, Yahui; Wang, Jikai

    2016-12-01

    Direct γ→α′ martensitic transformation during cold rolling deformation was investigated for a high-Mn non-magnetic steel. Its influence on magnetic property was also analyzed. The magnetization under rolling reduction less than 50% almost presents a linear increase with the applied magnetic field. With deformation up to 73% and 93% thickness reductions, strain induced α′-martensite transformation starts to occur, causing the steel to be slightly magnetized. The α′-martensite prefers to nucleate directly at either microband–microband or microband-twin intersections without participation of intermediate ε-martensite. The volume fraction of α′-martensite is estimated as 0.070% and 0.17%, respectively, based on the magnetic hysteresis loops. Such a small fraction of ferromagnetic α′-martensite shows little influence on the magnetic induction intensity and low relative permeability. - Highlights: • Magnetic property of high-Mn austenitic steel was examined after cold rolling. • Nucleation mode for direct γ→α′ martensitic transformation was observed and discussed. • Volume fraction of strain induced α′-martensite was estimated by magnetic measurement.

  20. Tempering of martensitic steel for fasteners: Effects of micro-alloying on microstructure and mechanical property evolution

    OpenAIRE

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more temperature resistant fasteners than currently available according to international standards. A new martensitic fastener steel called KNDS4 has been developed, that combines higher strength with improve...

  1. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  2. Orientation relationship in various 9% Cr ferritic/martensitic steels-EBSD comparison between Nishiyama-Wassermann, Kurdjumov-Sachs and Greninger-Troiano

    International Nuclear Information System (INIS)

    Barcelo, F.; Bechade, J. L.; Fournier, B.

    2010-01-01

    EBSD measurements were carried out on four different martensitic steels (T91, P92, EM10 and Eurofer) in various metallurgical conditions (nine different microstructural states). The usual orientation relationships (ORs) between the parent austenitic phase and the resulting martensite in martensitic steels are those of Nishiyama-Wassermann (NW) and Kurjumov-Sachs (KS). The present study first proposes a methodology based on the combined analysis of the misorientation distribution, the pole figures (PFs) and the angle/axis pairs. This methodology leads to the conclusion that neither NW nor KS relationships are able to account for all the features observed whatever the material under study. A third OR proposed by Greninger and Troiano (GT) proves to describe the relationship between austenite and ferrite in all four different martensitic steels much more accurately. (authors)

  3. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  4. Influence of 12% Cr martensite steel quality on power generation reliability

    International Nuclear Information System (INIS)

    Smolenska, H.; Labanowski, J.; Cwiek, J.; Glowacka, M.; Serbinski, W.

    2001-01-01

    Influence of manufacturing process and heat treatment on microstructure and mechanical properties of 12% Cr heat resistance martensitic steels has been discussed. These steels are used for elevated temperatures applications like: heat and power plants, chemical and petrochemical installations. Some cases of manufacturing mistakes of steam pipelines and turbine blades had been presented. These mistakes led to imperfect microstructure resulting in reduced lifetime and insufficient reliability of installations. (author)

  5. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  6. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Xiaoling; Shi, Tiantian; Huang, Xi [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shang, Zhongxia [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu, Wenwen; Ji, Bo; Xu, Zhiqiang [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-12-15

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6}, Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are

  7. Identification of some crystallographic features of martensite in steels by microdiffraction

    International Nuclear Information System (INIS)

    Sarikaya, M.; Rao, B.V.N.; Thomas, G.

    1980-03-01

    Considerable attention should be paid to the interpretation of electron diffraction, such as the understanding of the extra reflections and other effects in an SAD pattern obtained from lath martensite by making allowances for spatial resolution limitations in the SAD patterns. These difficulties can be overcome by utilizing the convergent beam electron diffraction (CBED) method which permits the use of different probe sizes to obtain crystallographic information from very small regions. Some crystallographic features of lath martensite in low and medium C steels have been identified and some others verified by using CBED

  8. Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad

    2017-12-01

    The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.

  9. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    International Nuclear Information System (INIS)

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry

  10. Microstructure and mechanical properties in the weld heat affected zone of 9Cr-2W-VTa reduced activation ferritic/martensitic steel for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh; Lee, Changhoon; Lee, Taeho; Jang, Minho; Park, Mingu [Korea Institute of Materials Science, Changwon (Korea, Republic of); Kim, Hyoung Chan [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Reduced activation ferritic/martensitic (RAFM) steel demonstrated excellent resistance to the neutron irradiation and mechanical properties. The investigation of weldability in company with the development of RAFM steel is essential for construction of the fusion reactor. Generally, the superior mechanical properties of the RAFM steel can be upset during welding process due to microstructural change by rapid heating and cooling in the weld heat affected zone (HAZ). The phase transformation and mechanical properties in the weld HAZ of RAFM steel were investigated. The base steel consisted of tempered martensite and two carbides. During rapid welding thermal cycle, the microstructure of the base steel was transformed into martensite and δ-ferrite. In addition, the volume fraction of δ-ferrite and grain size increased with increase in the peak temperature and heat input. The strength of the HAZs was higher than that of the base steel due to the formation of martensite, whereas the impact properties of the HAZs deteriorated as compared with the base steel due to the formation of δ-ferrite. The PWHT improved the impact properties of the HAZs, resulting from the formation of tempered martensite.

  11. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (470 Building, Puspiptek, Serpong, Indonesia 15313) (Indonesia)

    2016-04-19

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  12. Position-dependent shear-induced austenite– martensite transformation in double-notched TRIP and dual-phase steel samples

    NARCIS (Netherlands)

    Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.

    2014-01-01

    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation

  13. The neutronic basis for elemental substitution in martensitic steels

    Science.gov (United States)

    Sublet, J.-Ch.; Butterworth, G. J.

    1994-09-01

    A simple graphical approach has been developed to facilitate the design of low-activation steels by elemental tailoring. Noting that the iron base provides the best achievable target, the influence of candidate alloying elements becomes readily apparent when the contribution each makes to a particular activation parameter such as specific activity, dose rate or decay power, is expressed relative to the contribution from the iron base. This approach highlights the most critical activation parameters and times after shutdown with respect to safety and environmental objectives. Its application to the design of low activation martensitic stainless steels is discussed.

  14. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels – A phase-field study

    DEFF Research Database (Denmark)

    Yeddu, Hemantha Kumar; Shaw, Brian A.; Somers, Marcel A. J.

    2017-01-01

    A 3D elastoplastic phase-field model is used to study the effect of thermal cycling on martensitic transformationas well as on mechanical strengthening of both austenite and martensite in stainless steel. The results show that with an increasing number of thermal cycles, martensite becomes more...

  15. Development of oxide dispersion strengthened 9Cr ferritic-martensitic steel clad tube for fast reactor

    International Nuclear Information System (INIS)

    Laha, K.; Saroja, S.; Mathew, M.D.; Jayakumar, T.; Vijay, R.; Venugopal Reddy, A.; Lakshminarayana, B.; Kapoor, Komal; Jha, S.K.; Tonpe, S.S.

    2012-01-01

    One of the key issues in the economical operation of FBR is to achieve high burn-up of fuel (200-250 GWd/t) which considerably reduces the fuel cycle cost. This imposes stringent requirements of void swelling resistance upto 200 dpa for the core structural materials. Presently used alloy 09 (a modified austenitic stainless steel, 15Cr-15Ni-Ti) for PFBR has void swelling limit less than 150 dpa. Because of the inherent void swelling resistance, 9-12Cr steels ferritic/martensitic steels are qualified for irradiation upto 200 dpa but their low creep strength at temperatures above 600 deg C restricts their application as a clad material. Oxide dispersion strengthening is found to be promising means of extending the creep resistance of ferritic/martensitic steels beyond 650 deg C without sacrificing the inherent advantages of high thermal conductivity and low swelling of ferritic steels

  16. Role of Nb in low interstitial 13Cr super martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.P.; Wang, L.J. [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110004 (China); Liu, C.M., E-mail: cmliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110004 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton, L8S-4L7 (Canada)

    2011-08-25

    Highlights: {yields} Nb retards the kinetics of reversed austenite formation. {yields} Nb suppresses the occurrence of Cr rich precipitates. {yields} Nano-scale precipitates contribute to the significant increase in strength. - Abstract: The effect of adding 0.1 wt% Nb to low interstitial (N 0.01 wt%, C 0.01 wt%) 13Cr super martensitic stainless steel (SMSS) on solid phase transformation and microstructures achieved by normalizing and tempering was investigated using dilatometer, electron backscattered diffraction (EBSD), transmission electron microscope (TEM), X-ray diffraction (XRD), and its consequence on mechanical properties was examined to clarify the role of Nb in low interstitial martensitic stainless steel. Nb was found to retard kinetics of reversed austenite formation during tempering and to suppress the occurrence of Cr rich precipitates. The measurement of mechanical properties shows that while the strength properties were significantly increased by nano-scale precipitates enriched in Nb in the steel with 0.10 wt% Nb, the ductility and toughness properties were restored by optimum volume fraction of retained austenite. Excellent strength and adequate toughness properties were obtained by tempering the steel with 0.10 wt% Nb and low interstitial (N 0.01 wt%, C 0.01 wt%) steel at 600 deg. C.

  17. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  18. Variation of martensite lath width and precipitate size during creep deformation in a 10Cr-Mo steel

    International Nuclear Information System (INIS)

    Kim, S. H.; Song, B. Z.; Lu, W. S.

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitie steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  19. Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Hilkhuijsen, P.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Zhang, S.-H.; Liu, X.-H.; Gheng, M.; Li, J.

    2013-01-01

    The transformation of austenite to martensite is a dominant factor in the description of the constitutive behavior during forming of TRIP assisted steels. To predict this transformation different models are currently available. In this paper the transformation is regarded as a stress induced process

  20. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  1. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  2. Report of IEA workshop on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    IEA Workshop on Reduced Activation Ferritic/Martensitic Steels under implementing agreement for program of research and development on fusion materials was held at Tokyo Yayoi Kaikan and JAERI headquarter on November 2-3, 2000. The objective of this workshop was a review of the fusion material development programs, the progress of the collaboration and the irradiation effects studies on RAF/M steels in the collaborating parties (Europe, Russia the United States, and Japan). Moreover, the development of plans for future collaboration was discussed. The present report contains viewgraphs presented at the workshop. (author)

  3. Metallurgical Characterization of Reduced Activation Martensitic Steel F-82H Modified

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Lancha, A.M.; Gomez-Briceno, D.; Schirra, M.

    1999-12-01

    During 1995-1998 within of research and development programs on reduced ferritic/martensitic steels for fusion, metallurgical characterization of 8Cr-2WVTa steel, denominated F-28H modified, have been carried out. The work has focused on studying the microstructural and mechanical (tensile, creep, low cycle fatigue and charpy) characteristics of as-received state and aged material in the temperature range 300 degree centigrade to 600 degree centigrade for periods up to 5000 h. (Author) 45 refs

  4. Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-01-29

    A comparative study was carried out on the kinetics of the martensitic transformation in a 304L stainless steel during cold rolling by conventional and novel approaches. The phase analysis based on X-ray diffraction patterns and metallography and also magnetic measurements based on ferritescope readings were utilized to elucidate the kinetics of the martensitic transformation. A straightforward magnetic measurement approach for evaluating the amount of strain-induced martensite in metastable austenitic stainless steels has been introduced in this study. This technique collects the data throughout the bulk of the material to give a realistic estimate of the amount of ferromagnetic martensite. This is an advantage over the surface collecting methods such as ferritescope readings, which overestimates the amount of martensite due to its inhomogeneous distribution through the thickness based on the frictional effects between the rolls and the specimen surface. The proposed approach can be applied in various designs for static/continuous magnetic measurement of bulk materials that is advantageous compared with the conventional vibrating sample magnetometer technique which is useful for static measurement of bulk materials with specific shapes. Moreover, in analogy to ferritescope, the output data of the developed device is directly related to the amount of martensite.

  5. Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches

    International Nuclear Information System (INIS)

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-01-01

    A comparative study was carried out on the kinetics of the martensitic transformation in a 304L stainless steel during cold rolling by conventional and novel approaches. The phase analysis based on X-ray diffraction patterns and metallography and also magnetic measurements based on ferritescope readings were utilized to elucidate the kinetics of the martensitic transformation. A straightforward magnetic measurement approach for evaluating the amount of strain-induced martensite in metastable austenitic stainless steels has been introduced in this study. This technique collects the data throughout the bulk of the material to give a realistic estimate of the amount of ferromagnetic martensite. This is an advantage over the surface collecting methods such as ferritescope readings, which overestimates the amount of martensite due to its inhomogeneous distribution through the thickness based on the frictional effects between the rolls and the specimen surface. The proposed approach can be applied in various designs for static/continuous magnetic measurement of bulk materials that is advantageous compared with the conventional vibrating sample magnetometer technique which is useful for static measurement of bulk materials with specific shapes. Moreover, in analogy to ferritescope, the output data of the developed device is directly related to the amount of martensite

  6. Kinetics of anomalous multi-step formation of lath martensite in steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Pantleon, Karen; Reich, Michael

    2014-01-01

    A steel containing 16wt.% Cr, 5wt.% Ni and 3wt.% Cu was transformed into martensite by applying isochronal, i.e. constant rate, cooling followed by isothermal holding. The formation of martensite was monitored with dilatometry. A series of retardations and accelerations of the transformation...... was observed during isochronal cooling for cooling rates ranging from 1.5 to 50Kmin−1. The cooling rate in the isochronal stage was observed to influence the transformation rate in the isothermal stage. Electron backscatter diffraction was applied to determine the morphology of the martensite, which...... was of lath type, and to investigate the microstructure of the material. No influence of the cooling rate on the scale of the microstructure was observed. The series of retardations and accelerations of the transformation is interpreted in terms of the combined effect of the strain and interfacial energy...

  7. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  8. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  9. Analysis of martensitic transformation and residual tension in an 304L stainless steel

    International Nuclear Information System (INIS)

    Alves, Juciane Maria

    2014-01-01

    The relationship between plastic deformation and the strain induced phase transformation, that provides a practical route to the development of new engineering materials with excellent mechanical properties, characterize the TRIP effect 'Transformation Induced Plasticity'. Among the stainless steels, the metastable 304 L austenitic steel is susceptible to transformation of austenite-martensite phase from tensile tests at room temperature by increments of plastic deformation. It is of great technological and scientific interest the knowledge of the evolution of phase transformation and residual stress from different levels and rates of plastic deformation imposed to the material. It is also important to evaluate the interference of metallographic preparation in quantitative analyzes of this steel. The main techniques used in this study consisted of X-rays diffraction and Ferritoscopy for the quantitation phase, and XRD to residual stress analysis also. As observed, the phase transformation quantification has not suffered significant influence of the metallographic preparation and evolved from increments of plastic deformation due to different stop charges and strain rates, leading to a further strengthening of the austenite matrix. The evaluation of residual stress resulting from the martensitic transformation was susceptible to the metallographic preparation and increased its value on comparison to sample without metallographic preparation. It was also observed that the residual stress decreased with the increase of the fraction of transformed martensite. (author)

  10. Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, Yousef, E-mail: y.mazaheri@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Kermanpur, Ahmad; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2015-07-15

    Dual phase (DP) steels consisting different volume fractions of ferrite and martensite and different ferrite grain size were produced by a new route utilizing cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structure at 770 °C for different times. Scanning electron microscopy has been supplemented by nanoindentation and tensile test to follow microstructural changes and their correlations to the variation in phase's hardness and mechanical properties. The results showed that longer holding times resulted in coarser and softer ferrite grains in DP microstructures. Martensite nanohardness variation with holding time is related to change in its carbon content. Mechanical properties such as strength, elongation and toughness are well correlated with the martensite/ferrite hardness ratio.

  11. Characterization of the martensite phase formed during hydrogen ion irradiation in austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun

    2017-10-01

    Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.

  12. Isothermal Martensite Formation

    DEFF Research Database (Denmark)

    Villa, Matteo

    Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanism...... of lattice strains provided fundamental information on the state of stress in the material and clarified the role of the strain energy on martensite formation. Electron backscatter diffraction revealed that the microstructure of the material and the morphology of martensite were independent on the cooling...... leading to isothermal kinetics acquired new practical relevance because of the identification of isothermal martensite formation as the most likely process responsible for enhanced performances of sub-zero Celsius treated high carbon steel products. In the present work, different iron based alloys...

  13. Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel

    Science.gov (United States)

    Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel

    2017-01-01

    The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.

  14. Reversed austenite for enhancing ductility of martensitic stainless steel

    Science.gov (United States)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  15. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel

    International Nuclear Information System (INIS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-01-01

    The magnetic properties of ferrite–martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels. - Highlights: • Normalized impedance decreased as the ASTM grain size number increased. • An increase in martensite percentage resulted in a decrease in normalized impedance. • As the martensite in the DP steels increased, the MBN signals increased. • Barkhausen jumps increased with increasing the ASTM grain size number. • Both ECT and MBN had a high potential to detect microstructural changes of DP steels

  16. A study of the prospects for development of low-activation martensitic stainless steels for first-wall and blanket structures in fusion reactors

    International Nuclear Information System (INIS)

    Tupholme, K.W.; Orr, J.; Dulieu, D.; Butterworth, G.J.

    1986-04-01

    This study examines the potential of the elemental substitution approach to the design of low-activity martensitic stainless steels, subject to the requirement that the contact γ dose rate falls to a value that would allow essentially unrestricted handling of discarded material after a cooling period of 100 years. The factors governing the structure and properties of the 9-12%Cr martensitic steels are reviewed. Practicable substitutes for the proscribed elements molybdenum, nickel and niobium include tungsten, tantalum and an increased vanadium content in conjunction with optimised carbon, nitrogen and boron levels. Given the generally attractive combination of properties offered by the martensitic steels, the prospects for developing a satisfactory low-activity composition appear favourable. A series of experimental compositions and a programme of investigations are proposed to explore possible alloys with the objective of reproducing, as far as possible, the characteristics of existing fully martensitic high strength stainless steels. (author)

  17. A phase-field study of the physical concepts of martensitic transformations in steels

    International Nuclear Information System (INIS)

    Yeddu, Hemantha Kumar; Borgenstam, Annika; Hedström, Peter; Ågren, John

    2012-01-01

    Highlights: ► Critical driving forces associated with martensitic transformation are estimated. ► Plastic relaxation rate affects the transformation and microstructure evolution. ► Low relaxation rate promotes multi-domained martensitic microstructure. ► High relaxation rate promotes growth of a single martensite domain. ► The model predicts the final habit plane of martensite to be (−2 1 1) γ . - Abstract: A 3D elastoplastic phase-field model is employed to study various driving forces associated with martensitic transformations, plastic deformation behavior as well as the habit plane concept. Usage of thermodynamic parameters corresponding to Fe–0.3%C alloy in conjunction with anisotropic physical parameters of steels as the simulation parameters have yielded the results in reasonable agreement with experimental observations. From the simulation results, it is concluded that there exist three critical driving forces that control the transformation and also that the plastic deformation behavior of the material greatly affects the transformation. The model predicts the initial habit plane of the first infinitesimal unit of martensite as (−1 1 1). The model also predicts that, as the transformation progresses, the above mentioned martensite domain rotates and finally orients along the new habit plane of (−2 1 1).

  18. The effect of nitrogen on martensite formation in a Cr-Mn-Ni stainless steel

    International Nuclear Information System (INIS)

    Biggs, T.; Knutsen, R.D.

    1995-01-01

    The influence of nitrogen (0 to 0.27 wt%) on martensite formation in an experimental low-nickel stainless-steel alloy (Fe-17Cr-7Mn-4Ni) has been investigated. The alloys containing 0.1 wt% or more nitrogen are fully austenitic at room temperature; those containing less nitrogen consist of a mixture of austenite, martensite and δ-ferrite. The alloys containing less than 0.2 wt% nitrogen are metastable and undergo a transformation from austenite to martensite on deformation. Transmission electron microscopy investigations suggest that, within the nitrogen range considered in this investigation, the addition of nitrogen causes an increase in stacking fault energy which in turn inhibits the nucleation of martensite. As the low-nitrogen alloys (less than 0.2 wt% nitrogen) undergo deformation, ε-martensite (with the [ anti 110] γ and [ anti 12 anti 10] ε zone axes parallel) is observed at the intersection of stacking faults. With increasing strain, the presence of α'-martensite is observed in conjunction with the ε-martensite, and only α'-martensite is observed at very high strains. Both the Nishiyama-Wasserman and Kurdjumov-Sachs orientation relationships are observed between austenite and α'-martensite. The transformation to martensite during deformation causes a significant variation in room-temperature mechanical properties, despite the overall narrow range in composition considered. (orig.)

  19. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    Science.gov (United States)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  20. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 deg. C

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-01-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 deg. C and 550 deg. C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 deg. C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 deg. C. Corrosion depth of ferritic/martensitic steels also decreases at 550 deg. C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 deg. C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 deg. C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr

  1. Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel

    Science.gov (United States)

    Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad

    2017-09-01

    The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.

  2. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    Science.gov (United States)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  3. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  4. Shear-mode Crack Initiation Behavior in the Martensitic and Bainitic Microstructures

    Directory of Open Access Journals (Sweden)

    Wada Kentaro

    2018-01-01

    Full Text Available Fully reversed torsional fatigue tests were conducted to elucidate the behaviour of shear-mode crack initiation and propagation in one martensitic and two bainitic steels. The relationship between the crack initiation site and microstructure was investigated by means of an electron backscatter diffraction (EBSD technique. From the S-N diagram, two notable results were obtained: (i the shear-mode crack was initiated on the prior austenitic grain boundary in martensitic steel, while in bainitic steels, the crack was initiated along the {110} plane; one of the slip planes of bcc metals, and (ii the torsional fatigue limit of lower bainitic steel with finer grains was 60 MPa higher than that of upper bainitic steel with coarser grains even though the hardnesses were nearly equivalent. The mechanism determining the torsional fatigue strength in these steels is discussed from the viewpoint of microstructure morphology.

  5. Effect of ferrite-martensite interface morphology on bake hardening response of DP590 steel

    International Nuclear Information System (INIS)

    Chakraborty, Arnab; Adhikary, Manashi; Venugopalan, T.; Singh, Virender; Nanda, Tarun; Kumar, B. Ravi

    2016-01-01

    The effect of martensite spatial distribution and its interface morphology on the bake hardening characteristics of a dual phase steel was investigated. In one case, typical industrial continuous annealing line parameters were employed to anneal a 67% cold rolled steel to obtain a dual phase microstructure. In the other case, a modified annealing process with changed initial heating rates and peak annealing temperature was employed. The processed specimens were further tensile pre-strained within 1–5% strain range followed by a bake hardening treatment at 170 °C for 20 min. It was observed that industrial continuous annealing line processed specimen showed a peak of about 70 MPa in bake-hardening index at 2% pre-strain level. At higher pre-strain values a gradual drop in bake-hardening index was observed. On the contrary, modified annealing process showed near uniform bake-hardening response at all pre-strain levels and a decrease could be noted only above 4% pre-strain. The evolving microstructure at each stage of annealing process and after bake-hardening treatment was studied using field emission scanning electron microscope. The microstructure analysis distinctly revealed differences in martensite spatial distribution and interface morphologies between each annealing processes employed. The modified process showed predominant formation of martensite within the ferrite grains with serrated lath martensite interfaces. This nature of the martensite was considered responsible for the observed improvement in the bake-hardening response. Furthermore, along with improved bake-hardening response negligible loss in tensile ductility was also noted. This behaviour was correlated with delayed micro-crack initiation at martensite interface due to serrated nature.

  6. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Busby, J.T.; Byun, T.S.; Parish, C.M.

    2013-12-20

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of α- and ε-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at the twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both α- and ε-martensites were found in the microstructure, but at 1100 MPa only α-martensite presented in the specimen. Under indentation, α- and ε-martensite were observed in the material regardless of the stress level.

  7. Coolant compatibility studies. The effect of irradiation on tensile properties and stress corrosion cracking sensitivity of martensitic steels. MANET 4 - complementary studies

    International Nuclear Information System (INIS)

    Nystrand, A.C.

    1994-02-01

    Tensile and stress corrosion cracking tests have been carried out on MANET-type (1.4914 and FV448) and reduced activation (LA12TaLC) high-chromium martensitic steels. The materials had previously been exposed up to 5000 h at ∼275 degrees C in the core, above the core and remote from the core of a high pressure water loop in the Studsvik R2 reactor. After the mechanical testing the materials were examined visually and metallographically. The steel samples exposed in the core section showed large increases in tensile yield strengths when tested at 250 degrees C. However, the magnitude of the radiation hardening was considerably smaller in the reduced activation steel compared to the commercial steels; this observation is consistent with published data on other high-chromium martensitic steels and is associated with the lower chromium content of the LA12TaLC steel (8.9%) compared with those of the commercial steels (10.6 and 11.3%). Irradiation assisted stress corrosion cracking (IASCC) was not detected in any of the stressed steel samples after autoclave testing for times up to 1500 h at 250 degrees C in air-saturated high purity water. This apparent resistance to IASCC may be due to the high chromium martensitic steels not being sensitized by the irradiation in a comparable manner to that shown by the austenitic steels. However, additional studies are required to clarify some of the existing uncertainties with respect to IASCC of these martensitic steels

  8. Corrosion of martensitic steels in flowing 17Li83Pb alloy

    International Nuclear Information System (INIS)

    Flament, T.; Fauvet, P.; Hocde, B.; Sannier, J.

    1988-01-01

    Corrosion of three martensitic steels - 1.4914, HT9 and T91 - in the presence of flowing 17Li83Pb is investigated in thermal convection loops Tulip entirely made of 1.4914 steel. Two 3000-hour tests were performed at maximal temperatures of respectively 450 and 475 0 C with a δT of 60 0 C and an alloy velocity of about 0.08 m.s -1 . In both tests, corrosion is characterized by an homogeneous dissolution of the steel without formation of a corrosion layer. Corrosion rate is constant and very temperature dependent: the sound-metal loss of 1.4914 steel is 22 μm. year -1 at 450 0 C and 40 μm.year -1 at 475 0 C. Behaviours of 1.4914 and HT9 steels are very similar whereas T91 steel is about 20% less corroded

  9. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fan.zhang@wsu.edu [School of Mechanical and Material Eng., Washington State University (United States); Ruimi, Annie [Department of Mechanical Eng., Texas A& M University at Qatar, Doha (Qatar); Wo, Pui Ching; Field, David P. [School of Mechanical and Material Eng., Washington State University (United States)

    2016-04-06

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  10. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    International Nuclear Information System (INIS)

    Zhang, Fan; Ruimi, Annie; Wo, Pui Ching; Field, David P.

    2016-01-01

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  11. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution

    International Nuclear Information System (INIS)

    Marcelin, Sabrina; Pébère, Nadine; Régnier, Sophie

    2013-01-01

    Highlights: ► A better knowledge of the electrochemical behaviour of a martensitic stainless steel in bulk electrolyte was obtained. ► Quantitative parameters were obtained from impedance measurements. ► The study will be used as reference to investigate crevice corrosion using a thin layer cell. - Abstract: This paper focuses on the characterisation of the electrochemical behaviour of a martensitic stainless steel in 0.1 M NaCl + 0.04 M Na 2 SO 4 solution and is a part of a study devoted to crevice corrosion resistance of stainless steels. Polarisation curves and electrochemical impedance measurements were obtained for different experimental conditions in bulk electrolyte. X-ray photoelectron spectroscopy (XPS) was used to analyse the passive films. At the corrosion potential, the stainless steel was in the passive state and the corrosion process was controlled by the properties of the passive film formed during air exposure. During immersion in the deaerated solution, the passive film was only slightly modified, whereas it was altered both in composition and thickness during immersion in the aerated solution. After cathodic polarisation of the stainless steel electrode surface, the oxide film was almost totally removed and the surface appeared to be uniformly active for oxygen reduction. The new passive film, formed at the corrosion potential, was enriched with iron species and less protective. Impedance diagrams allowed the characterisation of both the oxide film (high-frequency range) and the charge transfer process (low-frequency range).

  12. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele [University of Applied Sciences of Southern Switzerland, P.O. Box 105, CH-6952 Canobbio (Switzerland); Spaetig, Philippe, E-mail: philippe.spatig@psi.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-5232 Villigen PSI (Switzerland)

    2011-07-31

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  13. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    International Nuclear Information System (INIS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spaetig, Philippe

    2011-01-01

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  14. Microstructural control and high temperature mechanical property of ferritic/martensitic steels for nuclear reactor application

    International Nuclear Information System (INIS)

    Adetunji, G.J.

    1991-04-01

    The materials under study are 9-12% Cr ferritic/martensitic steels, alternative candidate materials for application in core components of nuclear power reactors. This work involves (1) Investigation of high temperature fracture mechanism during slow tensile and limited creep testing at 600 o C (2) Extensive study of solute element segregation both theoretically and experimentally (3) Investigation of effects by thermal ageing and irradiation on microstructural developments in relation to high temperature mechanical behaviour. From (1) the results obtained indicate that the important microstructural characteristics controlling the fracture of 9-12% Cr ferritic/martensitic steels at high temperature are (a) solute segregation to inclusion-matrix interfaces (b) hardness of the martensitic matrix and (c) carbide particle size distribution. From (2) the results indicate a strong concentration gradient of silicon and molybdenum near lath packet boundaries for certain quenching rates from the austenitizing temperature. From (3) high temperature tensile data were obtained for irradiated samples with thermally aged ones as control. (author)

  15. Analysis of the strain induced martensitic transformation in austenitic steel subjected to dynamic perforation

    Directory of Open Access Journals (Sweden)

    Zaera R.

    2012-08-01

    Full Text Available An experimental and numerical analysis on the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is reported. Two target thicknesses are considered, 0.5 and 1.0 mm, and impact velocities range from 35 to 200 m/s. The perforation mechanisms are identified and the effect of the projectile nose-shape on the ability of the target for energy absorption is evaluated. Martensite has been detected in all the impacted samples and the role played by the projectile nose-shape on the transformation is highlighted. A 3D model implemented in ABAQUS/Explicit allowed to simulate the perforation tests. The material is defined through a constitutive description developed by the authors to describe the strain induced martensitic transformation taking place in metastable austenitic steels at high strain rates. The numerical results are compared with the experimental evidence and satisfactory matching is obtained. The numerical model succeeds in describing the perforation mechanisms associated to each projectile-target configuration analysed.

  16. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  17. Effect of niobium on tensile, impact and hardness mechanical properties in martensitic steels that could be strengthened

    International Nuclear Information System (INIS)

    Casteletti, L.C.

    1986-01-01

    Martensitic steels that could be strengthened by precipitation, based on traditional maraging steels were developed, aiming to total or partial substitution of the expensive elements. Niobium was used as the precipitation forming element and it was very effective in the strengthening of martensitic matrix. The Ni element was completely and partially substituted by Mn. Tensile and impact tests at room temperature and aging curves were obtained in the temperature range from 400 to 600 sup(0)C, for 20 alloys systems. Metallographic and fractographic analysis were done, and the results are presents. (M.C.K.)

  18. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    Science.gov (United States)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  19. In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements

    NARCIS (Netherlands)

    Alonso de Celada Casero, C.; Kooiker, Harm; Groen, Manso; Post, J; San Martin, D

    2017-01-01

    An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ) to martensite (α′) phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite

  20. Influence of cycle number, temperature and manufacturing process on deformation-induced martensite in meta-stable austenitic stainless steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Grosse, M.; Bart, G.

    2002-01-01

    During cyclic loading of austenitic stainless steel, microstructural changes occur, which affect both the mechanical and the physical properties. Typical features are the rearrangement of dislocations and, in some cases, a deformation-induced martensitic phase transformation. In our investigation martensite formation was used as an indication for material degradation due to fatigue. Knowledge about mechanisms and influencing parameters of the martensitic transformation process is essential for the application in a lifetime monitoring system. The investigations showed that for a given meta-stable austenitic stainless steel the deformation-induced martensite depends on the applied strain amplitude, the cycle number (accumulated plastic strain) and the temperature. It was demonstrated that the volume fraction of martensite continuously increases with the cycle number. Therefore, martensite content could be used for indication of the fatigue usage. According to the Coffin-Manson relation the dependence of the martensite content on the cycle number could be described with a power law. The exponent was determined to be equal to 0.5 for the applied loading and temperature conditions. The influence of temperature on deformation-induced martensite was considered by means of a thermodynamic relation. Furthermore, the initial material state (initial defect density) played an important role for the martensite formation rate. Material properties and microstructures were characterised by metallography, neutron diffraction, and advanced magnetic non-destructive techniques. In order to investigate the correlation between the martensite content in the austenitic matrix and magnetic properties, the magnetic susceptibility was determined. Furthermore, a high sensitive Giant Magneto Resistant sensor was used to visualize the martensite distribution at the surface of the fatigue specimens. All applied techniques, neutron diffraction and advanced magnetic methods allowed the detection

  1. Creep strength of reduced activation ferritic/martensitic steel Eurofer'97

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Lindau, R.; Rieth, M.; Schirra, M.

    2005-01-01

    Creep rupture strength of tempered martensitic steel Eurofer'97 has been investigated. Different products form (plate and bar) have been tested in the temperature range from 450 deg. C to 650 deg. C at different loads. No significant differences in the creep rupture properties have been found between the studied product forms. The Eurofer'97 has shown adequate creep rupture strength levels at short creep rupture tests, similar to those of the F-82 H mod. steel. However, for long testing times (>9000 h) the results available up to now at 500 deg. C and 550 deg. C seem to indicate a change in the creep degradation mechanism

  2. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  3. Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature

    International Nuclear Information System (INIS)

    Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki

    2009-01-01

    We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.

  4. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  5. Recent progress of R and D activities on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q., E-mail: qunying.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China); Baluc, N. [CRPP-EPFL, ODGA C110 5232 Villigen PSI (Switzerland); Dai, Y. [LNM, PSI, 5232 Villigen PSI (Switzerland); Jitsukawa, S. [JAEA, 2-4 Shirakata, Tokai-Mura, Ibaraki-Ken 319-1195 (Japan); Kimura, A. [IAE, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konys, J. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Kurtz, R.J. [PNNL, Richland, WA 99352 (United States); Lindau, R. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Muroga, T. [NIFS, Oroshi, Toki, Gifu 509-5292 (Japan); Odette, G.R. [UCSB, Santa Barbara, CA (United States); Raj, B. [IGCAR, Kalpakkam 603 102 (India); Stoller, R.E.; Tan, L. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Tanigawa, H. [JAEA, Naka, Ibaraki 311-0193 (Japan); Tavassoli, A.-A.F. [DMN/Dir, DEN, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Yamamoto, T. [UCSB, Santa Barbara, CA (United States); Wan, F. [DMPC, USTB, Beijing 100083 (China); Wu, Y. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China)

    2013-11-15

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical properties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation to different TBM and DEMO options.

  6. Effect of thermo-mechanical treatments on creep and fatigue properties of 9% Cr martensitic steels

    International Nuclear Information System (INIS)

    Hollner, S.; Fournier, B.; Le Pendu, J.; Caes, C.; Tournie, I.; Pineau, A.

    2011-01-01

    In the framework of the development of Generation IV nuclear reactors and fusion nuclear reactors, materials with high mechanical properties up to 550 C are required. In service the materials will be subjected to high-temperature creep and cyclic loadings. 9-12%Cr martensitic steels are candidate materials for these applications; however, they show a pronounced cyclic softening effect under cyclic loadings. This softening effect is linked to the coarsening of the martensitic microstructure. In order to refine its microstructure and its precipitation state, the commercial P91 steel has been submitted to a thermo-mechanical treatment including warm-rolling at 600 C and a tempering stage at 700 C. Microstructural observations confirm that this thermo-mechanical treatment led to a finer martensite with smaller MX-type precipitates. This evolution has an effect on the high-temperature mechanical properties: the optimized P91 steel is 100 Hv harder than the as-received P91, and its yield strength is 430 MPa higher at 20 C and 220 MPa higher at 550 C. Its lifetime under creep (at 650 C under 120 MPa) is at least 14 times longer; and the fatigue test at 650 C under 0.7% strain shows a slightly slower cyclic softening effect for the optimized P91. (authors)

  7. The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel

    Science.gov (United States)

    Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.

    2017-10-01

    This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  8. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-12-15

    Dislocation loops induced by helium irradiation at elevated temperatures in reduced-activation martensitic steels were investigated using transmission electron microscopy. Steels were irradiated with 100 keV helium ions to 0.8 dpa between 300 K and 723 K. At irradiation temperatures T{sub irr} ⩽ 573 K, small defects with both Burger vectors b = 1/2〈1 1 1〉 and b = 〈1 0 0〉 were observed, while at T{sub irr} ⩾ 623 K, the microstructure was dominated by large convoluted interstitial dislocation loops with b = 〈1 0 0〉. Only small cavities were found in the steels irradiated at 723 K.

  9. Effect of high temperature tempering on the mechanical properties and microstructure of the modified 410 martensitic stainless steel

    Science.gov (United States)

    Mabruri, Efendi; Pasaribu, Rahmat Ramadhan; Sugandi, Moh. Tri; Sunardi

    2018-05-01

    This paper reports the influence of high tempering temperature and holding time on the mechanical properties and microstructure of the recently modified 410 martensitic stainless steel. The modified steel was prepared by induction melting followed by hot forging, quenching and tempering. The hardness and tensile strength of the steels decreased with increasing tempering temperature from 600 to 700 °C and with increasing holding time from 1 to 6 h. Based on microstructural images, it was observed the coarsening of lath martensite and of the metal carbides as well. However, a relatively high hardness and strength were still exibited by this steel after tempering at a such high temperature of 600-700 °C. The partition of Mo into the carbides identified by EDS analysis may correlate with this situation.

  10. Effect of heavy tempering on microstructure and yield strength of 28CrMo48VTiB martensitic steel

    Science.gov (United States)

    Sun, Yu; Gu, Shunjie; Wang, Qian; Wang, Huibin; Wang, Qingfeng; Zhang, Fucheng

    2018-02-01

    The 28CrMo48VTiB martensitic steel for sulfide stress cracking (SSC) resistance oil country tubular goods (OCTG) of C110 grade was thermally processed through quenching at 890 °C and tempering at 600 °C-720 °C for 30-90 min. The microstructures of all samples were characterized using field emission scanning electron microscopy (FESEM), electron backscattering diffraction (EBSD), transmission electron microscopy (TEM) and x-ray diffractometry (XRD). Also, the tensile properties were measured. The results indicated that the yield strength (YS) decreased as both the tempering temperature and duration increased, due to the coarsening of martensitic packet/block/lath structures, the reduction of dislocation density, as well as the increase of both the volume fraction and average diameter of the precipitates. The martensitic lath width was the key microstructural parameter controlling the YS of this heavily-tempered martensitic steel, whereas the corresponding relationship was in accordance with the Langford-Cohen model. Furthermore, the martensitic structure boundary and the solid solution strengthening were the two most significant factors dominating the YS, in comparison with the dislocation and precipitation strengthening.

  11. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  12. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    OpenAIRE

    S.R. Al-Sayed; A.A. Hussein; A.A. Nofal; S.I. Hassab Elnaby; H. Elgazzar

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m?min?1) was adopted to reach the op...

  13. Predicting Microstructure Development During HighTemperature Nitriding of Martensitic Stainless SteelsUsing Thermodynamic Modeling

    OpenAIRE

    Tschiptschin, André Paulo

    2002-01-01

    Thermodynamic calculations of the Fe-Cr-N System in the region of the Gas Phase Equilibria have been compared with experimental results of maximum nitrogen absorption during nitriding of two Martensitic Stainless Steels (a 6 mm thick sheet of AISI 410S steel and green powder compacts of AISI 434L steel) under N2 atmospheres. The calculations have been performed combining the Fe-Cr-N System description contained in the SGTE Solid Solution Database and the gas phase for the N System contained i...

  14. Influence of Mo addition on the tempered properties of 13Cr martensitic stainless steel

    International Nuclear Information System (INIS)

    Jung, Byong Ho; Ahn, Yong Sik

    1998-01-01

    In order to investigate the effect of Mo addition on the mechanical properties of 13Cr-0.2C martensitic stainless steel, tensile test and Charpy V-notch test were performed after tempering at the temperature range of 200∼700 .deg. C following austenitizing at 1100 .deg. C. The yield strength and hardness of the steel were increased with the increase of Mo content at all tempering conditions, because Mo causes retardation of precipitation and coarsening of carbides and solid solution strengthening of matrix. Except 500 .deg. C of tempering temperature, the Charpy impact energy was significantly increased with Mo content and showed the highest value at 1.5 wt% addition. The increase of impact energy of the steel containing Mo is thought to be caused by δ-ferrite formed in the tempered martensitic matrix. At 500 .deg. C tempering, Charpy impact energy was decreased drastically due to temper embrittlement and it was not possible to prevent it even though Mo was added up to 1.5 wt%

  15. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tavassoli, A.-A.F.; Henry, J. [DMN/Dir, DEN, CEA Saclay, 91191, Gif-sur-Yvette Cedex (France); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe, 76021 (Germany); Sakasegawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tanigawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-10-15

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. In addition to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti, X = C/N) precipitates and reducing coarse M{sub 23}C{sub 6} (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. Limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic are presented and compared with data for F82H and Eurofer97 irradiated up to ∼70 displacements per atom at ∼300–325 °C.

  16. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized

  17. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    Science.gov (United States)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  18. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  19. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  20. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  1. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    La Fontaine, Alexandre; Yen, Hung-Wei; Trimby, Patrick; Moody, Steven; Miller, Sarah; Chensee, Martin; Ringer, Simon; Cairney, Julie

    2014-01-01

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  2. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  3. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  4. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  5. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Yano, Y.; Sato, Y.S.; Sekio, Y.; Ohtsuka, S.; Kaito, T.; Ogawa, R.; Kokawa, H.

    2013-01-01

    Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, designed for fast reactors and defect-free welds were successfully produced. The mechanical and microstructural properties of the friction stir welded steel were subsequently investigated. The hardness values of the stir zone were approximately 550 Hv (5.4 GPa) with minimal dependence on the rotational speed, even though they were much higher than those of the base material. However, tensile strengths and elongations of the stir zones were high at 298 K, compared to those of the base material. The excellent tensile properties are attributable to the fine grain formation during friction stir welding

  6. Corrosion behavior of austenitic and ferritic/martensitic steels in oxygen-saturated liquid Pb-Bi eutectic at 450circC and 550circC

    OpenAIRE

    倉田 有司; 二川 正敏; 斎藤 滋

    2005-01-01

    Static corrosion tests of various austenitic and ferritic/martensitic steels were conducted in oxygen-saturated liquid Pb-Bi at 450circC and 550circC for 3000h to study the effects of temperature and alloying elements on corrosion behavior. Oxidation, grain boundary corrosion, dissolution and penetration were observed. The corrosion depth decreases at 450circC with increasing Cr content in steels regardless of ferritic/martensitic or austenitic steels. Appreciable dissolution of Ni and Cr doe...

  7. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  8. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain

  9. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaohong; Yuan, Xiaohong; Jiang, Wen; Sun, Hudai; Li, Jun [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Kunyu, E-mail: zhaokunyu.kmust@gmail.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yang, Maosheng [Department of Structural Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2014-05-01

    The effects of different heat treatment parameters and cryogenic treatment (−75 °C) on microstructural changes and mechanical properties of a low-carbon martensitic stainless bearing steel were investigated. These analyses were performed via the optical microscope (OM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The obtained results showed that the execution of cryogenic treatment on quenched and tempered bearing steel increases hardness, tensile strength and decreases toughness with the increment of cryogenic treatment and tempering cycles. This paper also showed that the cryogenic cycle's treatment incorporating tempering can refine the martensite laths resulting in improvement of tensile strength. In addition, cryogenic treatment further reduces the retained austenite content but it cannot make retained austenite transform into martensite completely even tempering at high temperature.

  10. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel

    International Nuclear Information System (INIS)

    Li, Shaohong; Yuan, Xiaohong; Jiang, Wen; Sun, Hudai; Li, Jun; Zhao, Kunyu; Yang, Maosheng

    2014-01-01

    The effects of different heat treatment parameters and cryogenic treatment (−75 °C) on microstructural changes and mechanical properties of a low-carbon martensitic stainless bearing steel were investigated. These analyses were performed via the optical microscope (OM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The obtained results showed that the execution of cryogenic treatment on quenched and tempered bearing steel increases hardness, tensile strength and decreases toughness with the increment of cryogenic treatment and tempering cycles. This paper also showed that the cryogenic cycle's treatment incorporating tempering can refine the martensite laths resulting in improvement of tensile strength. In addition, cryogenic treatment further reduces the retained austenite content but it cannot make retained austenite transform into martensite completely even tempering at high temperature

  11. Effects of iron spallation products Ti, P and S on the physical metallurgy of 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Danylova, O.; Carlan, Y. de; Hamon, D.; Brachet, J.C.; Alamo, A.

    2002-01-01

    The design of an Accelerator Driven System (ADS) requires that the 'window', which separates the proton accelerator from the spallation target, be able to withstand very severe irradiation conditions. Fe-9/12Cr martensitic steels are good candidates for the window material due to their intrinsic stability under neutron irradiation, but the influence of iron spallation elements on their behaviour is not known. To elucidate the effects of the spallation elements titanium, phosphorus and sulphur on the behaviour of martensitic steels, it was decides to obtain different castings of 9Cr 1Mo steels doped with these elements. The aim of this paper is to present the data obtained on the physical metallurgy of these steels and to show the possible methods of obtaining titanium, phosphorus and sulphur in solid solution for subsequent study of the evolution of the microstructure and mechanical properties. (authors)

  12. Current status and recent research achievements in ferritic/martensitic steels

    Science.gov (United States)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  13. Current status and recent research achievements in ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F., E-mail: farhad.tavassoli@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA/DEN/DANS/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E., E-mail: eberhard.diegele@kit.edu [Karlsruhe Institut of Technology (KIT), Karlsruhe (Germany); Lindau, R., E-mail: rainer.lindau@kit.edu [Karlsruhe Institut of Technology (KIT), Karlsruhe (Germany); Luzginova, N., E-mail: Natalia.Luzginova@gmail.com [NRG-Petten, 1755 ZG Petten (Netherlands); Tanigawa, H., E-mail: tanigawa.hiroyasu@jaea.go.jp [Japan Atomic Energy Authority (JAEA), Tokai, Ibaraki, 319-1195 (Japan)

    2014-12-15

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe–Cr alloys, the chromium range was narrowed to 7–9% and the first RAFM was industrially produced in Japan (F82H: Fe–8%Cr–2%W–TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe–9%Cr–1%W–TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  14. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  15. Evaluation of selected martensitic stainless steels for use in downhole tubular expansion - Results of a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Robert [Shell International E and P, b.v. Kessler Park 1, Postbus 60, 2280 AB Rijswijk (Netherlands)

    2004-07-01

    A laboratory program was performed to evaluate the potential of selected martensitic stainless steels for downhole cladding applications. The evaluation of the effects of tubular expansion on mechanical properties, defects, and resistance to environmentally assisted cracking demonstrated that some steels were acceptable for the intended application. The results were used to qualify and select the stainless steel for the intended sweet cladding applications. (authors)

  16. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Littmark, U.; Johansen, A.; Christodoulides, C.

    1981-01-01

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb + ions to a fluence of 5 x 10 20 ions/m 2 , thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  17. Compatibility of austenitic and martensitic steels behaviour in semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Sannier, J.; Dufrenoy, T.; Flament, T.; Terlain, A.

    1991-01-01

    Compatibility tests between Pb17Li and 316L austenitic or 1.4914 martensitic steels have been performed with experimental conditions simulating the special features of the water-cooled lithium-lead blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 deg C temperature range, the results show that corrosion kinetics for both 316L and 1.4914 steels are quasi-linear and about 3 times lower compared to turbulent condition. From amount of recovered deposits, the mass transfer of 316L steel at 450 deg C appears to be equivalent to that of 1.1914 steel at 475 deg C. The same relationship was observed in flowing Pb17Li condition

  18. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    OpenAIRE

    Katoh Takahisa; Aizawa Tatsuhiko; Yamaguchi Tetsuya

    2015-01-01

    Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of t...

  19. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    International Nuclear Information System (INIS)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon; Oh, Seung Jin

    2010-01-01

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  20. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Oh, Seung Jin [KHNP, Daejeon (Korea, Republic of)

    2010-10-15

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  1. Deformation-induced martensitic transformation in a 201 austenitic steel: The synergy of stacking fault energy and chemical driving force

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, M., E-mail: m.moallemi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Fould Institute of Technology, Fouladshahr, Isfahan, 8491663763 (Iran, Islamic Republic of); Rezaee, A.; Baghbadorani, H. Samaei; Nezhadfar, P. Dastranjy [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-01-20

    The present study deals with the correlation of stacking fault energy's synergy and driving force in the formation of deformation-induced martensitic transformation in a 201 austenitic stainless steel. The fraction of deformation-induced martensite was characterized by means of X-ray diffraction and magnetic induction techniques. The kinetics of the martensite formation versus applied strain was evaluated through the sigmoidal model. It was shown that the volume fraction of ά-martensite is closely related to the driving force/SFE ratio of the alloy. The results also showed that the martensite content is similar in both XRD and magnetic methods and the applied sigmoidal model was consistent with the obtained experimental data.

  2. Microstructural evolution and response to double-loop reactivation testing of heat-treated PH 13-8 Mo martensitic stainless steel

    International Nuclear Information System (INIS)

    Cieslak, W.R.; Cieslak, M.J.; Hills, C.R.

    1987-01-01

    Compared to the austenitic stainless steels, relatively few studies have been reported of the intergranular corrosion suceptibility of martensitic stainless steels, particularly those containing 0.05 corresponds to a ditch structure in ASTM A 262-A (oxalic acid)

  3. Evolution of the microstructure and the mechanical properties of the 15-5PH martensitic stainless steel after ageing

    International Nuclear Information System (INIS)

    Herny, E.; Lafont, M.C.; Andrieu, E.; Lours, P.; Herny, E.; Lagain, P.; Cloue, J.M.

    2006-01-01

    The structural hardening martensitic stainless steel 15-5PH is used in aerospace and nuclear industries for the manufacture of pieces which are thermo-mechanically highly stressed. For this reason, the steel has to have good mechanical properties in a large range of running temperatures as well as a good corrosion resistance. During long time periods between 300 and 400 C, the 15-5PH is susceptible to embrittlement due to the decomposition of the martensite into a Cr-rich area and a Fe-rich area. This embrittlement induces a drop of the impact strength and of the ductility with a strong increase of the ductile-brittle transition and of the tensile properties. Transition electron microscopy observations have revealed the appearance of a thin chromium carbides precipitation after ageing. The spinodal decomposition of the martensite has been revealed by the tomographic atomic probe. (O.M.)

  4. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  5. Martensitic transformations in 304 stainless steel after implantation with helium, hydrogen and deuterium

    International Nuclear Information System (INIS)

    Johnson, E.; Grabaek, L.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, N.; Sakamoto, I.

    1988-01-01

    Using conversion electron Moessbauer spectroscopy (CEMS) and glancing angle X-ray diffraction, martensitic transformations have been studied in type 304 austenitic stainless steels implanted with 8 keV helium, hydrogen and deuterium. Furthermore, using CEMS in the energy selective mode (DCEMS), the distribution of martensite in the implantation zone has been analysed as a function of depth. Transformation of the implanted layer occurs after implantation with 10 21 m -2 He + ions while 100 times higher fluence is required for the implanted layer to transform after hydrogen or deuterium implantations. This difference is due to the ability of helium to form high pressure gas bubbles, while implanted hydrogen is continuously lost by back diffusion to the surface. The helium bubbles, which are confined under pressures as high as 60 GPa, will induce extremely high stress levels in the implanted layer, by which the martensitic transformation is directly induced. The fact that a much higher fluence of hydrogen or deuterium is required to induce the transformation, shows that radiation damage plays only a minor role. In this case, the martensitic transformation first occurs when the implanted layer resembles the state of a cathodically charged surface. (orig.)

  6. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, S.Bulent

    2015-01-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  7. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  8. Microstructural evolution of martensitic steels during fast neutron iradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1989-01-01

    Irradiation of martensitic/ferritic steels with fast neutrons (E > 0.1 MeV) to displacement damage levels of 30--50 dpa at temperatures of 300--500 degree C produces significant changes in the as-tempered microstructure. Dislocation loops and networks can be produced, irradiation-induced precipitates can form, the lath/subgrain boundary structure and the thermal precipitates produced during tempering can become unstable, and if helium is present, bubbles and voids can form. These microstructural changes caused by irradiation can have important effects on the properties of this class of steels for both fast breeder reactor (FBR) and magnetic fusion reactor (MFR) applications. The purpose of this paper is to compare reactor-irradiated and long-term thermally aged 9Cr--1MoVNb specimens, in order to distinguish effects due to displacement damage from those caused by elevated-temperature exposure alone. 7 refs., 1 fig

  9. Compression behavior of a ferritic-martensitic Cr-Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Pantleon, Wolfgang

    2012-01-01

    The compression behavior of a ferritic-martensitic Cr-Mo steel is characterized for strain rates ranging from 10-4 s-1 to 10-1 s-1 and engineering strains up to 40%. Adiabatic heating causes a reduction in flow stress during continuous compression at a strain rate of 10-1 s-1. No reduction...... in the flow stress is observed if interrupted compression tests are performed with loading and holding steps. Two work-hardening stages with work-hardening rates decreasing linearly with the flow stress are identified and interpreted in terms of the KocksMecking model. The microstructural evolution...

  10. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    Science.gov (United States)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  11. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    International Nuclear Information System (INIS)

    Naderi, M.; Saeed-Akbari, A.; Bleck, W.

    2008-01-01

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s -1 to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases

  12. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, M. [Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Shariati Street, Arak (Iran, Islamic Republic of)], E-mail: malek.naderi@iehk.rwth-aachen.de; Saeed-Akbari, A.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany)

    2008-07-25

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s{sup -1} to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases.

  13. Microchemistry of neutron irradiated 12%CrMoVNb martensitic steel

    International Nuclear Information System (INIS)

    Little, E.A.; Morgan, T.S.; Faulkner, R.G.

    1992-01-01

    Non-equilibrium solute segregation has been studied in a 12%CrMoVNb martensitic steel following fast reactor irradiation at 465 C and correlated with the development of M 6 X η-phase. Cr, Ni, Si, Mo, P and Mn are all shown to exhibit positive segregation to lath boundaries and are subsequently incorporated into M 6 X precipitates. The co-segregation of a combination of these elements which include P and Si, and possibly Cr or Mo, appears to promote M 6 X formation

  14. Reliability/unreliability of mixture rule in a low alloy ferrite–martensite dual phase steel

    International Nuclear Information System (INIS)

    Fereiduni, E.; Ghasemi Banadkouki, S.S.

    2013-01-01

    Highlights: •The ferrite hardening response is quite variable in DP microstructures. •Martensite microhardness has not shown a specific manner in DP microstructures. •There is a major difference between experimental and calculated hardness values. •Mixture rule can be applied to predict the hardness if using some assumptions. -- Abstract: The aim of this paper is to investigate in details the relationship between the volume fractions of ferrite and martensite with the variation of hardness in a low alloy ferrite–martensite dual phase (DP) steel. For this purpose, a wide variety of ferrite–martensite DP samples consisting different volume fractions of ferrite and martensite have been developed using step quenching heat treatment cycle involving reheating at 860 °C for 60 min, soaking at 600 °C salt bath for various holding times followed by 70 °C hot oil quenching. Optical microscopy has been supplemented by electron microscopy and hardness measurements to follow microstructural changes and their relation to the variation in hardness. The results showed that there is a non-linear relationship between the hardness of DP samples with the volume fraction of phase constituents indicating that the mixture rule is not reliable in the ferrite–martensite DP microstructures. The unreliability of mixture rule is related to the variation of ferrite and martensite hardening responses developed in the DP samples. The DP microstructure consisting 6–7% volume fraction of continuous grain boundary ferrite in the vicinity of martensite has been associated with a remarkable higher hardness for both ferrite and martensite in comparison with the other DP microstructures. The higher martensite hardness is due to the higher carbon content of the remaining metastable austenite developed in the ferrite–austenite two phase field area, leading to the harder martensite formation on the subsequent 70 °C hot oil quenching. The harder ferrite grains have been developed as a

  15. Effect of plastic behaviour of steels during martensitic transformation on quenching stress initiation

    International Nuclear Information System (INIS)

    Denis-Judlin, Sabine

    1980-01-01

    This research thesis reports the study of the effects of a steel martensitic transformation on the mechanisms producing internal stresses during quench. After having reported a bibliographical study on tests of qualitative and quantitative prediction (presentation of several models) of the genesis of internal stresses during quench, the author reports the study of the alloy behaviour during cooling and presents the basis of a model of prediction of internal stresses. The next part addresses the determination of the influence of martensitic transformation on the evolution of stresses during quench. The last part reports the taking into account of the effect of stress-phase transformation interaction in the calculation of internal stresses [fr

  16. Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ziaei-Rad, S., E-mail: szrad@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Saeidi, N. [Department of Materials Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Jamshidian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-18

    The morphology and distribution of the dispersed martensite islands in the ferrite matrix plays a key role in the formation of shear bands in dual phase steels. In this study, we investigate the relationship between the martensite dispersion and the strain localization regions due to the formation of shear bands in fine-grained DP 780 steel, employing experimental observations as well as numerical simulations. SEM studies of the deformed microstructure showed that voids nucleated at ferrite-martensite interface within larger ferrite grains and regions with low local martensite fraction. The experimental results were precisely analyzed by finite element simulations based on the theory of crystal plasticity. A parametric study was then performed to obtain a deeper insight in to the effect of martensite dispersion on the strain localization of the neighboring ferrite. Crystal plasticity simulation results revealed that in a more regular structure compared to a random structure, a greater region of the ferrite phase contributes to accommodate plasticity. In addition, these regions limit the formation of main shear bands by creating barriers against stress concentration regions, results in lower growth and interaction of stress concentration regions with each others.

  17. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    International Nuclear Information System (INIS)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S.; Hirose, T.; Kasada, R.; Kimura, A.; Kohyama, A.; Kohno, Y.; Klueh, R.L.; Sokolov, M.; Stoller, R.; Zinklek, S.; Yamamoto, T.; Odette, G.; Kurtz, R.J.

    2007-01-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  18. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kasada, R.; Kimura, A.; Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan); Kohno, Y. [Muroran Institute of Technology, Muroran, Hokkaido (Japan); Klueh, R.L. [0ak Ridge Noational Laboratory, TN (United States); Sokolov, M.; Stoller, R.; Zinklek, S. [0ak Ridge Noational Laboratory, Materials Science and Technology Div., TN (United States); Yamamoto, T.; Odette, G. [UCSB, Dept. of Chemical Engineering UCSB, Santa-Barbara (United States); Kurtz, R.J. [Pacifie Northwest National Laboratory, Richland WA (United States)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  19. Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Baffie, N.; Stolarz, J.; Magnin, Th.

    2000-01-01

    The influence of martensitic transformation induced by cyclic straining on the mechanisms of low cycle fatigue damage in a metastable austenitic stainless steel with different grain sizes has been investigated using macroscopic measurements and microscopic observations of short crack evolutions. The amount of martensite formed during cyclic straining increases with increasing plastic strain amplitude and cumulative plastic strain but the dominant parameter is the grain size of austenite. The fine microstructure (D = 10 μm) with maximum martensite fraction of about 20% is characterised by a better fatigue resistance than the coarse one (D 40μm and only 2% of martensite) for the same plastic strain amplitude. Martensitic transformation is found to radically modify the cyclic response of the alloy and consequently the damage mechanisms. Indeed, both short crack nucleation and growth take place exclusively in the transformed regions. A mechanism of short crack propagation based on the γ→ α' transformation assisted by stress concentration at the crack tip is proposed. The indirect influence of grain boundaries in the austenite on crack propagation in the martensite is demonstrated. The better fatigue resistance of metastable alloys with fine granular structure can thus be understood. (authors)

  20. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    Science.gov (United States)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  1. The influence of the martensitic transformation on the fatigue of an AISI type 316 metastable stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J; Sousa e Silva, A.S. de; Monteiro, S.N.

    The influence of the martensitic transformation on the process of pulse tension fatigue of a AISI type 316 metastable stainless steel was studied at 25 0 and 196 0 c. The fatigue tests were performed on annealed and cold worked specimens in order to separate the effects of static transformation, dynamic transformation and work hardening. The fatigue limits obtained from the corresponding Wohler curves were compared for the different test conditions. The results showed that the fatigue is not affected by the dynamically induced martensite. On the other hand the static martensite, previously induced, appears to decrease the resistance to fatigue. The reasons for these effects are discussed. (Author) [pt

  2. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  3. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    DEFF Research Database (Denmark)

    Yang, R.; Zhang, X.; Mallipeddi, D.

    2017-01-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 degrees C for 2h and at similar to 750 degrees C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together...... with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel...

  4. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  5. Boron-bearing Influences of 9Cr-0.5Mo-2W-V-Nb Ferritic/Martensitic Steels for a SFR Fuel Cladding

    International Nuclear Information System (INIS)

    Baek, Jong-Hyuk; Han, Chang-Hee; Kim, Woo-Gon; Kim, Sung-Ho; Lee, Chan-Bock

    2008-01-01

    Currently the principal materials in a SFR (sodium-cooled fast reactor) of Gen-IV nuclear system are considering stainless steels (e.g. austenitic steels and ferritic/martensitic steels) for pressure boundary and structural applications in the primary circuit (cladding, duct, cold and hot leg piping, and pressure vessel). There are sound technical justifications for these material selections, and the adoption of these stainless steels for a wide range of nuclear and non-nuclear applications has generated much industrial technology and experience. However, there are strong incentives to develop advanced materials, especially cladding, for the Gen-IV SFR. The Gen-IV SFR is to have a considerable increase in safety and be economically competitive when compared with the conventional water reactors. To accomplish these objectives, the development of the fuel cladding material should be set forth as a premise because its integrity is directly related to those of the reactor system as well as the fuel in the Gen-IV SFR. Since last year, a R and D program was launched to develop the improved ferritic/martensitic steel for the Gen-IV SFR fuel cladding. Categories of materials considered in the program included 8 - 12% Cr ferritic/ martensitic steels. A strong recommendation was made for the development of a high strength steel equivalent to or superior to ASTM Gr.92 steel to offset the difficulties encountered with commercial available steels of the 8 - 12% Cr group. That is, since fuel cladding in the Gen-IV SFR would operate under higher temperatures than 600 .deg. C, contacting with liquid sodium, and be irradiated by neutrons to as high as 200dpa, the cladding should thus sustain both superior irradiation and temperature stabilities during an operational life. The newly developed advanced steel should overcome the severe drawback; mechanical properties, especially creep, are deteriorated at a higher temperature over 600 .deg. C. In this study, as one of the composition

  6. Modelling the interaction between plasticity and the austenite-martensite transformation

    NARCIS (Netherlands)

    Kouznetsova, V.G.; Geers, M.G.D.

    2007-01-01

    Many advanced steels, such as high strength steels and TRIP steels, owe their excellent combination of strength and ductility to the complex microstructural behaviour involving the austenite to martensite phase transformation. In this paper a physically-based model for martensitic transformation

  7. Influence of a magnetic field on the corrosion of austenitic and martensitic steels by semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Terlain, A.; Dufrenoy, T.

    1994-01-01

    The influence of a magnetic field on the compatibility of 316L austenitic and 1.4914 martensitic steels with Pb17Li has been studied in conditions simulating the special features of the water-cooled Pb17Li blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 C temperature range, the results show an increase of the corrosion rate in the presence of a magnetic field. This increase is about 50% for 316L steel and 30% for 1.4914 martensitic steel. Moreover the magnetic field induces a loss of symmetry in the deposition process: the amount of recovered deposit is greater in the direction parallel to the magnetic field than in the perpendicular one. ((orig.))

  8. Compatibility of graphite with a martensitic-ferritic steel, an austenitic stainless steel and a Ni-base alloy up to 1250 C

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-08-01

    To study the chemical interactions between graphite and a martensitic-ferritic steel (1.4914), an austenitic stainless steel (1.4919; AISI 316), and a Ni-base alloy (Hastelloy X) isothermal reaction experiments were performed in the temperature range between 900 and 1250 C. At higher temperatures a rapid and complete liquefaction of the components occurred as a result of eutectic interactions. The chemical interactions are diffusion-controlled processes and can be described by parabolic rate laws. The reaction behavior of the two steels is very similar. The chemical interactions of the steels with graphite are much faster above 1100 C than those for the Ni-base alloy. Below 1000 C the effect is opposite. (orig.) [de

  9. Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture

    NARCIS (Netherlands)

    Hilkhuijsen, P.; Geijselaers, Hubertus J.M.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Akkerman, Remko

    2013-01-01

    Uniaxial tensile tests on both a non-textured and a highly textured, fully austenitic stainless steel were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from the austenitic FCC to the martensitic BCC phase. Differences in

  10. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 deg. C

    International Nuclear Information System (INIS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-01-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 deg. C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 deg. C and 300 deg. C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 deg. C (up to 2.6 dpa), and tested between -170 deg. C and 300 deg. C. Irradiation effects at lower irradiation temperatures are more significant

  11. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C

    Science.gov (United States)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-06-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between -170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.

  12. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  13. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    International Nuclear Information System (INIS)

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-01-01

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  14. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  15. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    International Nuclear Information System (INIS)

    Minkovitz, E.; Eliezer, D.

    1984-01-01

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  16. Structure and microstructure evolution of a ternary Fe–Cr–Ni alloy akin to super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ravi Kumar, B.; Sharma, Sailaja; Munda, Parikshit; Minz, R.K.

    2013-01-01

    Highlights: • Reaustenisation by recrystallisation rather by a diffusion controlled process. • Ultrafine grained austenite formation in martensite matrix by recrystallisation. • In situ high temperature austenite transformation studies by X-ray diffraction. • Microstructure tailoring to achieve tensile strength (∼1 GPa) with good ductility. - Abstract: A ternary Fe–Cr–Ni alloy, akin to super martensitic stainless steels was prepared in vacuum induction furnace. The as cast ingot was solution treated at 1200 °C for 25 h and then hot forged and rolled to reduce into plate form. The hot rolled plate of martensitic microstructure was then cold rolled to 80% of thickness reduction. The phase transformation studies by X-ray diffraction analysis of hot and cold rolled specimens showed presence of retained austenite in air cooled as well as in water quenched state after annealing/austenising temperature of 1060 °C. The reaustenisation behaviour of the cold rolled alloy in water quenched state was studied by high temperature X-ray diffraction analysis. It showed very stable martensitic phase and the completion of reaustenisation process were observed to occur at about 950 °C. The recrystallisation behaviour of cold rolled material under isothermal and repeated annealing treatment was studied in detail by electron microscope. The tensile properties of the material were evaluated after various annealing treatments. The study revealed that by a suitable sequence of repetitive annealing process microstructure could be tailored to achieve tensile strength above 1 GPa with good ductility in a super martensitic stainless steel

  17. Postirradiation thermocyclic loading of ferritic-martensitic structural materials

    Science.gov (United States)

    Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.

    Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.

  18. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  19. Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen Chong; Zhang, Chi; Yang, Zhigang [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing (China); Zhao, Ji Jun [State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology, Dalian (China)

    2017-04-15

    One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7–9 wt.%Cr) RAFM steels in a condition characterized by 0.1–5 dpa (or 0 dpa) and a temperature range of 25–500°C.

  20. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  1. Moessbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, B. F. O., E-mail: benilde@ci.uc.pt [University of Coimbra, CEMDRX, Department of Physics (Portugal); Blumers, M. [University Mainz, Institute of Inorganic Chemistry (Germany); Kortmann, A. [Ingpuls GmbH (Germany); Theisen, W. [Ruhr-Universitaet Bochum, Institute of Materials (Germany); Batista, A. C. [University of Coimbra, CEMDRX, Department of Physics (Portugal); Klingelhoefer, G. [University Mainz, Institute of Inorganic Chemistry (Germany)

    2013-04-15

    A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Moessbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Moessbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.

  2. Some initial considerations on the suitability of Ferritic/ martensitic stainless steels as first wall and blanket materials in fusion reactors

    International Nuclear Information System (INIS)

    Butterworth, G.J.

    1982-01-01

    The constitution of stainless iron alloys and the characteristic properties of alloys in the main ferritic, martensitic and austenitic groups are discussed. A comparison of published data on the mechanical, thermal and irradiation properties of typical austenitic and martensitic/ferritic steels shows that alloys in the latter groups have certain advantages for fusion applications. The ferromagnetism exhibited by martensitic and ferritic alloys has, however, been identified as a potentially serious obstacle to their utilisation in magnetic confinement devices. The paper describes measurements performed in other laboratories on the magnetic properties of two representative martensitic alloys 12Cr-1Mo and 9Cr-2Mo. These observations show that a modest bias magnetic field of magnitude 1 - 2 tesla induces a state of magnetic saturation in these materials. They would thus behave as essentially paramagnetic materials having a relative permeability close to unity when saturated by the toroidal field of a tokamak reactor. The results of computations by the General Atomic research group to assess the implications of such magnetic behaviour on reactor design and operation are presented. The results so far indicate that the ferromagnetism of martensitic/ferritic steels would not represent a major obstacle to their utilisation as first wall or blanket materials. (author)

  3. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...

  4. Development of Reduced Activation Ferritic-Martensitic Steels in South Korea

    International Nuclear Information System (INIS)

    Chun, Y. B.; Choi, B. K.; Han, C. H.; Lee, D. W.; Cho, S.; Kim, T. K.; Jeong, Y. H.

    2012-01-01

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce longlived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as candidate structural material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). South Korea joined the ITER program in 2003 and since then extensive effort has been made for developing the helium-cooled solid-breeder (HCSB) TBM which is scheduled to be tested in the ITER program. However, there has been no research activity to develop RAFM steels in South Korea, while all the participants in the ITER program have developed their own RAFM steels. It is recently that the Korea Atomic Energy Research Institute (KAERI) started the Korean RAFM steel research program, aiming at an application for the HCSB-type TBM structure in ITER. In what follows, the current status of RAFM steels and the R and D program led by KAERI to develop Korean RAFM steels are summarized

  5. Evolution of metal-metal wear mechanisms in martensitic steel deposits for recharging

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; De Vedia, Luis A

    2008-01-01

    This work studied metal recharged by welding with a martensitic steel (Cr, Mn, Mo, V and W alloy), deposited with a metal filled tubular wire on a low carbon steel, using semi-automatic welding with a contributing heat of 2 kJ/mm and under a gaseous protection of Ar-2%CO 2 . Transverse cuts were extracted from the welded sample for microstructural characterization, hardness measurement, determination of chemical composition and wear tests. The microstructural characterization was performed using light microscopy (LM) and scanning electron microscopy (SEM), X-Ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The wear tests (metal-metal) were carried out on an Amsler machine in natural flow condition, with 500, 1250 and 2000 N of applied charge. The reference material was SAE 1020 steel. The weight loss curves were determined as a function of the distance run up to 5000 meters for all conditions. Then the test's wear surfaces and debris were analyzed. The microstructure consisted mostly of martensite and a fraction of retained austenite. A pattern of dendritic segregation was observed. The hardness on the wear surface averaged 670 HV 1 . The wear behavior showed a lineal variation between the loss of weight and the distance run, for the different loads applied. The rates of wear for each condition were obtained. The observed wear mechanisms were abrasion and adhesion, with plastic deformation. At low charges, the predominant mechanism was mild oxidative wear and at bigger loads heavy oxidative wear with the presence of zones with adhesion. The oxides formed on the surface of the eroded plate were identified

  6. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    Science.gov (United States)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  7. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    International Nuclear Information System (INIS)

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  8. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

    DEFF Research Database (Denmark)

    Villa, M.; Niessen, F.; Somers, M. A. J.

    2018-01-01

    Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were...... measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro......-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain...

  9. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  10. The microstructural stability and mechanical properties of two low activation martensitic steels

    International Nuclear Information System (INIS)

    Victoria, M.; Marmy, P.; Batawi, E.; Peters, J.; Briguet, C.; Rezai-Aria, F.; Gavillet, D.

    1996-01-01

    A desirable feature of future magnetically confined fusion reactors is the prospect of producing low level radioactive waste. In order to minimize the volume of radioactive material, in particular from the first wall and blanket structures, reduced long term activation alloys are being developed. Here, a low activation composition of a martensitic 9% Cr steel has been studied, based on the DIN (Deutsches Inst. fuer Normung) 1.4914 composition (MANET) but replacing Ni, Mo and Nb by the low activation elements W, V and Ta. Two casts were produced from high purity components, in which the effects of controlled additions of Mn (0.58 and 0.055 wt. %) and N (7 and 290 wt. ppm) were studied, so that the final compositions resulted in one cast with high Mn and low N (steel A) and the other with the opposite conditions (steel B). The two steels were evaluated in terms of structural stability and mechanical properties under tensile, fatigue and fracture toughness tests. It has been found that both alloys have a DBTT below room temperature, which in the case of the steel A is 70 K below that of MANET. Although the tensile strength is somewhat below that of the parent steel, both steels have longer fatigue life

  11. The Potential of Self-Tempered Martensite and Bainite in Improving the Fatigue Strength of Thermomechanically Processed Steels

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2018-01-01

    Full Text Available In contrast to a two-stage hardening and tempering process, the definition of optimized cooling routes after hot working of low-alloy Cr steel allows the adjustments of high-strength microstructures with a sufficient degree of ductility at the same time without any additional heat-treatment. While compressed air cooling after hot forging of micro-alloyed steel grades leads to the formation of lower bainite with finedispersed cementite platelets, quenching by water spray down to the martensite start temperature results in the formation of martensite, that is self-tempered during the subsequent slow-cooling in air. The precipitation of nano-sized cementite precipitates result in superior mechanical properties with respect to impact and tensile testing. Cyclic deformation and crack propagation tests being carried out using resonance testing (100Hz and ultrasonic fatigue testing (20kHz systems revealed a pronounced increase in fatigue strength by about 150MPa of the self-tempered martensite condition as compared to the bainitic modification. For the latter one, a steady decrease of the fatigue strength is observed rather than the existence of a real fatigue limit.

  12. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 6000C

    International Nuclear Information System (INIS)

    Isore, A.; Miyada, L.T.

    1975-01-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280 0 C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600 0 C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions

  13. European development of ferritic-martensitic steels for fast reactor wrapper applications

    International Nuclear Information System (INIS)

    Bagley, K.; Little, E.A.; Levy, V.; Alamo, A.

    1987-01-01

    9-12%Cr ferritic-martensitic stainless steels are under development in Europe for fast reactor sub-assembly wrapper applications. Within this class of alloys, attention is focussed on three key specifications, viz. FV448 and DIN 1.4914 (both 10-12%CrMoVNb steels) and EM10 (an 8-10%Cr-0.15%C steel), which can be optimized to give acceptably low ductile-brittle transition characteristics. The results of studies on these steels, and earlier choices, covering heat treatment and compositional optimization, evolution of wrapper fabrication routes, pre and post-irradiation mechanical property and fracture toughness behaviour, microstructural stability, void swelling and in-reactor creep characteristics are reviewed. The retention of high void swelling to displacement doses in excess of 100 dpa in reactor irradiations reaffirms the selection of 9-12%Cr steels for on-going wrapper development. Moreover, irradiation-induced changes in mechanical properties (e.g. in-reactor creep and impact behaviour), measured to intermediate doses, do not give cause for concern; however, additional data to higher doses and at the lower irradiation temperatures of 370 0 -400 0 C are needed in order to fully endorse these alloys for high burnup applications in advanced reactor systems

  14. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2001-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  15. Experimental Analysis of Residual Stresses in Samples of Austenitic Stainless Steel Welded on Martensitic Stainless Steel Used for Kaplan Blades Repairs

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2011-01-01

    Full Text Available Residual stresses occur in materials as a result of mechanical processes: welding, machining, grinding etc. If residual stresses reach high values they can accelerate the occurrence of cracks and erosion of material. An experimental research was made in order to study the occurrence of residual stresses in the repaired areas of hydraulic turbine components damaged by cavitation erosion. An austenitic stainless steel was welded in various layer thicknesses on a martensitic stainless steel base. The residual stresses were determined using the hole drilling strain gage method.

  16. Deformation-induced martensite and resistance to cavitation erosion

    International Nuclear Information System (INIS)

    Richman, R.H.

    1995-01-01

    Exposure to cavitating liquids can induce surface transformation in metastable alloys, notably the 18Cr-8Ni class of stainless steels. The question of whether such transformation contributes to erosion resistance has not been resolved. To address that issue, two metastable stainless steels (Types 301 and 304L) and a near-equiatomic NiTi alloy were subjected to cavitation. Magnetic measurements during and after cavitation erosion indicate that substantial reversion of deformation-induced martensite occurs in the highly deformed surface layers of the stainless steels. Thus, cyclic formation and reversion of martensite is deduced to be a non-trivial energy-adsorption mechanism in those steels. The extreme case of cyclic induction and essentially complete reversion of martensite is illustrated by superelastic NiTi, which is extraordinarily resistant to cavitation damage. (orig.)

  17. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    Science.gov (United States)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  18. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    International Nuclear Information System (INIS)

    Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W.

    2015-01-01

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample

  19. On the tempered martensite embrittlement in AISI 4140 low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F.A. (Dept. of Materials Science and Metallurgy, Catholic Univ., Rio de Janeiro, RJ (Brazil)); Pereira, L.C.; Gatts, C. (Dept. of Metallurgy and Materials Engineering, Federal Univ., Rio de Janeiro, RJ (Brazil)); Graca, M.L. (Materials Div., Technical Aerospace Center, Sao Jose dos Campos, SP (Brazil))

    1991-02-01

    In the present investigation the Auger electron spectroscopy (AES) technique was used to determine local carbon and phosphorus concentrations on the fracture surfaces of as-quenched and quenched-and-tempered (at 350deg C) AISI 4140 steel specimens austenitized at low and high temperatures. The AES results were rationalized to conclude that, although carbide growth as well as phosphorus segregation are expected to contribute to tempered martensite embrittlement, carbide precipitation on prior austenite grain boundaries during tempering is seen to be the microstructural change directly responsible for the occurrence of the referred embrittlement phenomenon. (orig.).

  20. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  1. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  2. Hydrogen behaviour in the aged low activation martensitic steel F82H for fusion reactor applications

    International Nuclear Information System (INIS)

    Benamati, G.

    1997-10-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of hydrogen in the low activation martensitic steel F82H aged for 2000 h under vacuum at 773 K. The measurements cover the temperature range from 373 to 723 K which includes the onset of hydrogen trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for hydrogen in the aged F82H steel are determined. These data are compared with those obtained for deuterium in F82H steel

  3. Effects of Mn addition on microstructures and mechanical properties of 10Cr ODS ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic (FM) steels are very attractive for the structural materials of fast fission reactors such as a sodium cooled fast reactor (SFR) owing to their excellent irradiation resistance to a void swelling, but are known to reveal an abrupt loss of their creep and tensile strengths at temperatures above 600 .deg. C. Accordingly, high temperature strength should be considerably improved for an application of the FM steel to the structural materials of SFR. Oxide dispersion strengthened (ODS) FM steels are considered to be promising candidate materials for high- temperature components operating in severe environments such as nuclear fusion and fission systems due to their excellent high temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in the ferritic/martensitic matrix.. To develop an advanced ODS steel for core structural materials for next generation nuclear reactor system applications, it is important to optimize its compositions to improve the high temperature strength and radiation resistance. This study investigates effects of Mn addition on microstructures and mechanical properties of 10Cr ODS FM steel. For this, two 10 Cr ODS FM steels were prepared by mechanical alloying (MA), hot isostatic pressing (HIP), and hot rolling process. Tensile tests were carried out at room temperature and 700 .deg. C to evaluate the influences of the Mn element on the mechanical properties. The microstructures were observed using SEM, electron back-scatter diffraction (EBSD) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS). In the present study, the effects of Mn addition on the microstructure and mechanical properties of ODS FM steels were investigated. The ODS FM steels were manufactured by the MA, HIP and hot-rolling processes

  4. Depth distribution analysis of martensitic transformations in Xe implanted austenitic stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Chechenin, N.G.; Grabaek, L.; Bohr, J.

    1988-01-01

    In this work we present results from a depth distribution analysis of the martensitic phase change occurring in Xe implanted single crystals of austenitic stainless steel. Analysis was done by 'in situ' RBS/channeling analysis, X-ray diffraction and cross-section transmission electron microscopy (XTEM) of the implanted surface. It is found that the martensitic transformation of the surface layer occurs for fluences above 1x10 20 m -2 . The thickness of the transformed layer increases with fluence to ≅ 150 nm at 1x10 21 m -2 , which far exceeds the range plus straggling of the implanted Xe as calculated by the TRIM computer simulation code. Simulations using the MARLOWE code indicate that the thickness of the transformed layer coincides with the range of the small fraction of ions channeled under random implantation conditions. Using cross sectional TEM on the Xe implanted crystals, the depth distribution of gas inclusions and defects can be directly observed. Using X-ray diffraction on implanted single crystals, the solid epitaxial nature of the Xe inclusions, induced prior to the martensitic transformation, was established. The lattice constant obtained from the broad diffraction peak indicates that the pressure in the inclusions is ≅ 5 GPa. (orig./BHO)

  5. Tempering of martensitic steel for fasteners : Effects of micro-alloying on microstructure and mechanical property evolution

    NARCIS (Netherlands)

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more

  6. Mössbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel

    Science.gov (United States)

    Costa, B. F. O.; Blumers, M.; Kortmann, A.; Theisen, W.; Batista, A. C.; Klingelhöfer, G.

    2013-04-01

    A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Mössbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Mössbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.

  7. Properties and application of new bainitic and martensitic creep resistance steels

    International Nuclear Information System (INIS)

    Pasternak, J.; Dobrzanski, J.

    2008-01-01

    Supercritical operating parameters of lower emission power units, require novel creep resisting steels to be applied for boiler and pipe systems. Among them are T23 bainitic steels for water walls of boiler combustion chamber and martensitic VM12 steels for superheater coils were tested. RAFAKO S.A. has been co-operating with the Silesian Technical University in Katowice, the Institute of Welding and the Institute for Ferrous Metallurgy in Gliwice for several years now, initiating research and development programmes, implementing the new creep-resistant steels and actively participating in European programmes COST522 and COST536. This paper contains selected information and test results before implementation of the new creep-resistant steels, including: evaluation of working parameters, temperature conditions of main boiler components, which influence reliability and safety, selection of steels for furnace chamber components (approx. 2.5 % Cr) and steam superheater components (9-12 % Cr) destination, evaluation of the requested level of welded joints technological and strength properties, measurements and non-destructive examinations, evaluation of welded joints and HAZ structure by means of LM, TEM and SEM methods in the welding technology implementation process, evaluation of corrosion mechanisms and creep-resistance results - loss of service life - for selected evaporator and steam superheater components, as crucial elements in evaluation of reliability and safety of boiler equipment. Such an examination program includes assessment of steel structure stability during operation period in actual operational conditions. It was clearly shown that operation period have little impact on changes occurring in microstructure and other properties of examined steel grades. (author)

  8. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

    Science.gov (United States)

    Villa, M.; Niessen, F.; Somers, M. A. J.

    2018-01-01

    Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.

  9. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  10. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  11. Post-irradiation characterization of PH13-8Mo martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.; Schmalz, F.; Rensman, J.W. [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Wouters, O.; Hegeman, J.B.J.; Laan, J.G. van der [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-10-01

    The irradiation response of PH13-8Mo stainless steel was measured up to 2.5 dpa at 200 and 300 deg. C irradiation temperatures. The PH13-8Mo, a martensitic precipitation-hardened steel, was produced by Hot Isostatic Pressing at 1030 deg. C. The fatigue tests (high cycle fatigue and fatigue crack propagation) showed a test temperature dependency but no irradiation effects. Tensile tests showed irradiation hardening (yield stress increase) of approximately 37% for 200 deg. C irradiated material tested at 60 deg. C and approximately 32% for 300 deg. C irradiated material tested at 60 deg. C. This contradicts the shift in reference temperature (T{sub 0}) measured in toughness tests (Master Curve approach), where the {Delta}T{sub 0} for 300 deg. C irradiated is approximately 170 deg. C and the {Delta}T{sub 0} for the 200 deg. C irradiated is approximately 160 deg. C. This means that the irradiation hardening of PH13-8Mo steel is not suitable to predict the shift in the reference temperature for the Master Curve approach.

  12. Quantification by image analysis of grain size of the high temperature phase (austenite) of martensitic steels 9Cr-1Mo

    International Nuclear Information System (INIS)

    Barcelo, F.; Brachet, J.C.

    1993-01-01

    In martensitic steels, the austenitic grain size before transformation may influence mechanical properties. 9Cr-1Mo steel (EM10) is used in hexagonal pipes fabrication in fast neutrons reactors. Image analysis allows to quantify the older grain size in function of the austenization heat treatment conditions. (A.B.). 2 figs

  13. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, Vladimir, E-mail: vladimir.krsjak@psi.ch; Dai, Yong

    2015-10-15

    This paper presents the use of an internal {sup 44}Ti/{sup 44}Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of {sup 44}Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton–neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain {sup 44}Ti → {sup 44}Sc → {sup 44}Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of {sup 44}Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  14. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Science.gov (United States)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  15. Evolution of microstructure in stainless martensitic steel for seamless tubing

    Science.gov (United States)

    Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.

    2017-12-01

    Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.

  16. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    Science.gov (United States)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  17. Microstructure–hardness relationship in the fusion zone of TRIP steel welds

    International Nuclear Information System (INIS)

    Nayak, S.S.; Baltazar Hernandez, V.H.; Okita, Y.; Zhou, Y.

    2012-01-01

    Highlights: ► Fusion zone of TRIP steels in resistance spot welding was analyzed. ► Transmission electron microscopy (TEM) was used for characterizing microstructure. ► Fusion zone microstructure was found to depend on the chemistry. ► Hardness values were in accordance with the microstructural constituents in the fusion zone. - Abstract: Fusion zone of three TRIP steels, categorized as AT: C–Mn–Al, AST: C–Mn–Al–Si and ST: C–Mn–Si, in resistance spot welding was characterized with respect to microstructure, phase analysis, and hardness. The fusion zone microstructure was found to depend on chemistry: (i) AT steel contained ferrite phase surrounded by bainite and martensite regions, (ii) AST steel showed a bainite structures along with martensite laths and interlath retained austenite, whereas (iii) ST steel constituted single phase martensite laths with interlath austenite. X-ray diffraction study indicated that retained austenite fraction in the fusion zone increases with increase in Si content in it. The AST fusion zone hardness lies between those of the AT and ST steels; the ST fusion zone hardness was higher than that of AT steel because of the single phase martensite microstructure. Comparison of fusion zone microstructure and hardness to earlier study on laser welding of the TRIP steels with similar chemistries revealed that higher cooling rate in resistance spot welding led to higher fusion zone hardness compared to laser welding; which was attributed either to decrease in softer ferrite phase (AT steel) in the microstructure or refinement of martensite laths (ST steel).

  18. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  19. Effect of Heat Treatment on the Microstructure and Hardness of 17Cr-0.17N-0.43C-1.7 Mo Martensitic Stainless Steel

    Science.gov (United States)

    Krishna, S. Chenna; Gangwar, Narendra Kumar; Jha, Abhay K.; Pant, Bhanu; George, Koshy M.

    2015-04-01

    The microstructure and hardness of a nitrogen-containing martensitic stainless steel were investigated as a function of heat treatment using optical microscopy, electron microscopy, amount of retained austenite, and hardness measurement. The steel was subjected to three heat treatments: hardening, cryo treatment, and tempering. The hardness of the steel in different heat-treated conditions ranged within 446-620 HV. The constituents of microstructure in hardened condition were lath martensite, retained austenite, M23C6, M7C3, MC carbides, and M(C,N) carbonitrides. Upon tempering at 500 °C, two new phases have precipitated: fine spherical Mo2C carbides and needle-shaped Cr2N particles.

  20. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    International Nuclear Information System (INIS)

    Tsuchiyama, Toshihiro; Tobata, Junya; Tao, Teruyuki; Nakada, Nobuo; Takaki, Setsuo

    2012-01-01

    Highlights: ► The amount of retained austenite was increased by Q and P treatment in 12Cr–0.1C steel. ► Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. ► The optimum partitioning treatment condition for 12Cr–0.1C steel was found. ► The strength–ductility balance of 12Cr–0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe–12Cr–0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength–ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  1. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, Toshihiro, E-mail: toshi@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tobata, Junya; Tao, Teruyuki [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakada, Nobuo; Takaki, Setsuo [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The amount of retained austenite was increased by Q and P treatment in 12Cr-0.1C steel. Black-Right-Pointing-Pointer Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. Black-Right-Pointing-Pointer The optimum partitioning treatment condition for 12Cr-0.1C steel was found. Black-Right-Pointing-Pointer The strength-ductility balance of 12Cr-0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe-12Cr-0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength-ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  2. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  3. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  4. Quantitative analysis of tensile deformation behavior by in-situ neutron diffraction for ferrite-martensite type dual-phase steels

    International Nuclear Information System (INIS)

    Morooka, Satoshi; Umezawa, Osamu; Harjo, Stefanus; Hasegawa, Kohei; Toji, Yuki

    2012-01-01

    The yielding and work-hardening behavior of ferrite-martensite type dual-phase (DP) alloys were clearly analyzed using the in-situ neutron diffraction technique. We successfully established a new method to estimate the stress and strain partitioning between ferrite and martensite phase during loading. Although these phases exhibit the same lattice structure with similar lattice parameters, their lattice strains on (110), (200) and (211) are obviously different from each other under an applied stress. The misfit strains between those phases were clearly accompanied with the phase-scaled internal stream (phase stress). Thus, the martensite phase yielded by higher applied stress than macro-yield stress, which resulted in high work-hardening rate of the DP steel. We also demonstrated that ferrite phase fraction influenced work-hardening behavior. (author)

  5. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  6. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    Whereas low-carbon (galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.

  7. The influence of elevated temperature transformation and mechanical properties of a precipitation hardening martensitic stainless steel on its wear behaviour

    International Nuclear Information System (INIS)

    Smith, A.F.

    1989-11-01

    Self wear tests of a martensitic stainless steel in CO 2 in the temperature range 20-300degC showed transitional behaviour at 20 and 300degC. In the mid temperature range a severe wear rate of ∼ 2 x 10 -13 m 3 /Nm persisted for sliding distances up to 2000 m. A possible explanation was that while strain induced transformation of retained austenite at low temperatures provided a sufficiently hardened substrate that allowed inelastic rather than plastic interactions this did not occur at 200degC. Tests were carried out to determine the temperature above which strain no longer transformed austenite into martensite. Although a martensite start temperature of ∼ 150degC was found for the present steel the presence of only ∼ 10% retained austenite in the ''as heat treated'' material suggests that its transformation to martensite at 200degC would not materially affect the extent of subsurface hardening. It is proposed that a surface reaction plays a role in transition behaviour. At 300degC the reaction product is an oxide but at room temperature it is possibly a carbonate. The stability of the carbonate decreases with temperature thus giving an intermediate temperature range where metal/metal contacts prevail leading to the persistent high wear behaviour. (author)

  8. Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor

    International Nuclear Information System (INIS)

    Abe, F.; Noda, T.; Okada, M.

    1992-01-01

    In order to obtain potential reduced-activation ferritic steels suitable for fusion reactor structures, the effect of alloying elements W and V on the microstructural evolution, toughness, high-temperature creep and irradiation hardening behavior was investigated for simple 9Cr-W and 9Cr-V steels. The creep strength of the 9Cr-W steels increased but their toughness decreased with increasing W concentration. The 9Cr-V steels exhibited poor creep rupture strength, far below that of a conventional 9Cr-1MoVNb steel and poor toughness after aging at 873 K. It was also found that the Δ-ferrite should be avoided, because it degraded both the roughness and high-temperature creep strength. Based on the results on the simple steels, optimized martensitic 9Cr steels were alloy-designed from a standpoint of enough thoughness and high-temperature creep strength. Two kinds of optimized 9Cr steels with low and high levels of W were obtained; 9Cr-1WVTa and 9Cr-3WVTa. These steels indeed exhibited excellent toughness and creep strength, respectively. The 9Cr-1WVTa steel exhibiting an excellent roughness was shown to be the most promising for relatively low-temperature application below 500deg C, where irradiation embrittlement is significant. The 9Cr-3WVTa steel was the most promising for high temperature application above 500deg C from the standpoint of enough high-temperature strength. (orig.)

  9. Thermal Aging Effect Analysis of 17-4PH Martensitic Stainless Steel Valves for Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    BAI; Bing; ZHANG; Chang-yi; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    The valve stem used in the main steam system of nuclear power plant is usually martensitic stainless steel(such as 17.4ph16.4Mo etc.).When served in high temperature for a long time,the thermal aging embrittlement of valve stem will be significant,and even lead to the fracture.

  10. Thermal and mechanical behaviour of the reduced-activation-ferritic-martensitic steel EUROFER

    International Nuclear Information System (INIS)

    Lindau, R.; Moeslang, A.; Schirra, M.

    2002-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are being considered for structural application in potential fusion energy systems. Based on the substantial experience with RAFM developmental steels of OPTIFER type, an industrial 3.5 tons batch of a 9CrWVTa-RAFM steel, called EUROFER 97 had been specified and ordered. A characterisation programme has been launched to determine the relevant mechanical and physical-metallurgical properties in order to qualify the steel for fusion application. The hardening, tempering and transformation behaviour of EUROFER is in good agreement with that of other RAFM-steels like OPTIFER and the Japanese industrial scale heat F82H mod. Tensile tests, performed between RT and 750 deg. C, show comparable strength and ductility values that are not strongly affected by different heat treatments and ageing at 580 and 600 deg. C up to 3300 h. Impact bending tests indicate a superior ductile to brittle transition temperature (DBTT) of EUROFER in the as-received condition compared with that of F82H mod. Creep tests between 450 and 650 deg. C up to test times of 15000 h reveal a creep strength similar to other RAFM steels like OPTIFER and F82H mod. EUROFER shows a good low-cycle fatigue behaviour with longer lifetimes than F82H mod. The deformation and softening behaviour is similar

  11. Transformation of deformation martensite into austenite in stainless steels at various heating rates

    International Nuclear Information System (INIS)

    Gojkhenberg, Yu.N.; Shtejnberg, M.M.

    1978-01-01

    Under isothermal conditions and with continuous preheating at defferent rates, the inverse transformation of deformation martensite that is obtained through reductions to small, medium and great degrees, has been studied. It has been established that depending on the preheat rate, the temperature of the end α → ν of rebuilding varies according to a curve having a maximum. The ascending branch of that curve is connected with the diffusion-controlled shear transformation, whereas the descending branch with the transition to the martensite reaction of austenite formation. As the deformation degree increases, the temperature of the end of the inverse transformation decreases. As a result, recrystallization of austenite proceeds only after completing α → ν transition, when heating the steels deformed to the medium degree at rates of at least 25 deg/sec and after high reductions at rates of at least 0.8 deg/sec

  12. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M F; Masci, A [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  13. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Isore, A; Miyada, L T

    1975-05-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280/sup 0/C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600/sup 0/C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions.

  14. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  15. It was the demonstration of industrial steel production capacity ferritic-martensitic Spanish ASTURFER scale demand ITER

    International Nuclear Information System (INIS)

    Coto, R.; Serrano, M.; Moran, A.; Rodriguez, D.; Artimez, J. A.; Belzunce, J.; Sedano, L.

    2013-01-01

    Reduced Activation Ferritic-Martensitic (RAFM) structural steels are considered as candidate materials with notable possibilities to be incorporated to fusion reactor ITER, nowadays under construction, and future fusion reactor DEMO, involving a notable forecasting of supply materials, with a considerable limitation due to the few number of furnishes currently on the market. The manufacture at an industrial scale of the ASTURFER steel, developed at laboratory scale by ITMA Materials Technology and the Structural Materials Division of the Technology Division of CIEMAT would be a significant business opportunity for steelwork companies.

  16. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    Science.gov (United States)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  17. Technical issues of fabrication technologies of reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Sakasegawa, Hideo; Hirose, Takanori

    2013-01-01

    Highlights: • The key technical issues of RAFM steel fabrication are the control of Ta, and deoxidation of the steel with a limited amount of Al addition. • Addition of Ta with poor deoxidation might results in the agglomeration of inclusions at 1/2t position. • ESR was proved to be effective removing Ta oxide inclusions and avoiding agglomeration of inclusions at 1/2t position, and achieving low oxygen concentration. -- Abstract: The key issue for DEMO application is that Reduced activation ferritic/martensitic (RAFM) steels fabrication technologies has to be highly assured, especially with respect to high availability, reliability and reduced activation capability on the DEMO level fabrication, which requires not a few tons but thousand tons RAFM fabrication. One of the key technical issues of RAFM fabrication is the control of Ta, and deoxidation of the steel with a limited amount of Al addition. The series of F82H (Fe–8Cr–2W–V, Ta) melting revealed that Ta have tendency to form oxide on melting process, and this will have large impact on reliability of the steels. Al is also the key elements, as it is commonly used for deoxidation of steels, and achieving lower oxygen level is essential to obtain good mechanical properties, but the maximum concentration of Al is limited in view of reduced activation capability. These tendency and limitation resulted in the Ta oxide agglomeration in the middle of plate, but the remelting process, ESR (electro slag remelting), was found to be successful on removing those Ta oxides

  18. Effects of irradiation on tungsten stabilized martensitic steels*1

    Science.gov (United States)

    Gelles, D. S.; Hsu, C. Y.; Lechtenberg, T. A.

    1988-07-01

    Tungsten stabilized martensitic stainless steels are being developed for fusion reactor first wall applications in order to lower retained radioactivity so as to permit shallow land burial after reactor decommissioning. Two such alloys have been designed, fabricated, fast neutron irradiated in FFTF and examined by transmission electron microscopy. The two compositions were Fe-7.5Cr-2.0W-0.17 C and Fe-10.2Cr-1.7W-0.3V-0.02C. Conditions examined included irradiation temperatures of 365, 426, 520 and 600°C to doses as high as 34 dpa. Small amounts of void swelling are found at the two lowest temperatures. It is demonstrated that levels of tungsten on the order of 2 wt% do not result in excessive intermetallic precipitation under these irradiation conditions.

  19. Laser milling of martensitic stainless steels using spiral trajectories

    Science.gov (United States)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  20. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    Science.gov (United States)

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  1. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  2. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Tamura, M.; Schaaf, B. van der; Klueh, R.L.; Alamo, A.; Petersen, C.; Schirra, M.; Spaetig, P.; Odette, G.R.; Tavassoli, A.A.; Shiba, K.; Kohyama, A.; Kimura, A.

    2002-01-01

    Tensile, fracture toughness, creep and fatigue properties and microstructural studies of the reduced-activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) before and after irradiation are reported. The design concept used for the development of this alloy is also introduced. A large number of collaborative test results including those generated under the International Energy Agency (IEA) implementing agreements are collected and are used to evaluate the feasibility of using reduced-activation martensitic steels for fusion reactor structural materials, with F82H as one of the reference alloys. All the specimens used in these tests were prepared from plates obtained from 5-ton heats of F82H supplied to all participating laboratories by JAERI. Many of the results have been entered into relational databases with emphasis on traceability of records on how the specimens were prepared from plates and ingots

  3. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Jitsukawa, S. E-mail: jitsukawa@ifmif.tokai.jaeri.go.jp; Tamura, M.; Schaaf, B. van der; Klueh, R.L.; Alamo, A.; Petersen, C.; Schirra, M.; Spaetig, P.; Odette, G.R.; Tavassoli, A.A.; Shiba, K.; Kohyama, A.; Kimura, A

    2002-12-01

    Tensile, fracture toughness, creep and fatigue properties and microstructural studies of the reduced-activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) before and after irradiation are reported. The design concept used for the development of this alloy is also introduced. A large number of collaborative test results including those generated under the International Energy Agency (IEA) implementing agreements are collected and are used to evaluate the feasibility of using reduced-activation martensitic steels for fusion reactor structural materials, with F82H as one of the reference alloys. All the specimens used in these tests were prepared from plates obtained from 5-ton heats of F82H supplied to all participating laboratories by JAERI. Many of the results have been entered into relational databases with emphasis on traceability of records on how the specimens were prepared from plates and ingots.

  4. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    International Nuclear Information System (INIS)

    Li Rutao; Zuo Xiurong; Hu Yueyue; Wang Zhenwei; Hu, Dingxu

    2011-01-01

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: →The pipe with ferrite/martensite microstructure shows high deformability. →The base metal of the pipe consists of ferrite and martensite. →Heat affected zone shows excellent low temperature toughness. →Weld metal mainly consists of intragranularly nucleated acicular ferrites. →Weld metal shows excellent low temperature toughness and high strength.

  5. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    International Nuclear Information System (INIS)

    Ghoniem, Nasr M.; Po, Giacomo; Sharafat, Shahram

    2013-01-01

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties

  6. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, Nasr M., E-mail: ghoniem@seas.ucla.edu; Po, Giacomo; Sharafat, Shahram

    2013-10-15

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties.

  7. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    Science.gov (United States)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  8. Aging between 300 and 450 deg C of wrought martensitic 13-17 wt-%Cr stainless steels

    International Nuclear Information System (INIS)

    Yrieix, B.; Guttmann, M.

    1993-06-01

    Martensitic stainless steels containing 13-17 wt-% Cr, some also containing nickel and some having precipitation hardening additions, have been aged between 300 and 450 deg C for times up to 30 000 h. For all the steels examined, the aging response takes the form of an increase of strength and hardness, correlated with embrittlement. The rate and intensity of aging increase with increasing chromium and molybdenum concentrations. In addition, two steels exhibit some temper embrittlement on long term aging at 400 deg C; such embrittlement of these materials is not expected in service at temperatures up to 300 deg C. A general method of prediction of the mechanical properties of these steels as a function of aging conditions is proposed. (authors). 11 refs., 17 figs., 7 tabs

  9. Modification and characterization of the AISI 410 martensitic stainless steels surface

    International Nuclear Information System (INIS)

    Bincoleto, A.V.L.; Nascente, P.A.P.

    2010-01-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  10. Formation of epsilon martensite by high-pressure torsion in a TRIP steel

    International Nuclear Information System (INIS)

    Figueiredo, Roberto B.; Sicupira, Felipe L.; Malheiros, Livia Raquel C.; Kawasaki, Megumi; Santos, Dagoberto B.; Langdon, Terence G.

    2015-01-01

    An Fe–17% Mn–0.06% C–2% Si–3% Al–1% Ni steel exhibiting a phase transformation induced by room temperature deformation was processed by high-pressure torsion (HPT) using a pressure of 6.0 GPa and with the samples subjected to different amounts of torsional straining up to a maximum of 10 turns. A microstructural analysis revealed a phase transformation in the early stages of deformation and a gradual evolution towards a fully-deformed structure. Microhardness measurements showed two stages of hardening with eventual softening at large strains. From X-ray diffraction (XRD) analysis, there is evidence for a reverse martensitic transformation and the stabilization of an h.c.p. epsilon (ε) structure. The formation of an h.c.p. structure takes place in this steel at lower pressures than for pure iron but the results agree with earlier reports of the presence of an ε phase in stainless steel processed by HPT and with the expected reduction in the transition pressure due to the Mn addition

  11. Formation of epsilon martensite by high-pressure torsion in a TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Roberto B., E-mail: figueiredo-rb@ufmg.br [Department of Materials Engineering and Civil Construction, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Sicupira, Felipe L.; Malheiros, Livia Raquel C. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Kawasaki, Megumi [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Santos, Dagoberto B. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2015-02-11

    An Fe–17% Mn–0.06% C–2% Si–3% Al–1% Ni steel exhibiting a phase transformation induced by room temperature deformation was processed by high-pressure torsion (HPT) using a pressure of 6.0 GPa and with the samples subjected to different amounts of torsional straining up to a maximum of 10 turns. A microstructural analysis revealed a phase transformation in the early stages of deformation and a gradual evolution towards a fully-deformed structure. Microhardness measurements showed two stages of hardening with eventual softening at large strains. From X-ray diffraction (XRD) analysis, there is evidence for a reverse martensitic transformation and the stabilization of an h.c.p. epsilon (ε) structure. The formation of an h.c.p. structure takes place in this steel at lower pressures than for pure iron but the results agree with earlier reports of the presence of an ε phase in stainless steel processed by HPT and with the expected reduction in the transition pressure due to the Mn addition.

  12. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  13. Fracture toughness of manet II steel

    International Nuclear Information System (INIS)

    Gboneim, M.M.; Munz, D.

    1997-01-01

    High fracture toughness was evaluated according to the astm and chromium (9-12) martensitic steels combine high strength and toughness with good corrosion and oxidation resistance in a range of environments, and also show relatively high creep strength at intermediate temperatures. They therefore find applications in, for example, the offshore oil and gas production and chemical industries i pipe work and reaction vessels, and in high temperature steam plant in power generation systems. Recently, the use of these materials in the nuclear field was considered. They are candidates as tubing materials for breeder reactor steam generators and as structural materials for the first wall and blanket in fusion reactors. The effect of ageing on the tensile properties and fracture toughness of a 12 Cr-1 Mo-Nb-v steel, MANET II, was investigated in the present work. Tensile specimens and compact tension (CT) specimens were aged at 550 degree C for 1000 h. The japanese standards. Both microstructure and fracture surface were examined using optical and scanning electron microscopy (SEM). The results showed that ageing did not affect the tensile properties. However, the fracture toughness K Ic and the tearing modules T were reduced due to the ageing treatment. The results were discussed in the light of the chemical composition and the fracture surface morphology. 9 figs., 3 tabs

  14. Effects of Ti element on the microstructural stability of 9Cr–WVTiN reduced activation martensitic steel under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jin, Shuoxue; Li, Tiecheng; Chen, Jihong [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada)

    2014-12-15

    Microstructure of 9Cr–WVTiN reduced-activation martensitic steels with two different Ti concentrations irradiated with Fe{sup +}, He{sup +} and H{sup +} at 300 °C was studied with transmission electron microscopy. Small dislocation loops were observed in the irradiated steels. The mean size and number density of dislocation loops decreased with the increase of Ti concentration. The segregation of Cr and Fe in carbides was observed in both irradiated steels, and the enrichment of Cr and depletion of Fe were more severe in the low Ti-concentration 9Cr–WVTiN steel.

  15. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    Science.gov (United States)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  16. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels

    International Nuclear Information System (INIS)

    Lang, Peter; Rath, Markus; Kozeschnik, Ernst; Rivera-Diaz-del-Castillo, Pedro E.J.

    2015-01-01

    Hydrogen trapping behaviour is investigated by means of thermokinetic simulations in a martensitic steel. The heat treatment consists of austenitisation followed by quenching and tempering. The model prescribes a minimum in hydrogen trapping at an austenitisation temperature of 1050 °C. Below this temperature, austenite grain boundaries are the prevailing trap, whereas niobium atoms in solid solution are the main traps above 1050 °C. The model describes precisely the experimental results

  17. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  18. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  19. Thermally activated formation of martensite in Fe-C alloys and Fe-17%Cr-C stainless steels during heating from boiling nitrogen temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2016-01-01

    The thermally activated austenite-to-martensite transformation was investigated by magnetometry in three Fe-C alloys and in two 17%Cr stainless steels. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequent (re......)heating to room temperature. Different tests were performed applying heating rates from 0.5 K/min to 10 K/min. An additional test consisted in fast (re)heating the samples by immersion in water. Thermally activated martensite formation was demonstrated for all investigated materials by a heating rate......-dependent transformation curve. Moreover, magnetometry showed that the heating rate had an influence on the fraction of martensite formed during sub-zero Celsius treatment. The activation energy for thermally activated martensite formation was quantified in the range 11‒21 kJ/mol by a Kissinger-like method....

  20. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  1. Refinement of the magnetic composite model of type 304 stainless steel by considering misoriented ferromagnetic martensite particles

    Science.gov (United States)

    Kinoshita, Katsuyuki

    2017-05-01

    We improved a magnetic composite model that combines the Jiles-Atherton model and Eshelby's equivalent inclusion method to consider misoriented martensite particles. The magnetic permeability of type 304 stainless steel were analyzed by using both experimental data on the orientation distribution of type 304 stainless steel specimens and the improved model. We found that the model is able to qualitatively explain the variation of permeability with the orientation angle and orientation distribution, an effect that depends on the direction of the excitation magnetic field.

  2. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    International Nuclear Information System (INIS)

    Serra, E.

    1997-01-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined. (orig.)

  3. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    Science.gov (United States)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  4. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  5. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Marini, B., E-mail: bernard.marini@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France); Averty, X. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SEMI (now DEN/DANS/DM2S/SEMT), F-91191 Gif-sur Yvette (France); Wident, P.; Forget, P.; Barcelo, F. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France)

    2015-10-15

    The hardening and the embrittlement under neutron irradiation of an A508 type RPV steel considering three different microstructures (bainite, bainite-martensite and martensite)have been investigated These microstructures were obtained by quenching after autenitization at 1100 °C. The irradiation induced hardening appears to depend on microstructure and is correlated to the yield stress before irradiation. The irradiation induced embrittlement shows a more complex dependence. Martensite bearing microstructures are more sensitive to non hardening embrittlement than pure bainite. This enhanced sensitivity is associated with the development of intergranular brittle facture after irradiation; the pure martensite being more affected than the bainite-martensite. It is of interest to note that this mixed microstructure appears to be more embrittled than the pure bainitic or martensitic phases in terms of temperature transition shift. This behaviour which could emerge from the synergy of the embrittlement mechanisms of the two phases needs further investigations. However, the role of microstructure on brittle intergranular fracture development appears to be qualitatively similar under neutron irradiation and thermal ageing.

  6. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel

    International Nuclear Information System (INIS)

    Kisko, A.; Misra, R.D.K.; Talonen, J.; Karjalainen, L.P.

    2013-01-01

    In order to improve understanding on the behavior of ultrafine-grained austenitic stainless steels during deformation, the influence of the austenite grain size and microstructure on the strain-induced martensite transformation was investigated in an austenitic 15Cr–9Mn–Ni–Cu (Type 204Cu) stainless steel. By different reversion treatments of the 60% cold-rolled sheet, varying grain sizes from ultrafine (0.5 μm), micron-scale (1.5 μm), fine (4 μm) to coarse (18 μm) were obtained. Some microstructures also contained a mixture of ultrafine or micron-scale and coarse initially cold-worked austenite grains. Samples were tested in tensile loading and deformation structures were analyzed after 2%, 10% and 20% engineering strains by means of martensite content measurements, scanning electron microscope together with a electron backscatter diffraction device and transmission electron microscope. The results showed that the martensite nucleation sites and the rate of transformation vary. In ultrafine grains strain-induced α′-martensite nucleates at grain boundaries and twins, whereas in coarser grains as well as in coarse-grained retained austenite, α′-martensite formation occurs at shear bands, sometimes via ε-martensite. The transformation rate of strain-induced α′-martensite decreases with decreasing grain size to 1.5 μm. However, the rate is fastest in the microstructure containing a mixture of ultrafine and retained cold-worked austenite grains. There the ultrafine grains transform quite readily to martensite similarly as the coarse retained austenite grains, where the previous cold-worked microstructure is still partly remaining

  7. Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels

    International Nuclear Information System (INIS)

    Spaetig, P.; Bonade, R.; Odette, G.R.; Rensman, J.W.; Campitelli, E.N.; Mueller, P.

    2007-01-01

    We investigate the plastic flow properties at low and high temperature of the tempered martensitic steel Eurofer97. We show that below room temperature, where the Peierls friction on the screw dislocation is active, it is necessary to modify the usual Taylor's equation between the flow stress and the square root of the dislocation density and to include explicitly the Peierls friction stress in the equation. Then, we compare the fracture properties of the Eurofer97 with those of the F82H steel. A clear difference of the fracture toughness-temperature behavior was found in the low transition region. The results indicate a sharper transition for Eurofer97 than for the F82H. Finally, the shift of the median toughness-temperature curve of the F82H steel was determined after two neutron irradiations performed in the High Flux Reactor in Petten

  8. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  9. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Schubert, L.E. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  10. Energy Barriers and Hysteresis in Martensitic Phase Transformations

    Science.gov (United States)

    2008-08-01

    glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the cathode was stainless steel , the anode was stainless steel or Ti, the...Submitted to Acta Materialia Energy barriers and hysteresis in martensitic phase transformations Zhiyong Zhang, Richard D. James and Stefan Müller...hysteresis based on the growth from a small scale of fully developed austenite martensite needles. In this theory the energy of the transition layer plays a

  11. Study on aging embrittlement of 17-4PH martensite stainless steel at 350 degree C

    International Nuclear Information System (INIS)

    Wang Jun; Shen Baoluo

    2005-01-01

    The transformation of microstructure and hardness with the extension of aging time on the 17-4PH Martensite stainless steel at 350 degree C is studied, and the change of dynamic fracture toughness and fractography of the stainless steel for various holding time at this temperature are also studied by instrumental impact test and scanning electron microscope. The results indicate that the crack initiation energy (E i ), crack propagation energy (E p ), absorbed-in-fracture energy (E t ) and dynamic fracture toughness (K 1d ) of this type of alloy Charpy v-notch sample is decreased with the continuation of time at 350 degree C. It means that the toughness of the alloy is degraded, and the hardness of the steel is ascended when aging time is expanded and reaches the maximum at 9000 h. The fractography of this steel changes from dimple fracture into cleavage fracture and inter-granular rapture. (authors)

  12. Compatibility of reduced activation ferritic/martensitic steels with liquid breeders

    International Nuclear Information System (INIS)

    Muroga, T.; Nagasaka, T.; Kondo, M.; Sagara, A.; Noda, N.; Suzuki, A.; Terai, T.

    2008-10-01

    The compatibility of Reduced Activation Ferritic/Martensitic Steel (RAFM) with liquid Li and molten-salt Flibe have been characterized and accessed. Static compatibility tests were carried out in which the specimens were immersed into liquid Li or Flibe in isothermal autoclaves. Also carried out were compatibility tests in flowing liquid Li by thermal convection loops. In the case of liquid Li, the corrosion rate increased with temperature significantly. The corrosion was almost one order larger for the loop tests than for the static tests. Chemical analysis showed that the corrosion was enhanced when the level of N in Li is increased. Transformation from martensitic to ferritic phase and the resulting softening were observed in near-surface area of Li-exposed specimens, which were shown to be induced by decarburization. In the case of Flibe, the corrosion loss was much larger in a Ni crucible than in a RAFM crucible. Both fluorides and oxides were observed on the surfaces. Thus, the key corrosion process of Flibe is the competing process of fluoridation and oxidation. Possible mechanism of the enhanced corrosion in Ni crucible is electrochemical circuit effect. It was suggested that the corrosion loss rate of RAFM by liquid Li and Flibe can be reduced by reducing the level of impurity N in Li and avoiding the use of dissimilar materials in Flibe, respectively. (author)

  13. Corrosion of austenitic and martensitic stainless steels in flowing 17Li-83Pb alloy

    International Nuclear Information System (INIS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-01-01

    With regard to the behaviour of 316 L stainless steel at 400 0 C in flowing anisothermal 17Li-83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li-83Pb at 400 0 C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450 0 C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions. (orig.)

  14. characterization and weldability of plasma nitrided P/M martensitic stainless steel X 20 Cr Ni 172

    International Nuclear Information System (INIS)

    Abdel-Karim, R.A.; El-demellawy, M.A; Waheed, A.F.

    2004-01-01

    stainless steels are widely used in nuclear applications, as a construction material. in these applications stainless steels suffer from corrosion degradation due severe environment and operating conditions. improving the engineering properties of such material prolong the service life time.in the present study, powder metallurgy technique namely plasma rotating electrode process (PREP) was used to produce martensitic steel DIN X 20 Cr Ni 172 with 0.5 % N. this step was followed by hot isostatic pressing process (HIP) . the effect of N on the weldability of this steel has been investigated . this included microstructure characterization, hardness evaluation and ferrite content measurements. the results showed that the presence of high nitrogen content in this steel resulted in a pore free structure with improved the hardness across the welding area. A single phase with few precipitates was detected on the grain boundaries in the heat affected zone. the results were supplemented by x-ray diffraction patterns and EDAX analysis

  15. Predicting Microstructure Development During HighTemperature Nitriding of Martensitic Stainless SteelsUsing Thermodynamic Modeling

    Directory of Open Access Journals (Sweden)

    Tschiptschin André Paulo

    2002-01-01

    Full Text Available Thermodynamic calculations of the Fe-Cr-N System in the region of the Gas Phase Equilibria have been compared with experimental results of maximum nitrogen absorption during nitriding of two Martensitic Stainless Steels (a 6 mm thick sheet of AISI 410S steel and green powder compacts of AISI 434L steel under N2 atmospheres. The calculations have been performed combining the Fe-Cr-N System description contained in the SGTE Solid Solution Database and the gas phase for the N System contained in the SGTE Substances Database. Results show a rather good agreement for total nitrogen absorption in the steel and nitrogen solubility in austenite in the range of temperatures between 1273 K and 1473 K and in the range of pressures between 0.1 and 0.36 MPa. Calculations show that an appropriate choice of heat treatment parameters can lead to optimal nitrogen absorption in the alloy. It was observed in the calculations that an increased pressure stabilizes CrN at expenses of Cr2N - type nitrides.

  16. Influence of tempering on mechanical properties of ferritic martensitic steels

    International Nuclear Information System (INIS)

    Chun, Y. B.; Han, C. H.; Choi, B. K.; Lee, D. W.; Kim, T. K.; Jeong, Y. H.; Cho, S.

    2012-01-01

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce long-lived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as primary candidate material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). RAFM steels developed so far (e.g., EUROFER 97 and F82H) meet the requirement for structural application in the ITER. However, if such alloys are used in the DEMO or commercial fusion reactor is still unclear, as the reactors are designed to operate under much severe conditions (i.e., higher outlet coolant temperature and neutron fluences). Such harsh operating conditions lead to development of RAFM steels with better creep and irradiation resistances. Mechanical properties of RAFM steels are strongly affected by microstructural features including the distribution, size and type of precipitates, dislocation density and grain size. For a given composition, such microstructural characteristics are determined mainly by thermo-mechanical process employed to fabricate the final product, and accordingly a final heat treatment, i.e., tempering is the key step to control the microstructure and mechanical properties. In the present work, we investigated mechanical properties of the RAFM steels with a particular attention being paid to effects of tempering on impact and creep properties

  17. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  18. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Gu [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Lee, Chang-Hoon, E-mail: lee1626@kims.re.kr [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kang, Namhyun [Pusan National University, Busan 609-735 (Korea, Republic of); Chan Kim, Hyoung [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2017-03-15

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M{sub 23}C{sub 6} carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20–100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M{sub 23}C{sub 6} carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  19. Delayed cracking in 301LN austenitic steel after deep drawing: Martensitic transformation and residual stress analysis

    International Nuclear Information System (INIS)

    Berrahmoune, M.R.; Berveiller, S.; Inal, K.; Patoor, E.

    2006-01-01

    The main objective of this work is to study the delayed cracking phenomenon of the 301LN unstable austenitic steel, by determining the distribution of residual stresses after deep drawing, taking into account the phase transformation. Deep drawing for different ratios is done for two different temperatures. Cracks appear for the highest drawing ratio (DR = 2.00) in the top of the cup. The breaking patterns observed using a scanning electron microscope show ductile fracture in the middle region, and both intergranular and transgranular rupture in the edges. Martensite contents throughout the cup wall and through the thickness are determined. Increasing the martensite content was found to have a great effect on the cracking sensitivity. X-ray diffraction allows us to determine the residual stresses in the martensitic phase. These last are positive, increase with increasing drawing ratios. The maximum value is located at the middle height of the cup, it exceeds 500 MPa for the 2.00 drawing ratio, and is less than 350 MPa for the 1.89 drawing ratio

  20. A multi-scale model of martensitic transformation plasticity

    NARCIS (Netherlands)

    Kouznetsova, V.G.; Geers, M.G.D.

    2008-01-01

    The remarkable mechanical engineering properties of many advanced steels, e.g. TRIP steels and metastable austenitic stainless steels, are related to their complex microstructural behaviour, resulting from the interaction between plastic deformation of the phases and the austenite to martensite

  1. In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements

    Directory of Open Access Journals (Sweden)

    Carola Celada-Casero

    2017-07-01

    Full Text Available An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ to martensite (α′ phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite has been found by comparing the results to the ex-situ characterization by magnetization measurements, light optical microscopy, and X-ray diffraction. The sensor has allowed for the observation of the stepwise transformation behavior, a not-well-understood phenomena that takes place in large regions of the bulk material and that so far had only been observed by synchrotron X-ray diffraction.

  2. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels

    International Nuclear Information System (INIS)

    Abe, F.

    2004-01-01

    The coarsening behavior of martensite lath has been investigated by means of transmission electron microscopy for tempered martensitic 9 wt.% Cr-(0, 1, 2, 4 wt.%) W steels during creep at 823-923 K. During creep, the recovery of excess dislocations, the agglomeration of carbides and the coarsening of laths take place. The coarsening of laths with absorbing excess dislocations is the major process in the creep acceleration. The coarsening rate of lath decreases with increasing W concentration, which is correlated with the rate of Ostwald ripening of M 23 C 6 carbides. The progressive local-coalescence of two adjacent laths boundaries near the Y-junction causes the movement of Y-junction, resulting in the coarsening of lath

  3. Crystallography of lath martensite and stabilization of retained austenite

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200 0 C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different [111] variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample

  4. Crystallography of lath martensite and stabilization of retained austenite

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  5. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting

    Science.gov (United States)

    Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong

    2018-03-01

    Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.

  6. Study of isotope effects in the hydrogen transport of an 8% CrWVTa martensitic steel

    International Nuclear Information System (INIS)

    Esteban, G.A.; Sedano, L.A.; Perujo, A.; Douglas, K.

    2001-01-01

    A time-dependent gas-phase isovolumetric desorption technique has been used to assess the isotope effects in the diffusive transport parameters of hydrogen in an 8% CrWVTa reduced activation martensitic steel in the temperature range of 423-892 K and driving pressures from 4 x 10 4 - 1 x 10 5 Pa. The experiments have been run with both protium and deuterium obtaining their respective transport parameters, diffusivity (D), Sieverts' constant (K S ), permeability (Φ), trap site density (η t ) and the trapping activation energy (E t ). Isotope effects on steel are analysed and compared with α-iron. A new way to derive more accurate tritium transport parameters is proposed. (orig.)

  7. Development of ferritic-martensitic P9 steel for wrapper application in future SFRs

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Mathew, M.D.; Isaac Samuel, E.; Moitra, A.

    2011-01-01

    The paper deals with the outcome of the research and development efforts directed towards the development of ferritic-martensitic P9 steel for wrapper application in future sodium cooled fast reactors with an objective to achieve high fuel burnup and more economical nuclear energy. The important and critical issues involved for the development of P9 wrappers such as optimisation of chemical composition in terms of trace elements like sulphur and phosphorous and appropriate thermo-mechanical treatments along with thermal ageing and irradiation effects on fracture properties have been discussed. Tensile properties evaluated at temperatures ranging from 300 to 873 K on the experimental three heats of P9 steel with different silicon contents and made using primary vacuum induction melting followed by secondary electro slag refining route, have been presented. Fracture behaviour examined mainly in terms of ductile to brittle transition temperature and upper shelf energy provided encouraging results. Based on these investigations, a roadmap has been drawn to make experimental P9 steel wrappers for tests in fast breeder test reactor and prototype fast breeder reactor. (author)

  8. Creep deformation of high Cr-Mo ferritic/martensitic steels by material softening

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2005-01-01

    High Cr (9-12%Cr) ferritic/martensitic steels represent a valuable alternative to austenitic stainless steel for high temperature applications up to 600 .deg. C both in power and petrochemical plant, as well as good resistance to oxidation and corrosion. Material softening is the main physical phenomenon observed in the crept material. Thermally-induced change (such as particle coarsening or matrix solute depletion) and strain-induced change (such as dynamic subgrain growth) of microstructure degraded the alloy strength. These microstructural changes during a creep test cause the material softening, so the strength of the materials decreased. Many researches have been performed for the microstructural changes during a creep test, but the strength of crept materials has not been measured. In the present work, we measured the yield and tensile strength of crept materials using Indentationtyped Tensile Test System (AIS 2000). Material softening was quantitatively evaluated with a creep test condition, such as temperature and applied stress

  9. Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: a transmission electron microscope study

    International Nuclear Information System (INIS)

    Staudhammer, K.P.; Hecker, S.S.; Murr, L.E.

    1983-01-01

    The deformation of type 304 stainless steel produces a preponderance of strain-induced /chi/ (b.c.c.) martensite, which nucleates as stable embryos at micro-shear band or twin-fault intersections as proposed by Olson and Cohen. The two intersecting micro-shear bands must have a specific defect (fault-displacement) structure, and for stable martensite embryos to form requires a minimal micro-shear band thickness ranging from 50-70 A. The critical nature of nucleation is influenced by the local temperature and strain. The structure, geometry, and morphology of strain-induced martensite embryos is essentially invariant regardless of the strain rate, strain state or temperature. Larger volume fractions of martensite evolve at large strains (greater than or equal to 20%) as a result of embryo coalescence to produce a blocky-type morphology. Martensite embryos and coalesced volume elements of /chi/ are frequently characterized by an irregular non-homogeneous distribution of smaller b.c.c. regimes which result from the irregular satisfaction of the necessary and specific fault-displacement requirements within a larger intersection volume

  10. Irradiation creep of the martensitic steel no. 1.4914 between 400 deg C and 600 deg C (Mol 5B)

    International Nuclear Information System (INIS)

    Herschbach, K.; Doser, W.

    1983-01-01

    The irradiation induced creep of the martensitic steel DIN No. 1.4914 was investigated in the temperature range from 400 to 600 deg C for stresses up to 200 Mpa using the Mol 5B irradiation rig. The results point to a behavior quite different from that observed in the austenitic steels as will be discussed in detail. The creep is thermally activated and non-linearly dependent upon the applied stress. (author)

  11. Study of interactions between liquid lead-lithium alloy and austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Simon, N.

    1992-06-01

    In the framework of Fusion Technology, the behaviour of structural materials in presence of liquid alloy Pb17Li is investigated. First, the diffusion coefficients of Fe and Cr have been determined at 500 deg C. Then mass transfer experiments in Pb17Li have been conducted in an anisothermal container with pure metals (Fe, Cr, Ni), Fe-Cr steels and austenitic steels. These experiments showed a very high loss of Nickel, which is an accordance with its high solubility, and Cr showed mass-losses one order of magnitude higher than for pure iron, as the diffusion coefficient of Cr is three orders of magnitude higher than for pure Fe. The corrosion rate of binary Fe-Cr and pure Fe are identical. In austenitic steels, the gamma lattice allows a higher mass-transfer of Cr than the alpha lattice, the presence of Cr slows downs the dissolution of Ni, and the porosity of corrosion layers results of losses of Cr and Ni. Finally, a review of our results and those of other laboratories allowed an identification of the corrosion limiting step. In the case of 1.4914 martensitic steel it is the diffusion of Fe in Pb17Li, while in the case of 316L austenitic steel it is the diffusion of Cr in Pb17Li

  12. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Long, Shao-lei [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yi-long, E-mail: liangyilong@126.com [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Jiang, Yun [Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yu; Yang, Ming; Yi, Yan-liang [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China)

    2016-10-31

    The martensite multi-level microstructures of 20CrNi2Mo steel, which were quenched at the different temperatures of 900–1200 °C and tempered at 200 °C, were investigated by optical microscope (OM), scanning electron microscopy (SEM), electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM), and the relationship between the microstructures and properties of strength and toughness was discussed by the classic formula of Hall–Petch. The results show that the size of prior austenite grain (d{sub r}), martensite packet (d{sub p}) and block (d{sub b}) increase with increasing of the quenching temperature, while the martensite lath (d{sub l}) size is opposite. On another hand, the confusion degree of the martensite packets changes from disorder to order. The boundaries of prior austenite grain, packet, block and the martensite lath are high angle boundaries (HBs) and low angle boundaries (LBs), respectively, and the ratio of the low angle boundaries increase with the quenching temperature by calculating to the multi-level microstructure size with the mathematical model established by myself. In addition, the relationship between the packet/block and strength follows the classical formula of Hall–Petch, and the size of d{sub b} is far lower than the size of d{sub p}, d{sub b} is the effective control unit of the strength. Meanwhile, d{sub l} is the effective control unit of toughness because it strongly impacts the crack initiation and propagation and follows also the Hall-Petch with toughness in 20CrNi2Mo steel.

  13. Effect of W and Ta on creep–fatigue interaction behavior of reduced activation ferritic–martensitic (RAFM) steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Institute for Plasma Research, Ahmedabad 382428 (India); Mariappan, K.; Sandhya, R.; Laha, K.; Jayakumar, T.; Kumar, E. Rajendra [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Institute for Plasma Research, Ahmedabad 382428 (India)

    2015-11-15

    Highlights: • SR correlated with deformation under CFI in RAFM steels. • Stress relaxation directly related to plastic strain accumulated, inversely to CFI life. • Optimum combination of W and Ta best for CFI life. • RAFM steels demonstrated compressive dwell sensitivity. • SR tends toward constant value at long hold. - Abstract: The aim of this work is to understand the effect of varying tungsten and tantalum contents on creep–fatigue interaction (CFI) behavior of reduced activation ferritic–martensitic (RAFM) steels. Increase in W improved CFI life. Effect of changing Ta and W upon the resultant CFI life seems to be interrelated and an optimum combination of both W and Ta works out to be the best for CFI life. Stress relaxation obtained during application of hold can be a useful parameter to relate deformation and damage in the RAFM steels.

  14. Effect of W and Ta on creep–fatigue interaction behavior of reduced activation ferritic–martensitic (RAFM) steels

    International Nuclear Information System (INIS)

    Shankar, Vani; Mariappan, K.; Sandhya, R.; Laha, K.; Jayakumar, T.; Kumar, E. Rajendra

    2015-01-01

    Highlights: • SR correlated with deformation under CFI in RAFM steels. • Stress relaxation directly related to plastic strain accumulated, inversely to CFI life. • Optimum combination of W and Ta best for CFI life. • RAFM steels demonstrated compressive dwell sensitivity. • SR tends toward constant value at long hold. - Abstract: The aim of this work is to understand the effect of varying tungsten and tantalum contents on creep–fatigue interaction (CFI) behavior of reduced activation ferritic–martensitic (RAFM) steels. Increase in W improved CFI life. Effect of changing Ta and W upon the resultant CFI life seems to be interrelated and an optimum combination of both W and Ta works out to be the best for CFI life. Stress relaxation obtained during application of hold can be a useful parameter to relate deformation and damage in the RAFM steels.

  15. The effect of microstructural change on the Charpy impact properties of the high-strength ferritic/martensitic steel (PNC-FMS) irradiated in JOYO/MARICO-1

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Akasaka, Naoaki; Yoshitake, Tsunemitsu; Abe, Yasuhiro

    2004-03-01

    It is well known that the irradiation embrittlement is one of the most important issues to apply ferritic steels for FBR core materials, although ferritic steels have been considered to be candidate core materials of the commercialized FBR core material because of their superior swelling resistance. In order to evaluate the effects of microstructural changes during irradiation on the Charpy impact properties of the high-strength ferritic/martensitic steel (PNC-FMS), microstructural observations were performed with transmission electron microscopy on ruptured halves of the half-sized Charpy specimens of PNC-FMS irradiated in the JOYO/MARICO-1. The results obtained in this study are as follows: (1) There was remarkable disappearance of the lath of martensite in the samples irradiated at 650degC, although there was no significant change in microstructures, especially the lath of martensite between the samples irradiated at 500degC and unirradiated. The disappearance of martensitic lath in the samples irradiated at 650degC was larger than that of the samples thermally aged at 650degC. (2) The ductile-brittle transition temperature (DBTT) of irradiated PNC-FMS is judged to increase with the disappearance of martensitic lath and to decrease with the recovery in dislocations. (3) The decrease in the upper shelf energy (USE) of irradiated PNC-FMS is significantly accompanied by the change of precipitation behavior. (4) The Charpy impact properties and microstructures of PNC-FMS irradiated at 500degC were superior under these irradiation conditions. In future, it is necessary to establish how to evaluate Charpy impact properties in a high fluence region, based on theoretical methods introduced from the data gained in low fluence experiments, in addition to expanding the data area widely. (author)

  16. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  17. Mechanical properties of martensitic alloy AISI 422

    International Nuclear Information System (INIS)

    Huang, F.H.; Hu, W.L.; Hamilton, M.L.

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs

  18. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Perdahcıoğlu, E.S.; Geijselaers, H.J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain partitioning into the austenite and martensite phases are formulated using a mean-field homogenization approach. At this intermediate length-scale the average stress in the austenite phase is computed and utilized to compute the mechanical driving force resolved in the material. The amount of transformation and the transformation plasticity is derived as a function of the driving force. The mechanical response of the material is obtained by combining the homogenization and the transformation models. The model is verified by mechanical tests under biaxial loading conditions during which different transformation rates are observed. As a final verification of the model, a bending test is used which manifests the stress-state dependency of the transformation.

  19. Characterization of martensitic transformations using acoustic emission

    International Nuclear Information System (INIS)

    Tatro, C.A.

    1984-01-01

    Acoustic emission (AE) is a highly sensitive technique which can reveal changes in materials not detectable by other means. The goal of this project was to obtain basic information on the AE response to martensitic transformation in steel. This information will enable the use of AE for improved quality assurance testing of rough-cut component blanks and semifinished parts. The AE response was measured as a function of temperature in four steels undergoing martensitic transformation, and the AE response was compared with martensitic start temperature M/sub s/ and finish temperature M/sub f/ obtained by other methods. As measured by AE activity, M/sub s/ occurred as much as 26 0 C higher than previously reported using less sensitive measurement techniques. It was also found that 10 to 30% of an alloy of Fe-0.2% C-27% Ni transformed to martensite during one AE burst. These results show that AE can be used to study transformations both inside and outside the classical M/sub s/-M/sub f/ ranges. The findings will help to achieve the goal of using AE for quality assurance testing, and will add to the knowledge of the basic materials science of martensitic transformations

  20. Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation

    International Nuclear Information System (INIS)

    Nakada, Nobuo; Ishibashi, Yuji; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2016-01-01

    For improving the understanding of austenite stability in steel, hydrostatic pressure in untransformed austenite that is generated via martensitic transformation was evaluated from macro- and micro-viewpoints, and its effect on austenite stability was investigated in a Fe-27%Ni austenitic alloy. X-ray diffractometry revealed that the lattice parameter of untransformed austenite is continuously decreased via martensitic transformation only when martensite becomes the dominant phase in the microstructure. This suggests that the untransformed austenite is isotropically compressed by the surrounding martensite grains, i.e., hydrostatic pressure is generated in untransformed austenite dynamically at a later stage of martensitic transformation. On the other hand, microscopic strain mapping using the electron backscatter diffraction technique indicated that a finer untransformed austenite grain has a higher hydrostatic pressure, while a high density of dislocations is also introduced in untransformed austenite near the austenite/martensite interface because of lattice-invariant shear characterized by non-thermoelastic martensitic transformation. Furthermore, it was experimentally demonstrated that the hydrostatic pressure stabilizes the untransformed austenite; however, the austenite stabilization effect alone is not large enough to fully explain a large gap between martensite start and finish temperatures in steel.

  1. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  2. OPTIFER, a further step in development of Low Activation Martensitic Steels. Results of Characterization Experiments; OPTIFER, un paso mas hacia el desarrollo de un acero martensitico de baja activacion. Resultados de los ensayos de caracterizacion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.P.; Lapena, J.; Hernandez, M.T.; Schirra, M.

    1996-07-01

    Within the framework of the development of low activation structural materials to be used in nuclear fusion reactors four martensitic Fe-9,5 Cr alloys were conceived with different contents of tungsten-tantalum and/or germanium as substitutions for Mo, Ni, Nb and Al. As a result of recent activation calculations, the maximum concentrations of all accompanying elements, which are not desirable under radiological aspects, were determined for the first time for these OPTIFER steels, and laid down in specifications for the manufacturers of the alloys, after double-vacuum melting, only the real alloys with some of these accompanying elements added are within the specifications. For the majority of alloys the gap between request in radiological terms and the metallurgical/analytical reality is still considerable. The behavior during transformation and heat treatment roughly corresponds to that of conventional martensitic 9-12%Cr steels. Progress has been conspicuous as regards the notch impact toughness behavior, both at upper shelf level and in ductile brittle transition (DBTT) the W(Ce) alloyed OPTIFER variant exhibits more favorable values than the conventional MANET-II steel from the fusion program, with better strength characteristics above 500 degree centigree. With only a moderate decrease in strength values (compared to MANET-II), the Ge (Ce) variant excels by a distinct improvement in notch impact toughness values and, theoretically, a stronger reduction in dose rate than the W(Ce) variant and comes close to the decay curve of pure iron. (Author) 21 refs.

  3. Microstructural evolution of reduced-activation martensitic steel under single and sequential ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jin, Shuoxue; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, Feng; Xiong, Xuesong; Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-15

    Microstructural evolution of super-clean reduced-activation martensitic steels irradiated with single-beam (Fe{sup +}) and sequential-beam (Fe{sup +} plus He{sup +}) at 350 °C and 550 °C was studied. Sequential-beam irradiation induced smaller size and larger number density of precipitates compared to single-beam irradiation at 350 °C. The largest size of cavities was observed after sequential-beam irradiation at 550 °C. The segregation of Cr and W and depletion of Fe in carbides were observed, and the maximum depletion of Fe and enrichment of Cr occurred under irradiation at 350 °C.

  4. Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Brillet, Helene; Monnet, Isabelle; Mottot, Michel; Barcelo, Francoise; Fournier, Benjamin; Pineau, Andre

    2005-01-01

    Martensitic steels are known for their softening during cyclic tests carried out at high temperature. The softening has been at least partially explained by lath and sub-grain boundary elimination. This article is dedicated to an attempt at modelling both phenomena. Thanks to mechanical tests it is shown that the softening is mainly due to a decrease of the backstress. Transmission electron microscopy allows us to propose a mechanism of low-angle boundary elimination. Annihilation between dislocations of low-angle boundaries and incident mobile dislocations is modelled. The macroscopic backstress is finally computed using a Hall-Petch law and the Taylor model

  5. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: ksato@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Xu, Q.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Dai, Y. [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kikuchi, K. [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan)

    2012-12-15

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<{approx}0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  6. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    International Nuclear Information System (INIS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-01-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<∼0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  7. Carbon diffusion and kinetics during the lath martensite formation

    International Nuclear Information System (INIS)

    Xu Zuyao

    1995-01-01

    Calculations verify that carbon diffusion may occur during the lath martensite formation. Accordingly, the diffusion of interstitial atoms or ions must be taken into account when martensitic transformation is defined as a diffusionless transformation. In derivation of the kinetics equation of the athermal martensitic transformation, regarding the carbon diffusion, i.e. the enrichment of the austenite during the lath martensite formation, and ΔG γ fehler being function of the temperature and the carbon content in austenite, the kinetics equation is modified to a general form as: f=1-exp[β(C1-C0)-α(Ms-Tq)] where C0 and C1 are carbon contents in the austenite before and after quenching respectively. Consequently, the alloying element not only influences Ms, but also the diffusibility of carbon and both factors govern the amount of retained austenite in quenched steel which dominates in determing the toughness of the steel. (orig.)

  8. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Song, M.; Sun, C.; Fan, Z.; Chen, Y.; Zhu, R.; Yu, K.Y.; Hartwig, K.T.; Wang, H.; Zhang, X.

    2016-01-01

    Ferritic/martensitic (F/M) steels with high strength and excellent ductility are important candidate materials for the life extension of the current nuclear reactors and the design of next generation nuclear reactors. Recent studies show that equal channel angular extrusion (ECAE) was able to improve mechanical strength of ferritic T91 steels moderately. Here, we examine several strategies to further enhance the mechanical strength of T91 while maintaining its ductility. Certain thermo-mechanical treatment (TMT) processes enabled by combinations of ECAE, water quench, and tempering may lead to “ductile martensite” with exceptionally high strength in T91 steel. The evolution of microstructures and mechanical properties of T91 steel were investigated in detail, and transition carbides were identified in water quenched T91 steel. This study provides guidelines for tailoring the microstructure and mechanical properties of T91 steel via ECAE enabled TMT for an improved combination of strength and ductility.

  9. Martensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties

    Directory of Open Access Journals (Sweden)

    Mohammad Shirdel

    2015-06-01

    Full Text Available Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjected to heavy cold rolling to produce a nearly complete martensitic structure. Subsequently, a wide range of annealing temperatures (600 to 800°C and times (1 to 240 min were employed to assess the reversion behavior and to find the best annealing condition for the production of the nano/ultrafine grained austenitic microstructure. Microstructural characterizations have been performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and magnetic measurement, whereas the mechanical properties were assessed by tensile and hardness tests. After thermomechanical treatment, a very fine austenitic structure was obtained, which was composed of nano sized grains of ~ 85 nm in an ultrafine grained matrix with an average grain size of 480 nm. This microstructure exhibited superior mechanical properties: high tensile strength of about 1280 MPa with a desirable elongation of about 41%, which can pave the way for the application of these sheets in the automotive industry.

  10. Fracture toughness of China low activation martensitic (CLAM) steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunfeng [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, Gang; Jiang, Siben [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-15

    Highlights: • The fracture toughness of CLAM steel at room temperature is 417.9 kJ/m{sup 2} measured by unloading compliance method according to the ASTM E1820-11. • The fracture toughness of CLAM steel at room temperature can be calculated on the basis of the fractal dimensions measured under plane strain conditions. The calculated result and relative error for this experiment are 454.6 kJ/m{sup 2} and 8.78% respectively. • The calculation method could be used to estimate the fracture toughness of materials with analysis of the fracture surface. - Abstract: The fracture toughness (J{sub IC}) of China low activation martensitic (CLAM) steel was tested at room temperature through the compact tension specimen, the result is 417.9 kJ/m{sup 2}, which is similar to the JLF-1 at same experimental conditions. The microstructural observation of the fracture surface shows that the fracture mode is a typical ductile fracture. Meanwhile, the fracture toughness is also calculated on the basis of the fractal dimension and the calculated result is 454.6 kJ/m{sup 2}, which is consistent well with the experimental result. This method could be used to estimate the fracture toughness of materials by analyzing of the fracture surface.

  11. IRRADIATION CREEP AND MECHANICAL PROPERTIES OF TWO FERRITIC-MARTENSITIC STEELS IRRADIATED IN THE BN-350 FAST REACTOR

    International Nuclear Information System (INIS)

    Porollo, S. I.; Konobeev, Yu V.; Dvoriashin, A. M.; Budylkin, N. I.; Mironova, E. G.; Leontyeva-Smirnova, M. V.; Loltukhovsky, A. G.; Bochvar, A. A.; Garner, Francis A.

    2002-01-01

    Russian ferritic/martensitic steels EP-450 and EP-823 were irradiated to 20-60 dpa in the BN-350 fast reactor in the form of pressurized creep tubes and small rings used for mechanical property tests. Data derived from these steels serves to enhance our understanding of the general behavior of this class of steels. It appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation-related densification. The irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels, and that the loss of strength at test temperatures above 500 degrees C is a problem generic to all F/M steels. This conclusion is supported by post-irradiation measurement of short-term mechanical properties. At temperatures below 500 degrees C both steels retain their high strength (yield stress 0.2=550-600 MPa), but at higher test temperatures a sharp decrease of strength properties occurs. However, the irradiated steels still retain high post-irradiation ductility at test temperatures in the range of 20-700 degrees C.

  12. Experimental study and simulation of cyclic softening of tempered martensite ferritic steels

    International Nuclear Information System (INIS)

    Giroux, P.-F.

    2011-01-01

    The present work focuses on the high temperature mechanical behaviour of 9% Cr tempered martensite steels, considered as potential candidates for structural components in the next Generation IV nuclear power plants. Already used for energy production in fossil power plants, they are sensitive to softening during high-temperature cycling and creep-fatigue. This phenomenon is coupled to a pronounced microstructural degradation: mainly vanishing of subgrain boundaries and decrease in dislocation density. This study aims at (i) linking the macroscopic cyclic softening of 9% Cr steels and their microstructural evolution during cycling and (ii) proposing a physically-based modelling of deformation mechanisms in order to predict the macroscopic mechanical behaviour of these steels during cycling. Mechanical study includes uniaxial tensile and cyclic test at 550 C performed on a Grade 92 steel (9Cr-0,5Mo-1,8W-V-Nb). The effect of both strain amplitude and rate on mechanical behaviour is studied. Examination of tensile specimens suggests that the physical mechanism responsible for slight measured softening is mainly the necking phenomenon and the evolution of mean subgrain size, which increases by more than 15 % compared to the as-received state. The evolution of the macroscopic stress during cycling shows that cyclic softening is due to the decrease in kinematic stress. TEM observations highlights that the mean subgrain size increases by 60 to 100 % while the dislocation density decreases by more than 50 % during cycling, compared to the as-received state. A self-consistent homogenization model based on crystalline elasto-visco-plasticity and dislocation densities, predicting the mechanical behaviour of the material and its microstructural evolution during deformation is proposed. This model takes some of the main physical deformation mechanisms into account and only the two parameters of crystalline visco-plasticity should be adjusted (the effective activation energy and

  13. Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel

    International Nuclear Information System (INIS)

    Checchetto, R.; Horino, Y.; Benamati, G.

    1996-01-01

    The efficiency of TiN-TiC bilayer coatings, deposited by ion-beam-assisted deposition on martensitic steel, as a hydrogen permeation barrier was investigated by a gas phase method; the hydrogen permeability in the TiN-TiC bilayers is very low, at least 10 4 times lower than in the steel substrate in the temperature interval 470-570 K. Possible physical mechanisms, responsible for the reduced permeability of the ceramic bilayers, are discussed. In particular, from our experimental results, it can be concluded that chemisorption and/or hydrogen jumping from surface sites to the first subsurface atomic layer represents the hydrogen permeation limiting process. (orig.)

  14. Investigation of the self tempering effect of martensite by means of atom probe tomography

    International Nuclear Information System (INIS)

    Sackl, Stephanie; Clemens, Helmut; Primig, Sophie

    2015-01-01

    Self-tempering effects can be observed in steels with relatively high martensite start temperatures. After the formation of the first martensitic laths, carbon is able to diffuse in these laths during cooling, which can be attributed to sufficiently high temperatures. This effect cannot be observed in laths formed at lower temperatures. In steels containing up to 0.2 m.-% carbon, up to 90 % of the carbon atoms in the martensite segregate to dislocations during quenching. Due to its atomic resolution and sensitivity with respect to light elements, atom probe tomography is very well suited for the investigation of this phenomenon. In this study, the self-tempering effect in a quenched and tempered steel 42CrMo4 with a martensite start temperature of 310 C is investigated by means of atom probe tomography.

  15. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels.

    Science.gov (United States)

    Klimiankou, M; Lindau, R; Möslang, A

    2005-01-01

    Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.

  16. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    Science.gov (United States)

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1].

  17. Fine structure characterization of martensite/austenite constituent in low-carbon low-alloy steel by transmission electron forward scatter diffraction.

    Science.gov (United States)

    Li, C W; Han, L Z; Luo, X M; Liu, Q D; Gu, J F

    2016-11-01

    Transmission electron forward scatter diffraction and other characterization techniques were used to investigate the fine structure and the variant relationship of the martensite/austenite (M/A) constituent of the granular bainite in low-carbon low-alloy steel. The results demonstrated that the M/A constituents were distributed in clusters throughout the bainitic ferrite. Lath martensite was the main component of the M/A constituent, where the relationship between the martensite variants was consistent with the Nishiyama-Wassermann orientation relationship and only three variants were found in the M/A constituent, suggesting that the variants had formed in the M/A constituent according to a specific mechanism. Furthermore, the Σ3 boundaries in the M/A constituent were much longer than their counterparts in the bainitic ferrite region. The results indicate that transmission electron forward scatter diffraction is an effective method of crystallographic analysis for nanolaths in M/A constituents. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  18. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    International Nuclear Information System (INIS)

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2007-01-01

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured

  19. On the cryogenic magnetic transition and martensitic transformation of the austenite phase of 7MoPLUS duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.m [Department of Electromechanical Engineering, University of Macau, Macau (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2010-08-15

    The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of 'old' and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the 'old', simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.

  20. Interfacial properties of HIP joint between beryllium and reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Hirose, T.; Ogiwara, H.; Enoeda, M.; Akiba, M.

    2007-01-01

    Full text of publication follows: ITER test blanket module is the most important components to validate energy production and fuel breeding process for future demonstration reactor. Reduced activation ferritic / martensitic steel is recognized as a promising structural material for breeding blanket systems. And Beryllium must be used as plasma facing materials for ITER in vessel components. In this work, interfacial properties of beryllium/reduced activation ferritic/martensitic steel (RAF/Ms) joint were investigated for a first wall of ITER test blanket module (TBM). The starting materials were ITER grade Beryllium, S65C and a Japanese RAF/M, F82H. The joint was produced by solid state hot isostatic pressing (HIP) method. Chromium layer with the thickness of 1 μm and 10 μm were formed by plasma vapor deposition on the beryllium surface as a diffusion barrier. The HIP was carried out at 1023 K and 1233 K which are determined by standard normalizing and tempering temperature of F82H. The joint made at 1233 K was followed by tempering at 1033 K. The bonding interface was characterized by electron probe microanalysis (EPMA). The bonding strength was also investigated by isometric four point bending tests at ambient temperature. EPMA showed chromium layer effectively worked as a diffusion barrier at 1023 K. However, the beryllium rich layer was formed in F82H after HIP at 1233 K followed by tempering. Bending tests revealed that thin chromium layer and low temperature HIP is preferable. The high temperature HIP introduce brittle BeFe inter metallic compounds along bonding interface. On the other hand, joint with thick chromium layer suffer from brittleness of chromium itself. (authors)

  1. Interfacial properties of HIP joint between beryllium and reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ogiwara, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Enoeda, M. [Naka Fusion Research Establishment, J.A.E.R.I., Japan Atomic Energy Research Institute, Naka-gun, Ibaraki-ken (Japan); Akiba, M. [Naka Fusion Institute, Japan Atomic Energy Agency, Naka, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: ITER test blanket module is the most important components to validate energy production and fuel breeding process for future demonstration reactor. Reduced activation ferritic / martensitic steel is recognized as a promising structural material for breeding blanket systems. And Beryllium must be used as plasma facing materials for ITER in vessel components. In this work, interfacial properties of beryllium/reduced activation ferritic/martensitic steel (RAF/Ms) joint were investigated for a first wall of ITER test blanket module (TBM). The starting materials were ITER grade Beryllium, S65C and a Japanese RAF/M, F82H. The joint was produced by solid state hot isostatic pressing (HIP) method. Chromium layer with the thickness of 1 {mu}m and 10 {mu}m were formed by plasma vapor deposition on the beryllium surface as a diffusion barrier. The HIP was carried out at 1023 K and 1233 K which are determined by standard normalizing and tempering temperature of F82H. The joint made at 1233 K was followed by tempering at 1033 K. The bonding interface was characterized by electron probe microanalysis (EPMA). The bonding strength was also investigated by isometric four point bending tests at ambient temperature. EPMA showed chromium layer effectively worked as a diffusion barrier at 1023 K. However, the beryllium rich layer was formed in F82H after HIP at 1233 K followed by tempering. Bending tests revealed that thin chromium layer and low temperature HIP is preferable. The high temperature HIP introduce brittle BeFe inter metallic compounds along bonding interface. On the other hand, joint with thick chromium layer suffer from brittleness of chromium itself. (authors)

  2. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel – Experiments and model

    International Nuclear Information System (INIS)

    Bardelcik, Alexander; Worswick, Michael J.; Wells, Mary A.

    2014-01-01

    Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s −1 ) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with

  3. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    International Nuclear Information System (INIS)

    Petersen, C.; Rodrian, D.

    2002-01-01

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 deg. C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials

  4. On size and geometry effects on the brittle fracture of ferritic and tempered martensitic steels

    Science.gov (United States)

    Odette, G. R.; Chao, B. L.; Lucas, G. E.

    1992-09-01

    A finite element computation of nonsingular crack tip fields was combined with a weakest link statistics model of cleavage fracture. Model predictions for three point bend specimens with various widths and crack depth to width ratios are qualitatively consistent with a number of trends observed in a 12 Cr martensitic stainless steel. The toughness “benefits” of small sizes and shallow cracks are primarily reflected in strain limits rather than net section stress capacities, which is significant to fusion structures subject to large secondary stresses.

  5. A study on Z-phase nucleation in martensitic chromium steels

    International Nuclear Information System (INIS)

    Golpayegani, Ardeshir; Andren, Hans-Olof; Danielsen, Hilmar; Hald, John

    2008-01-01

    9-12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550-650 deg. C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work, initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small. Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase

  6. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  7. Reduced Antivation Ferritic/Martensitic Steel Eurofer 97 as Possible Structural Material for Fusion Devices. Metallurgical Characterization on As-Received Condition and after Simulated Services Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lancha, A. M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2004-07-01

    Metallurgical Characterization of the reduced activation ferritic/martensitic steel Eurofer'97, on as-received condition and after thermal ageing treatment in the temperature range from 400 degree centigree to 600 degree centigree for periods up to 10.000 h, was carried out. The microstructure of the steel remained stable (tempered martensite with M{sub 2}3 C{sub 6} and MX precipitates) after the thermal ageing treatments studied in this work. In general, this stability was also observed in the mechanical properties. The Eurofer'97 steel exhibited similar values of hardness, ultimate tensile stress, 0,2% proof stress, USE and T{sub 0}3 regardless of the investigated material condition. However, ageing at 600 degree centigree for 10.000 ha caused a slight increase in the DBTT, of approximately 23. In terms of creep properties, the steel shows in general adequate creep rupture strength levels for short rupture times. However, the results obtained up to now for long time creep rupture tests at 500 degree centigree suggests a change in the deformation mechanisms. (Author) 62 refs.

  8. Reduced Activation Ferritic/Martensitic Steel Eurofer 97 as Possible Structural Material for Fusion Devices. Metallurgical Characterization on As-Received Condition and after Simulated Services Conditions

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A. M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2004-01-01

    Metallurgical Characterization of the reduced activation ferritic/martensitic steel Eurofer'97, on as-received condition and after thermal ageing treatment in the temperature range from 400 degree centigree to 600 degree centigree for periods up to 10.000 h, was carried out. The microstructure of the steel remained stable (tempered martensite with M 2 3 C 6 and MX precipitates) after the thermal ageing treatments studied in this work. In general, this stability was also observed in the mechanical properties. The Eurofer'97 steel exhibited similar values of hardness, ultimate tensile stress, 0,2% proof stress, USE and T 0 3 regardless of the investigated material condition. However, ageing at 600 degree centigree for 10.000 ha caused a slight increase in the DBTT, of approximately 23 . In terms of creep properties, the steel shows in general adequate creep rupture strength levels for short rupture times. However, the results obtained up to now for long time creep rupture tests at 500 degree centigree suggests a change in the deformation mechanisms. (Author) 62 refs

  9. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    Science.gov (United States)

    Xu, Lin-qing; Zhang, Dan-tian; Liu, Yong-chang; Ning, Bao-qun; Qiao, Zhi-xia; Yan, Ze-sheng; Li, Hui-jun

    2014-05-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  10. Kinetic of martensitic transformations induced by hydrogen in the austenite

    International Nuclear Information System (INIS)

    Oliveira, Sergio P. de; Saavedra, A.; Miranda, P.E.V. de

    1986-01-01

    The X-ray diffractometry technique was used, with an automatic data acquisition system to determine the kinetics of hydrogen induced martensitic phase transformations in an AISI 304 austenitic stainless steel type, used in nuclear power plants. Hydrogenation was performed cathodically in a 1N sulfuric acid solution, containing 100 mg/l of arsenic trioxide, at 50 0 C, during 2 hours and with a current density of 200 A/m 2 . It was found that the microstructure of the steel plays a role on the generation of hydrogen induced martensitic phases and surface micro cracks. Both kinetics were slower on a pre-cold rolled steel. (Author) [pt

  11. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang, E-mail: thaksang.byun@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hoelzer, David T. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Jeoung Han [Hanbat National University, Daejeon 305-719 (Korea, Republic of); Maloy, Stuart A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-15

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The K{sub JQ} versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  12. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    Science.gov (United States)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  13. Phase transformation system of austenitic stainless steels obtained by permanent compressive strain

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Tomida, Sai

    2017-01-27

    In order to understand more completely the formation of strain-induced martensite, phase structures were investigated both before and after plastic deformation, using austenitic stainless steels of various chemical compositions (carbon C=0.007–0.04 mass% and molybdenum Mo=0–2.10 mass%) and varying pre-strain levels (0–30%). Although the stainless steels consisted mainly of γ austenite, two martensite structures were generated following plastic deformation, comprising ε and α′ martensite. The martensitic structures were obtained in the twin deformation and slip bands. The severity of martensite formation (ε and α′) increased with increasing C content. It was found that α′ martensite was formed mainly in austenitic stainless steel lacking Mo, whereas a high Mo content led to a strong ε martensite structure, i.e. a weak α′ martensite. The formation of α′ martensite occurred from γ austenite via ε martensite, and was related to the slip deformation. Molybdenum in austenitic stainless steel had high slip resistance (or weak stress-induced martensite transformation), because of the stacking fault energy of the stainless steel affecting the austenite stability. This resulted in the creation of weak α′ martensite. Models of the martensitic transformations γ (fcc)→ε (hcp)→α′ (bcc) were proposed on both the microscopic and nanoscopic scales. The α′ martensite content of austenitic stainless steel led to high tensile strength; conversely, ε martensite had a weak effect on the mechanical strength. The influence of martensitic formation on the mechanical properties was evaluated quantitatively by statistical analysis.

  14. Ion implantation induced martensite nucleation in SUS301 steel

    International Nuclear Information System (INIS)

    Kinoshita, Hiroshi; Takahashi, Heishichiro; Gustiono, Dwi; Sakaguchi, Norihito; Shibayama, Tamaki; Watanabe, Seiichi

    2007-01-01

    Phase transformation behaviors of the austenitic 301 stainless steel was studied under Fe + , Ti + and Ar + ions implantation at room temperature with 100, 200 and 300 keV up to fluence of 1x10 21 ions/m 2 and the microstructures were observed by means of transmission electron microscopy (TEM). The plane and cross-sectional observations of the implanted specimen showed that the induced-phases due to implantation from the γ matrix phase were identified as α' martensite phases with the orientation relationship of (11-bar0) α parallel (111-bar) γ and [111] α parallel [011] γ close to the Kurdjumov-Sachs (K-S). The ion implantation induced phases nucleated near the surface region and the depth position of the nucleation changed depending on the ion accelerating energy and ion species. It was also found that the induced marten sites phases nucleate under the influence of the stress distribution, which is introduced due to the concentration of implanted ions, especially due to the stress gradient caused by the corresponding concentration gradient. (author)

  15. Metallurgical properties of reduced activation martensitic steel Eurofer'97 in the as-received condition and after thermal ageing

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2002-01-01

    This paper describes the microstructural studies and the mechanical testing (hardness, tensile and charpy tests) performed on the Eurofer'97 steel in the as-received condition and after thermal ageing treatments up to 600 deg. C. In addition, fracture toughness tests on the as-received condition have been carried out in order to determine the Master Curve. During the thermal ageing treatments studied (500 deg. C/5000 h and 600 deg. C/1000 h) the general microstructure of the steel (tempered martensite with M 23 C 6 and MX precipitates) remained stable. Only a slight growth of the particles has been observed. In terms of mechanical properties, the Eurofer'97 steel exhibited similar values of tensile properties (tensile and yield strength) and ductile-brittle transition temperature regardless of the material condition studied.

  16. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  17. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Christien, F., E-mail: frederic.christien@univ-nantes.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Telling, M.T.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Knight, K.S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Earth Sciences, The Natural History Museum, Cromwell Road, London (United Kingdom)

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)

  18. Effect of Titanium on the Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV

    OpenAIRE

    Wen-Tao Yu; Jing Li; Cheng-Bin Shi; Qin-Tian Zhu

    2016-01-01

    The effect of titanium on the carbides and mechanical properties of martensitic stainless steel 8Cr13MoV was studied. The results showed that TiCs not only acted as nucleation sites for δ-Fe and eutectic carbides, leading to the refinement of the microstructure, but also inhibited the formation of eutectic carbides M7C3. The addition of titanium in steel also promoted the transformation of M7C3-type to M23C6-type carbides, and consequently more carbides could be dissolved into the matrix duri...

  19. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    International Nuclear Information System (INIS)

    Nikravesh, M.; Naderi, M.; Akbari, G.H.

    2012-01-01

    Highlights: ► Reduction of cooling rate, can cause to increase or decrease M s and M f . ► 40% hot plastic deformation hindered the martensitic transformation. ► Hot plastic deformation, caused to decrease M f and M s , while B s increased. ► The critical cooling rate increased 40 °C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 °C/s to 100 °C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M s and M f , depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M f and M s especially at lower cooling rates, while B s increased. Furthermore, the critical cooling rate, increased about 40 °C/s by applying 40% hot plastic deformation.

  20. Monitoring of martensite formation during welding by means of acoustic emission

    International Nuclear Information System (INIS)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den

    2001-01-01

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  1. Resistance spot weldability of 11Cr–ferritic/martensitic steel sheets

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-01-01

    Resistance spot welding of 11Cr–0.4Mo–2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  2. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  3. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

    Science.gov (United States)

    Luo, Min; Zhou, Bing; Li, Rong-bin; Xu, Chun; Guo, Yan-hui

    2017-09-01

    In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s-1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

  4. Ultrafine Structure and High Strength in Cold-Rolled Martensite

    DEFF Research Database (Denmark)

    Huang, Xiaoxu; Morito, S.; Hansen, Niels

    2012-01-01

    Structural refinement by cold rolling (10 to 80 pct reductions) of interstitial free (IF) steel containing Mn and B has been investigated from samples with different initial structures: (a) lath martensite, (b) coarse ferrite (grain size 150 mu m), and (c) fine ferrite (22 mu m). Unalloyed IF steel....... At low to medium strains, lath martensite transforms into a cell block structure composed of cell block boundaries and cell boundaries with only a negligible change in strength. At medium to large strains, cell block structures in all samples refine with increasing strain and the hardening rate...... is constant (stage IV). A strong effect of the initial structure is observed on both the structural refinement and the strength increase. This effect is largest in lath martensite and smallest in unalloyed ferrite. No saturation in structural refinement and strength is observed. The discussion covers...

  5. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  6. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  7. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  8. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  9. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic–martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-01-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic–Martensitic (RAFM) steel (9Cr–1W–0.06Ta–0.22V–0.08C) have been investigated over a temperature range of 300–873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  10. Softening mechanisms of the AISI 410 martensitic stainless steel under hot torsion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Santana de; Silva, Eden Santos; Rodrigues, Samuel Filgueiras; Nascimento, Carmem Celia Francisco; Leal, Valdemar Silva; Reis, Gedeon Silva, E-mail: samuel.filgueiras@ifma.edu.br [Instituto Federal do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil)

    2017-03-15

    This study investigated the softening mechanisms of the AISI 410 martensitic stainless steel during torsion simulation under isothermal continuous in the temperature range of 900 to 1150 °C and strain rates of 0.1 to 5.0s{sup -1}. In the first part of the curves, before the peak, the results show that the critical (ε-c) and peak (ε-p) strains are elevated for higher strain rate and lower temperatures contributing for higher strain hardening rate (h). Moreover, this indicated that dynamic recrystallization (DRX) and dynamic recovery (DRV) are not effective in this region. After the peak, the reductions in stresses are associated to the different DRX/DRV competitions. For lower temperatures and higher strain rates there is a delay in the DRX while the DRV is acting predominantly (with low Avrami exponent (n) and high t{sub 0.5}). The steady state was reached after large strains showing DRX grains, formation of retained austenite and the presence of chromium carbide (Cr{sub 23}C{sub 6}) and ferrite δ at the martensitic grain boundaries. These contribute for impairing the toughness and ductility on the material. The constitutive equations at the peak strain indicated changes in the deformation mechanism, with variable strain rate sensitivity (m), which affected the final microstructure. (author)

  11. Lattice defect inheritance during γ-α-γ transformation in steel having no ''reverse'' (martensite) transition during austenization

    International Nuclear Information System (INIS)

    Bernshtejn, M.L.; Zajmovskij, V.A.; Kozlova, A.G.; Kolupaeva, T.L.

    1979-01-01

    An investigation was carried out, using an electron microscope technique, of the substructure of austenite in the 120Kh3G steel. It was shown that the austenite substructure, resulting from high-temperature mechanical working, is inherited on deep cooling by the low-temperature phase (martensite), and in subsequent heating is again inherited by austenite. If the disintegration of the hot-deformed austenite takes place in the pearlite phase, reheating gives rise to an austenite free from the substructure

  12. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  13. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  14. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Guoming, E-mail: zhuguoming@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-05

    The purpose of this study was to analyze the microstructure of lath martensite in 0.1C–1.1Si–1.7Mn (wt.%) steel and its effect on mechanical properties and fracture behavior. The microstructure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back scattering diffraction (EBSD). Charpy V-notch impact samples and compact tension (CT) samples were used to investigate the Charpy impact properties and fatigue crack growth behavior of the steel, respectively. The propagation of cleavage crack and fatigue crack were analyzed to figure out the effective grain size. The results showed that the typical hierarchical lath martensite structure contained prior austenite grains, packets, blocks and laths; packet size and block width were positively correlated to prior austenite grain size, while lath width was maintained at about 0.29 μm. Yield strength was related to prior austenite grain size, packet size and block width, and obeyed Hall–Petch relationship. Grain refinement was effective in improving the resistance to cleavage fracture by introducing barriers to crack propagation; packet boundaries and block boundaries hold similar ability to impede the propagation of crack. Paris model can well describe the FCG behavior of the investigated steel. Block width governs the effective grain size for strength, toughness and fatigue crack propagation. - Graphical abstract: Mechanical properties and fracture behavior of 0.1C–1.1Si–1.7Mn steel. - Highlights: • Hall–Petch relationship is obeyed between yield strength and martensite microstructure size. • Packet boundaries and block boundaries hold similar ability to impede the propagation of crack. • Block width is the effective grain size for strength, toughness and fatigue crack propagation.

  15. Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation

    International Nuclear Information System (INIS)

    Ahn, T.-H.; Oh, C.-S.; Kim, D.H.; Oh, K.H.; Bei, H.; George, E.P.; Han, H.N.

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  16. Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite using Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.-H. [Seoul National University; Oh, C.-S. [Korean Institute of Materials Science; Kim, D. H. [Seoul National University; Oh, K. H. [Seoul National University; Bei, Hongbin [ORNL; George, Easo P [ORNL; Han, H. N. [Seoul National University

    2010-01-01

    Strain-induced martensitic transformation of metastable austenite was investigated by nanoindentation of individual austenite grains in multi-phase steel. A cross-section prepared through one of these indented regions using focused ion beam milling was examined by transmission electron microscopy. The presence of martensite underneath the indent indicates that the pop-ins observed on the load-displacement curve during nanoindentation correspond to the onset of strain-induced martensitic transformation. The pop-ins can be understood as resulting from the selection of a favorable martensite variant during nanoindentation.

  17. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion

    International Nuclear Information System (INIS)

    Ioltukhovskiy, A.G.; Blokhin, A.I.; Budylkin, N.I.; Chernov, V.M.; Leont'eva-Smirnova, M.V.; Mironova, E.G.; Medvedeva, E.A.; Solonin, M.I.; Porollo, S.I.; Zavyalsky, L.P.

    2000-01-01

    A number of issues regarding the development and use of 10-12% Cr reduced-activation ferritic-martensitic steels (RAFMS) for fusion are considered. These include: (1) problems of manufacturing and modifying their composition and metallurgical condition; (2) the influence on properties of their composition, purity, δ-ferrite concentration and cooling rates in the final stages of manufacturing; and (3) the effects of neutron irradiation at 320-650 deg. C up to 108 dpa on their mechanical properties. In addition, neutron activation and nuclear accumulation of elements in RAFMS with different initial concentrations of alloying and impurity elements for typical fusion reactor (DEMO) irradiation regimes have been calculated

  18. The effect of alloying and treatment on martensite transformation during deformation in Fe-Cr-Mn steels with unstable austenite

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop, V.I.; Sokolov, K.N.

    1977-01-01

    The effect is studied of alloying with chromium (6-10%), silicon (1-2%), molybdenum (1-3%), and copper (2%), the heat treatment conditions, and the deformation conditions, or the martensitic transformation and mechanical properties of Fe-Cr-Mn steels of the transitional class based on 0G8AM2S. It is shown that appropriate alloying and treatment, taking into account the degree of stability of the austenite, can ensure a complex of high mechanical properties of the steels investigated. For instance, the treatment of steel 0Kh10AG8MD2S by the technique: hardening+ 40% deformation at 400 deg C + 10% deformation at room temperature has yielded the following mechanical properties: sigmasub(B)=150 kgf/mm 2 , sigmasub(T)=110 kgf/mm 2 , sigma=18%, psi=32%

  19. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M., E-mail: nikravesh@yahoo.com [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Naderi, M. [Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Akbari, G.H. [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer Reduction of cooling rate, can cause to increase or decrease M{sub s} and M{sub f}. Black-Right-Pointing-Pointer 40% hot plastic deformation hindered the martensitic transformation. Black-Right-Pointing-Pointer Hot plastic deformation, caused to decrease M{sub f} and M{sub s}, while B{sub s} increased. Black-Right-Pointing-Pointer The critical cooling rate increased 40 Degree-Sign C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 Degree-Sign C/s to 100 Degree-Sign C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M{sub s} and M{sub f}, depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M{sub f} and M{sub s} especially at lower cooling rates, while B{sub s} increased. Furthermore, the critical cooling rate, increased about 40 Degree-Sign C/s by applying 40% hot plastic deformation.

  20. Compatibility of stainless steels and lithiated ceramics with beryllium

    Science.gov (United States)

    Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    The introduction of beryllium as a neutron multiplier in ceramic blankets of thermonuclear fusion reactors may give rise to the following compatibility problems: (i) oxidation of Be by ceramics (lithium aluminate and silicates) or by water vapour; (ii) interaction between beryllium and austenitic and martensitic steels. The studies were done in contact tests under vacuum and in tests under wet sweeping helium. The contact tests under vacuum have revealed that the interaction of beryllium with ceramics seems to be low up to 700°C, the interaction of beryllium with steels is significant and is characterized by the formation of a diffusion layer and of a brittle Be-Fe-Ni compound. With type 316 L austenitic steel, this interaction appears quite large at 600°C whereas it is noticeable only at 700°C with martensitic steels. The experiments carried out with sweeping wet helium at 600°C have evidenced a slight oxidation of beryllium due to water vapour which can be enhanced in the front of uncompletely dehydrated ceramics.

  1. Analysis of martensitic transformation and residual tension in an 304L stainless steel; Analise da transformacao martensitica e tensao residual em um aco inoxidavel 304L

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Juciane Maria

    2014-07-01

    The relationship between plastic deformation and the strain induced phase transformation, that provides a practical route to the development of new engineering materials with excellent mechanical properties, characterize the TRIP effect 'Transformation Induced Plasticity'. Among the stainless steels, the metastable 304 L austenitic steel is susceptible to transformation of austenite-martensite phase from tensile tests at room temperature by increments of plastic deformation. It is of great technological and scientific interest the knowledge of the evolution of phase transformation and residual stress from different levels and rates of plastic deformation imposed to the material. It is also important to evaluate the interference of metallographic preparation in quantitative analyzes of this steel. The main techniques used in this study consisted of X-rays diffraction and Ferritoscopy for the quantitation phase, and XRD to residual stress analysis also. As observed, the phase transformation quantification has not suffered significant influence of the metallographic preparation and evolved from increments of plastic deformation due to different stop charges and strain rates, leading to a further strengthening of the austenite matrix. The evaluation of residual stress resulting from the martensitic transformation was susceptible to the metallographic preparation and increased its value on comparison to sample without metallographic preparation. It was also observed that the residual stress decreased with the increase of the fraction of transformed martensite. (author)

  2. Production and qualification for fusion applications, a steel of low activity ferritic-martensitic ASTURFER; Produccion y cualificacion, para aplicaciones de fusion, de un acero de baja actividad ferritico-martensitico, ASTURFER

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Belzunce, J.; Artimez, J. M.

    2011-07-01

    This article details the work carried out in the design and development pilot plant scale of a steel ferritic-martensitic of reduced activity, Asturfer, with a chemical composition and metallurgical properties similar to steel Eurofer. We describe the different stages of steel production and the results of the characterizations made in the context of an extensive test program.

  3. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    Science.gov (United States)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  4. Microstructural Evolution of AerMet100 Steel Coating on 300M Steel Fabricated by Laser Cladding Technique

    Science.gov (United States)

    Liu, Jian; Li, Jia; Cheng, Xu; Wang, Huaming

    2018-02-01

    In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.

  5. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Srivatsa, Kulkarni, E-mail: srivatsa.kulkarni@kcssl.com; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-11-20

    Improvement of the general mechanical properties and in particular sub-zero impact toughness in a 0.2%C-13%Cr martensitic stainless steel has been explored by varying the hot deformation and heat treatment conditions. The deformation conditions include hot rolling an ingot in one case and cogging the ingot to a semis followed by hot rolling in another case. The bars made from both routes were subjected to a single hardening heat treatment at 980 °C and 1040 °C oil quenched and a double hardening heat treatment at 1040 °C followed by 980 °C oil quenched. The hardened steels were subjected to a standard two stage tempering at 710 °C followed by 680 °C. The impact toughness was found to be doubled in the cogged and rolled steel in double hardened condition. Other processing conditions show varying impact toughness levels. The toughness observed was correlated to the grain size and the carbide distribution in the matrix and the fractography features.

  6. Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts

    International Nuclear Information System (INIS)

    Chang, Y.; Li, X.D.; Zhao, K.M.; Wang, C.Y.; Zheng, G.J.; Hu, P.; Dong, H.

    2015-01-01

    Non-isothermal tension and compression tests of 22MnB5 boron steel were carried out in this study. How different stress state influences the martensitic transformation of advanced high strength steel (AHSS) parts was analyzed. The analysis reveals that the martensitic transformation starting temperature (M s ) changes with different stress states. Specifically, the M s temperature rises with increasing tensile stress, however, it rises first and then drops with increasing compressive stress. Moreover, a higher initial forming temperature leads to a higher M s temperature under the same stress. Simulation of an actual hot-formed AHSS B-pillar together with the microscopic metallography, hardness and martensitic content shows that in higher tensile stress dominated area, the martensitic content and hardness are usually higher than in other areas. Although the stress can promote the M s temperature, a lower cooling rate may lead to less martensite fraction

  7. Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.; Li, X.D. [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Zhao, K.M., E-mail: kmzhao@dlut.edu.cn [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Wang, C.Y. [Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081 (China); Zheng, G.J.; Hu, P. [School of Automotive Engineering, National Key Laboratory of Industrial Equipment Structural Analysis, Dalian University of Technology, Dalian 116024 (China); Dong, H. [Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081 (China)

    2015-04-01

    Non-isothermal tension and compression tests of 22MnB5 boron steel were carried out in this study. How different stress state influences the martensitic transformation of advanced high strength steel (AHSS) parts was analyzed. The analysis reveals that the martensitic transformation starting temperature (M{sub s}) changes with different stress states. Specifically, the M{sub s} temperature rises with increasing tensile stress, however, it rises first and then drops with increasing compressive stress. Moreover, a higher initial forming temperature leads to a higher M{sub s} temperature under the same stress. Simulation of an actual hot-formed AHSS B-pillar together with the microscopic metallography, hardness and martensitic content shows that in higher tensile stress dominated area, the martensitic content and hardness are usually higher than in other areas. Although the stress can promote the M{sub s} temperature, a lower cooling rate may lead to less martensite fraction.

  8. Corrosion fatigue investigation of a high nitrogen 12% Cr-steel and of a high strength martensitic PH 13-8 Mo steel under simulated steam turbine conditions. Final report

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Schweigart, H.

    1992-01-01

    This report summarizes the results of the corrosion fatigue investigations of two martensitic stainless steels (PH 13-8 Mo, X20 CrMoV 12 1; corrosion medium: 0,01 m NaCl or 22 wt% NaCl; pH value 3 or 7). The working programm includes electrochemical and corrosion fatigue tests. Also chemical analysis, mechanical-technological and metallographical as SEM investigations were performed. (orig.)

  9. The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel

    International Nuclear Information System (INIS)

    Liang, Yilong; Long, Shaolei; Xu, Pingwei; Lu, Yemao; Jiang, Yun; Liang, Yu; Yang, Ming

    2017-01-01

    The Hall-Petch relationship was used to investigate the role of martensite lath on fracture toughness (K IC ) during ductile fracture in a low-carbon EA4T axle steel. The hierarchical structures of lath martensite was clarified by means of optical microscope (OM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD). Firstly, in such hierarchical structures, packet size (d p ) and block size (d b ) increase significantly with the size of prior austenite (d r ), while the martensite lath width (d l ) decreases. Subsequently, K IC was measured and follows the Hall-Petch relationship with d l . It depends on the rotation, bending and direct shear during crack propagation of laths, confirmed by EBSD. Besides, fracture toughness (K IC ) is proportional to a parameter ε v , the matrix strain, which is related to the plastic deformation of laths. Therefore, the martensite lath in hierarchical structures is the effective control unit of K IC during ductile fracture controlled by the strain.

  10. The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yilong, E-mail: liangyilong@126.com [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Long, Shaolei; Xu, Pingwei; Lu, Yemao [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Jiang, Yun [Guizhou key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China); Liang, Yu; Yang, Ming [College of Materials Science and Metallurgical Engineering, Guizhou University (China); Guizhou key Laboratory for Mechanical Behavior and Microstructure of Materials (China); National & Local Joint Engineering Laboratory for High-performance Metal Structure Material and Advanced Manufacturing Technology (China)

    2017-05-17

    The Hall-Petch relationship was used to investigate the role of martensite lath on fracture toughness (K{sub IC}) during ductile fracture in a low-carbon EA4T axle steel. The hierarchical structures of lath martensite was clarified by means of optical microscope (OM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD). Firstly, in such hierarchical structures, packet size (d{sub p}) and block size (d{sub b}) increase significantly with the size of prior austenite (d{sub r}), while the martensite lath width (d{sub l}) decreases. Subsequently, K{sub IC} was measured and follows the Hall-Petch relationship with d{sub l}. It depends on the rotation, bending and direct shear during crack propagation of laths, confirmed by EBSD. Besides, fracture toughness (K{sub IC}) is proportional to a parameter ε{sub v}, the matrix strain, which is related to the plastic deformation of laths. Therefore, the martensite lath in hierarchical structures is the effective control unit of K{sub IC} during ductile fracture controlled by the strain.

  11. Monitoring of Fatigue Degradation in Austenitic Stainless Steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Leber, H.J.

    2004-01-01

    During cyclic loading of austenitic stainless steel, it was observed that microstructural changes occurred; these affect both the mechanical and physical properties of the material. For certain steels, a strain-induced martensite phase transformation was seen. The investigations showed that, for the given material and loading conditions, the volume fraction of martensite depends on the cycle number, temperature and initial material state. It was also found that the martensite content continuously increased with the cycle number. Therefore, the volume fraction of martensite was used as an indication of fatigue usage. It was noted that the temperature dependence of the martensite formation could be described by a Boltzmann function, and that the martensite content decreased with increasing temperature. Two different heats of the austenitic stainless steel X6CrNiTi18-10 (AISI 321, DIN 1.4541) were investigated. It was found that the martensite formation rate was much higher for the cold-worked than for the solution-annealed material. All applied techniques - neutron diffraction and advanced magnetic methods - were successful in detecting the presence of martensite in the differently fatigued specimens. (author)

  12. Fracture-tough, corrosion-resistant bearing steels

    Science.gov (United States)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  13. Processing, Microstructure, and Material Property Relationships Following Friction Stir Welding of Oxide Dispersion Strengthened Steels

    Science.gov (United States)

    2013-09-01

    Fast, 200 Ferritic- martensitic steels , ODS alloys Stainless steels Lead fast reactor Lead or lead- bismuth 800 Fast, 150 Ferritic- martensitic ...from Zinkle [from 1]. T22, T9, T91, E911, NF12, NF616, and SAVE12 are all Ferritic or Martensitic steels with variations in alloy concentrations and...manufacturing techniques. Similarly HCM12 and HCM12A are High Chromium Martensitic steels

  14. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  15. Plasticity induced by phase transformation in steel: experiment vs modeling

    International Nuclear Information System (INIS)

    Tahimi, Abdeladhim

    2011-01-01

    The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

  16. Progress of reduced activation ferritic/martensitic steel development in Japan

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Kimura, A.; Kohyama, A.; Ukai, S.; Sawai, T.; Wakai, E.; Shiba, K.; Miwa, Y.; Furuya, K.; Tanigawa, H.; Ando, M.

    2005-01-01

    Recent accomplishment by the Japanese activity for the reduced activation ferritic/martensitic steel (RAF/M) development has been reviewed. Some of the results obtained in EU and US by international collaborative activities are also introduced. Effect of irradiation on the shift of ductile-to-brittle transition temperature (DBTT) has been evaluated to a dose of 20dpa. Results suggest that RAF/M appears to satisfy the requirement on DBTT-shift for the blanket application in the dose range up to several tens of dpa. Also, enhancement effect of DBTT-shift by transmutation produced helium (He) atoms was revealed to be smaller than has been suggested previously. Preliminary studies about the effect of irradiation on fatigue mechanism, the susceptibility to environmentally assisted cracking in water and flow stress-strain relation have been conducted for the specimens irradiated to several dpa, including the post irradiation tensile property examination of the joints by Hot-isostatic press (HIP) bonding method. The results also indicate that RAF/Ms exhibit suitable properties for ITER test blanket module. (author)

  17. Metallurgical characterization of the reduced activation ferritic/martensitic steel Eurofer'97 on as-received condition

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Hernandez-Mayoral, M.

    2001-01-01

    A new European reduced activation ferrous alloy (denominated Eurofer'97) developed as possible first wall and breeder blanket structural material for fusion applications is being characterized. In this paper, activities specially focussed to investigate the microstructural and mechanical properties of this material on the as-received state (normalized at 980 degree sign C/27' plus tempered at 760 degree sign C/90'/air cooled) are presented. Chemical analyses, a detailed microstructural study, hardness, tensile and Charpy tests have been carried out and are compared to the reduced activation material F-82H modified previously studied. The results show that the Eurofer'97 is a fully martensitic steel free of δ-ferrite with similar tensile and better impact properties than the F-82H modified steel. Two types of carbides have been observed in the Eurofer'97, namely, Cr rich precipitates and Ta/V rich precipitates, tentatively identified as M 23 C 6 type and (Ta,V)C type, respectively

  18. Larson-Miller Constant of Heat-Resistant Steel

    Science.gov (United States)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  19. AC-Induced Bias Potential Effect on Corrosion of Steels

    Science.gov (United States)

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  20. Effect of Titanium on the Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV

    Directory of Open Access Journals (Sweden)

    Wen-Tao Yu

    2016-08-01

    Full Text Available The effect of titanium on the carbides and mechanical properties of martensitic stainless steel 8Cr13MoV was studied. The results showed that TiCs not only acted as nucleation sites for δ-Fe and eutectic carbides, leading to the refinement of the microstructure, but also inhibited the formation of eutectic carbides M7C3. The addition of titanium in steel also promoted the transformation of M7C3-type to M23C6-type carbides, and consequently more carbides could be dissolved into the matrix during hot processing as demonstrated by the determination of extracted carbides from the steel matrix. Meanwhile, titanium suppressed the precipitation of secondary carbides during annealing. The appropriate amount of titanium addition decreased the size and fraction of primary carbides in the as-cast ingot, and improved the mechanical properties of the annealed steel.