WorldWideScience

Sample records for martensitic steels ii

  1. Physical metallurgy of BATMAN II Ti-bearing martensitic steels

    International Nuclear Information System (INIS)

    Pilloni, L.; Attura, F.; Calza-Bini, A.; Santis, G. de; Filacchioni, G.

    1998-01-01

    Seven laboratory experimental casts of 7-9% Cr Ti-bearing martensitic steels were obtained via VIM process. Plates of 25 mm thickness were produced by hot rolling. On each cast CCT diagrams and critical temperatures were determined. Several austenitizing treatments were performed to study the grain size evolution. The effect of microstructure on impact properties were finally investigated. This paper discusses the role of chemical composition on microstructural and physical properties and shows the beneficial effect either of low-temperature austenitizing or double-austenitizing steps on impact properties. (orig.)

  2. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    Science.gov (United States)

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  3. Nitrogen-alloyed martensitic steels

    International Nuclear Information System (INIS)

    Berns, H.

    1988-01-01

    A report is presented on initial results with pressure-nitrided martensitic steels. In heat-resistant steels, thermal stability and toughness are raised by nitrogen. In cold work steel, there is a more favourable corrosion behaviour. (orig./MM) [de

  4. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  5. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  6. Gaseous surface hardening of martensitic stainless steels

    DEFF Research Database (Denmark)

    Tibollo, Chiara; Villa, Matteo; Christiansen, Thomas L.

    The present work addresses heat and surface treatments of martensitic stainless steel EN 1.4028. Different combinations of heat treatments and surface treatments were performed: conventional austenitisation, cryogenic treatment and in particular high temperature solution nitriding (HTSN) and low...... that cubic lath martensite in conventionally austenitised EN 1.4028 dissolves nitrogen and develops expanded martensite (ferrite) during LTSH. HTSN leads to a microstructure of tetragonal plate martensite and retained austenite. The content of retained austenite can be reduced by a cryo...

  7. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  8. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  9. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  10. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  11. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  12. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    Morris, John W Jr; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-01-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  13. Orientation relationship in Eurofer martensitic steels

    International Nuclear Information System (INIS)

    Barcelo, F.; De Carlan, Y.; Bechade, J.L.; Fournier, B.

    2009-01-01

    Both TEM and SEM/EBSD orientation measurements are carried out on a Eurofer97 martensitic steel. The influence of the prior austenitic grain size is studied using dedicated heat treatments. The intra laths misorientation is estimated by TEM. SEM/EBSD orientation mapping enable to study the actual orientation relationship (OR) between the parent austenitic phase and the martensitic phase. Neither the Nishiyama-Wasserman nor the Kurdjumov-Sachs OR is able to account for both the misorientation angle distributions, the pole figure and the misorientation axes measured. The mixed OR recently proposed by Gourgues et al. (Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Mater. Sci. Tech. 16 (2000), p. 26-40.) and Sonderegger et al. (Martensite laths in creep resistant martensitic 9-12% Cr steels - Calculation and measurement of misorientations, Mater. Characterization (2006), in Press.) seems to be able to account for most of these results. Based on this OR, a new angular criterion is proposed to detect blocks of laths. (authors)

  14. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  15. Martensitic transformation and stress partitioning in a high-carbon steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Grumsen, Flemming Bjerg; Pantleon, Karen

    2012-01-01

    Martensitic transformation in a high-carbon steel was investigated with (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ angular X-ray diffraction was applied to: (i) quantitatively determine the fractions of retained austenite and martensite; and (ii) measure the evolutio...

  16. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  17. Activation volume of martensitic ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Noh, S.; Kim, T. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Apparent activation volume as a function of temperature is 86b{sup 3}-42b{sup 3}. Activation volume decreases with increasing temperature. Activation volume changes scarcely with decreasing strain rate. Strain rate sensitivity increases with increasing temperature and decreasing strain rate. Nano-sized oxide dispersion strengthened (ODS) martensitic steel has a high strength, low thermal expansion coefficient, high thermal conductivity, and a good swelling resistance. Martensitic ODS steel is a candidate material for fuel cladding of sodium cooled fast breeder reactor (SFR). The plastic flow stress is determined through the interaction of dislocations with the obstacles encountered inside lattice. Dislocation movement through the lattice or past an obstacle requires surmounting of the energy barrier by a combination of applied stress and thermal activation. The plastic deformation of materials is a thermally activated process dependent upon time, temperature, and strain rate. Characterization of the rate controlling mechanism for plastic deformation due to dislocation motion in crystalline materials is done by the assessment of activation volume based on thermal activation analysis.

  18. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Littmark, U.; Johansen, A.; Christodoulides, C.

    1981-01-01

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb + ions to a fluence of 5 x 10 20 ions/m 2 , thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  19. Radiation swelling of steels with lath martensite-austenic structure

    International Nuclear Information System (INIS)

    Sagaradze, V.V.; Pavlov, V.A.; Alyab'ev, V.M.; Lapin, S.S.; Ermishkin, V.A.; Antonova, O.V.

    1987-01-01

    Influence of electron radiation in the column of the JEM-1000 electron microscope on radiation swelling of austenite as austenitic fields and thin plates surrounded by α-martensite crystals is investigated. Formation of lath structure of alternating dispersive plates of martensite and invert austenite formed as a result of partial inverse martensite transformation α→γ is shown to restrain radiation swelling and formation of vacancy voids in stainless steels

  20. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  1. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  2. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow...

  3. Radiation induced microstructural evolution in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  4. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  5. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  6. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    Science.gov (United States)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  7. Joining method for pressure tube and martensitic stainless steel tube

    International Nuclear Information System (INIS)

    Kimoto, Hiroshi; Koike, Hiromitsu.

    1993-01-01

    In a joining portion of zirconium alloy and a stainless steel, the surface of martensitic stainless steel being in contact with Zr and Zr alloy is applied with a laser quenching solidification treatment before expanding joining of them to improve the surface. This can provide the surface with refined coagulated cell tissues and make deposits and impurities homogeneous and solubilized. As a result, the surface of the martensitic stainless steel has highly corrosion resistance, to suppress contact corrosion with Zr and Zr alloy. Accordingly, even if it is exposed to high temperature water of 200 to 350degC, failures of Zr and Zr alloy can be suppressed. (T.M.)

  8. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Germán Prieto

    2017-08-01

    Full Text Available Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  9. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.

    Science.gov (United States)

    Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  10. Crystallography and Interphase Boundary of Martensite and Bainite in Steels

    Science.gov (United States)

    Furuhara, Tadashi; Chiba, Tadachika; Kaneshita, Takeshi; Wu, Huidong; Miyamoto, Goro

    2017-06-01

    Grain refinements in lath martensite and bainite structures are crucial for strengthening and toughening of high-strength structural steels. Clearly, crystallography of transformation plays an important role in determining the "grain" sizes in these structures. In the present study, crystallography and intrinsic boundary structure of martensite and bainite are described. Furthermore, various extrinsic factors affecting variant selection and growth kinetics, such as elastic/plastic strain and alloying effects on interphase boundary migration, are discussed.

  11. EBSD characterization of deformed lath martensite in if steel

    DEFF Research Database (Denmark)

    Lv, Z.A.; Zhang, Xiaodan; Huang, Xiaoxu

    2017-01-01

    Rolling deformation results in the transformation of a lath martensite structure to a lamellar structure characteristic to that of IF steel cold-rolled to medium and high strains. The structural transition takes place from low to medium strain, and electron backscatter diffraction analysis shows...... and the strength are characterized for lath martensite rolled to a thickness reduction of 30%, showing that large changes in the misorientation take place, while the strain hardening rate is low....

  12. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  13. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  14. Alloying effect on martensite transformation in stainless steels

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Shlyamnev, A.P.; Sorokina, N.A.

    1975-01-01

    The effect of cobalt, nickel, molybdenum on the martensite transformation kinetics in stainless steels containing 9 to 13% Cr has been studied. Cobalt in Fe-Cr base alloys decreases the temperature of the Msub(in) and Msub(fin) points without a considerable decrease of the martensite phase amount after the transformation. Nickel reduces the martensite transformation temperature range, the nickel effect being enhanced in the presence of cobalt, which is characterized by a change of the linear dependence Msub(in)=f(%Ni) for a quadratic one. Molybdenum decreases the temperature of the Msub(in) and Msub(fin) points intensively, thus, substantially increasing the residual austenite amount. In the steels investigated Ni and Co decrease, whereas Mo increases, to some extent, the temperature of the reverse a-γ-transformation. The reduction of chromium content from 13 to 9% stimulates the martensite transformation initiation, that is why, in alloys containing 9% Cr, the increase in the contents of Ni, Co., Mo with the martensite structure maintained is possible. A further alloying of steel containing 13% Cr with these elements is rather limited due to the inhibition of the martensite transformation

  15. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  16. Martensitic transformation induced by irradiation and deformation in stainless steels

    International Nuclear Information System (INIS)

    Maksimkin, O.P.

    1997-01-01

    In the present work the peculiarities of martensite γ → α , (γ → ε → α , ) transformation in the steels with a low stacking fault energy (12Cr18Ni10T, Cr15AG14) irradiated by neutrons, α-particles and electrons (pulse and stationary) and then deformed with the various strain rates in the temperature range - 20 - 1000 C are considered. It is established by the electron-microscope research that the phase γ → α ' transition in irradiated and deformed steels is observed on the definite stage of evolution of the dislocation structure (after the cell formation) and the martensite formation preferentially occurs on a stacking fault aggregation. The regularities of the irradiation by high energy particles effect on the formation parameters and martensite α , -phase accumulation kinetics ones and also their role in forming of the strength and ductile properties in steels are analysed. (A.A.D.)

  17. Martensite in steels: its significance, recent developments and trends

    International Nuclear Information System (INIS)

    Schulz-Beenken, A.S.

    1997-01-01

    Martensite is generally known as a hard but brittle microstructure. This is only true for high carbon plate martensite. Recently developed steels with a lath martensite microstructure offer an excellent toughness at yield strength of 1000 MPa yield strength. A transformation into lath martensite by glide as invariant shear mechanism is only possible at a carbon content below 0,03%. The source of both high strength and good toughness is the high dislocation density and the narrow lath width off less than 1 μm. By a thermomechanical treatment, that leads to a finer lath structure both strength and ductility can be improved to a yield strength of 1150 MPa and an elongation of 18%. As, unlike high carbon plate martensite, the hardness of lath martensite is not achieved by the distortion of the tetragonal cell by carbon atoms, the hardness of lath martensite remains stable up during an annealing treatment up to 600 C. This thermal stability of the lath martensit microstructure makes an additional increase of hardness by the precipitation of different types of intermetallic phases possible. The increase of the hardness from 300 HV to 600 HV by precipitation without volume changes and good cold deformability reveals many new application in manufacturing. In plate martensite too, comparatively high toughness values can be achieved, if carbon is replaced by nitrogen. The refining influence of nitrides on the austenite grain sizes and the precipitation of fine nitrides during the annealing process leads to impact values three times higher than those of comparable high carbon plate martensite. (orig.)

  18. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  19. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  20. Activation energy of time-dependent martensite formation in steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2018-01-01

    The kinetics of {557}γ lath martensite formation in (wt%) 17Cr-7Ni-1Al-0.09C and 15Cr-7Ni-2Mo-1Al-0.08C steels was assessed with magnetometry at sub-zero Celsius temperatures. Samples were cooled to 77 K by immersion in boiling nitrogen to suppress martensite formation. Thereafter, thermally...... applied to evaluate the data available in the literature. The overall analysis showed that EA varies in the range 2–27 kJ mol−1 and increases logarithmically with the total fraction of interstitials in the steel....

  1. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  2. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  3. Deformation induced martensite in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Solomon, N.; Solomon, I.

    2010-01-01

    The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstructure and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g) instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE), which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation. (Author) 21 refs.

  4. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  5. MARTENSITIC CREEP RESISTANT STEEL STRENGTHENED BY Z-PHASE

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to steel alloys having a martensitic or martensitic- ferritic structure and comprising Z-phase (CrXN) particles, where X is one or more of the elements V, Nb, Ta, and where the Z-phase particles have an average size of less than 400 nm. The alloy comprises by wt...... % the following components: 9 to 15% Cr, 0.01-0.20% N, C in an amount less than 0.1%, one or more of: 0.01- 0.5%V,0.01-1%Nb, 0.01-2%Ta, and a balance being substantially iron and inevitable impurities. The invention further relates to a method of manufacturing such a steel alloy, a component comprising...... such a steel alloy, and to the use of such a steel alloy for high temperature components....

  6. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    Science.gov (United States)

    2013-06-01

    report of FSW on a ferritic- martensitic stainless steel is the work of Chung, which applied this approach to a dissimilar weld between F82H (ferritic... martensitic ) and SUS304 (austenitic stainless ) [43]. 7 D. CORROSION OF FERRITIC/ MARTENSITIC STEELS IN HIGH TEMPERATURE MOLTEN SALT COOLANTS In...Philadelphia, PA, 1992, pp. 1267–1286, March 1990. [15] S. Rosenwasser, ―The application of martensitic stainless steels in a lifelong fusion first wall

  7. Analysis of the non-isothermal austenite-martensite transformation in 13% Cr-type martensitic stainless steels

    International Nuclear Information System (INIS)

    Garcia-De-Andris, C.; Alvarez, L.F.

    1996-01-01

    In martensitic stainless steels, as in other alloyed containing carbide-forming elements, the carbide dissolution and precipitation processes that take place during heat treatment can cause modifications to the chemical composition of the austenite phase of these steels. The chemical composition of this phase is a fundamental factor for the evolution of the martensitic transformation. As a result of their influence on the dissolution and precipitation processes, the parameters of the quenching heat treatment exert a strong influence on the behavior of the martensitic transformation in these steels. In the present study, the effect of the heating temperature and the cooling rate on the martensitic transformation in two 13% Cr-type martensitic stainless steels with different carbon contents were properly evaluated. (author)

  8. Crystallographic features of lath martensite in low-carbon steel

    International Nuclear Information System (INIS)

    Kitahara, Hiromoto; Ueji, Rintaro; Tsuji, Nobuhiro; Minamino, Yoritoshi

    2006-01-01

    Electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel. The crystallographic features of the lath martensite structure, of the order of the prior austenite grain size or larger, were clarified. Although the orientations of the martensite crystals were scattered around the ideal variant orientations, the martensite in this steel maintained the Kurdjumov-Sachs (K-S) orientation relationship. The procedures of the crystallographic analysis of the martensite (ferrite) phase with the K-S orientation relationship were explained in detail. Variant analysis showed that all 24 possible variants did not necessarily appear within a single prior austenite grain and that all six variants did not necessarily appear within each packet. Specific combinations of two variants appeared within local regions (sub-blocks), indicating a strict rule for variant selection. Prior austenite grain boundaries and most of the packet boundaries were clearly recognized. However, it was difficult to determine the block boundaries within the sub-blocks

  9. AM363 martensitic stainless steel: A multiphase equation of state

    Science.gov (United States)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  10. Martensitic transformation in helium implanted 316 stainless steel

    International Nuclear Information System (INIS)

    Ishimatsu, Manabu; Tsukuda, Noboru

    1997-01-01

    In order to simulate surface deterioration phenomenon due to particle loading of SUS-316 steel which is one of candidate materials for nuclear fusion reactor vacuum wall structure material, helium ion implanting was conducted at room temperature, 473 K and 573 K. To martensitic phase formed as a results, implantation dose dependence, implanting temperature dependence, and annealing under 1073 K were conducted. Formation of the martensitic phase was suppressed at high implanting temperature. At room temperature implantation, the martensitic phase disappeared at more than 873 K, but at high temperature implantation, it increased abnormally near at 973 K. This showed that deterioration of materials depended extremely upon using temperature and temperature history. (G.K.)

  11. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  12. Charpy impact behavior of manganese-stabilized martensitic steels

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1986-05-01

    Tests were conducted to evaluate the irradiation-induced shift in ductile-to-brittle transition behavior of two manganese stabilized martensitic steels. Miniature Charpy specimens were fabricated from two heats of steel similar in composition to HT-9 but with 0.1% C and Mn contents ranging from 3.3 to 6.6.%. The 3.3% Mn steel showed a transition temperature similar to that of HT-9 in both the unirradiated condition and in specimens irradiated to 11.3 dpa. The steel containing 6.6% Mn exhibited a higher transition temperature after irradiation than the steel containing 3.3% Mn. The upper shelf energy (USE) after irradiation for the manganese stabilized alloys was much higher than for HT-9. 6 refs., 3 figs., 2 tabs

  13. R and D status of China low activation martensitic steel

    International Nuclear Information System (INIS)

    Huang Qunying; Li Chunjing; Li Yanfen; Liu Shaojun; Wu Yican; Li Jiangang; Shan Yiyin; Yu Jinnan; Zhu Shengyun; Zhang Pinyuan; Yang Jianfeng; Han Fusheng; Kong Mingguang; Li Heqin; Muroga, T.; Nagasaka, T.

    2007-01-01

    The Reduced Activation Ferritic/Martensitic (RAFM) steel is considered as the primary candidate structural material for DEMO and the first fusion plant, and widely studied in the world. China low activation martensitic steel (CLAM) is being developed in Institute of Plasma Physics, Chinese Academy of Sciences, under wide collaboration with many other domestic and foreign institutes and universities. This paper summarized the main R and D progress on CLAM, which covered composition optimization of the CLAM, smelting and processing techniques, physical and mechanical property test and evaluation before and after irradiation, compatibility with liquid LiPb, welding techniques etc. Finally, further research and development, and the prospects on its application were stated. (authors)

  14. Aging in PWR conditions of martensitic stainless steels

    International Nuclear Information System (INIS)

    Boursier, J.M.; Buisine, D.; Fronteau, M.; Michel, D.; Rouillon, Y.; Yrieix, B.; Meyzaud, Y.

    1998-01-01

    Martensitic stainless steels are largely used in Nuclear Power Plant (pump impeller, valve stem...) because of their high mechanical characteristics and their good resistance to corrosion. Nevertheless some of those components could operate at temperature higher than 250 deg.C, which could embrittle the material by the precipitation of a chromium-rich phase during aging. In collaboration with Framatome, Electricite de France has undertaken numerous studies in order to understand this process of embrittlement. This paper presents a review of the metallurgical investigations on martensitic stainless steels components which were performed in the EDF hot laboratory. In peculiar, it should be noted the good correlation between inservice experience and the modelling developed by EDF R and D division. Finally and in association with safety analysis, these results will allow to establish the maintenance strategy of the French Nuclear Power Plants. (authors)

  15. Assessment of martensitic steels for advanced fusion reactors

    International Nuclear Information System (INIS)

    Wareing, J.; Tavassoli, A.A.

    1995-01-01

    Martensitic steels are currently considered in Europe to be prime structural candidate materials for the first wall and breeding blanket of the DEMO fusion reactor. In this design, reactor power and wall loading will be significantly higher than those of an experimental reactor. ITER and will give rise to component operating temperatures in the range 250 to 550 0 C with neutron doses higher than 70 dpa. These conditions render austenitic stainless steel, which will be used in ITER, less favourable. Factors contributing to the promotion of martensitic steels are their excellent resistance to irradiation induced swelling, low thermal expansion and high thermal conductivity allied to advanced industrial maturity, compared to other candidate materials vanadium alloys. This paper described the development and optimisation of the steel and weld metal. Using data design rules generated on modified 9 Cr 1 Mo steel during its qualification as a steam generator material for the European Fast Reactor (EFR), interim design guidelines are formulated. Whilst the merits of the steel are validated, it is shown that irradiation embrittlement at low temperature, allied to the need for prolonged post-weld hat treatment and the long term creep response of welds remain areas of some concern. (author). 18 refs., 6 figs., 2 tabs

  16. Characterization of long term aged martensitic stainless steels

    International Nuclear Information System (INIS)

    Tsubota, M.; Hattori, K.; Okada, T.

    1992-01-01

    Types CA6NM (13Cr), 431 and 630 (17Cr) were aged at 400 degrees C and 350 degrees C for up to 10000 hours, and their hardness change and SCC susceptibility in 288 degrees C water were investigated. Hardness of the alloys increased with aging. Hardness of type 431 aged at 400 degrees C for 10000 hours exceeded 340 in Hv, over which tempered martensitic stainless steels had become susceptible to SCC, and showed high SCC susceptibility. Type 630 had high SCC susceptibility in before and after aged condition, and the hardness in both conditions was more than Hv 340. Therefore, hardness was considered to be a parameter which could describe the SCC susceptibility of martensitic stainless steels. Using activation energy for hardness change 105-125kJ/mol and the critical hardness level Hv=340, the marginal life-time for martensitic stainless steels at 288 degrees C was estimated. Predicted life of type 431 and CA6NM were around 10 5 hours and more than 10 6 hours, respectively. Activation energies obtained for toughness change and hardness change were different. Consequently, it was concluded that at least two factors should be taken into consideration for determining the total life-limit for usage of martensitic stainless steels in the light water reactor environment. The meaning of the existence of critical hardness for SCC susceptibility has been also discussed. Higher than 340 in Hv, yield strength and strain for uniform deformation showed a tendency of saturation. Therefore, it was conjectured that some extreme internal strain level, which may change the plastic deformation manner, is the absolute factor for determining the SCC susceptibility of the alloys in high temperature water

  17. In-service thermal ageing of martensitic stainless steels

    International Nuclear Information System (INIS)

    Tampigny, R.; Molinie, E.; Foct, F.; Dignocourt, P.

    2011-01-01

    Martensitic stainless steels are largely used in Nuclear Power Plants (NPPs) mainly as valve stems, bolts or nuts due to their high mechanical properties and their good resistance to corrosion in primary water. At the end of the eighties, research studies have demonstrated a thermal ageing irreversible embrittlement due to the precipitation of a chromium-rich phase for X6 CrNiCu 17-04, X6 CrNiMo 16.04 and X12 Cr 13 martensitic stainless steels and a semi-empirical modeling has been proposed. Numerous metallurgical examinations have been performed in hot laboratories to consolidate the good correlation between in-service experience and the modeling developed by EDF RD. According to the feedback analysis, thermal ageing embrittlement can appear at different in-service temperatures or do not appear in relation with chemical composition of martensitic stainless steels and end of manufacturing heat treatments associated. A new campaign of metallurgical examinations has been proposed to consolidate previous studies and to contribute to maintenance policy for the next ten years after the third decennial outages for 900 MWe NPP. Influence of real in-service temperatures and end of manufacturing heat treatments have been examined to understand reasons why in some cases thermal ageing embrittlement does not occur or occur with a lowest intensity. These new results have contributed to reinforce EDF RD modeling validity and technical specifications defined in RCC-M for new valve stems, bolts or nuts. (authors)

  18. The neutronic basis for elemental substitution in martensitic steels

    Science.gov (United States)

    Sublet, J.-Ch.; Butterworth, G. J.

    1994-09-01

    A simple graphical approach has been developed to facilitate the design of low-activation steels by elemental tailoring. Noting that the iron base provides the best achievable target, the influence of candidate alloying elements becomes readily apparent when the contribution each makes to a particular activation parameter such as specific activity, dose rate or decay power, is expressed relative to the contribution from the iron base. This approach highlights the most critical activation parameters and times after shutdown with respect to safety and environmental objectives. Its application to the design of low activation martensitic stainless steels is discussed.

  19. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are... Martensitic Stainless Steel Report Title An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material

  20. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    OpenAIRE

    Abidin Kamal Ariff Zainal; Ismail Elya Atikah; Zainuddin Azman; Hussain Patthi

    2014-01-01

    Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagat...

  1. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  2. Internal friction in martensitic carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2009-01-01

    This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. Internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: P1 at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation.

  3. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  4. A study on fatigue crack growth in dual phase martensitic steel in air

    Indian Academy of Sciences (India)

    Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, ...

  5. Development of martensitic steels for high neutron damage applications

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1998-01-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr-1Mo-0.5W-0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are being less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort. (author)

  6. Development of martensitic steels for high neutron damage applications

    Science.gov (United States)

    Gelles, D. S.

    1996-12-01

    Martensitic stainless steels have been developed for both in-core applications in advanced liquid metal fast breeder reactors (LMFBR) and for first wall and structural materials applications for commercial fusion reactors. It can now be shown that these steels can be expected to maintain properties to levels as high as 175 or 200 dpa, respectively. The 12Cr1Mo0.5W0.2C alloy HT-9 has been extensively tested for LMFBR applications and shown to resist radiation damage, providing a creep and swelling resistant alternative to austenitic steels. Degradation of fracture toughness and Charpy impact properties have been observed, but properties are sufficient to provide reliable service. In comparison, alloys with lower chromium contents are found to decarburize in contact with liquid sodium and are therefore not recommended. Tungsten stabilized martensitic stainless steels have appropriate properties for fusion applications. Radioactivity levels are benign less than 500 years after service, radiation damage resistance is excellent, including impact properties, and swelling is modest. This report describes the history of the development effort.

  7. Development of Continuous Galvanization-compatible Martensitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y. F.; Song, T. J.; Kim, Han S.; De Cooman [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kwak, J. H. [POSCO Gwangyang Works, Gwangyang (Korea, Republic of)

    2012-01-15

    The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% H{sub 2} + N{sub 2} atmosphere with the dew point of -35 .deg. C resulted in the formation of a thin c-xMno.SiO{sub 2} (x>1) oxide film and amorphous a-xMnO.SiO{sub 2} oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin c-xMnO.SiO{sub 2} (x>1) oxide films was reduced by the Al. The a-xMnO.SiO{sub 2} (x<0.9) and a-SiO{sub 2} (x>1) oxide film was also reduced and the amorphous a-xMnO.SiO{sub 2} and a-SiO{sub 2} particles were embedded in the Fe{sub 2}Al{sub 5-x}Zn{sub x} inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline c-xMn.SiO{sub 2} (x>1) oxides but not the amorphous a-xMnO.SiO{sub 2} (x<0.9) and a-SiO{sub 2} oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

  8. Strength of 10CR-N martensitic steels

    International Nuclear Information System (INIS)

    Bahrami, F.; Hendry, A.

    1993-01-01

    10Cr stainless steel has been employed to examine the effect of nitrogen on microstructure and strength. Applying Solid state gaseous nitrogenising treatments a whole range of nitrogen martensite structures containing up to 0.45 wt% were obtained. It was found that a linear relationship exists between strength and nitrogen content in precipitate free martensitic structures. Yield strength increased from 705 to 1295 MPa for nitrogen free base material and alloys with 0.35 wt%N respectively. Pronounce secondary hardening was observed at a tempering temperature of 500 C. A linear relationship was also observed between the lattice parameter and nitrogen concentration in these alloys. A model for mechanical behaviour is presented. (orig.)

  9. Influence of microscopic strain heterogeneity on the formability of martensitic stainless steel

    Science.gov (United States)

    Bettanini, Alvise Miotti; Delannay, Laurent; Jacques, Pascal J.; Pardoen, Thomas; Badinier, Guillaume; Mithieux, Jean-Denis

    2017-10-01

    Both finite element modeling and mean field (Mori-Tanaka) modeling are used to predict the strain partitioning in the martensite-ferrite microstructure of an AISI 410 martensitic stainless steel. Numerical predictions reproduce experimental trends according to which macroscopic strength is increased when the dissolution of carbides leads to carbon enrichment of martensite. However, the increased strength contrast of ferrite and martensite favours strain localization and high stress triaxiality in ferrite, which in turn promotes ductile damage development.

  10. Martensitic transformation in SUS304 steels with the same Ni equivalent

    International Nuclear Information System (INIS)

    Ueda, T.; Okino, Y.; Takahashi, S.; Echigoya, J.; Kamada, Y.

    2003-01-01

    The behavior of martensitic transformation due to plastic deformation at room temperature was investigated in SUS304 austenitic stainless steels with the same nickel equivalent. The absolute volume of the martensitic phase was obtained by saturation magnetization. We discuss the shapes of the martensitic phase caused by different values of coercive force. Martensitic transformation depends on the applied stress but is independent of nickel content with same nickel equivalent. We investigated applications to nondestructive testing on the basis of the present study. (author)

  11. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    Science.gov (United States)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  12. High carbon microalloyed martensitic steel with ultrahigh strength-ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Ying [School of Mechanical Engineering, Shanghai Dianji University, Shanghai 200245 (China); Chen, Nailu, E-mail: nlchen@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zuo, Xunwei; Rong, Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-29

    Based on the idea of rising the mechanical stability of retained austenite by the addition of Si in Fe-Mn based steels, an Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb was designed, then its hot rolled plate was successively tread by normalization process as pretreatment of novel quenching-partitioning-tempering (Q-P-T) process. Product of tensile and elongation (PSE) of 53.94 GPa% were obtained for this high carbon Q-P-T martensitic steel, and the PSE (40.18 GPa%) obtained by the conversion of tensile sample size using Oliver formula still is more excellent PSE than those of other microalloyed advanced high strength steels reported. The microstructural characterization reveals origin of ultrahigh PSE resulting from both the increase of considerable and dispersed carbon enriched retained austenite with relative high mechanical stability in volume fraction and the decrease of brittle twin-type martensite with the sensitivity of notch.

  13. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  14. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    OpenAIRE

    S.R. Al-Sayed; A.A. Hussein; A.A. Nofal; S.I. Hassab Elnaby; H. Elgazzar

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m?min?1) was adopted to reach the op...

  15. Evolution of microstructure in stainless martensitic steel for seamless tubing

    Science.gov (United States)

    Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.

    2017-12-01

    Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.

  16. Microstructural development during laser cladding of low-C martensitic stainless steel.

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2007-07-01

    Full Text Available Heat input plays an important role in the microstructural development of 12%Cr martensitic stainless steel. The microstructure of low-C 12%Cr martensitic stainless steel resulting from laser cladding was investigated. For 410L a ferritic...

  17. Reversed austenite for enhancing ductility of martensitic stainless steel

    Science.gov (United States)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  18. Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

    International Nuclear Information System (INIS)

    Ghosh, Rahul; Krishna, S. Chenna; Venugopal, A.; Narayanan, P. Ramesh; Jha, Abhay K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-01-01

    The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a Cr_2N phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

  19. Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Rahul; Krishna, S. Chenna; Venugopal, A.; Narayanan, P. Ramesh; Jha, Abhay K.; Ramkumar, P.; Venkitakrishnan, P. V. [Vikram Sarabhai Space Centre (ISRO), Kerala (India)

    2016-12-15

    The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a Cr{sub 2}N phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

  20. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  1. Microstructural evolution of martensitic steels during fast neutron iradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1989-01-01

    Irradiation of martensitic/ferritic steels with fast neutrons (E > 0.1 MeV) to displacement damage levels of 30--50 dpa at temperatures of 300--500 degree C produces significant changes in the as-tempered microstructure. Dislocation loops and networks can be produced, irradiation-induced precipitates can form, the lath/subgrain boundary structure and the thermal precipitates produced during tempering can become unstable, and if helium is present, bubbles and voids can form. These microstructural changes caused by irradiation can have important effects on the properties of this class of steels for both fast breeder reactor (FBR) and magnetic fusion reactor (MFR) applications. The purpose of this paper is to compare reactor-irradiated and long-term thermally aged 9Cr--1MoVNb specimens, in order to distinguish effects due to displacement damage from those caused by elevated-temperature exposure alone. 7 refs., 1 fig

  2. The effect of deformation mode on the sensitisation of partially martensitic stainless steels

    International Nuclear Information System (INIS)

    Briant, C.L.

    1981-01-01

    The metallurgical process by which austenitic stainless steels become susceptible to corrosion is defined as sensitisation. It is now well established that if the austenite is partially transformed to martensite by deformation, the kinetics of sensitisation will be accelerated. In this paper the effects of martensite induced by various deformation modes on sensitisation are examined. It will be shown that in all cases the martensite accelerates sensitisation which in turn leads to rapid corrosion. This effect is independent of the way the martensite is induced. The results also show that this effect is observed over a wide range of martensite content. (author)

  3. OPTIFER, a further step in development of Low Activation Martensitic Steels. Results of Characterization Experiments

    International Nuclear Information System (INIS)

    Fernandez, M.P.; Lapena, J.; Hernandez, M.T.; Schirra, M.

    1996-01-01

    Within the framework of the development of low activation structural materials to be used in nuclear fusion reactors four martensitic Fe-9,5 Cr alloys were conceived with different contentsof tungsten-tantalum and/or germanium as substitutions for Mo, Ni, Nb and Al. As a result of recent activation calculations, the maximum concentrations of all accompanying elements, which are not desirable under radiological aspects, were determined for the first time for these OPTIFER steels, and laid down in specifications for the manufacturers of the alloys. After double-vacuum melting, only the real alloys with some of these accompanying elements added are within the specifications. For the majority of alloys the gap between request in radiological terms and the metallurgical/analytical reality is still considerable. The behavior during transformation and heat treatment roughly corresponds to that of conventional martensitic 9-12degree centigree Cr steels. Progress has been conspicuous as regards the notch impact tougness behavior. Both at upper shelf level and in ductile brittle transition (DBTT) the W(Ce) alloyed OPTIFER variant exhibits more favorable values than the conventional MANET-II steel from the fusion program, with better strength characteristics above 500 degree centigree. With only a moderate decrease in strenght values (compared to MANET-II), the Ge (Ce) variant excels by a distinct improvement in notch impact tougness values and, theoretically, a stronger reduction in dose rate than the W(Ce) variant and comes close to the decay curve of pure iron

  4. OPTIFER, a further step in development of Low Activation Martensitic Steels. Results of Characterization Experiments

    International Nuclear Information System (INIS)

    Fernandez, M.P.; Lapena, J.; Hernandez, M.T.; Schirra, M.

    1996-01-01

    Within the framework of the development of low activation structural materials to be used in nuclear fusion reactors four martensitic Fe-9,5 Cr alloys were conceived with different contents of tungsten-tantalum and/or germanium as substitutions for Mo, Ni, Nb and Al. As a result of recent activation calculations, the maximum concentrations of all accompanying elements, which are not desirable under radiological aspects, were determined for the first time for these OPTIFER steels, and laid down in specifications for the manufacturers of the alloys, after double-vacuum melting, only the real alloys with some of these accompanying elements added are within the specifications. For the majority of alloys the gap between request in radiological terms and the metallurgical/analytical reality is still considerable. The behavior during transformation and heat treatment roughly corresponds to that of conventional martensitic 9-12%Cr steels. Progress has been conspicuous as regards the notch impact toughness behavior, both at upper shelf level and in ductile brittle transition (DBTT) the W(Ce) alloyed OPTIFER variant exhibits more favorable values than the conventional MANET-II steel from the fusion program, with better strength characteristics above 500 degree centigree. With only a moderate decrease in strength values (compared to MANET-II), the Ge (Ce) variant excels by a distinct improvement in notch impact toughness values and, theoretically, a stronger reduction in dose rate than the W(Ce) variant and comes close to the decay curve of pure iron. (Author) 21 refs

  5. Study of martensitic transformation in stainless steel by CEMS and RBS channeling

    International Nuclear Information System (INIS)

    Hayashi, N.; Sakamoto, I.; Tanoue, H.

    1993-01-01

    The effect of Xe ion irradiation in a single crystal of 17/13 stainless steel has been studied, using RBS channeling techniques and conversion electron Moessbauer spectroscopy (CEMS). 300 keV Xe ions were used to induce martensitic transformation in the austentic steel. A dynamic behavior of the transformation was observed as functions of the fluence and depth dependence. The martensite appears abruptly at a critical fluence, in contrast with polycrystalline 17/7 stainless steel. (orig.)

  6. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    International Nuclear Information System (INIS)

    Maresca, F; Kouznetsova, V G; Geers, M G D

    2016-01-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers thick, and they are often characterized by high contrasts in plastic properties. As a consequence, fracture in these lamellar microstructures generally occurs along the layer interfaces or within one of the layers, typically parallel to the interface. This paper presents a computational framework that addresses the lamellar nature of these microstructures, by homogenizing the plastic deformation at the mesoscale by using the microscale response of the laminates. Failure is accounted for by introducing a family of damaging planes that are parallel to the layer interface. Mode I, mode II and mixed-mode opening are incorporated. The planes along which failure occurs are captured using a smeared damage approach. Coupling of damage with isotropic or anisotropic plasticity models, like crystal plasticity, is straightforward. The damaging planes and directions do not need to correspond to crystalline slip planes, and normal opening is also included. Focus is given on rate-dependent formulations of plasticity and damage, i.e. converged results can be obtained without further regularization techniques. The validation of the model using experimental observations in martensite-austenite lamellar microstructures in steels reveals that the model correctly predicts the main features of the onset of failure, e.g. the necking point, the failure initiation region and the failure mode. Finally, based on the qualitative results obtained, some material design guidelines are provided for martensitic and multi-phase steels. (paper)

  7. Deformation induced martensite in AISI 316 stainless steel

    Directory of Open Access Journals (Sweden)

    Solomon, N.

    2010-04-01

    Full Text Available The forming process leads to a considerable differentiation of the strain field within the billet, and finally causes the non-uniform distribution of the total strain, microstrusture and properties of the material over the product cross-section. This paper focus on the influence of stress states on the deformation-induced a’ martensitic transformation in AISI Type 316 austenitic stainless steel. The formation of deformation-induced martensite is related to the austenite (g instability at temperatures close or below room temperature. The structural transformation susceptibility is correlated to the stacking fault energy (SFE, which is a function not only of the chemical composition, but also of the testing temperature. Austenitic stainless steels possess high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Nevertheless, the deformation-induced martensite transformation may enhance the rate of work-hardening and it may or may not be in favour of further material processing. Due to their high corrosion resistance and versatile mechanical properties the austenitic stainless steels are used in pressing of heat exchanger plates. However, this corrosion resistance is influenced by the amount of martensite formed during processing. In order to establish the links between total plastic strain, and martensitic transformation, the experimental tests were followed by numerical simulation.

    El proceso de conformación da a lugar a una considerable diferenciación del campo de tensiones dentro de una barra de extrusión y, finalmente, causa una distribución no uniforme de la tensión total, la microestructura y propiedades del material sobre el corte transversal. En este trabajo se estudia la influencia de los estados de tensión sobre la transformación martensítica inducida por deformación en un acero inoxidable austenítico tipo AISI 316. La formación de martensita inducida por

  8. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  9. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  10. Development of oxide dispersion strengthened steels for FBR core application. 2. Morphology improvement by martensite transformation

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Nishida, Toshio; Yoshitake, Tunemitsu; Okuda, Takanari

    1998-01-01

    Previously manufactured oxide dispersion strengthened (ODS) ferritic steel cladding tubes had inferior internal creep rupture strength in the circumferential hoop direction. This unexpected feature of ODS cladding tubes was substantially ascribed to the needle-like grain structure aligned with the forming direction. In this study, the grain morphology was controlled by using the martensite transformation in ODS martensitic steels to produce an equi-axial grain structure. A major improvement in the strength anisotropy was successfully achieved. The most effective yttria addition was about 1 mass% in improving the strength of the ODS martensitic steels. A simple addition of titanium was particularly effective in increasing the strength level of the ODS martensitic steels to that of ODS ferritic steels. (author)

  11. Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel

    Science.gov (United States)

    Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel

    2017-01-01

    The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.

  12. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  13. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Abidin Kamal Ariff Zainal

    2014-07-01

    Full Text Available Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagation behavior. The results indicate that the microstructure and phase composition as well as corrosion resistance were influenced by nitriding temperatures.

  14. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  15. Effects of irradiation on tungsten stabilized martensitic steels*1

    Science.gov (United States)

    Gelles, D. S.; Hsu, C. Y.; Lechtenberg, T. A.

    1988-07-01

    Tungsten stabilized martensitic stainless steels are being developed for fusion reactor first wall applications in order to lower retained radioactivity so as to permit shallow land burial after reactor decommissioning. Two such alloys have been designed, fabricated, fast neutron irradiated in FFTF and examined by transmission electron microscopy. The two compositions were Fe-7.5Cr-2.0W-0.17 C and Fe-10.2Cr-1.7W-0.3V-0.02C. Conditions examined included irradiation temperatures of 365, 426, 520 and 600°C to doses as high as 34 dpa. Small amounts of void swelling are found at the two lowest temperatures. It is demonstrated that levels of tungsten on the order of 2 wt% do not result in excessive intermetallic precipitation under these irradiation conditions.

  16. Laser milling of martensitic stainless steels using spiral trajectories

    Science.gov (United States)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  17. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    Science.gov (United States)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  18. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  19. Influence of tempering on mechanical properties of ferritic martensitic steels

    International Nuclear Information System (INIS)

    Chun, Y. B.; Han, C. H.; Choi, B. K.; Lee, D. W.; Kim, T. K.; Jeong, Y. H.; Cho, S.

    2012-01-01

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce long-lived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as primary candidate material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). RAFM steels developed so far (e.g., EUROFER 97 and F82H) meet the requirement for structural application in the ITER. However, if such alloys are used in the DEMO or commercial fusion reactor is still unclear, as the reactors are designed to operate under much severe conditions (i.e., higher outlet coolant temperature and neutron fluences). Such harsh operating conditions lead to development of RAFM steels with better creep and irradiation resistances. Mechanical properties of RAFM steels are strongly affected by microstructural features including the distribution, size and type of precipitates, dislocation density and grain size. For a given composition, such microstructural characteristics are determined mainly by thermo-mechanical process employed to fabricate the final product, and accordingly a final heat treatment, i.e., tempering is the key step to control the microstructure and mechanical properties. In the present work, we investigated mechanical properties of the RAFM steels with a particular attention being paid to effects of tempering on impact and creep properties

  20. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  1. On the Nature of Internal Interfaces in Tempered Martensite Ferritic Steels

    Czech Academy of Sciences Publication Activity Database

    Dronhofer, A.; Pešička, J.; Dlouhý, Antonín; Eggeler, G.

    2003-01-01

    Roč. 94, č. 5 (2003), s. 511-520 ISSN 0044-3093 R&D Projects: GA ČR GA106/99/1172 Institutional research plan: CEZ:AV0Z2041904 Keywords : Tempered martensite ferritic steels * martensite variants * orientation imaging Subject RIV: JG - Metallurgy Impact factor: 0.637, year: 2003

  2. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  3. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    Science.gov (United States)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  4. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  5. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation

    Science.gov (United States)

    Waseem, Owais Ahmed; Jeong, Jong-Ryul; Park, Byong-Guk; Maeng, Cheol-Soo; Lee, Myoung-Goo; Ryu, Ho Jin

    2017-11-01

    The hardness of irradiated AISI type 410 martensitic steel, which is utilized in structural and magnetic components of nuclear power plants, is investigated in this study. Proton irradiation of AISI type 410 martensitic steel samples was carried out by exposing the samples to 3 MeV protons up to a 1.0 × 1017 p/cm2 fluence level at a representative nuclear reactor coolant temperature of 350 °C. The assessment of deleterious effects of irradiation on the micro-structure and mechanical behavior of the AISI type 410 martensitic steel samples via transmission electron microscopy-energy dispersive spectroscopy and cross-sectional nano-indentation showed no significant variation in the microscopic or mechanical characteristics. These results ensure the integrity of the structural and magnetic components of nuclear reactors made of AISI type 410 martensitic steel under high-temperature irradiation damage levels up to approximately 5.2 × 10-3 dpa.

  6. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain

  7. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    International Nuclear Information System (INIS)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk; Jeong, Jong Ryul; Maeng, Cheol Soo; Lee, Myoung Goo

    2016-01-01

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10"-"5 dpa.

  8. Analysis of Low Dose Irradiation Damages in Structural Ferritic/Martensitic Steels by Proton Irradiation and Nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Owais A.; Ryu, Ho Jin; Park, Byong Guk [KAIST, Daejeon (Korea, Republic of); Jeong, Jong Ryul [Chungnam University, Daejeon (Korea, Republic of); Maeng, Cheol Soo; Lee, Myoung Goo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    As a result, ferritic-martensitic steels find applications in the in-core and out-of-core components which include ducts, piping, pressure vessel and cladding, etc. Due to ferromagnetism of F/M steel, it has been successfully employed in solenoid type fuel injector. Although the irradiation induced degradation in ferritic martensitic steels is lower as compare to (i) reduced activation steels, (ii) austenitic steels and (iii) martensitic steels, F/M steels are still prone to irradiation induced hardening and void swelling. The irradiation behavior may become more sophisticated due to transmutation and production of helium and hydrogen. The ductile to brittle transition temperature of F/M steels is also expected to increase due to irradiation. These irradiation induced degradations may deteriorate the integrity of F/M components. As a result of these investigations, it has found that the F/M steels experience no irradiation hardening above 400 .deg. C, but below this temperature, up to 350 .deg. C, weak hardening is observed. The irradiation hardening becomes more pronounced below 300 .deg. C. Moreover, the irradiation hardening has also found dependent upon radiation damage. The hardening was found increasing with increasing dose. Due to pronounced irradiation hardening below 300 .deg. C and increasing radiation damage with increasing dose (even at low dpa), it is required to investigate the post irradiation mechanical properties of F/M steel, in order to confirm its usefulness in structural and magnetic components which experience lifetime doses as low as 1x10{sup -5} dpa.

  9. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    International Nuclear Information System (INIS)

    Dai, Y.

    1996-01-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature (≤380 degrees C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300 degrees C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300 degrees C to 500 degrees C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180 degrees C to 330 degrees C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited

  10. Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation...... can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics...... of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new...

  11. Tempering response to different morphologies of martensite in tensile deformation of dual-phase steel

    International Nuclear Information System (INIS)

    Ahmad, E.; Manzoor, T.; Sarwar, M.; Arif, M.; Hussain, N.

    2011-01-01

    A low alloy steel containing 0.2% C was heat treated with three cycles of heat treatments with the aim to acquire different morphologies of martensite in dual phase microstructure. Microscopic examination revealed that the morphologies consisting of grain boundary growth, scattered laths and bulk form of martensite were obtained. These morphologies have their distinct patterns of distribution in the matrix (ferrite). In tensile properties observations the dual phase steel with bulk morphology of martensite showed minimum of ductility but high tensile strength as compared to other two morphologies. This may be due to poor alignments of bulk martensite particles along tensile axes during deformation. Tempering was employed with various holding times at 550 deg. C to induce ductility in the heat treated material. The tempering progressively increased the ductility by increasing holding time. However, tempering response to strengths and ductilities was different to all three morphologies of martensite. (author)

  12. The effect of nitrogen on martensite formation in a Cr-Mn-Ni stainless steel

    International Nuclear Information System (INIS)

    Biggs, T.; Knutsen, R.D.

    1995-01-01

    The influence of nitrogen (0 to 0.27 wt%) on martensite formation in an experimental low-nickel stainless-steel alloy (Fe-17Cr-7Mn-4Ni) has been investigated. The alloys containing 0.1 wt% or more nitrogen are fully austenitic at room temperature; those containing less nitrogen consist of a mixture of austenite, martensite and δ-ferrite. The alloys containing less than 0.2 wt% nitrogen are metastable and undergo a transformation from austenite to martensite on deformation. Transmission electron microscopy investigations suggest that, within the nitrogen range considered in this investigation, the addition of nitrogen causes an increase in stacking fault energy which in turn inhibits the nucleation of martensite. As the low-nitrogen alloys (less than 0.2 wt% nitrogen) undergo deformation, ε-martensite (with the [ anti 110] γ and [ anti 12 anti 10] ε zone axes parallel) is observed at the intersection of stacking faults. With increasing strain, the presence of α'-martensite is observed in conjunction with the ε-martensite, and only α'-martensite is observed at very high strains. Both the Nishiyama-Wasserman and Kurdjumov-Sachs orientation relationships are observed between austenite and α'-martensite. The transformation to martensite during deformation causes a significant variation in room-temperature mechanical properties, despite the overall narrow range in composition considered. (orig.)

  13. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1996-01-01

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations

  14. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study

    International Nuclear Information System (INIS)

    Zilnyk, K.D.; Oliveira, V.B.; Sandim, H.R.Z.; Möslang, A.; Raabe, D.

    2015-01-01

    Highlights: • Martensitic transformation of RAFM steels promotes significant grain fragmentation. • Austenite grain growth occurs in Eurofer-97 steel but not in ODS-Eurofer steel. • Boundary misorientation distribution of the as-quenched steels show two maxima peaks. • The amount of retained austenite varies from one steel to another. - Abstract: Reduced-activation ferritic–martensitic Eurofer-97 and ODS-Eurofer steels are potential candidates for structural applications in advanced nuclear reactors. Samples of both steel grades in the as-tempered condition were austenitized in vacuum for 1 h from 900 °C to 1300 °C followed by air cooling to room temperature. The microstructure was characterized by dilatometry, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). Thermodynamic calculations provided by Thermo-Calc software were used to determine their transformation temperatures. Even having similar chemical composition, important changes were observed after martensitic transformation in these steels. Significant austenitic grain growth was observed in Eurofer-97 steel leading to the development of coarser martensitic packets. Contrastingly, austenitic grain growth was prevented in ODS-Eurofer steel due to fine and stable dispersion of Y-based particles

  15. An assessment of magnetic effects in ferromagnetic martensitic steels for use in fusion machines

    International Nuclear Information System (INIS)

    Lechtenberg, T.; Dahms, C.; Attaya, H.

    1984-01-01

    Interest in the 9-12%Cr class of martensitic stainless steels has accelerated since these materials were included in the U.S. Alloy Development for Irradiation Performance (ADIP) task funded by the Office of Fusion Energy in 1979. This program is focused on developing structural materials for fusion reactor first wall/breeding blanket components where the neutron damage is most severe. This area of a fusion reactor will be required to tolerate damage levels on the order of 110 dpa( 1 ). As a part of ADIP, study of the martensitic steels is focused on establishing the feasibility of using these materials. The interest in martensitic steels stems from their potential to tolerate high levels of radiation damage without significant degradation of material properties. Martensitic steels have a body-centered-cubic crystal structure that, unlike face-centered-cubic structure of austenitic steels, exhibits very little swelling under neutron irradiation( 2 ). One of the outstanding issues with martensitic steels is the possible parasitic stresses associated with ferromagnetic interaction with the magnetic fields. This paper is divided into two parts, the first reviews previous work on magnetic effects to the structure and plasma; the second presents new calculations of stresses on a coolant pipe in a Starfire model assumed to be made of 12Cr-1Mo steel(HT-9)

  16. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  17. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    S.R. Al-Sayed

    2017-05-01

    Full Text Available Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min−1 was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  18. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.

    Science.gov (United States)

    Al-Sayed, S R; Hussein, A A; Nofal, A A; Hassab Elnaby, S I; Elgazzar, H

    2017-05-29

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  19. Ion implantation induced martensite nucleation in SUS301 steel

    International Nuclear Information System (INIS)

    Kinoshita, Hiroshi; Takahashi, Heishichiro; Gustiono, Dwi; Sakaguchi, Norihito; Shibayama, Tamaki; Watanabe, Seiichi

    2007-01-01

    Phase transformation behaviors of the austenitic 301 stainless steel was studied under Fe + , Ti + and Ar + ions implantation at room temperature with 100, 200 and 300 keV up to fluence of 1x10 21 ions/m 2 and the microstructures were observed by means of transmission electron microscopy (TEM). The plane and cross-sectional observations of the implanted specimen showed that the induced-phases due to implantation from the γ matrix phase were identified as α' martensite phases with the orientation relationship of (11-bar0) α parallel (111-bar) γ and [111] α parallel [011] γ close to the Kurdjumov-Sachs (K-S). The ion implantation induced phases nucleated near the surface region and the depth position of the nucleation changed depending on the ion accelerating energy and ion species. It was also found that the induced marten sites phases nucleate under the influence of the stress distribution, which is introduced due to the concentration of implanted ions, especially due to the stress gradient caused by the corresponding concentration gradient. (author)

  20. Materials design data for reduced activation martensitic steel type EUROFER

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. E-mail: tavassoli@cea.fr; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H.C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M.F.; Mergia, K.; Boukos, N.; Baluc,; Spaetig, P.; Alves, E.; Lucon, E

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  1. Effect of microstructure on the fracture toughness of ferrite-martensite-bainite steels

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Kim, In Sup

    1988-01-01

    The effect of microstructure on the fracture toughness of ferrite-martensite -bainite steels was investigated with Fe-0.11C-1.64Mn-0.78Si composition. One inch compact tension specimens (1T-CTSs) were machined from hot rolled plates. The microstructure of ferrite-martensite-bainite was introduced to the specimens by the heat treatment of intercritical annealing at 800deg C and isothermal holding at 350deg C. Holding at 350deg C increased volume fraction of bainite, while decreased that of martensite, and refined martensite particles. Single specimen unloading compliance method was used in fracture test to obtain J-resistance (J-R) curve and to determine the fracture toughness(J IC ). Introduction of bainite to the ferrite-martensite steel improved the fracture toughness due to the deformation of bainite which relaxed the stress concentration on the interface of ferrite and martensite. Observation of fracto-graphs through the scanning electron microscope(SEM) identified the fracture mechanism of ferrite-martensite-bainite steels as dimple nucleation and crack growth by decohesion of ferrite matrix and second phase particles and by microvoid coales cence. (Author)

  2. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Busby, J.T.; Byun, T.S.; Parish, C.M.

    2013-12-20

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of α- and ε-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at the twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both α- and ε-martensites were found in the microstructure, but at 1100 MPa only α-martensite presented in the specimen. Under indentation, α- and ε-martensite were observed in the material regardless of the stress level.

  3. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels – A phase-field study

    DEFF Research Database (Denmark)

    Yeddu, Hemantha Kumar; Shaw, Brian A.; Somers, Marcel A. J.

    2017-01-01

    A 3D elastoplastic phase-field model is used to study the effect of thermal cycling on martensitic transformationas well as on mechanical strengthening of both austenite and martensite in stainless steel. The results show that with an increasing number of thermal cycles, martensite becomes more...

  4. Predictive modeling of interfacial damage in substructured steels: application to martensitic microstructures

    NARCIS (Netherlands)

    Maresca, F.; Kouznetsova, V.; Geers, M.G.D.

    2016-01-01

    Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers

  5. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  6. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  7. Kinetics of anomalous multi-step formation of lath martensite in steel

    International Nuclear Information System (INIS)

    Villa, Matteo; Pantleon, Karen; Reich, Michael; Kessler, Olaf; Somers, Marcel A.J.

    2014-01-01

    A steel containing 16 wt.% Cr, 5 wt.% Ni and 3 wt.% Cu was transformed into martensite by applying isochronal, i.e. constant rate, cooling followed by isothermal holding. The formation of martensite was monitored with dilatometry. A series of retardations and accelerations of the transformation was observed during isochronal cooling for cooling rates ranging from 1.5 to 50 K min −1 . The cooling rate in the isochronal stage was observed to influence the transformation rate in the isothermal stage. Electron backscatter diffraction was applied to determine the morphology of the martensite, which was of lath type, and to investigate the microstructure of the material. No influence of the cooling rate on the scale of the microstructure was observed. The series of retardations and accelerations of the transformation is interpreted in terms of the combined effect of the strain and interfacial energy introduced in the system during martensite formation, which stabilizes austenite, and autocatalytic nucleation of martensite

  8. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels

    International Nuclear Information System (INIS)

    Yen, Hung-Wei; Ooi, Steve Woei; Eizadjou, Mehdi; Breen, Andrew; Huang, Ching-Yuan; Bhadeshia, H.K.D.H.; Ringer, Simon P.

    2015-01-01

    This work explains the occurrence of transformation-induced plasticity via stress-assisted martensite, when designing ultrafine-grained duplex steels. It is found that, when the austenite is reduced to a fine scale of about 300 nm, the initial deformation-induced microstructure can be dominated by parallel lamellae of ε martensite or mechanical twinning, which cannot efficiently provide nucleation sites for strain-induced martensite. Hence, α′ martensite nucleation occurs independently by a stress-assisted process that enhances transformation-induced plasticity in ultrafine-grained austenite. This metallurgical principle was validated experimentally by using a combination of transmission Kikuchi diffraction mapping, transmission electron microscopy and atom probe microscopy, and demonstrated theoretically by the thermodynamics model of stress-assisted martensite

  9. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    Science.gov (United States)

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  10. The influence of deformation-induced martensite on the cryogenic behavior of 300-series stainless steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Chan, J.W.; Mei, Z.

    1992-06-01

    The 300-series stainless steels that are commonly specified for the structures of high field superconducting magnets are metastable austenitic alloys that undergo martensitic transformations when deformed at low temperature. The martensitic tranformation is promoted by plastic deformation and by exposure to high magnetic fields. The transformation significantly influences the mechanical properties of the alloy. The mechanisms of this influence are reviewed, with emphasis on fatigue crack growth effects and magnetomechanical phenomena that have only recently been recognized

  11. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  12. Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad

    2017-12-01

    The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.

  13. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  14. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  15. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  16. Formation and properties of chromium nitride coatings on martensitic steels

    International Nuclear Information System (INIS)

    Mendala, B.; Swadzba, L.; Hetmanczyk, M.

    1999-01-01

    In this paper the results of investigation of coatings obtained by ARC-PVD method on martensitic E1961 (13H12NWMFA) steel, which is used on compressor blades in the aircraft engines, were presented. The chemical composition of E1961 was given. The PVT-550 device was used for coating. The protective chromium nitride coatings were tested. The influence of ARC-PVD method parameters for example: bias, pressure and flow rate of reactive gases on the structure and properties of the CrN coatings in corrosion tests were investigated. Technical parameters of obtained CrN coatings were given. The phase analysis of chromium nitride coatings obtained with different technical parameters were tested. The results of phase analysis are given. The pitting corrosion resistance tests in 10% FeCl 3 solution was conducted. The corrosion rate for CrN coated samples were defined. It was found that 50 V and 100 V bias, about 0.5 and 0.7 Pa pressure and 140 sccm (standard cubic centimeter) flow rate of nitride during coating favour the CrN monophase structure while increasing bias to 150 V, decreasing the pressure to about 0.5 Pa and 0.3 Pa and increasing the flow rate of nitride to 160 - 180 sccm favour the CrN+Cr 2 N diphase structure. On the basis of corrosion investigations for CrN coatings obtained with different ARC-PVD parameters the best corrosion resistance in 10% FeCl 3 solution for CrN+Cr 2 N diphase structure was found. (author)

  17. The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel

    Science.gov (United States)

    Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.

    2017-10-01

    This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  18. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    Science.gov (United States)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-09-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.

  19. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  20. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-01-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement. ((orig.))

  1. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  2. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance

    OpenAIRE

    Abreu,Hamilton Ferreira Gomes de; Carvalho,Sheyla Santana de; Lima Neto,Pedro de; Santos,Ricardo Pires dos; Freire,Válder Nogueira; Silva,Paulo Maria de Oliveira; Tavares,Sérgio Souto Maior

    2007-01-01

    In austenitic stainless steels, plastic deformation can induce martensite formation. The induced martensite is related to the austenite (gamma) instability at temperatures close or below room temperature. The metastability of austenite stainless steels increases with the decreasing of stacking fault energy (SFE). In this work, the deformation induced martensite was analyzed by X ray diffraction, electron back scatter diffraction (EBSD), magnetic methods and atomic force microscope (AFM) in sa...

  3. The Microstructure and Properties of Super Martensitic Stainless Steel Microalloyed with Tungsten and Copper

    Science.gov (United States)

    Ye, Dong; Li, Jun; Liu, Yu-Rong; Yong, Qi-Long; Su, Jie; Cao, Jian-Chun; Tao, Jing-Mei; Zhao, Kun-Yu

    2011-06-01

    The microstructure and properties of super martensitic stainless steel (SMSS) microalloyed with tungsten and copper were studied by means of optical microscopy, dilatometer, X-ray diffraction, and tensile tests. The results showed that the microstructure of SMSS, after quenching and tempering, was a typical biphase structure with tempered martensite and reversed austenite dispersedly distributed in the martensite matrix. W and Cu were added into the SMSS to reduce the transformation temperature (Ms) and improve the strength and hardness of the matrix by grain refining and solid solution strengthening. Thermocalc calculations confirmed that M23C6 compound and Laves phase were precipitated during tempering in the investigated steel. Compared with the traditional SMSS, the steel microalloyed with W and Cu performed better mechanical properties.

  4. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  5. On the Prediction of α-Martensite Temperatures in Medium Manganese Steels

    Science.gov (United States)

    Field, Daniel M.; Baker, Daniel S.; Van Aken, David C.

    2017-05-01

    A new composition-based method for calculating the α-martensite start temperature in medium manganese steel is presented and uses a regular solution model to accurately calculate the chemical driving force for α-martensite formation, Δ G_{{Chem}}^{γ \\to α } . In addition, a compositional relationship for the strain energy contribution during martensitic transformation was developed using measured Young's moduli ( E) reported in literature and measured values for steels produced during this investigation. An empirical relationship was developed to calculate Young's modulus using alloy composition and was used where dilatometry literature did not report Young's moduli. A comparison of the Δ G_{{Chem}}^{γ \\to α } normalized by dividing by the product of Young's modulus, unconstrained lattice misfit squared ( δ 2), and molar volume ( Ω) with respect to the measured α-martensite start temperatures, M_{{S}}^{α } , produced a single linear relationship for 42 alloys exhibiting either lath or plate martensite. A temperature-dependent strain energy term was then formulated as Δ G_{{str}}^{γ \\to α } ( {{{J}}/{{mol}}} ) = EΩ δ2 (14.8 - 0.013T) , which opposed the chemical driving force for α-martensite formation. M_{{S}}^{α } was determined at a temperature where Δ G_{{Chem}}^{γ \\to α } + Δ G_{{str}}^{γ \\to α } = 0 . The proposed M_{{S}}^{α } model shows an extended temperature range of prediction from 170 K to 820 K (-103 °C to 547 °C). The model is then shown to corroborate alloy chemistries that exhibit two-stage athermal martensitic transformations and two-stage TRIP behavior in three previously reported medium manganese steels. In addition, the model can be used to predict the retained γ-austenite in twelve alloys, containing ɛ-martensite, using the difference between the calculated M_{{S}}^{ɛ} and M_{{S}}^{α }.

  6. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    Science.gov (United States)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  7. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  8. Development of oxide dispersion strengthened 9Cr ferritic-martensitic steel clad tube for fast reactor

    International Nuclear Information System (INIS)

    Laha, K.; Saroja, S.; Mathew, M.D.; Jayakumar, T.; Vijay, R.; Venugopal Reddy, A.; Lakshminarayana, B.; Kapoor, Komal; Jha, S.K.; Tonpe, S.S.

    2012-01-01

    One of the key issues in the economical operation of FBR is to achieve high burn-up of fuel (200-250 GWd/t) which considerably reduces the fuel cycle cost. This imposes stringent requirements of void swelling resistance upto 200 dpa for the core structural materials. Presently used alloy 09 (a modified austenitic stainless steel, 15Cr-15Ni-Ti) for PFBR has void swelling limit less than 150 dpa. Because of the inherent void swelling resistance, 9-12Cr steels ferritic/martensitic steels are qualified for irradiation upto 200 dpa but their low creep strength at temperatures above 600 deg C restricts their application as a clad material. Oxide dispersion strengthening is found to be promising means of extending the creep resistance of ferritic/martensitic steels beyond 650 deg C without sacrificing the inherent advantages of high thermal conductivity and low swelling of ferritic steels

  9. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  10. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  11. Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-01-29

    A comparative study was carried out on the kinetics of the martensitic transformation in a 304L stainless steel during cold rolling by conventional and novel approaches. The phase analysis based on X-ray diffraction patterns and metallography and also magnetic measurements based on ferritescope readings were utilized to elucidate the kinetics of the martensitic transformation. A straightforward magnetic measurement approach for evaluating the amount of strain-induced martensite in metastable austenitic stainless steels has been introduced in this study. This technique collects the data throughout the bulk of the material to give a realistic estimate of the amount of ferromagnetic martensite. This is an advantage over the surface collecting methods such as ferritescope readings, which overestimates the amount of martensite due to its inhomogeneous distribution through the thickness based on the frictional effects between the rolls and the specimen surface. The proposed approach can be applied in various designs for static/continuous magnetic measurement of bulk materials that is advantageous compared with the conventional vibrating sample magnetometer technique which is useful for static measurement of bulk materials with specific shapes. Moreover, in analogy to ferritescope, the output data of the developed device is directly related to the amount of martensite.

  12. Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches

    International Nuclear Information System (INIS)

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-01-01

    A comparative study was carried out on the kinetics of the martensitic transformation in a 304L stainless steel during cold rolling by conventional and novel approaches. The phase analysis based on X-ray diffraction patterns and metallography and also magnetic measurements based on ferritescope readings were utilized to elucidate the kinetics of the martensitic transformation. A straightforward magnetic measurement approach for evaluating the amount of strain-induced martensite in metastable austenitic stainless steels has been introduced in this study. This technique collects the data throughout the bulk of the material to give a realistic estimate of the amount of ferromagnetic martensite. This is an advantage over the surface collecting methods such as ferritescope readings, which overestimates the amount of martensite due to its inhomogeneous distribution through the thickness based on the frictional effects between the rolls and the specimen surface. The proposed approach can be applied in various designs for static/continuous magnetic measurement of bulk materials that is advantageous compared with the conventional vibrating sample magnetometer technique which is useful for static measurement of bulk materials with specific shapes. Moreover, in analogy to ferritescope, the output data of the developed device is directly related to the amount of martensite

  13. Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature

    International Nuclear Information System (INIS)

    Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki

    2009-01-01

    We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.

  14. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghm@lanl.gov [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Jeong, Y. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Clausen, B.; Liu, Y.; McCabe, R.J. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States); Barlat, F. [Graduate Institute of Ferrous Technology, POSTECH (Korea, Republic of); Tomé, C.N. [Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-01-01

    The present work integrates in-situ neutron diffraction, electron backscatter diffraction and crystal plasticity modeling to investigate the effect of martensitic phase transformation on the behavior of 304 stainless steel under uniaxial tension. The macroscopic stress strain response, evolution of the martensitic phase fraction, texture evolution of each individual phase, and internal elastic strains were measured at room temperature and at 75 °C. Because no martensitic transformation was observed at 75 °C, the experimental results at 75 °C were used as a reference to quantify the effect of formed martensitic phase on the behavior of 304 stainless steel at room temperature. A crystallographic phase transformation model was implemented into an elastic–viscoplastic self-consistent framework. The phase transformation model captured the macroscopic stress strain response, plus the texture and volume fraction evolution of austenite and martensite. The model also predicts the internal elastic strain evolution with loading in the austenite, but not in the martensite. The results of this work highlight the mechanisms that control phase transformation and the sensitivity of modeling results to them, and point out to critical elements that still need to be incorporated into crystallographic phase transformation models to accurately describe the internal strain evolution during phase transformation.

  15. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  16. A phase-field study of the physical concepts of martensitic transformations in steels

    International Nuclear Information System (INIS)

    Yeddu, Hemantha Kumar; Borgenstam, Annika; Hedström, Peter; Ågren, John

    2012-01-01

    Highlights: ► Critical driving forces associated with martensitic transformation are estimated. ► Plastic relaxation rate affects the transformation and microstructure evolution. ► Low relaxation rate promotes multi-domained martensitic microstructure. ► High relaxation rate promotes growth of a single martensite domain. ► The model predicts the final habit plane of martensite to be (−2 1 1) γ . - Abstract: A 3D elastoplastic phase-field model is employed to study various driving forces associated with martensitic transformations, plastic deformation behavior as well as the habit plane concept. Usage of thermodynamic parameters corresponding to Fe–0.3%C alloy in conjunction with anisotropic physical parameters of steels as the simulation parameters have yielded the results in reasonable agreement with experimental observations. From the simulation results, it is concluded that there exist three critical driving forces that control the transformation and also that the plastic deformation behavior of the material greatly affects the transformation. The model predicts the initial habit plane of the first infinitesimal unit of martensite as (−1 1 1). The model also predicts that, as the transformation progresses, the above mentioned martensite domain rotates and finally orients along the new habit plane of (−2 1 1).

  17. Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, Yousef, E-mail: y.mazaheri@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Kermanpur, Ahmad; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2015-07-15

    Dual phase (DP) steels consisting different volume fractions of ferrite and martensite and different ferrite grain size were produced by a new route utilizing cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structure at 770 °C for different times. Scanning electron microscopy has been supplemented by nanoindentation and tensile test to follow microstructural changes and their correlations to the variation in phase's hardness and mechanical properties. The results showed that longer holding times resulted in coarser and softer ferrite grains in DP microstructures. Martensite nanohardness variation with holding time is related to change in its carbon content. Mechanical properties such as strength, elongation and toughness are well correlated with the martensite/ferrite hardness ratio.

  18. Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review

    DEFF Research Database (Denmark)

    Niessen, Frank

    2018-01-01

    Low-carbon martensitic stainless steels with 11.5–16 wt-% Cr and martensite upon inter-critical annealing. The review treats...... the mechanisms governing the formation and stabilisation of reverted austenite and is assisted by the computation of phase equilibria. Literature data on Cr and Ni concentrations of the reverted austenite/martensite dual-phase microstructure are assessed with respect to predicted concentrations. Reasonable...... agreement was found for concentrations in martensite. Systematic excess of Cr in austenite of approx. 2 wt-% relative to calculations was suspected to originate from the growth of M23C6 with a coherent interface to austenite. Within large scatter, measured values of Ni in austenite were on average 2 wt...

  19. Characterization of the martensite phase formed during hydrogen ion irradiation in austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun

    2017-10-01

    Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.

  20. Microstructural change during creep deformation in a 10%Cr martensitic steel

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitic steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  1. Reliability/unreliability of mixture rule in a low alloy ferrite–martensite dual phase steel

    International Nuclear Information System (INIS)

    Fereiduni, E.; Ghasemi Banadkouki, S.S.

    2013-01-01

    Highlights: •The ferrite hardening response is quite variable in DP microstructures. •Martensite microhardness has not shown a specific manner in DP microstructures. •There is a major difference between experimental and calculated hardness values. •Mixture rule can be applied to predict the hardness if using some assumptions. -- Abstract: The aim of this paper is to investigate in details the relationship between the volume fractions of ferrite and martensite with the variation of hardness in a low alloy ferrite–martensite dual phase (DP) steel. For this purpose, a wide variety of ferrite–martensite DP samples consisting different volume fractions of ferrite and martensite have been developed using step quenching heat treatment cycle involving reheating at 860 °C for 60 min, soaking at 600 °C salt bath for various holding times followed by 70 °C hot oil quenching. Optical microscopy has been supplemented by electron microscopy and hardness measurements to follow microstructural changes and their relation to the variation in hardness. The results showed that there is a non-linear relationship between the hardness of DP samples with the volume fraction of phase constituents indicating that the mixture rule is not reliable in the ferrite–martensite DP microstructures. The unreliability of mixture rule is related to the variation of ferrite and martensite hardening responses developed in the DP samples. The DP microstructure consisting 6–7% volume fraction of continuous grain boundary ferrite in the vicinity of martensite has been associated with a remarkable higher hardness for both ferrite and martensite in comparison with the other DP microstructures. The higher martensite hardness is due to the higher carbon content of the remaining metastable austenite developed in the ferrite–austenite two phase field area, leading to the harder martensite formation on the subsequent 70 °C hot oil quenching. The harder ferrite grains have been developed as a

  2. Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Stumpf, Waldo; Berg, Nic van der

    2009-01-01

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M s temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M s temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  3. In-situ analysis of redistribution of carbon and nitrogen during tempering of low interstitial martensitic stainless steel

    DEFF Research Database (Denmark)

    Niessen, F.; Villa, M.; Danoix, F.

    2018-01-01

    The redistribution of C and N during tempering of X4CrNiMo16-5-1 martensitic stainless steel containing 0.034 wt% C and 0.032 wt% N was studied using in-situ synchrotron X-ray diffraction (XRD) and atom probe tomography (APT). The unit cell volume of martensite decreased continuously during...... tempering. APT showed that this volume decrease is accounted entirely for by segregation of the interstitial atoms, implying that in low interstitial martensitic stainless steel stress relaxation only contributes negligibly to changes in the martensite unit cell volume....

  4. Characteristics of martensite as a function of the M{sub s} temperature in low-carbon armour steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Maweja, Kasonde, E-mail: mawejak@yahoo.fr [Council for Scientific and Industrial Research, CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001 (South Africa); Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Stumpf, Waldo [Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Berg, Nic van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2009-08-30

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M{sub s} temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M{sub s} temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  5. Depth distribution analysis of Martensitic transformations in Xe implanted austenitic stainless steel

    DEFF Research Database (Denmark)

    Johnson, E.; Gerritsen, E.; Chechenin, N.G.

    1989-01-01

    In recent years the implantation of noble gases in metals has been found to induce some exciting phenomena such as formation of inclusions containing solid gas at extremely high pressures. In stainless steels these inclusions are the origin of a stress-induced martensitic fcc → bcc phase...... transformation in the implanted layer. In this work we present results from a depth distribution analysis of the martensitic phase change occurring in Xe implanted single crystals of austenitic stainless steel. Analysis was done by in situ RBS/channeling analysis, X-ray diffraction and cross-section transmission...... electron microscopy (XTEM) of the implanted surface. It is found that the martensitic transformation of the surface layer occurs for fluences above 1 × 1020 m−2. The thickness of the transformed layer increases with fluence to ≈ 150 nm at 1 × 10 21 m−2, which far exceeds the range plus straggling...

  6. Constitutive modelling of stainless steels for cryogenic applications. Strain induced martensitic transformation

    CERN Document Server

    Garion, C

    2001-01-01

    The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).

  7. Soft-martensitic stainless Cr-Ni-Mo steel for turbine rotors in geothermic power stations

    International Nuclear Information System (INIS)

    Schonfeld, K.; Potthast, E.

    1986-01-01

    Steel Grade X5 Cr-Ni-Mo 12 6 containing 0.05% carbon, 12% chromium, 6% nickel, and 1.50% molybdenum is an advantageous material for turbine rotors in geothermic power stations because of its excellent strength and toughness properties in combination with good erosion and corrosion resistance. In terms of the phase diagram, this soft-martensitic steel has its place at the martensite/austenite/ferrite interface. Therefore, its chemical composition must be chosen so as to have a completely martensitic structure after hardening. The manufacture of and the mechanical properties of a turbine rotor 1200 mm in diameter by 5600 mm in length with a finished weight of approximately 21.5 tons are described in detail

  8. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ye, Dong; Li, Jun; Jiang, Wen; Su, Jie; Zhao, Kunyu

    2012-01-01

    Highlights: ► Cu contributes to refine the grains. ► Cu solutes in matrix under quenching and precipitates as ε-Cu during tempering. ► Cu promotes the kinetics of reversed austenite formation. ► Mechanical properties are significantly influenced by austenite amount. ► Cu alloyed super martensitic stainless steel exhibits greatly improved mechanical properties. -- Abstract: The effect of adding different content of Cu (0 wt.%, 1.5 wt.% and 3 wt.%) to the 15%Cr super martensitic stainless steel (SMSS) was investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Its consequence on mechanical properties was examined to clarify the role of Cu in the tested steels. The experimental results indicate that the microstructures of three tested steels are tempered martensite, retained austenite and reversed austenite; two kinds of austenites are dispersedly distributed among martensite matrix. Cu can solute in matrix under quenching condition and can precipitate as Cu-rich nanometer phase (ε-Cu) during tempering. Cu is helpful for the grain refinement and to promote the formation of reversed austenite during tempering. The maximum volume fraction of austenite is 55.9% in the steel with 3 wt.% Cu, which is responsible for the improvement of ductility. The results of the mechanical properties tests reveal that the mechanical properties are significantly influenced by the volume fraction of austenite. Cu can cause solid solution strengthening, precipitation strengthening and grain refinement strengthening in SMSS. Cu alloyed super martensitic stainless steel exhibits greatly improved mechanical properties.

  9. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  10. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997

  11. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  12. Martensitic transformation in 304L and 316L types stainless steels cathodically hydrogen charged

    International Nuclear Information System (INIS)

    Minkovitz, E.; Eliezer, D.

    1984-01-01

    This paper reports a TEM study on the role of phase transitions at the crack tip in 304L and 316L types stainless steels cathodically hydrogen charged in the absence of any eternally applied forces. The possible role of α prime and epsilon martensite phases in the fracture mechanism is discussed

  13. Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Hilkhuijsen, P.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Zhang, S.-H.; Liu, X.-H.; Gheng, M.; Li, J.

    2013-01-01

    The transformation of austenite to martensite is a dominant factor in the description of the constitutive behavior during forming of TRIP assisted steels. To predict this transformation different models are currently available. In this paper the transformation is regarded as a stress induced process

  14. Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture

    NARCIS (Netherlands)

    Hilkhuijsen, P.; Geijselaers, Hubertus J.M.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Akkerman, Remko

    2013-01-01

    Uniaxial tensile tests on both a non-textured and a highly textured, fully austenitic stainless steel were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from the austenitic FCC to the martensitic BCC phase. Differences in

  15. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  16. Metallurgical Characterization of Reduced Activation Martensitic Steel F-82H Modified

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Lancha, A.M.; Gomez-Briceno, D.; Schirra, M.

    1999-12-01

    During 1995-1998 within of research and development programs on reduced ferritic/martensitic steels for fusion, metallurgical characterization of 8Cr-2WVTa steel, denominated F-28H modified, have been carried out. The work has focused on studying the microstructural and mechanical (tensile, creep, low cycle fatigue and charpy) characteristics of as-received state and aged material in the temperature range 300 degree centigrade to 600 degree centigrade for periods up to 5000 h. (Author) 45 refs

  17. Influence of 12% Cr martensite steel quality on power generation reliability

    International Nuclear Information System (INIS)

    Smolenska, H.; Labanowski, J.; Cwiek, J.; Glowacka, M.; Serbinski, W.

    2001-01-01

    Influence of manufacturing process and heat treatment on microstructure and mechanical properties of 12% Cr heat resistance martensitic steels has been discussed. These steels are used for elevated temperatures applications like: heat and power plants, chemical and petrochemical installations. Some cases of manufacturing mistakes of steam pipelines and turbine blades had been presented. These mistakes led to imperfect microstructure resulting in reduced lifetime and insufficient reliability of installations. (author)

  18. Current status of reduced-activation ferritic/martensitic steels R and D for fusion energy

    International Nuclear Information System (INIS)

    Kimura, Akihiko

    2005-01-01

    Reduced-activation ferritic/martensitic (RAF/M) steels have been considered to be the prime candidate for the fusion blanket structural material. The irradiation data obtained up to now indicates rather high feasibility of the steels for application to fusion reactors because of their high resistance to degradation of material performance caused by both the irradiation-induced displacement damage and transmutation helium atoms. The martensitic structure of RAF/M steels consists of a large number of lattice defects before the irradiation, which strongly retards the formation of displacement damage through absorption and annihilation of the point defects generated by irradiation. Transmutation helium can be also trapped at those defects in the martensitic structure so that the growth of helium bubbles at grain boundaries is suppressed. The major properties of the steels are well within our knowledge, and processing technologies are mostly developed for fusion application. RAF/M steels are now certainly ready to proceed to the next stage, that is, the construction of International Thermo-nuclear Experimental Reactor Test Blanket Modules (ITER-TBM). Oxide dispersion strengthening (ODS) steels have been developed for higher thermal efficiency of fusion power plants. Recent irradiation experiments indicated that the steels were quite highly resistant to neutron irradiation embrittlement, showing hardening accompanied by no loss of ductility. High-Cr ODS steels whose chromium concentration was in the range from 14 to 19 mass% showed high resistance to corrosion in supercritical pressurized water. It is shown that the 14Cr-ODS steel is susceptible to neither hydrogen nor helium embrittlement. A combined utilization of ODS steels with RAF/M steels will be effective to realize fusion power early at a reasonable thermal efficiency. (author)

  19. Effect of martensitic transformation on springback behavior of 304L austenitic stainless steel

    Science.gov (United States)

    Fathi, H.; Mohammadian Semnani, H. R.; Emadoddin, E.; Sadeghi, B. Mohammad

    2017-09-01

    The present paper studies the effect of martensitic transformation on the springback behavior of 304L austenitic stainless steel. Martensite volume fraction was determined at the bent portion under various strain rates after bending test. Martensitic transformation has a significant effect on the springback behavior of this material. The findings of this study indicated that the amount of springback was reduced under a situation of low strain rate, while a higher amount of springback was obtained with a higher strain rate. The reason for this phenomenon is that higher work hardening occurs during the forming process with the low strain rate due to the higher martensite volume fraction, therefore the formability of the sheet is enhanced and it leads to a decreased amount of springback after the bending test. Dependency of the springback on the martensite volume fraction and strain rate was expressed as formulas from the results of the experimental tests and simulation method. Bending tests were simulated using LS-DYNA software and utilizing MAT_TRIP to determine the martensite volume fraction and strain under various strain rates. Experimental result reveals good agreement with the simulation method.

  20. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction.

    Science.gov (United States)

    Harjo, Stefanus; Tsuchida, Noriyuki; Abe, Jun; Gong, Wu

    2017-11-09

    Two TRIP-aided multiphase steels with different carbon contents (0.2 and 0.4 mass%) were analyzed in situ during tensile deformation by time-of-flight neutron diffraction to clarify the deformation induced martensitic transformation behavior and its role on the strengthening mechanism. The difference in the carbon content affected mainly the difference in the phase fractions before deformation, where the higher carbon content increased the phase fraction of retained austenite (γ). However, the changes in the relative fraction of martensitic transformation with respect to the applied strain were found to be similar in both steels since the carbon concentrations in γ were similar regardless of different carbon contents. The phase stress of martensite was found much larger than that of γ or bainitic ferrite since the martensite was generated at the beginning of plastic deformation. Stress contributions to the flow stress were evaluated by multiplying the phase stresses and their phase fractions. The stress contribution from martensite was observed increasing during plastic deformation while that from bainitic ferrite hardly changing and that from γ decreasing.

  1. Effect of plastic behaviour of steels during martensitic transformation on quenching stress initiation

    International Nuclear Information System (INIS)

    Denis-Judlin, Sabine

    1980-01-01

    This research thesis reports the study of the effects of a steel martensitic transformation on the mechanisms producing internal stresses during quench. After having reported a bibliographical study on tests of qualitative and quantitative prediction (presentation of several models) of the genesis of internal stresses during quench, the author reports the study of the alloy behaviour during cooling and presents the basis of a model of prediction of internal stresses. The next part addresses the determination of the influence of martensitic transformation on the evolution of stresses during quench. The last part reports the taking into account of the effect of stress-phase transformation interaction in the calculation of internal stresses [fr

  2. Moessbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, B. F. O., E-mail: benilde@ci.uc.pt [University of Coimbra, CEMDRX, Department of Physics (Portugal); Blumers, M. [University Mainz, Institute of Inorganic Chemistry (Germany); Kortmann, A. [Ingpuls GmbH (Germany); Theisen, W. [Ruhr-Universitaet Bochum, Institute of Materials (Germany); Batista, A. C. [University of Coimbra, CEMDRX, Department of Physics (Portugal); Klingelhoefer, G. [University Mainz, Institute of Inorganic Chemistry (Germany)

    2013-04-15

    A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Moessbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Moessbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.

  3. Identification of some crystallographic features of martensite in steels by microdiffraction

    International Nuclear Information System (INIS)

    Sarikaya, M.; Rao, B.V.N.; Thomas, G.

    1980-03-01

    Considerable attention should be paid to the interpretation of electron diffraction, such as the understanding of the extra reflections and other effects in an SAD pattern obtained from lath martensite by making allowances for spatial resolution limitations in the SAD patterns. These difficulties can be overcome by utilizing the convergent beam electron diffraction (CBED) method which permits the use of different probe sizes to obtain crystallographic information from very small regions. Some crystallographic features of lath martensite in low and medium C steels have been identified and some others verified by using CBED

  4. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    La Fontaine, Alexandre; Yen, Hung-Wei; Trimby, Patrick; Moody, Steven; Miller, Sarah; Chensee, Martin; Ringer, Simon; Cairney, Julie

    2014-01-01

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  5. Moessbauer and TEM study of martensitic transformations in ion implanted 17/7 stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Graabaek, L.

    1986-01-01

    It has earlier been shown that implantation of antimony into austenitic stainless steels induces martensitic phase transformations γ (fcc)→α (bcc). In the present work we have investigated which mechanisms are responsible for the transformation. Samples of 17/7 steels were implanted with noble gases (Kr, Ar) or the stainless steel constituent elements (Fe, Ni, Cr). The energies were selected to give ranges ∝40 nm. The phases present after implantation and the microstructures of the implanted samples were studied by CEMS and TEM respectively. A martensitic (α) phase was found to form after implantation both with Ni, Fe and Cr, in spite of the fact that these elements have opposite tendencies for stabilization of the austenite (γ) phase. The efficiency of martensite formation is therefore mainly related to stress relief associated with secondary radiation damage. This was substantiated from the noble gas implantations, where the highest degree of transformation was observed for fluences where bubble formation occurs. The CEMS analyses show that the transformation efficiency in such cases is nearly 100%. The hyperfine parameters of the implantation induced α phase are similar to those from conventionally induced martensites. (orig.)

  6. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  7. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  8. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  9. Design of aging-resitant martensitic stainless steels for pressurized water reactors

    International Nuclear Information System (INIS)

    Cozar, R.; Meyzaud, Y.

    1983-06-01

    With the exception of AISI 403 or 410 grades, the use of high strength martensitic stainless steels in PWR is poorly developped because these materials, like ferritic stainless steels, become embrittled by the precitation of a b.c.c. chromium-rich phase during aging at the operating temperature (290 to 350 0 C). The influence of alloying elements and microstructure on the aging behavior of forged low-carbon martensitic stainless steels containing 12 to 16% Cr, 0 to 2% Mo and 0 to 8% Ni was determined during accelerated aging at 450 0 C. Quantitative relationships were derived between the maximum increase in hardness, the maximum shift in CVN transition temperature and the chemical composition (Cr, Mo, C) and microstructure

  10. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  11. Position-dependent shear-induced austenite– martensite transformation in double-notched TRIP and dual-phase steel samples

    NARCIS (Netherlands)

    Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.

    2014-01-01

    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation

  12. In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements

    NARCIS (Netherlands)

    Alonso de Celada Casero, C.; Kooiker, Harm; Groen, Manso; Post, J; San Martin, D

    2017-01-01

    An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ) to martensite (α′) phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite

  13. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  14. Hydrogen behaviour in the aged low activation martensitic steel F82H for fusion reactor applications

    International Nuclear Information System (INIS)

    Benamati, G.

    1997-10-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of hydrogen in the low activation martensitic steel F82H aged for 2000 h under vacuum at 773 K. The measurements cover the temperature range from 373 to 723 K which includes the onset of hydrogen trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for hydrogen in the aged F82H steel are determined. These data are compared with those obtained for deuterium in F82H steel

  15. Predicting Microstructure Development During HighTemperature Nitriding of Martensitic Stainless SteelsUsing Thermodynamic Modeling

    OpenAIRE

    Tschiptschin, André Paulo

    2002-01-01

    Thermodynamic calculations of the Fe-Cr-N System in the region of the Gas Phase Equilibria have been compared with experimental results of maximum nitrogen absorption during nitriding of two Martensitic Stainless Steels (a 6 mm thick sheet of AISI 410S steel and green powder compacts of AISI 434L steel) under N2 atmospheres. The calculations have been performed combining the Fe-Cr-N System description contained in the SGTE Solid Solution Database and the gas phase for the N System contained i...

  16. Recent progress of R and D activities on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q., E-mail: qunying.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China); Baluc, N. [CRPP-EPFL, ODGA C110 5232 Villigen PSI (Switzerland); Dai, Y. [LNM, PSI, 5232 Villigen PSI (Switzerland); Jitsukawa, S. [JAEA, 2-4 Shirakata, Tokai-Mura, Ibaraki-Ken 319-1195 (Japan); Kimura, A. [IAE, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konys, J. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Kurtz, R.J. [PNNL, Richland, WA 99352 (United States); Lindau, R. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Muroga, T. [NIFS, Oroshi, Toki, Gifu 509-5292 (Japan); Odette, G.R. [UCSB, Santa Barbara, CA (United States); Raj, B. [IGCAR, Kalpakkam 603 102 (India); Stoller, R.E.; Tan, L. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Tanigawa, H. [JAEA, Naka, Ibaraki 311-0193 (Japan); Tavassoli, A.-A.F. [DMN/Dir, DEN, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Yamamoto, T. [UCSB, Santa Barbara, CA (United States); Wan, F. [DMPC, USTB, Beijing 100083 (China); Wu, Y. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China)

    2013-11-15

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical properties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation to different TBM and DEMO options.

  17. Corrosion of martensitic steels in flowing 17Li83Pb alloy

    International Nuclear Information System (INIS)

    Flament, T.; Fauvet, P.; Hocde, B.; Sannier, J.

    1988-01-01

    Corrosion of three martensitic steels - 1.4914, HT9 and T91 - in the presence of flowing 17Li83Pb is investigated in thermal convection loops Tulip entirely made of 1.4914 steel. Two 3000-hour tests were performed at maximal temperatures of respectively 450 and 475 0 C with a δT of 60 0 C and an alloy velocity of about 0.08 m.s -1 . In both tests, corrosion is characterized by an homogeneous dissolution of the steel without formation of a corrosion layer. Corrosion rate is constant and very temperature dependent: the sound-metal loss of 1.4914 steel is 22 μm. year -1 at 450 0 C and 40 μm.year -1 at 475 0 C. Behaviours of 1.4914 and HT9 steels are very similar whereas T91 steel is about 20% less corroded

  18. Kinetics of anomalous multi-step formation of lath martensite in steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Pantleon, Karen; Reich, Michael

    2014-01-01

    A steel containing 16wt.% Cr, 5wt.% Ni and 3wt.% Cu was transformed into martensite by applying isochronal, i.e. constant rate, cooling followed by isothermal holding. The formation of martensite was monitored with dilatometry. A series of retardations and accelerations of the transformation...... was observed during isochronal cooling for cooling rates ranging from 1.5 to 50Kmin−1. The cooling rate in the isochronal stage was observed to influence the transformation rate in the isothermal stage. Electron backscatter diffraction was applied to determine the morphology of the martensite, which...... was of lath type, and to investigate the microstructure of the material. No influence of the cooling rate on the scale of the microstructure was observed. The series of retardations and accelerations of the transformation is interpreted in terms of the combined effect of the strain and interfacial energy...

  19. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  20. Effect of ferrite-martensite interface morphology on bake hardening response of DP590 steel

    International Nuclear Information System (INIS)

    Chakraborty, Arnab; Adhikary, Manashi; Venugopalan, T.; Singh, Virender; Nanda, Tarun; Kumar, B. Ravi

    2016-01-01

    The effect of martensite spatial distribution and its interface morphology on the bake hardening characteristics of a dual phase steel was investigated. In one case, typical industrial continuous annealing line parameters were employed to anneal a 67% cold rolled steel to obtain a dual phase microstructure. In the other case, a modified annealing process with changed initial heating rates and peak annealing temperature was employed. The processed specimens were further tensile pre-strained within 1–5% strain range followed by a bake hardening treatment at 170 °C for 20 min. It was observed that industrial continuous annealing line processed specimen showed a peak of about 70 MPa in bake-hardening index at 2% pre-strain level. At higher pre-strain values a gradual drop in bake-hardening index was observed. On the contrary, modified annealing process showed near uniform bake-hardening response at all pre-strain levels and a decrease could be noted only above 4% pre-strain. The evolving microstructure at each stage of annealing process and after bake-hardening treatment was studied using field emission scanning electron microscope. The microstructure analysis distinctly revealed differences in martensite spatial distribution and interface morphologies between each annealing processes employed. The modified process showed predominant formation of martensite within the ferrite grains with serrated lath martensite interfaces. This nature of the martensite was considered responsible for the observed improvement in the bake-hardening response. Furthermore, along with improved bake-hardening response negligible loss in tensile ductility was also noted. This behaviour was correlated with delayed micro-crack initiation at martensite interface due to serrated nature.

  1. Martensite and bainite in steels: transformation mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Bhadeshia, H.K.D.H.

    1997-01-01

    Many essential properties of iron alloys depend on what actually happens when one allotropic form gives way to another, i.e. on the mechanism of phase change. The dependence of the mechanical properties on the atomic mechanism by which bainite and martensite grow is the focus of this paper. The discussion is illustrated in the context of some common engineering design parameters, and with a brief example of the inverse problem in which the mechanism may be a function of the mechanical properties. (orig.)

  2. Evaluation of selected martensitic stainless steels for use in downhole tubular expansion - Results of a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Robert [Shell International E and P, b.v. Kessler Park 1, Postbus 60, 2280 AB Rijswijk (Netherlands)

    2004-07-01

    A laboratory program was performed to evaluate the potential of selected martensitic stainless steels for downhole cladding applications. The evaluation of the effects of tubular expansion on mechanical properties, defects, and resistance to environmentally assisted cracking demonstrated that some steels were acceptable for the intended application. The results were used to qualify and select the stainless steel for the intended sweet cladding applications. (authors)

  3. Chemical compatibility study of lithium titanate with Indian reduced activation ferritic martensitic steel

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Haldar, Rumu; Kumar, Sanjay

    2015-01-01

    Highlights: • Chemical compatibility between Li_2TiO_3 and Indian RAFM steel has been studied at ITER operating temperature. • The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. • The layer grew in a parabolic manner as a function of heating time. • Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer. - Abstract: Chemical compatibility between lithium titanate and Indian reduced activation ferritic-martensitic steel (In-RAFMS) was studied for the first time under ITER operating temperature. Lithium titanate required for the study was synthesized in-house. Coupons of In-RAFMS were packed inside lithium titanate powder and heated at 550 °C up to 900 h under inert argon atmosphere. The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. The layer grew in a parabolic manner as a function of heating time. Microstructural and phase evolution of this oxide layer was studied using XRD, SEM and EPMA. Iron and chromium enriched zones were found within the oxide layer. Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer.

  4. Experimental study and simulation of cyclic softening of tempered martensite ferritic steels

    International Nuclear Information System (INIS)

    Giroux, P.-F.

    2011-01-01

    The present work focuses on the high temperature mechanical behaviour of 9% Cr tempered martensite steels, considered as potential candidates for structural components in the next Generation IV nuclear power plants. Already used for energy production in fossil power plants, they are sensitive to softening during high-temperature cycling and creep-fatigue. This phenomenon is coupled to a pronounced microstructural degradation: mainly vanishing of subgrain boundaries and decrease in dislocation density. This study aims at (i) linking the macroscopic cyclic softening of 9% Cr steels and their microstructural evolution during cycling and (ii) proposing a physically-based modelling of deformation mechanisms in order to predict the macroscopic mechanical behaviour of these steels during cycling. Mechanical study includes uniaxial tensile and cyclic test at 550 C performed on a Grade 92 steel (9Cr-0,5Mo-1,8W-V-Nb). The effect of both strain amplitude and rate on mechanical behaviour is studied. Examination of tensile specimens suggests that the physical mechanism responsible for slight measured softening is mainly the necking phenomenon and the evolution of mean subgrain size, which increases by more than 15 % compared to the as-received state. The evolution of the macroscopic stress during cycling shows that cyclic softening is due to the decrease in kinematic stress. TEM observations highlights that the mean subgrain size increases by 60 to 100 % while the dislocation density decreases by more than 50 % during cycling, compared to the as-received state. A self-consistent homogenization model based on crystalline elasto-visco-plasticity and dislocation densities, predicting the mechanical behaviour of the material and its microstructural evolution during deformation is proposed. This model takes some of the main physical deformation mechanisms into account and only the two parameters of crystalline visco-plasticity should be adjusted (the effective activation energy and

  5. Tempering of martensitic steel for fasteners: Effects of micro-alloying on microstructure and mechanical property evolution

    OpenAIRE

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more temperature resistant fasteners than currently available according to international standards. A new martensitic fastener steel called KNDS4 has been developed, that combines higher strength with improve...

  6. Corrosion fatigue studies on F82H mod. martensitic steel in reducing water coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Maday, M F; Masci, A [ENEA, Casaccia (Italy). Centro Ricerche Energia

    1998-03-01

    Load-controlled low cycle fatigue tests have been carried out on F82H martensitic steel in 240degC oxygen-free water with and without dissolved hydrogen, in order to simulate realistic coolant boundary conditions to be approached in DEMO. It was found that water independently of its hydrogen content, determined the same fatigue life reduction compared to the base-line air results. Water cracks exhibited in their first propagation stages similar fracture morphologies which were completely missing on the air cracks, and were attributed to the action of an environment related component. Lowering frequency gave rise to an increase in F82H fatigue lifetimes without any change in cracking mode in air, and to fatigue life reduction by microvoid coalescence alone in water. The data were discussed in terms of (i) frequency dependent concurrent processes for crack initiation and (ii) frequency-dependent competitive mechanisms for crack propagation induced by cathodic hydrogen from F82H corrosion. (author)

  7. Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor

    International Nuclear Information System (INIS)

    Abe, F.; Noda, T.; Okada, M.

    1992-01-01

    In order to obtain potential reduced-activation ferritic steels suitable for fusion reactor structures, the effect of alloying elements W and V on the microstructural evolution, toughness, high-temperature creep and irradiation hardening behavior was investigated for simple 9Cr-W and 9Cr-V steels. The creep strength of the 9Cr-W steels increased but their toughness decreased with increasing W concentration. The 9Cr-V steels exhibited poor creep rupture strength, far below that of a conventional 9Cr-1MoVNb steel and poor toughness after aging at 873 K. It was also found that the Δ-ferrite should be avoided, because it degraded both the roughness and high-temperature creep strength. Based on the results on the simple steels, optimized martensitic 9Cr steels were alloy-designed from a standpoint of enough thoughness and high-temperature creep strength. Two kinds of optimized 9Cr steels with low and high levels of W were obtained; 9Cr-1WVTa and 9Cr-3WVTa. These steels indeed exhibited excellent toughness and creep strength, respectively. The 9Cr-1WVTa steel exhibiting an excellent roughness was shown to be the most promising for relatively low-temperature application below 500deg C, where irradiation embrittlement is significant. The 9Cr-3WVTa steel was the most promising for high temperature application above 500deg C from the standpoint of enough high-temperature strength. (orig.)

  8. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Xiaoling; Shi, Tiantian; Huang, Xi [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shang, Zhongxia [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu, Wenwen; Ji, Bo; Xu, Zhiqiang [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-12-15

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6}, Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are

  9. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele [University of Applied Sciences of Southern Switzerland, P.O. Box 105, CH-6952 Canobbio (Switzerland); Spaetig, Philippe, E-mail: philippe.spatig@psi.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-5232 Villigen PSI (Switzerland)

    2011-07-31

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  10. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    International Nuclear Information System (INIS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spaetig, Philippe

    2011-01-01

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  11. Sub-Zero Celsius treatment: a promising option for future martensitic stainless steels

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2016-01-01

    A series of samples of (in wt.%) 11.5Cr-0.67C martensiticstainless steel grade were austenitized in Argon for 1 hour attemperatures ranging from 1010°C to 1190°C. Additionally, aseries of samples of (in wt.%) 15.0Cr-5.8Ni-1.0Mo-0.03C (EN1.4418) martensitic stainless steel grade were solution...... and Vickers micro-hardness indentation.Complementary electron back-scatter diffraction was appliedfor determining the phase fractions of austenite and martensite.Data shows that sub-zero Celsius treatment yields anadditional hardening response when austenite is retained in thematerial. The relevance...

  12. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  13. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    Science.gov (United States)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  14. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  15. Corrosion behaviour of dissimilar welds between martensitic stainless steel and carbon steel from secondary circuit of candu npp

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2015-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. It is not unusual to find that, although the base metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not resistant. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. Our experiments were performed in chloride environmental on two types of samples: non-welded (420 martensitic steel and 52.2k carbon steel) and dissimilar welds (dissimilar metal welds: joints beetween 420 martensitic steel and 52.2k carbon steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and metallography microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and carbon steel in solutions containing chloride ions. We have been evaluated the corrosion rates of samples (welded and non-welded) by electrochemically. (authors)

  16. Influence of cycle number, temperature and manufacturing process on deformation-induced martensite in meta-stable austenitic stainless steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Grosse, M.; Bart, G.

    2002-01-01

    During cyclic loading of austenitic stainless steel, microstructural changes occur, which affect both the mechanical and the physical properties. Typical features are the rearrangement of dislocations and, in some cases, a deformation-induced martensitic phase transformation. In our investigation martensite formation was used as an indication for material degradation due to fatigue. Knowledge about mechanisms and influencing parameters of the martensitic transformation process is essential for the application in a lifetime monitoring system. The investigations showed that for a given meta-stable austenitic stainless steel the deformation-induced martensite depends on the applied strain amplitude, the cycle number (accumulated plastic strain) and the temperature. It was demonstrated that the volume fraction of martensite continuously increases with the cycle number. Therefore, martensite content could be used for indication of the fatigue usage. According to the Coffin-Manson relation the dependence of the martensite content on the cycle number could be described with a power law. The exponent was determined to be equal to 0.5 for the applied loading and temperature conditions. The influence of temperature on deformation-induced martensite was considered by means of a thermodynamic relation. Furthermore, the initial material state (initial defect density) played an important role for the martensite formation rate. Material properties and microstructures were characterised by metallography, neutron diffraction, and advanced magnetic non-destructive techniques. In order to investigate the correlation between the martensite content in the austenitic matrix and magnetic properties, the magnetic susceptibility was determined. Furthermore, a high sensitive Giant Magneto Resistant sensor was used to visualize the martensite distribution at the surface of the fatigue specimens. All applied techniques, neutron diffraction and advanced magnetic methods allowed the detection

  17. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    International Nuclear Information System (INIS)

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  18. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels

    International Nuclear Information System (INIS)

    Lang, Peter; Rath, Markus; Kozeschnik, Ernst; Rivera-Diaz-del-Castillo, Pedro E.J.

    2015-01-01

    Hydrogen trapping behaviour is investigated by means of thermokinetic simulations in a martensitic steel. The heat treatment consists of austenitisation followed by quenching and tempering. The model prescribes a minimum in hydrogen trapping at an austenitisation temperature of 1050 °C. Below this temperature, austenite grain boundaries are the prevailing trap, whereas niobium atoms in solid solution are the main traps above 1050 °C. The model describes precisely the experimental results

  19. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2001-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  20. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  1. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  2. Analysis of martensitic transformation and residual tension in an 304L stainless steel

    International Nuclear Information System (INIS)

    Alves, Juciane Maria

    2014-01-01

    The relationship between plastic deformation and the strain induced phase transformation, that provides a practical route to the development of new engineering materials with excellent mechanical properties, characterize the TRIP effect 'Transformation Induced Plasticity'. Among the stainless steels, the metastable 304 L austenitic steel is susceptible to transformation of austenite-martensite phase from tensile tests at room temperature by increments of plastic deformation. It is of great technological and scientific interest the knowledge of the evolution of phase transformation and residual stress from different levels and rates of plastic deformation imposed to the material. It is also important to evaluate the interference of metallographic preparation in quantitative analyzes of this steel. The main techniques used in this study consisted of X-rays diffraction and Ferritoscopy for the quantitation phase, and XRD to residual stress analysis also. As observed, the phase transformation quantification has not suffered significant influence of the metallographic preparation and evolved from increments of plastic deformation due to different stop charges and strain rates, leading to a further strengthening of the austenite matrix. The evaluation of residual stress resulting from the martensitic transformation was susceptible to the metallographic preparation and increased its value on comparison to sample without metallographic preparation. It was also observed that the residual stress decreased with the increase of the fraction of transformed martensite. (author)

  3. Effect of thermo-mechanical treatments on creep and fatigue properties of 9% Cr martensitic steels

    International Nuclear Information System (INIS)

    Hollner, S.; Fournier, B.; Le Pendu, J.; Caes, C.; Tournie, I.; Pineau, A.

    2011-01-01

    In the framework of the development of Generation IV nuclear reactors and fusion nuclear reactors, materials with high mechanical properties up to 550 C are required. In service the materials will be subjected to high-temperature creep and cyclic loadings. 9-12%Cr martensitic steels are candidate materials for these applications; however, they show a pronounced cyclic softening effect under cyclic loadings. This softening effect is linked to the coarsening of the martensitic microstructure. In order to refine its microstructure and its precipitation state, the commercial P91 steel has been submitted to a thermo-mechanical treatment including warm-rolling at 600 C and a tempering stage at 700 C. Microstructural observations confirm that this thermo-mechanical treatment led to a finer martensite with smaller MX-type precipitates. This evolution has an effect on the high-temperature mechanical properties: the optimized P91 steel is 100 Hv harder than the as-received P91, and its yield strength is 430 MPa higher at 20 C and 220 MPa higher at 550 C. Its lifetime under creep (at 650 C under 120 MPa) is at least 14 times longer; and the fatigue test at 650 C under 0.7% strain shows a slightly slower cyclic softening effect for the optimized P91. (authors)

  4. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (470 Building, Puspiptek, Serpong, Indonesia 15313) (Indonesia)

    2016-04-19

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  5. Martensitic transformation of type 304 stainless steel by high-energy ion implantation

    International Nuclear Information System (INIS)

    Chayahara, A.; Satou, M.; Nakashima, S.; Hashimoto, M.; Sasaki, T.; Kurokawa, M.; Kiyama, S.

    1991-01-01

    The effect of high-energy ion implantation on the structural changes of type 304 stainless steel were investigated. Gold, copper and silicon ions with an energy of 1.5 MeV was implanted into stainless steel. The fluences were in the range from 5x10 15 to 10 17 ions/cm 2 . It was found that the structure of stainless steel was transformed form the austenitic to the martensitic structure by these ion implantations. This structural change was investigated by means of X-ray diffraction and transmission electron microscopy (TEM). The depth profile of the irradiated ions was also analyzed by secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS). The degree of martensitic transformation was found to be strongly dependent on the surface pretreatment, either mechanical or electrolytic polishing. When the surface damages or strains by mechanical polishing were present, the martensitic transformation was greatly accelerated presumably due to the combined action of ion irradiation and strain-enhanced transformation. Heavier ions exhibit a high efficiency for the transformation. (orig.)

  6. Microstructural stability of fast reactor irradiated 10 to 12% Cr ferritic-martensitic stainless steels

    International Nuclear Information System (INIS)

    Little, E.A.; Stoter, L.P.

    1982-01-01

    The strength and microstructural stability of three 10 to 12% Cr ferritic-martensitic stainless steels have been characterized following fast reactor irradiation to damage levels of 30 displacements per atom (dpa) at temperatures in the range 380 to 615 0 C. Irradiation results in either increases or decreases in room temperature hardness depending on the irradiation temperature. These strength changes can be qualitatively rationalized in terms of the combined effects of irradiation-induced interstitial dislocation loop formation and recovery of the dislocation networks comprising the initial tempered martensite structures. Precipitate evolution in the irradiated steels is associated with the nonequilibrium segregation of the elements nickel, silicon, molybdenum, chromium and phosphorus, brought about by solute-point defect interactions. The principal irradiation-induced precipitates identified are M 6 X, intermetallic chi and sigma phases and also α' (Cr-rich ferrite). The implications of the observed microstructural changes on the selection of martensitic stainless steels for fast reactor wrapper applications are briefly considered

  7. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  8. Report of IEA workshop on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    IEA Workshop on Reduced Activation Ferritic/Martensitic Steels under implementing agreement for program of research and development on fusion materials was held at Tokyo Yayoi Kaikan and JAERI headquarter on November 2-3, 2000. The objective of this workshop was a review of the fusion material development programs, the progress of the collaboration and the irradiation effects studies on RAF/M steels in the collaborating parties (Europe, Russia the United States, and Japan). Moreover, the development of plans for future collaboration was discussed. The present report contains viewgraphs presented at the workshop. (author)

  9. Creep strength of reduced activation ferritic/martensitic steel Eurofer'97

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Lindau, R.; Rieth, M.; Schirra, M.

    2005-01-01

    Creep rupture strength of tempered martensitic steel Eurofer'97 has been investigated. Different products form (plate and bar) have been tested in the temperature range from 450 deg. C to 650 deg. C at different loads. No significant differences in the creep rupture properties have been found between the studied product forms. The Eurofer'97 has shown adequate creep rupture strength levels at short creep rupture tests, similar to those of the F-82 H mod. steel. However, for long testing times (>9000 h) the results available up to now at 500 deg. C and 550 deg. C seem to indicate a change in the creep degradation mechanism

  10. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  11. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Yano, Y.; Sato, Y.S.; Sekio, Y.; Ohtsuka, S.; Kaito, T.; Ogawa, R.; Kokawa, H.

    2013-01-01

    Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, designed for fast reactors and defect-free welds were successfully produced. The mechanical and microstructural properties of the friction stir welded steel were subsequently investigated. The hardness values of the stir zone were approximately 550 Hv (5.4 GPa) with minimal dependence on the rotational speed, even though they were much higher than those of the base material. However, tensile strengths and elongations of the stir zones were high at 298 K, compared to those of the base material. The excellent tensile properties are attributable to the fine grain formation during friction stir welding

  12. Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: The response to indentation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Venkatsurya, P. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Wu, K.M. [International Research Institute for Steel Technolgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Karjalainen, L.P. [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2013-01-10

    In medium to high carbon steels, characterized by martensite-austenite microstructure processed by quenching and partitioning process, martensite potentially provides high strength, while austenite provides work hardening [Fu, Wu, and Misra, DOI: 10.1179/1743284712/068]. Given the significant interest in these steels in the steel community, the paper reports for the first time the nanoscale deformation experiments and accompanying microstructural evolution to obtain micromechanical insights into the deformation behavior of ultrahigh strength-high ductility dual-phase steels with significant retained austenite fraction of {approx}0.35. During deformation experiments with nanoindenter, dislocations were distributed on several slip systems, whereas strain-induced twinned martensite and twinning were the deformation mechanisms in carbon-enriched and thermally stabilized retained austenite. Furthermore, ultrafine dual-phase steels exhibited high strain rate sensitivity.

  13. Effects of strain and strain-induced α′-martensite on passive films in AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Lv, Jinlong; Luo, Hongyun

    2014-01-01

    In this paper, the effects of strain and heat treatment on strain-induced α′-martensite of AISI 304 stainless steel tubes were measured by X-ray diffraction. Moreover, the effects of strain and content of α′-martensite on passivated property on the surface of the material in borate buffer solution were evaluated by electrochemical technique. The results showed that the volume fraction of α′-martensite increased gradually with the increase of tensile strain for as-received and solid solution samples. However, α′-martensite in as-received sample was more than that in the solid solution sample. The electrochemical impedance spectroscopy results showed that the solid solution treatment improved corrosion resistance of the steel, especially for samples with small strain. Moreover, acceptor densities were always higher than donor densities for as-received and solid solution samples. With the increase of strain, the increase tendency of acceptor density was more significant than that of donor density. We also found that the total density of the acceptor and donor almost increased linearly with the increase of α′-martensite. The present results indicated that the increased acceptor density might lead to the decreased corrosion resistance of the steel. - Highlights: • The solid solution treatment improved corrosion resistance of the stainless steel. • The deteriorated passivated property after strain could be attributed to the increased acceptor density. • The α′-martensite reduced corrosion resistance of the stainless steel

  14. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  15. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution

    International Nuclear Information System (INIS)

    Marcelin, Sabrina; Pébère, Nadine; Régnier, Sophie

    2013-01-01

    Highlights: ► A better knowledge of the electrochemical behaviour of a martensitic stainless steel in bulk electrolyte was obtained. ► Quantitative parameters were obtained from impedance measurements. ► The study will be used as reference to investigate crevice corrosion using a thin layer cell. - Abstract: This paper focuses on the characterisation of the electrochemical behaviour of a martensitic stainless steel in 0.1 M NaCl + 0.04 M Na 2 SO 4 solution and is a part of a study devoted to crevice corrosion resistance of stainless steels. Polarisation curves and electrochemical impedance measurements were obtained for different experimental conditions in bulk electrolyte. X-ray photoelectron spectroscopy (XPS) was used to analyse the passive films. At the corrosion potential, the stainless steel was in the passive state and the corrosion process was controlled by the properties of the passive film formed during air exposure. During immersion in the deaerated solution, the passive film was only slightly modified, whereas it was altered both in composition and thickness during immersion in the aerated solution. After cathodic polarisation of the stainless steel electrode surface, the oxide film was almost totally removed and the surface appeared to be uniformly active for oxygen reduction. The new passive film, formed at the corrosion potential, was enriched with iron species and less protective. Impedance diagrams allowed the characterisation of both the oxide film (high-frequency range) and the charge transfer process (low-frequency range).

  16. Role of Nb in low interstitial 13Cr super martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.P.; Wang, L.J. [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110004 (China); Liu, C.M., E-mail: cmliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110004 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton, L8S-4L7 (Canada)

    2011-08-25

    Highlights: {yields} Nb retards the kinetics of reversed austenite formation. {yields} Nb suppresses the occurrence of Cr rich precipitates. {yields} Nano-scale precipitates contribute to the significant increase in strength. - Abstract: The effect of adding 0.1 wt% Nb to low interstitial (N 0.01 wt%, C 0.01 wt%) 13Cr super martensitic stainless steel (SMSS) on solid phase transformation and microstructures achieved by normalizing and tempering was investigated using dilatometer, electron backscattered diffraction (EBSD), transmission electron microscope (TEM), X-ray diffraction (XRD), and its consequence on mechanical properties was examined to clarify the role of Nb in low interstitial martensitic stainless steel. Nb was found to retard kinetics of reversed austenite formation during tempering and to suppress the occurrence of Cr rich precipitates. The measurement of mechanical properties shows that while the strength properties were significantly increased by nano-scale precipitates enriched in Nb in the steel with 0.10 wt% Nb, the ductility and toughness properties were restored by optimum volume fraction of retained austenite. Excellent strength and adequate toughness properties were obtained by tempering the steel with 0.10 wt% Nb and low interstitial (N 0.01 wt%, C 0.01 wt%) steel at 600 deg. C.

  17. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  18. Current status and recent research achievements in ferritic/martensitic steels

    Science.gov (United States)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  19. Current status and recent research achievements in ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F., E-mail: farhad.tavassoli@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA/DEN/DANS/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E., E-mail: eberhard.diegele@kit.edu [Karlsruhe Institut of Technology (KIT), Karlsruhe (Germany); Lindau, R., E-mail: rainer.lindau@kit.edu [Karlsruhe Institut of Technology (KIT), Karlsruhe (Germany); Luzginova, N., E-mail: Natalia.Luzginova@gmail.com [NRG-Petten, 1755 ZG Petten (Netherlands); Tanigawa, H., E-mail: tanigawa.hiroyasu@jaea.go.jp [Japan Atomic Energy Authority (JAEA), Tokai, Ibaraki, 319-1195 (Japan)

    2014-12-15

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe–Cr alloys, the chromium range was narrowed to 7–9% and the first RAFM was industrially produced in Japan (F82H: Fe–8%Cr–2%W–TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe–9%Cr–1%W–TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  20. Study on aging embrittlement of 17-4PH martensite stainless steel at 350 degree C

    International Nuclear Information System (INIS)

    Wang Jun; Shen Baoluo

    2005-01-01

    The transformation of microstructure and hardness with the extension of aging time on the 17-4PH Martensite stainless steel at 350 degree C is studied, and the change of dynamic fracture toughness and fractography of the stainless steel for various holding time at this temperature are also studied by instrumental impact test and scanning electron microscope. The results indicate that the crack initiation energy (E i ), crack propagation energy (E p ), absorbed-in-fracture energy (E t ) and dynamic fracture toughness (K 1d ) of this type of alloy Charpy v-notch sample is decreased with the continuation of time at 350 degree C. It means that the toughness of the alloy is degraded, and the hardness of the steel is ascended when aging time is expanded and reaches the maximum at 9000 h. The fractography of this steel changes from dimple fracture into cleavage fracture and inter-granular rapture. (authors)

  1. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    International Nuclear Information System (INIS)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon; Oh, Seung Jin

    2010-01-01

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  2. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Oh, Seung Jin [KHNP, Daejeon (Korea, Republic of)

    2010-10-15

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  3. Compatibility of austenitic and martensitic steels behaviour in semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Sannier, J.; Dufrenoy, T.; Flament, T.; Terlain, A.

    1991-01-01

    Compatibility tests between Pb17Li and 316L austenitic or 1.4914 martensitic steels have been performed with experimental conditions simulating the special features of the water-cooled lithium-lead blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 deg C temperature range, the results show that corrosion kinetics for both 316L and 1.4914 steels are quasi-linear and about 3 times lower compared to turbulent condition. From amount of recovered deposits, the mass transfer of 316L steel at 450 deg C appears to be equivalent to that of 1.1914 steel at 475 deg C. The same relationship was observed in flowing Pb17Li condition

  4. Martensitic transformations in 304 stainless steel after implantation with helium, hydrogen and deuterium

    International Nuclear Information System (INIS)

    Johnson, E.; Grabaek, L.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, N.; Sakamoto, I.

    1988-01-01

    Using conversion electron Moessbauer spectroscopy (CEMS) and glancing angle X-ray diffraction, martensitic transformations have been studied in type 304 austenitic stainless steels implanted with 8 keV helium, hydrogen and deuterium. Furthermore, using CEMS in the energy selective mode (DCEMS), the distribution of martensite in the implantation zone has been analysed as a function of depth. Transformation of the implanted layer occurs after implantation with 10 21 m -2 He + ions while 100 times higher fluence is required for the implanted layer to transform after hydrogen or deuterium implantations. This difference is due to the ability of helium to form high pressure gas bubbles, while implanted hydrogen is continuously lost by back diffusion to the surface. The helium bubbles, which are confined under pressures as high as 60 GPa, will induce extremely high stress levels in the implanted layer, by which the martensitic transformation is directly induced. The fact that a much higher fluence of hydrogen or deuterium is required to induce the transformation, shows that radiation damage plays only a minor role. In this case, the martensitic transformation first occurs when the implanted layer resembles the state of a cathodically charged surface. (orig.)

  5. Evaluation of welding by MIG in martensitic stainless steel

    International Nuclear Information System (INIS)

    Fernandes, M.A.; Mariano, N.A.; Marinho, D.H.C. Marinho

    2010-01-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  6. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  7. Analysis of the strain induced martensitic transformation in austenitic steel subjected to dynamic perforation

    Directory of Open Access Journals (Sweden)

    Zaera R.

    2012-08-01

    Full Text Available An experimental and numerical analysis on the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is reported. Two target thicknesses are considered, 0.5 and 1.0 mm, and impact velocities range from 35 to 200 m/s. The perforation mechanisms are identified and the effect of the projectile nose-shape on the ability of the target for energy absorption is evaluated. Martensite has been detected in all the impacted samples and the role played by the projectile nose-shape on the transformation is highlighted. A 3D model implemented in ABAQUS/Explicit allowed to simulate the perforation tests. The material is defined through a constitutive description developed by the authors to describe the strain induced martensitic transformation taking place in metastable austenitic steels at high strain rates. The numerical results are compared with the experimental evidence and satisfactory matching is obtained. The numerical model succeeds in describing the perforation mechanisms associated to each projectile-target configuration analysed.

  8. Microstructural control and high temperature mechanical property of ferritic/martensitic steels for nuclear reactor application

    International Nuclear Information System (INIS)

    Adetunji, G.J.

    1991-04-01

    The materials under study are 9-12% Cr ferritic/martensitic steels, alternative candidate materials for application in core components of nuclear power reactors. This work involves (1) Investigation of high temperature fracture mechanism during slow tensile and limited creep testing at 600 o C (2) Extensive study of solute element segregation both theoretically and experimentally (3) Investigation of effects by thermal ageing and irradiation on microstructural developments in relation to high temperature mechanical behaviour. From (1) the results obtained indicate that the important microstructural characteristics controlling the fracture of 9-12% Cr ferritic/martensitic steels at high temperature are (a) solute segregation to inclusion-matrix interfaces (b) hardness of the martensitic matrix and (c) carbide particle size distribution. From (2) the results indicate a strong concentration gradient of silicon and molybdenum near lath packet boundaries for certain quenching rates from the austenitizing temperature. From (3) high temperature tensile data were obtained for irradiated samples with thermally aged ones as control. (author)

  9. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  10. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure.

    Science.gov (United States)

    Izquierdo, Paula P; de Biasi, Ronaldo S; Elias, Carlos N; Nojima, Lincoln I

    2010-12-01

    Our purpose was to study the mechanical properties and phase transformations of orthodontic wires submitted to in-vivo exposure in the mouth for different periods of time. Stainless steel wires were tied to fixed orthodontic appliances of 30 patients from the orthodontics clinic of Universidade Federal do Rio de Janeiro School of Dentistry in Brazil. According to the duration of the clinical treatment, the patients were divided into 3 groups. After in-vivo exposure, the samples were studied by mechanical testing (torsion) and ferromagnetic resonance. Statistical analyses were carried out to evaluate the correlation between time of exposure, mechanical properties, and austenite-to-martensite transformation among the groups. The results were compared with as-received control samples. The torque values increased as time in the mouth increased. The increase in torque resistance showed high correlations with time of exposure (P = 0.005) and austenite-martensite phase transformation. The resistance of stainless steel orthodontic wires increases as the time in the mouth increases; this effect is attributed to the austenite-to-martensite transformation. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • Diffusion bonding was employed to join 9Cr oxide dispersion strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure, and the microstructure and tensile properties of the joints were investigated. • ODS steel was successfully diffusion bonded at an austenization temperature to migrate a residual diffusion bonding interface. • The tensile properties of the joint region were comparable with that of the base metal with a ductile fracture occurred far from the bonding interface. • It is considered that diffusion bonding with a phase transformation can be a very useful joining method for fabricating components in next-generation nuclear systems using 9Cr ODS ferritic/martensitic steel. - Abstract: Diffusion bonding was employed to join oxide-dispersion-strengthened ferritic/martensitic steel under uniaxial hydrostatic pressure using a high vacuum hot press, and the microstructure and tensile properties of the joints were investigated. 9Cr oxide dispersion strengthened (ODS) steel was successfully diffusion bonded at 1150 °C for 1 h to migrate a residual bonding interface. Following heat treatment, including normalising at 1050 °C and tempering at 800 °C for 1 h, comparable results without inclusions or micro-voids at the bonding interface, or degradation in the base metal were achieved. Transmission electron microscopy (TEM) observation revealed that the nano-oxide particles in the bonding region were uniformly distributed in the matrix. At room temperature, the joint had nearly the same tensile properties with that of the base metal. The tensile strength of the joint region at elevated temperatures was comparable with that of the base metal. The total elongation of the joint region decreased slightly, but reached 80% of the base metal at 700 °C, and a ductile fracture occurred far from the bonding interface. Therefore, it is considered that diffusion bonding with a phase transformation can be a very useful joining method for

  12. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    Science.gov (United States)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  13. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  14. Quantification by image analysis of grain size of the high temperature phase (austenite) of martensitic steels 9Cr-1Mo

    International Nuclear Information System (INIS)

    Barcelo, F.; Brachet, J.C.

    1993-01-01

    In martensitic steels, the austenitic grain size before transformation may influence mechanical properties. 9Cr-1Mo steel (EM10) is used in hexagonal pipes fabrication in fast neutrons reactors. Image analysis allows to quantify the older grain size in function of the austenization heat treatment conditions. (A.B.). 2 figs

  15. Deformation-induced martensitic transformation in a 201 austenitic steel: The synergy of stacking fault energy and chemical driving force

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, M., E-mail: m.moallemi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Fould Institute of Technology, Fouladshahr, Isfahan, 8491663763 (Iran, Islamic Republic of); Rezaee, A.; Baghbadorani, H. Samaei; Nezhadfar, P. Dastranjy [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-01-20

    The present study deals with the correlation of stacking fault energy's synergy and driving force in the formation of deformation-induced martensitic transformation in a 201 austenitic stainless steel. The fraction of deformation-induced martensite was characterized by means of X-ray diffraction and magnetic induction techniques. The kinetics of the martensite formation versus applied strain was evaluated through the sigmoidal model. It was shown that the volume fraction of ά-martensite is closely related to the driving force/SFE ratio of the alloy. The results also showed that the martensite content is similar in both XRD and magnetic methods and the applied sigmoidal model was consistent with the obtained experimental data.

  16. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  17. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Perdahcıoğlu, E.S.; Geijselaers, H.J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain partitioning into the austenite and martensite phases are formulated using a mean-field homogenization approach. At this intermediate length-scale the average stress in the austenite phase is computed and utilized to compute the mechanical driving force resolved in the material. The amount of transformation and the transformation plasticity is derived as a function of the driving force. The mechanical response of the material is obtained by combining the homogenization and the transformation models. The model is verified by mechanical tests under biaxial loading conditions during which different transformation rates are observed. As a final verification of the model, a bending test is used which manifests the stress-state dependency of the transformation.

  18. Transformation of deformation martensite into austenite in stainless steels at various heating rates

    International Nuclear Information System (INIS)

    Gojkhenberg, Yu.N.; Shtejnberg, M.M.

    1978-01-01

    Under isothermal conditions and with continuous preheating at defferent rates, the inverse transformation of deformation martensite that is obtained through reductions to small, medium and great degrees, has been studied. It has been established that depending on the preheat rate, the temperature of the end α → ν of rebuilding varies according to a curve having a maximum. The ascending branch of that curve is connected with the diffusion-controlled shear transformation, whereas the descending branch with the transition to the martensite reaction of austenite formation. As the deformation degree increases, the temperature of the end of the inverse transformation decreases. As a result, recrystallization of austenite proceeds only after completing α → ν transition, when heating the steels deformed to the medium degree at rates of at least 25 deg/sec and after high reductions at rates of at least 0.8 deg/sec

  19. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  20. Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qiuzhi, E-mail: neuqgao@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000 (China); Wang, Cong; Qu, Fu; Wang, Yingling [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066000 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2014-10-15

    Highlights: • The obtained M{sub s} temperatures of samples austenitized at 1150 °C are higher than at 900 °C. • Martensite-start transformation is slower for austenitizing at 1150 °C than at 900 °C. • Martensite transformation was controlled by nucleation rate. • Growth of martensite plates was controlled by thermal activation of atoms. - Abstract: Martensite transformation features in the 9Cr–1.7W–0.4Mo–Co ferritic steel, was conducted on a Netzsch Differential Thermal Analysis (DTA), after austenitized at 900 °C and 1150 °C followed by cooling at various rates to room temperature were studied. A martensite transformation kinetics model based on assumption of continuous nucleation and consideration of impingement was introduced to investigate the influence of austenitizing temperature and cooling rate on the martensite transformation behaviors. The obtained interface velocity and the activation energy for interface-controlling growth are lower than 10{sup −5} m/s and 40 kJ/mol, respectively, according to the fitted data. Both indicated that martensite transformation in the 9Cr–1.7W–0.4Mo–Co ferritic steel was controlled by nucleation rate, and that growth of plates was controlled by thermal activation of atoms.

  1. Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel

    International Nuclear Information System (INIS)

    Gao, Qiuzhi; Wang, Cong; Qu, Fu; Wang, Yingling; Qiao, Zhixia

    2014-01-01

    Highlights: • The obtained M s temperatures of samples austenitized at 1150 °C are higher than at 900 °C. • Martensite-start transformation is slower for austenitizing at 1150 °C than at 900 °C. • Martensite transformation was controlled by nucleation rate. • Growth of martensite plates was controlled by thermal activation of atoms. - Abstract: Martensite transformation features in the 9Cr–1.7W–0.4Mo–Co ferritic steel, was conducted on a Netzsch Differential Thermal Analysis (DTA), after austenitized at 900 °C and 1150 °C followed by cooling at various rates to room temperature were studied. A martensite transformation kinetics model based on assumption of continuous nucleation and consideration of impingement was introduced to investigate the influence of austenitizing temperature and cooling rate on the martensite transformation behaviors. The obtained interface velocity and the activation energy for interface-controlling growth are lower than 10 −5 m/s and 40 kJ/mol, respectively, according to the fitted data. Both indicated that martensite transformation in the 9Cr–1.7W–0.4Mo–Co ferritic steel was controlled by nucleation rate, and that growth of plates was controlled by thermal activation of atoms

  2. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Science.gov (United States)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  3. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  4. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-12-15

    Dislocation loops induced by helium irradiation at elevated temperatures in reduced-activation martensitic steels were investigated using transmission electron microscopy. Steels were irradiated with 100 keV helium ions to 0.8 dpa between 300 K and 723 K. At irradiation temperatures T{sub irr} ⩽ 573 K, small defects with both Burger vectors b = 1/2〈1 1 1〉 and b = 〈1 0 0〉 were observed, while at T{sub irr} ⩾ 623 K, the microstructure was dominated by large convoluted interstitial dislocation loops with b = 〈1 0 0〉. Only small cavities were found in the steels irradiated at 723 K.

  5. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  6. Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels

    International Nuclear Information System (INIS)

    Spaetig, P.; Bonade, R.; Odette, G.R.; Rensman, J.W.; Campitelli, E.N.; Mueller, P.

    2007-01-01

    We investigate the plastic flow properties at low and high temperature of the tempered martensitic steel Eurofer97. We show that below room temperature, where the Peierls friction on the screw dislocation is active, it is necessary to modify the usual Taylor's equation between the flow stress and the square root of the dislocation density and to include explicitly the Peierls friction stress in the equation. Then, we compare the fracture properties of the Eurofer97 with those of the F82H steel. A clear difference of the fracture toughness-temperature behavior was found in the low transition region. The results indicate a sharper transition for Eurofer97 than for the F82H. Finally, the shift of the median toughness-temperature curve of the F82H steel was determined after two neutron irradiations performed in the High Flux Reactor in Petten

  7. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    Science.gov (United States)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  8. The influence of the martensitic transformation on the fatigue of an AISI type 316 metastable stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J; Sousa e Silva, A.S. de; Monteiro, S.N.

    The influence of the martensitic transformation on the process of pulse tension fatigue of a AISI type 316 metastable stainless steel was studied at 25 0 and 196 0 c. The fatigue tests were performed on annealed and cold worked specimens in order to separate the effects of static transformation, dynamic transformation and work hardening. The fatigue limits obtained from the corresponding Wohler curves were compared for the different test conditions. The results showed that the fatigue is not affected by the dynamically induced martensite. On the other hand the static martensite, previously induced, appears to decrease the resistance to fatigue. The reasons for these effects are discussed. (Author) [pt

  9. The microstructural stability and mechanical properties of two low activation martensitic steels

    International Nuclear Information System (INIS)

    Victoria, M.; Marmy, P.; Batawi, E.; Peters, J.; Briguet, C.; Rezai-Aria, F.; Gavillet, D.

    1996-01-01

    A desirable feature of future magnetically confined fusion reactors is the prospect of producing low level radioactive waste. In order to minimize the volume of radioactive material, in particular from the first wall and blanket structures, reduced long term activation alloys are being developed. Here, a low activation composition of a martensitic 9% Cr steel has been studied, based on the DIN (Deutsches Inst. fuer Normung) 1.4914 composition (MANET) but replacing Ni, Mo and Nb by the low activation elements W, V and Ta. Two casts were produced from high purity components, in which the effects of controlled additions of Mn (0.58 and 0.055 wt. %) and N (7 and 290 wt. ppm) were studied, so that the final compositions resulted in one cast with high Mn and low N (steel A) and the other with the opposite conditions (steel B). The two steels were evaluated in terms of structural stability and mechanical properties under tensile, fatigue and fracture toughness tests. It has been found that both alloys have a DBTT below room temperature, which in the case of the steel A is 70 K below that of MANET. Although the tensile strength is somewhat below that of the parent steel, both steels have longer fatigue life

  10. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  11. Influence of Z-phase on long-term creep stability of martensitic 9-12% Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Danielsen, Hilmar K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Hald, John [DONG Energy A/S (Denmark); Vattenfall (Denmark)

    2010-07-01

    The long-term creep strength of the new generation of martensitic creep resistant 9-12%Cr steels since the well-known steel Grade 91 relies strongly on particle strengthening by fine Mn nitrides based on V and Nb. During long-term high-temperature exposures the Mn nitrides may be replaced by the thermodynamically more stable Z-phases (Cr(V,Nb)N) causing a breakdown in creep strength. Cr contents above 10.5% strongly accelerate Z-phase precipitation, which explains the lack of success for all attempts to develop martensitic creep resistant steels with high Cr content for oxidation protection. However 9%Cr steels do not seem to be affected by the Z-phase. Careful control of the Z-phase precipitation process has led to the design of experimental 12%Cr martensitic steels strengthened by fine Z-phase nitrides based on Nb or Ta. Such steels may again enable the combination of high strength and oxidation resistance in the same alloy. This opens a new pathway for further alloy development of the heat resistant martensitic steels. (orig.)

  12. Fracture toughness of manet II steel

    International Nuclear Information System (INIS)

    Gboneim, M.M.; Munz, D.

    1997-01-01

    High fracture toughness was evaluated according to the astm and chromium (9-12) martensitic steels combine high strength and toughness with good corrosion and oxidation resistance in a range of environments, and also show relatively high creep strength at intermediate temperatures. They therefore find applications in, for example, the offshore oil and gas production and chemical industries i pipe work and reaction vessels, and in high temperature steam plant in power generation systems. Recently, the use of these materials in the nuclear field was considered. They are candidates as tubing materials for breeder reactor steam generators and as structural materials for the first wall and blanket in fusion reactors. The effect of ageing on the tensile properties and fracture toughness of a 12 Cr-1 Mo-Nb-v steel, MANET II, was investigated in the present work. Tensile specimens and compact tension (CT) specimens were aged at 550 degree C for 1000 h. The japanese standards. Both microstructure and fracture surface were examined using optical and scanning electron microscopy (SEM). The results showed that ageing did not affect the tensile properties. However, the fracture toughness K Ic and the tearing modules T were reduced due to the ageing treatment. The results were discussed in the light of the chemical composition and the fracture surface morphology. 9 figs., 3 tabs

  13. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 deg. C

    International Nuclear Information System (INIS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-01-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 deg. C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 deg. C and 300 deg. C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 deg. C (up to 2.6 dpa), and tested between -170 deg. C and 300 deg. C. Irradiation effects at lower irradiation temperatures are more significant

  14. Influence of Mo addition on the tempered properties of 13Cr martensitic stainless steel

    International Nuclear Information System (INIS)

    Jung, Byong Ho; Ahn, Yong Sik

    1998-01-01

    In order to investigate the effect of Mo addition on the mechanical properties of 13Cr-0.2C martensitic stainless steel, tensile test and Charpy V-notch test were performed after tempering at the temperature range of 200∼700 .deg. C following austenitizing at 1100 .deg. C. The yield strength and hardness of the steel were increased with the increase of Mo content at all tempering conditions, because Mo causes retardation of precipitation and coarsening of carbides and solid solution strengthening of matrix. Except 500 .deg. C of tempering temperature, the Charpy impact energy was significantly increased with Mo content and showed the highest value at 1.5 wt% addition. The increase of impact energy of the steel containing Mo is thought to be caused by δ-ferrite formed in the tempered martensitic matrix. At 500 .deg. C tempering, Charpy impact energy was decreased drastically due to temper embrittlement and it was not possible to prevent it even though Mo was added up to 1.5 wt%

  15. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    International Nuclear Information System (INIS)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S.; Hirose, T.; Kasada, R.; Kimura, A.; Kohyama, A.; Kohno, Y.; Klueh, R.L.; Sokolov, M.; Stoller, R.; Zinklek, S.; Yamamoto, T.; Odette, G.; Kurtz, R.J.

    2007-01-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  16. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  17. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kasada, R.; Kimura, A.; Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan); Kohno, Y. [Muroran Institute of Technology, Muroran, Hokkaido (Japan); Klueh, R.L. [0ak Ridge Noational Laboratory, TN (United States); Sokolov, M.; Stoller, R.; Zinklek, S. [0ak Ridge Noational Laboratory, Materials Science and Technology Div., TN (United States); Yamamoto, T.; Odette, G. [UCSB, Dept. of Chemical Engineering UCSB, Santa-Barbara (United States); Kurtz, R.J. [Pacifie Northwest National Laboratory, Richland WA (United States)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  18. Microstructural evolution and response to double-loop reactivation testing of heat-treated PH 13-8 Mo martensitic stainless steel

    International Nuclear Information System (INIS)

    Cieslak, W.R.; Cieslak, M.J.; Hills, C.R.

    1987-01-01

    Compared to the austenitic stainless steels, relatively few studies have been reported of the intergranular corrosion suceptibility of martensitic stainless steels, particularly those containing 0.05 corresponds to a ditch structure in ASTM A 262-A (oxalic acid)

  19. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  20. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    Science.gov (United States)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along directions.

  1. On size and geometry effects on the brittle fracture of ferritic and tempered martensitic steels

    Science.gov (United States)

    Odette, G. R.; Chao, B. L.; Lucas, G. E.

    1992-09-01

    A finite element computation of nonsingular crack tip fields was combined with a weakest link statistics model of cleavage fracture. Model predictions for three point bend specimens with various widths and crack depth to width ratios are qualitatively consistent with a number of trends observed in a 12 Cr martensitic stainless steel. The toughness “benefits” of small sizes and shallow cracks are primarily reflected in strain limits rather than net section stress capacities, which is significant to fusion structures subject to large secondary stresses.

  2. Microchemistry of neutron irradiated 12%CrMoVNb martensitic steel

    International Nuclear Information System (INIS)

    Little, E.A.; Morgan, T.S.; Faulkner, R.G.

    1992-01-01

    Non-equilibrium solute segregation has been studied in a 12%CrMoVNb martensitic steel following fast reactor irradiation at 465 C and correlated with the development of M 6 X η-phase. Cr, Ni, Si, Mo, P and Mn are all shown to exhibit positive segregation to lath boundaries and are subsequently incorporated into M 6 X precipitates. The co-segregation of a combination of these elements which include P and Si, and possibly Cr or Mo, appears to promote M 6 X formation

  3. Compression behavior of a ferritic-martensitic Cr-Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Pantleon, Wolfgang

    2012-01-01

    The compression behavior of a ferritic-martensitic Cr-Mo steel is characterized for strain rates ranging from 10-4 s-1 to 10-1 s-1 and engineering strains up to 40%. Adiabatic heating causes a reduction in flow stress during continuous compression at a strain rate of 10-1 s-1. No reduction...... in the flow stress is observed if interrupted compression tests are performed with loading and holding steps. Two work-hardening stages with work-hardening rates decreasing linearly with the flow stress are identified and interpreted in terms of the KocksMecking model. The microstructural evolution...

  4. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    OpenAIRE

    Katoh Takahisa; Aizawa Tatsuhiko; Yamaguchi Tetsuya

    2015-01-01

    Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of t...

  5. Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Brillet, Helene; Monnet, Isabelle; Mottot, Michel; Barcelo, Francoise; Fournier, Benjamin; Pineau, Andre

    2005-01-01

    Martensitic steels are known for their softening during cyclic tests carried out at high temperature. The softening has been at least partially explained by lath and sub-grain boundary elimination. This article is dedicated to an attempt at modelling both phenomena. Thanks to mechanical tests it is shown that the softening is mainly due to a decrease of the backstress. Transmission electron microscopy allows us to propose a mechanism of low-angle boundary elimination. Annihilation between dislocations of low-angle boundaries and incident mobile dislocations is modelled. The macroscopic backstress is finally computed using a Hall-Petch law and the Taylor model

  6. On the tempered martensite embrittlement in AISI 4140 low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F.A. (Dept. of Materials Science and Metallurgy, Catholic Univ., Rio de Janeiro, RJ (Brazil)); Pereira, L.C.; Gatts, C. (Dept. of Metallurgy and Materials Engineering, Federal Univ., Rio de Janeiro, RJ (Brazil)); Graca, M.L. (Materials Div., Technical Aerospace Center, Sao Jose dos Campos, SP (Brazil))

    1991-02-01

    In the present investigation the Auger electron spectroscopy (AES) technique was used to determine local carbon and phosphorus concentrations on the fracture surfaces of as-quenched and quenched-and-tempered (at 350deg C) AISI 4140 steel specimens austenitized at low and high temperatures. The AES results were rationalized to conclude that, although carbide growth as well as phosphorus segregation are expected to contribute to tempered martensite embrittlement, carbide precipitation on prior austenite grain boundaries during tempering is seen to be the microstructural change directly responsible for the occurrence of the referred embrittlement phenomenon. (orig.).

  7. New stainless steels of ferrite-martensite grade and perspectives of their application in thermonuclear facilities and fast reactors

    International Nuclear Information System (INIS)

    Ajtkhozhin, Eh.S.; Maksimkin, O.P.

    2007-01-01

    Review of scientific literature for last 5 years in which results on study of radiation effect on ferrite-martensite steels - construction materials of fast reactors and most probable candidates for first wall and blanket of the thermonuclear facilities ITER and Demo - are presented. Alongside with this a prior experimental data on study of microstructure changing and physical- mechanical properties of ferrite-martensite steel EhP-450 - the material of hexahedral case of spent assembly of BN-350 fast reactor- are cited. Principal attention was paid to considering of radiation effects of structural components content changing and ferrite-martensite steel swelling irradiated at comparatively low values of radiation damage climb rate

  8. Thermal and mechanical behaviour of the reduced-activation-ferritic-martensitic steel EUROFER

    International Nuclear Information System (INIS)

    Lindau, R.; Moeslang, A.; Schirra, M.

    2002-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are being considered for structural application in potential fusion energy systems. Based on the substantial experience with RAFM developmental steels of OPTIFER type, an industrial 3.5 tons batch of a 9CrWVTa-RAFM steel, called EUROFER 97 had been specified and ordered. A characterisation programme has been launched to determine the relevant mechanical and physical-metallurgical properties in order to qualify the steel for fusion application. The hardening, tempering and transformation behaviour of EUROFER is in good agreement with that of other RAFM-steels like OPTIFER and the Japanese industrial scale heat F82H mod. Tensile tests, performed between RT and 750 deg. C, show comparable strength and ductility values that are not strongly affected by different heat treatments and ageing at 580 and 600 deg. C up to 3300 h. Impact bending tests indicate a superior ductile to brittle transition temperature (DBTT) of EUROFER in the as-received condition compared with that of F82H mod. Creep tests between 450 and 650 deg. C up to test times of 15000 h reveal a creep strength similar to other RAFM steels like OPTIFER and F82H mod. EUROFER shows a good low-cycle fatigue behaviour with longer lifetimes than F82H mod. The deformation and softening behaviour is similar

  9. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    Science.gov (United States)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  10. Development of Reduced Activation Ferritic-Martensitic Steels in South Korea

    International Nuclear Information System (INIS)

    Chun, Y. B.; Choi, B. K.; Han, C. H.; Lee, D. W.; Cho, S.; Kim, T. K.; Jeong, Y. H.

    2012-01-01

    In the mid-1980s research programs for development of low activation materials began. This is based on the US Nuclear Regulatory Commission Guidelines (10CFR part 61) that were developed to reduce longlived radioactive isotopes, which allows nuclear reactor waste to be disposed of by shallow land burial when removed from service. Development of low activation materials is also key issue in nuclear fusion systems, as the structural components can became radioactive due to nuclear transmutation caused by exposure to high dose neutron irradiation. Reduced-activation ferritic martensitic (RAFM) steels have been developed in the leading countries in nuclear fusion technology, and are now being considered as candidate structural material for the test blanket module (TBM) in the international thermonuclear experiment reactor (ITER). South Korea joined the ITER program in 2003 and since then extensive effort has been made for developing the helium-cooled solid-breeder (HCSB) TBM which is scheduled to be tested in the ITER program. However, there has been no research activity to develop RAFM steels in South Korea, while all the participants in the ITER program have developed their own RAFM steels. It is recently that the Korea Atomic Energy Research Institute (KAERI) started the Korean RAFM steel research program, aiming at an application for the HCSB-type TBM structure in ITER. In what follows, the current status of RAFM steels and the R and D program led by KAERI to develop Korean RAFM steels are summarized

  11. Depth distribution analysis of martensitic transformations in Xe implanted austenitic stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Chechenin, N.G.; Grabaek, L.; Bohr, J.

    1988-01-01

    In this work we present results from a depth distribution analysis of the martensitic phase change occurring in Xe implanted single crystals of austenitic stainless steel. Analysis was done by 'in situ' RBS/channeling analysis, X-ray diffraction and cross-section transmission electron microscopy (XTEM) of the implanted surface. It is found that the martensitic transformation of the surface layer occurs for fluences above 1x10 20 m -2 . The thickness of the transformed layer increases with fluence to ≅ 150 nm at 1x10 21 m -2 , which far exceeds the range plus straggling of the implanted Xe as calculated by the TRIM computer simulation code. Simulations using the MARLOWE code indicate that the thickness of the transformed layer coincides with the range of the small fraction of ions channeled under random implantation conditions. Using cross sectional TEM on the Xe implanted crystals, the depth distribution of gas inclusions and defects can be directly observed. Using X-ray diffraction on implanted single crystals, the solid epitaxial nature of the Xe inclusions, induced prior to the martensitic transformation, was established. The lattice constant obtained from the broad diffraction peak indicates that the pressure in the inclusions is ≅ 5 GPa. (orig./BHO)

  12. Delayed cracking in 301LN austenitic steel after deep drawing: Martensitic transformation and residual stress analysis

    International Nuclear Information System (INIS)

    Berrahmoune, M.R.; Berveiller, S.; Inal, K.; Patoor, E.

    2006-01-01

    The main objective of this work is to study the delayed cracking phenomenon of the 301LN unstable austenitic steel, by determining the distribution of residual stresses after deep drawing, taking into account the phase transformation. Deep drawing for different ratios is done for two different temperatures. Cracks appear for the highest drawing ratio (DR = 2.00) in the top of the cup. The breaking patterns observed using a scanning electron microscope show ductile fracture in the middle region, and both intergranular and transgranular rupture in the edges. Martensite contents throughout the cup wall and through the thickness are determined. Increasing the martensite content was found to have a great effect on the cracking sensitivity. X-ray diffraction allows us to determine the residual stresses in the martensitic phase. These last are positive, increase with increasing drawing ratios. The maximum value is located at the middle height of the cup, it exceeds 500 MPa for the 2.00 drawing ratio, and is less than 350 MPa for the 1.89 drawing ratio

  13. Influence of Z-phase on long-term creep stability of martensitic 9-12%Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [DONG Energy (Denmark)]|[Vattenfall Europe AG, Berlin (Germany)]|[DTU Mechanical Engineering (Denmark); Danielsen, H.K. [DTU Mechanical Engineering (Denmark)

    2008-07-01

    The long-term creep strength of the new generation of martensitic creep resistant 9- 12% Cr steels since the well-known steel Grade 91 relies strongly on particle strengthening by fine MN nitrides based on V and Nb. During long-term hightemperature exposures the MN nitrides may be replaced by the thermodynamically more stable Z-phases (Cr(V,Nb)N) causing a breakdown in creep strength. Cr contents above 10.5% strongly accelerate Z-phase precipitation, which explains the lack of success for all attempts to develop martensitic creep resistant steels with high Cr content for oxidation protection. The Z-phase nucleation process by Cr-diffusion into pre-existing MN nitrides is rate controlling for the Z-phase transformation. More work is needed before effects of chemical composition on the nucleation process can be reliably modeled. Careful control of the Z-phase precipitation process has led to the design of experimental 12%Cr martensitic steels strengthened by Z-phase. Such steels may again enable the combination of high strength and oxidation resistance in the same alloy. This opens a new pathway for further alloy development of the heat resistant martensitic steels. (orig.)

  14. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    International Nuclear Information System (INIS)

    Li Rutao; Zuo Xiurong; Hu Yueyue; Wang Zhenwei; Hu, Dingxu

    2011-01-01

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: →The pipe with ferrite/martensite microstructure shows high deformability. →The base metal of the pipe consists of ferrite and martensite. →Heat affected zone shows excellent low temperature toughness. →Weld metal mainly consists of intragranularly nucleated acicular ferrites. →Weld metal shows excellent low temperature toughness and high strength.

  15. Effect of niobium on tensile, impact and hardness mechanical properties in martensitic steels that could be strengthened

    International Nuclear Information System (INIS)

    Casteletti, L.C.

    1986-01-01

    Martensitic steels that could be strengthened by precipitation, based on traditional maraging steels were developed, aiming to total or partial substitution of the expensive elements. Niobium was used as the precipitation forming element and it was very effective in the strengthening of martensitic matrix. The Ni element was completely and partially substituted by Mn. Tensile and impact tests at room temperature and aging curves were obtained in the temperature range from 400 to 600 sup(0)C, for 20 alloys systems. Metallographic and fractographic analysis were done, and the results are presents. (M.C.K.)

  16. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fan.zhang@wsu.edu [School of Mechanical and Material Eng., Washington State University (United States); Ruimi, Annie [Department of Mechanical Eng., Texas A& M University at Qatar, Doha (Qatar); Wo, Pui Ching; Field, David P. [School of Mechanical and Material Eng., Washington State University (United States)

    2016-04-06

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  17. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    International Nuclear Information System (INIS)

    Zhang, Fan; Ruimi, Annie; Wo, Pui Ching; Field, David P.

    2016-01-01

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  18. Creep deformation of high Cr-Mo ferritic/martensitic steels by material softening

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2005-01-01

    High Cr (9-12%Cr) ferritic/martensitic steels represent a valuable alternative to austenitic stainless steel for high temperature applications up to 600 .deg. C both in power and petrochemical plant, as well as good resistance to oxidation and corrosion. Material softening is the main physical phenomenon observed in the crept material. Thermally-induced change (such as particle coarsening or matrix solute depletion) and strain-induced change (such as dynamic subgrain growth) of microstructure degraded the alloy strength. These microstructural changes during a creep test cause the material softening, so the strength of the materials decreased. Many researches have been performed for the microstructural changes during a creep test, but the strength of crept materials has not been measured. In the present work, we measured the yield and tensile strength of crept materials using Indentationtyped Tensile Test System (AIS 2000). Material softening was quantitatively evaluated with a creep test condition, such as temperature and applied stress

  19. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    Science.gov (United States)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  20. Study of isotope effects in the hydrogen transport of an 8% CrWVTa martensitic steel

    International Nuclear Information System (INIS)

    Esteban, G.A.; Sedano, L.A.; Perujo, A.; Douglas, K.

    2001-01-01

    A time-dependent gas-phase isovolumetric desorption technique has been used to assess the isotope effects in the diffusive transport parameters of hydrogen in an 8% CrWVTa reduced activation martensitic steel in the temperature range of 423-892 K and driving pressures from 4 x 10 4 - 1 x 10 5 Pa. The experiments have been run with both protium and deuterium obtaining their respective transport parameters, diffusivity (D), Sieverts' constant (K S ), permeability (Φ), trap site density (η t ) and the trapping activation energy (E t ). Isotope effects on steel are analysed and compared with α-iron. A new way to derive more accurate tritium transport parameters is proposed. (orig.)

  1. Modification and characterization of the AISI 410 martensitic stainless steels surface

    International Nuclear Information System (INIS)

    Bincoleto, A.V.L.; Nascente, P.A.P.

    2010-01-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  2. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1

    Science.gov (United States)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    Whereas low-carbon (galvanizing lines make it difficult to produce hot-dip Zn or Zn-alloy coated high-strength martensitic grades. This is because of the tempering processes occurring during dipping of the strip in the liquid Zn bath and, in the case of galvannealed sheet steel, the short thermal treatment required to achieve the alloying between the Zn and the steel. These short additional thermal treatments last less than 30 seconds but severely degrade the mechanical properties. Using a combination of internal friction, X-ray diffraction, and transmission electron microscopy, it is shown that the ultrafine-grained lath microstructure allows for a rapid dislocation recovery and carbide formation during the galvanizing processes. In addition, the effective dislocation pinning occurring during the galvannealing process results in strain localization and the suppression of strain hardening.

  3. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  4. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    International Nuclear Information System (INIS)

    Ghoniem, Nasr M.; Po, Giacomo; Sharafat, Shahram

    2013-01-01

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties

  5. Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, Nasr M., E-mail: ghoniem@seas.ucla.edu; Po, Giacomo; Sharafat, Shahram

    2013-10-15

    Structural steels for nuclear applications have undergone rapid development during the past few decades, thanks to a combination of trial-and-error, mechanism-based optimization, and multiscale modeling approaches. Deformation mechanisms are shown to be intimately related to mechanical design via dominant plastic deformation modes. Because mechanical design rules are mostly based on failure modes associated with plastic strain damage accumulation, we present here the fundamental deformation mechanisms for Ferritic/Martensitic (F/M) steels, and delineate their operational range of temperature and stress. The connection between deformation mechanisms, failure modes, and mechanical design is shown through application of design rules. A specific example is given for the alloy F82H utilized in the design of a Test Blanket Module (TBM) in the International Thermonuclear Experimental Reactor (ITER), where several constitutive equations are developed for design-related mechanical properties.

  6. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  7. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, Toshihiro, E-mail: toshi@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tobata, Junya; Tao, Teruyuki [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakada, Nobuo; Takaki, Setsuo [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The amount of retained austenite was increased by Q and P treatment in 12Cr-0.1C steel. Black-Right-Pointing-Pointer Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. Black-Right-Pointing-Pointer The optimum partitioning treatment condition for 12Cr-0.1C steel was found. Black-Right-Pointing-Pointer The strength-ductility balance of 12Cr-0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe-12Cr-0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength-ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  8. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    Science.gov (United States)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  9. Study of interactions between liquid lead-lithium alloy and austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Simon, N.

    1992-06-01

    In the framework of Fusion Technology, the behaviour of structural materials in presence of liquid alloy Pb17Li is investigated. First, the diffusion coefficients of Fe and Cr have been determined at 500 deg C. Then mass transfer experiments in Pb17Li have been conducted in an anisothermal container with pure metals (Fe, Cr, Ni), Fe-Cr steels and austenitic steels. These experiments showed a very high loss of Nickel, which is an accordance with its high solubility, and Cr showed mass-losses one order of magnitude higher than for pure iron, as the diffusion coefficient of Cr is three orders of magnitude higher than for pure Fe. The corrosion rate of binary Fe-Cr and pure Fe are identical. In austenitic steels, the gamma lattice allows a higher mass-transfer of Cr than the alpha lattice, the presence of Cr slows downs the dissolution of Ni, and the porosity of corrosion layers results of losses of Cr and Ni. Finally, a review of our results and those of other laboratories allowed an identification of the corrosion limiting step. In the case of 1.4914 martensitic steel it is the diffusion of Fe in Pb17Li, while in the case of 316L austenitic steel it is the diffusion of Cr in Pb17Li

  10. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    International Nuclear Information System (INIS)

    Tsuchiyama, Toshihiro; Tobata, Junya; Tao, Teruyuki; Nakada, Nobuo; Takaki, Setsuo

    2012-01-01

    Highlights: ► The amount of retained austenite was increased by Q and P treatment in 12Cr–0.1C steel. ► Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. ► The optimum partitioning treatment condition for 12Cr–0.1C steel was found. ► The strength–ductility balance of 12Cr–0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe–12Cr–0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength–ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  11. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  12. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  13. European development of ferritic-martensitic steels for fast reactor wrapper applications

    International Nuclear Information System (INIS)

    Bagley, K.; Little, E.A.; Levy, V.; Alamo, A.

    1987-01-01

    9-12%Cr ferritic-martensitic stainless steels are under development in Europe for fast reactor sub-assembly wrapper applications. Within this class of alloys, attention is focussed on three key specifications, viz. FV448 and DIN 1.4914 (both 10-12%CrMoVNb steels) and EM10 (an 8-10%Cr-0.15%C steel), which can be optimized to give acceptably low ductile-brittle transition characteristics. The results of studies on these steels, and earlier choices, covering heat treatment and compositional optimization, evolution of wrapper fabrication routes, pre and post-irradiation mechanical property and fracture toughness behaviour, microstructural stability, void swelling and in-reactor creep characteristics are reviewed. The retention of high void swelling to displacement doses in excess of 100 dpa in reactor irradiations reaffirms the selection of 9-12%Cr steels for on-going wrapper development. Moreover, irradiation-induced changes in mechanical properties (e.g. in-reactor creep and impact behaviour), measured to intermediate doses, do not give cause for concern; however, additional data to higher doses and at the lower irradiation temperatures of 370 0 -400 0 C are needed in order to fully endorse these alloys for high burnup applications in advanced reactor systems

  14. Corrosion of austenitic and martensitic stainless steels in flowing 17Li-83Pb alloy

    International Nuclear Information System (INIS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-01-01

    With regard to the behaviour of 316 L stainless steel at 400 0 C in flowing anisothermal 17Li-83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li-83Pb at 400 0 C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450 0 C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions. (orig.)

  15. Properties and application of new bainitic and martensitic creep resistance steels

    International Nuclear Information System (INIS)

    Pasternak, J.; Dobrzanski, J.

    2008-01-01

    Supercritical operating parameters of lower emission power units, require novel creep resisting steels to be applied for boiler and pipe systems. Among them are T23 bainitic steels for water walls of boiler combustion chamber and martensitic VM12 steels for superheater coils were tested. RAFAKO S.A. has been co-operating with the Silesian Technical University in Katowice, the Institute of Welding and the Institute for Ferrous Metallurgy in Gliwice for several years now, initiating research and development programmes, implementing the new creep-resistant steels and actively participating in European programmes COST522 and COST536. This paper contains selected information and test results before implementation of the new creep-resistant steels, including: evaluation of working parameters, temperature conditions of main boiler components, which influence reliability and safety, selection of steels for furnace chamber components (approx. 2.5 % Cr) and steam superheater components (9-12 % Cr) destination, evaluation of the requested level of welded joints technological and strength properties, measurements and non-destructive examinations, evaluation of welded joints and HAZ structure by means of LM, TEM and SEM methods in the welding technology implementation process, evaluation of corrosion mechanisms and creep-resistance results - loss of service life - for selected evaporator and steam superheater components, as crucial elements in evaluation of reliability and safety of boiler equipment. Such an examination program includes assessment of steel structure stability during operation period in actual operational conditions. It was clearly shown that operation period have little impact on changes occurring in microstructure and other properties of examined steel grades. (author)

  16. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  17. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  18. Evolution of the microstructure and the mechanical properties of the 15-5PH martensitic stainless steel after ageing

    International Nuclear Information System (INIS)

    Herny, E.; Lafont, M.C.; Andrieu, E.; Lours, P.; Herny, E.; Lagain, P.; Cloue, J.M.

    2006-01-01

    The structural hardening martensitic stainless steel 15-5PH is used in aerospace and nuclear industries for the manufacture of pieces which are thermo-mechanically highly stressed. For this reason, the steel has to have good mechanical properties in a large range of running temperatures as well as a good corrosion resistance. During long time periods between 300 and 400 C, the 15-5PH is susceptible to embrittlement due to the decomposition of the martensite into a Cr-rich area and a Fe-rich area. This embrittlement induces a drop of the impact strength and of the ductility with a strong increase of the ductile-brittle transition and of the tensile properties. Transition electron microscopy observations have revealed the appearance of a thin chromium carbides precipitation after ageing. The spinodal decomposition of the martensite has been revealed by the tomographic atomic probe. (O.M.)

  19. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaohong; Yuan, Xiaohong; Jiang, Wen; Sun, Hudai; Li, Jun [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Kunyu, E-mail: zhaokunyu.kmust@gmail.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yang, Maosheng [Department of Structural Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2014-05-01

    The effects of different heat treatment parameters and cryogenic treatment (−75 °C) on microstructural changes and mechanical properties of a low-carbon martensitic stainless bearing steel were investigated. These analyses were performed via the optical microscope (OM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The obtained results showed that the execution of cryogenic treatment on quenched and tempered bearing steel increases hardness, tensile strength and decreases toughness with the increment of cryogenic treatment and tempering cycles. This paper also showed that the cryogenic cycle's treatment incorporating tempering can refine the martensite laths resulting in improvement of tensile strength. In addition, cryogenic treatment further reduces the retained austenite content but it cannot make retained austenite transform into martensite completely even tempering at high temperature.

  20. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel

    International Nuclear Information System (INIS)

    Li, Shaohong; Yuan, Xiaohong; Jiang, Wen; Sun, Hudai; Li, Jun; Zhao, Kunyu; Yang, Maosheng

    2014-01-01

    The effects of different heat treatment parameters and cryogenic treatment (−75 °C) on microstructural changes and mechanical properties of a low-carbon martensitic stainless bearing steel were investigated. These analyses were performed via the optical microscope (OM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The obtained results showed that the execution of cryogenic treatment on quenched and tempered bearing steel increases hardness, tensile strength and decreases toughness with the increment of cryogenic treatment and tempering cycles. This paper also showed that the cryogenic cycle's treatment incorporating tempering can refine the martensite laths resulting in improvement of tensile strength. In addition, cryogenic treatment further reduces the retained austenite content but it cannot make retained austenite transform into martensite completely even tempering at high temperature

  1. Mechanical behavior and fracture characterization of the T91 martensitic steel in liquid sodium environment

    International Nuclear Information System (INIS)

    Hamdane, Ouadie

    2012-01-01

    The T91 martensitic steel is designed to constitute structural material of future sodium fast reactors of fourth generation, where it will be subjected to stresses in presence of liquid sodium. This study presents a qualitative and quantitative estimate of the sensitivity of T91 steel towards the phenomenon of liquid metal embrittlement. The effect of liquid sodium on T91 steel was studied and quantified according to the temperature and the cross head rate displacement, by using a set-up of Small Punch Test, three and four bending test, developed in laboratory. Mechanical tests in sodium environment are carried out inside a Plexiglas cell, conceived and developed at the laboratory. The atmosphere inside this cell is severely purified and controlled, in order to avoid on the one hand an explosive reaction of sodium with moisture, or an ignition with oxygen, and on the other hand to minimize the presence of impurities in liquid sodium used. The presence of sodium accelerates T91 steel fracture at low temperature, without modifying its ductile character. The T91 pre-immersion in sodium makes it possible to dissolve the protective layer of chromium oxide, and to obtain an intimate contact with the molten metal. However, pre-immersion generates a surface defects which cause a partial embrittlement by sodium. The hardening of T91 steel by heat treatment with a tempering temperature of 550 C (T91-TR550) causes a total embrittlement of steel in presence of sodium, with and without pre-immersion. The rupture of the T91-TR550 steel takes then place by intergranular de-cohesion, corresponding to the crack initiation phase, followed by laths de-cohesion, corresponding to the phase of propagation of these cracks. The mechanism suggested in this study is based on the intergranular penetration of sodium, supported by the presence of segregated impurities such phosphorus, and by the plastic deformation [fr

  2. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  3. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel

    International Nuclear Information System (INIS)

    Wang, Chengduo; Qiu, Hai; Kimura, Yuuji; Inoue, Tadanobu

    2016-01-01

    The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath martensite (α′) with prior austenite (γ) is distinctive. In the present paper we investigate the microstructure and fracture mode of a quenched and tempered 0.4%C-2%Si-1%Cr-1%Mo steel using electron backscatter diffraction technique. The results showed that the orientation relationship between γ and α′ is Greninger-Troiano (G-T) relationship. A single γ grain was divided into 4 packets and each packet was subdivided into 3 blocks. The misorientation angles between adjacent blocks were ~54.3° or ~60.0° in a packet. Most γ grains were twins sharing a {111} γ plane. There were 7 packets in a twinned γ grain and the twin boundaries were in a special packet. Besides the common packet, there were three packets in each twin. Being different from the cleavage fracture along the {001} planes in conventional martensitic steels, both cleavage and intergranular cracks were present in our medium-carbon steel. The former was in the larger blocks and it propagated along the {001}, {011}, and {112} planes. The latter propagated along the block, packet, or prior austenite boundaries. The intergranular cracks were generally in the fine block region. These results suggested that the block size is the key factor in controlling the brittle fracture mode of lath martensitic steel.

  4. Effects of iron spallation products Ti, P and S on the physical metallurgy of 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Danylova, O.; Carlan, Y. de; Hamon, D.; Brachet, J.C.; Alamo, A.

    2002-01-01

    The design of an Accelerator Driven System (ADS) requires that the 'window', which separates the proton accelerator from the spallation target, be able to withstand very severe irradiation conditions. Fe-9/12Cr martensitic steels are good candidates for the window material due to their intrinsic stability under neutron irradiation, but the influence of iron spallation elements on their behaviour is not known. To elucidate the effects of the spallation elements titanium, phosphorus and sulphur on the behaviour of martensitic steels, it was decides to obtain different castings of 9Cr 1Mo steels doped with these elements. The aim of this paper is to present the data obtained on the physical metallurgy of these steels and to show the possible methods of obtaining titanium, phosphorus and sulphur in solid solution for subsequent study of the evolution of the microstructure and mechanical properties. (authors)

  5. Effect of high temperature tempering on the mechanical properties and microstructure of the modified 410 martensitic stainless steel

    Science.gov (United States)

    Mabruri, Efendi; Pasaribu, Rahmat Ramadhan; Sugandi, Moh. Tri; Sunardi

    2018-05-01

    This paper reports the influence of high tempering temperature and holding time on the mechanical properties and microstructure of the recently modified 410 martensitic stainless steel. The modified steel was prepared by induction melting followed by hot forging, quenching and tempering. The hardness and tensile strength of the steels decreased with increasing tempering temperature from 600 to 700 °C and with increasing holding time from 1 to 6 h. Based on microstructural images, it was observed the coarsening of lath martensite and of the metal carbides as well. However, a relatively high hardness and strength were still exibited by this steel after tempering at a such high temperature of 600-700 °C. The partition of Mo into the carbides identified by EDS analysis may correlate with this situation.

  6. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  7. Predicting Microstructure Development During HighTemperature Nitriding of Martensitic Stainless SteelsUsing Thermodynamic Modeling

    Directory of Open Access Journals (Sweden)

    Tschiptschin André Paulo

    2002-01-01

    Full Text Available Thermodynamic calculations of the Fe-Cr-N System in the region of the Gas Phase Equilibria have been compared with experimental results of maximum nitrogen absorption during nitriding of two Martensitic Stainless Steels (a 6 mm thick sheet of AISI 410S steel and green powder compacts of AISI 434L steel under N2 atmospheres. The calculations have been performed combining the Fe-Cr-N System description contained in the SGTE Solid Solution Database and the gas phase for the N System contained in the SGTE Substances Database. Results show a rather good agreement for total nitrogen absorption in the steel and nitrogen solubility in austenite in the range of temperatures between 1273 K and 1473 K and in the range of pressures between 0.1 and 0.36 MPa. Calculations show that an appropriate choice of heat treatment parameters can lead to optimal nitrogen absorption in the alloy. It was observed in the calculations that an increased pressure stabilizes CrN at expenses of Cr2N - type nitrides.

  8. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  9. Evolution of metal-metal wear mechanisms in martensitic steel deposits for recharging

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; De Vedia, Luis A

    2008-01-01

    This work studied metal recharged by welding with a martensitic steel (Cr, Mn, Mo, V and W alloy), deposited with a metal filled tubular wire on a low carbon steel, using semi-automatic welding with a contributing heat of 2 kJ/mm and under a gaseous protection of Ar-2%CO 2 . Transverse cuts were extracted from the welded sample for microstructural characterization, hardness measurement, determination of chemical composition and wear tests. The microstructural characterization was performed using light microscopy (LM) and scanning electron microscopy (SEM), X-Ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The wear tests (metal-metal) were carried out on an Amsler machine in natural flow condition, with 500, 1250 and 2000 N of applied charge. The reference material was SAE 1020 steel. The weight loss curves were determined as a function of the distance run up to 5000 meters for all conditions. Then the test's wear surfaces and debris were analyzed. The microstructure consisted mostly of martensite and a fraction of retained austenite. A pattern of dendritic segregation was observed. The hardness on the wear surface averaged 670 HV 1 . The wear behavior showed a lineal variation between the loss of weight and the distance run, for the different loads applied. The rates of wear for each condition were obtained. The observed wear mechanisms were abrasion and adhesion, with plastic deformation. At low charges, the predominant mechanism was mild oxidative wear and at bigger loads heavy oxidative wear with the presence of zones with adhesion. The oxides formed on the surface of the eroded plate were identified

  10. Tempering of martensitic steel for fasteners : Effects of micro-alloying on microstructure and mechanical property evolution

    NARCIS (Netherlands)

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more

  11. Thermal Aging Effect Analysis of 17-4PH Martensitic Stainless Steel Valves for Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    BAI; Bing; ZHANG; Chang-yi; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    The valve stem used in the main steam system of nuclear power plant is usually martensitic stainless steel(such as 17.4ph16.4Mo etc.).When served in high temperature for a long time,the thermal aging embrittlement of valve stem will be significant,and even lead to the fracture.

  12. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  13. In-situ investigation of martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2013-01-01

    Martensite formation in AISI 52100 bearing steel at sub-zero Celsius temperature was investigated with Vibrating Sample Magnetometry. The investigation reports the stabilization of retained austenite in quenched samples during storage at room temperature and reveals the thermally activated nature...

  14. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    International Nuclear Information System (INIS)

    Serra, E.

    1997-01-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined. (orig.)

  15. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    Science.gov (United States)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  16. Technical issues of fabrication technologies of reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Sakasegawa, Hideo; Hirose, Takanori

    2013-01-01

    Highlights: • The key technical issues of RAFM steel fabrication are the control of Ta, and deoxidation of the steel with a limited amount of Al addition. • Addition of Ta with poor deoxidation might results in the agglomeration of inclusions at 1/2t position. • ESR was proved to be effective removing Ta oxide inclusions and avoiding agglomeration of inclusions at 1/2t position, and achieving low oxygen concentration. -- Abstract: The key issue for DEMO application is that Reduced activation ferritic/martensitic (RAFM) steels fabrication technologies has to be highly assured, especially with respect to high availability, reliability and reduced activation capability on the DEMO level fabrication, which requires not a few tons but thousand tons RAFM fabrication. One of the key technical issues of RAFM fabrication is the control of Ta, and deoxidation of the steel with a limited amount of Al addition. The series of F82H (Fe–8Cr–2W–V, Ta) melting revealed that Ta have tendency to form oxide on melting process, and this will have large impact on reliability of the steels. Al is also the key elements, as it is commonly used for deoxidation of steels, and achieving lower oxygen level is essential to obtain good mechanical properties, but the maximum concentration of Al is limited in view of reduced activation capability. These tendency and limitation resulted in the Ta oxide agglomeration in the middle of plate, but the remelting process, ESR (electro slag remelting), was found to be successful on removing those Ta oxides

  17. Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Baffie, N.; Stolarz, J.; Magnin, Th.

    2000-01-01

    The influence of martensitic transformation induced by cyclic straining on the mechanisms of low cycle fatigue damage in a metastable austenitic stainless steel with different grain sizes has been investigated using macroscopic measurements and microscopic observations of short crack evolutions. The amount of martensite formed during cyclic straining increases with increasing plastic strain amplitude and cumulative plastic strain but the dominant parameter is the grain size of austenite. The fine microstructure (D = 10 μm) with maximum martensite fraction of about 20% is characterised by a better fatigue resistance than the coarse one (D 40μm and only 2% of martensite) for the same plastic strain amplitude. Martensitic transformation is found to radically modify the cyclic response of the alloy and consequently the damage mechanisms. Indeed, both short crack nucleation and growth take place exclusively in the transformed regions. A mechanism of short crack propagation based on the γ→ α' transformation assisted by stress concentration at the crack tip is proposed. The indirect influence of grain boundaries in the austenite on crack propagation in the martensite is demonstrated. The better fatigue resistance of metastable alloys with fine granular structure can thus be understood. (authors)

  18. Some initial considerations on the suitability of Ferritic/ martensitic stainless steels as first wall and blanket materials in fusion reactors

    International Nuclear Information System (INIS)

    Butterworth, G.J.

    1982-01-01

    The constitution of stainless iron alloys and the characteristic properties of alloys in the main ferritic, martensitic and austenitic groups are discussed. A comparison of published data on the mechanical, thermal and irradiation properties of typical austenitic and martensitic/ferritic steels shows that alloys in the latter groups have certain advantages for fusion applications. The ferromagnetism exhibited by martensitic and ferritic alloys has, however, been identified as a potentially serious obstacle to their utilisation in magnetic confinement devices. The paper describes measurements performed in other laboratories on the magnetic properties of two representative martensitic alloys 12Cr-1Mo and 9Cr-2Mo. These observations show that a modest bias magnetic field of magnitude 1 - 2 tesla induces a state of magnetic saturation in these materials. They would thus behave as essentially paramagnetic materials having a relative permeability close to unity when saturated by the toroidal field of a tokamak reactor. The results of computations by the General Atomic research group to assess the implications of such magnetic behaviour on reactor design and operation are presented. The results so far indicate that the ferromagnetism of martensitic/ferritic steels would not represent a major obstacle to their utilisation as first wall or blanket materials. (author)

  19. Effect of heavy tempering on microstructure and yield strength of 28CrMo48VTiB martensitic steel

    Science.gov (United States)

    Sun, Yu; Gu, Shunjie; Wang, Qian; Wang, Huibin; Wang, Qingfeng; Zhang, Fucheng

    2018-02-01

    The 28CrMo48VTiB martensitic steel for sulfide stress cracking (SSC) resistance oil country tubular goods (OCTG) of C110 grade was thermally processed through quenching at 890 °C and tempering at 600 °C-720 °C for 30-90 min. The microstructures of all samples were characterized using field emission scanning electron microscopy (FESEM), electron backscattering diffraction (EBSD), transmission electron microscopy (TEM) and x-ray diffractometry (XRD). Also, the tensile properties were measured. The results indicated that the yield strength (YS) decreased as both the tempering temperature and duration increased, due to the coarsening of martensitic packet/block/lath structures, the reduction of dislocation density, as well as the increase of both the volume fraction and average diameter of the precipitates. The martensitic lath width was the key microstructural parameter controlling the YS of this heavily-tempered martensitic steel, whereas the corresponding relationship was in accordance with the Langford-Cohen model. Furthermore, the martensitic structure boundary and the solid solution strengthening were the two most significant factors dominating the YS, in comparison with the dislocation and precipitation strengthening.

  20. Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ziaei-Rad, S., E-mail: szrad@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Saeidi, N. [Department of Materials Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Jamshidian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-18

    The morphology and distribution of the dispersed martensite islands in the ferrite matrix plays a key role in the formation of shear bands in dual phase steels. In this study, we investigate the relationship between the martensite dispersion and the strain localization regions due to the formation of shear bands in fine-grained DP 780 steel, employing experimental observations as well as numerical simulations. SEM studies of the deformed microstructure showed that voids nucleated at ferrite-martensite interface within larger ferrite grains and regions with low local martensite fraction. The experimental results were precisely analyzed by finite element simulations based on the theory of crystal plasticity. A parametric study was then performed to obtain a deeper insight in to the effect of martensite dispersion on the strain localization of the neighboring ferrite. Crystal plasticity simulation results revealed that in a more regular structure compared to a random structure, a greater region of the ferrite phase contributes to accommodate plasticity. In addition, these regions limit the formation of main shear bands by creating barriers against stress concentration regions, results in lower growth and interaction of stress concentration regions with each others.

  1. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    International Nuclear Information System (INIS)

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2007-01-01

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured

  2. Compatibility of reduced activation ferritic/martensitic steels with liquid breeders

    International Nuclear Information System (INIS)

    Muroga, T.; Nagasaka, T.; Kondo, M.; Sagara, A.; Noda, N.; Suzuki, A.; Terai, T.

    2008-10-01

    The compatibility of Reduced Activation Ferritic/Martensitic Steel (RAFM) with liquid Li and molten-salt Flibe have been characterized and accessed. Static compatibility tests were carried out in which the specimens were immersed into liquid Li or Flibe in isothermal autoclaves. Also carried out were compatibility tests in flowing liquid Li by thermal convection loops. In the case of liquid Li, the corrosion rate increased with temperature significantly. The corrosion was almost one order larger for the loop tests than for the static tests. Chemical analysis showed that the corrosion was enhanced when the level of N in Li is increased. Transformation from martensitic to ferritic phase and the resulting softening were observed in near-surface area of Li-exposed specimens, which were shown to be induced by decarburization. In the case of Flibe, the corrosion loss was much larger in a Ni crucible than in a RAFM crucible. Both fluorides and oxides were observed on the surfaces. Thus, the key corrosion process of Flibe is the competing process of fluoridation and oxidation. Possible mechanism of the enhanced corrosion in Ni crucible is electrochemical circuit effect. It was suggested that the corrosion loss rate of RAFM by liquid Li and Flibe can be reduced by reducing the level of impurity N in Li and avoiding the use of dissimilar materials in Flibe, respectively. (author)

  3. Softening mechanisms of the AISI 410 martensitic stainless steel under hot torsion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Santana de; Silva, Eden Santos; Rodrigues, Samuel Filgueiras; Nascimento, Carmem Celia Francisco; Leal, Valdemar Silva; Reis, Gedeon Silva, E-mail: samuel.filgueiras@ifma.edu.br [Instituto Federal do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil)

    2017-03-15

    This study investigated the softening mechanisms of the AISI 410 martensitic stainless steel during torsion simulation under isothermal continuous in the temperature range of 900 to 1150 °C and strain rates of 0.1 to 5.0s{sup -1}. In the first part of the curves, before the peak, the results show that the critical (ε-c) and peak (ε-p) strains are elevated for higher strain rate and lower temperatures contributing for higher strain hardening rate (h). Moreover, this indicated that dynamic recrystallization (DRX) and dynamic recovery (DRV) are not effective in this region. After the peak, the reductions in stresses are associated to the different DRX/DRV competitions. For lower temperatures and higher strain rates there is a delay in the DRX while the DRV is acting predominantly (with low Avrami exponent (n) and high t{sub 0.5}). The steady state was reached after large strains showing DRX grains, formation of retained austenite and the presence of chromium carbide (Cr{sub 23}C{sub 6}) and ferrite δ at the martensitic grain boundaries. These contribute for impairing the toughness and ductility on the material. The constitutive equations at the peak strain indicated changes in the deformation mechanism, with variable strain rate sensitivity (m), which affected the final microstructure. (author)

  4. Microstructural examination of 12% Cr martensitic stainless steel after irradiation at elevated temperatures in FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Hsu, Chen-Yih; Gelles, D.S.; Lechtenberg, T.A.

    1986-06-01

    A remelted 12% Cr martensitic stainless steel (HT-9) has been examined by transmission electron microscopy before and after irradiation in the Materials Open Test Assembly (MOTA) of the Fast Flux Test Facility (FFTF). The irradiation temperatures were 365,420, 520, and 600 degree C with the fluences as high as 7.3 x 10 22 n/cm 2 (E > 0.1 MeV) or 34 dpa. The extracted precipitates from each specimen were identified using x-ray microanalysis and selected area diffraction. The precipitates in the unirradiated condition were primarily M 23 C 6 carbides, which formed at martensite lath and prior austenite grain boundaries. During irradiation at elevated temperatures, small amounts of other phases formed, which were tentatively identified as the chromium-rich α', the nickel-silicon rich G-phase, and the intermetallic Chi phase. Irradiation-induced voids were observed only in specimens irradiated at 420 degree C to a dose of 34 dpa; no voids were found for specimens irradiated at 365, 520, and 600 degree C (∼11, ∼34, and ∼34 dpa). These results are not in agreement with previous experiments in that voids have not been reported in this alloy at relatively high fluence level (∼67 dpa) following irradiation in another fast-spectrum reactor (EBR.II). This is, however, the first observation following FFTF irradiation. The present results indicate that cavities can form in HT-9 at modest fluence levels even without significant generation of helium. Hence, the cavity formation in this class of ferritic alloys is not simply caused by helium generation but rather more complex mechanisms. 12 refs., 2 figs., 3 tabs

  5. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage

    International Nuclear Information System (INIS)

    Fournier, B.

    2007-09-01

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  6. Resistance spot weldability of 11Cr–ferritic/martensitic steel sheets

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-01-01

    Resistance spot welding of 11Cr–0.4Mo–2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  7. A study on Z-phase nucleation in martensitic chromium steels

    International Nuclear Information System (INIS)

    Golpayegani, Ardeshir; Andren, Hans-Olof; Danielsen, Hilmar; Hald, John

    2008-01-01

    9-12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550-650 deg. C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work, initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small. Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase

  8. Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels

    Science.gov (United States)

    Jung, P.; Henry, J.; Chen, J.; Brachet, J.-C.

    2003-05-01

    Hundred micrometer thick specimens of 9% Cr martensitic steels EM10 and T91 were homogeneously implanted with He 4 to concentrations up to 0.5 at.% at temperatures from 150 to 550 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. Subsequently the fracture surfaces were analysed by scanning electron microscopy and some of the specimens were examined in an instrumented hardness tester. The implanted helium caused hardening and embrittlement which both increased with increasing helium content and with decreasing implantation temperature. Fracture surfaces showed intergranular brittle appearance with virtually no necking at the highest implantation doses, when implanted below 250 °C. The present tensile results can be scaled to tensile data after irradiation in spallation sources on the basis of helium content but not on displacement damage. An interpretation of this finding by microstructural examination is given in a companion paper [J. Nucl. Mater., these Proceedings].

  9. Microstructural evolution of reduced-activation martensitic steel under single and sequential ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jin, Shuoxue; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, Feng; Xiong, Xuesong; Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-15

    Microstructural evolution of super-clean reduced-activation martensitic steels irradiated with single-beam (Fe{sup +}) and sequential-beam (Fe{sup +} plus He{sup +}) at 350 °C and 550 °C was studied. Sequential-beam irradiation induced smaller size and larger number density of precipitates compared to single-beam irradiation at 350 °C. The largest size of cavities was observed after sequential-beam irradiation at 550 °C. The segregation of Cr and W and depletion of Fe in carbides were observed, and the maximum depletion of Fe and enrichment of Cr occurred under irradiation at 350 °C.

  10. Behavior of Eurofer97 reduced activation martensitic steel upon heating and continuous cooling

    International Nuclear Information System (INIS)

    Danon, A.; Alamo, A.

    2002-01-01

    The phase transformation behavior of the Eurofer97 steel (Fe9Cr1WVTa) has been investigated. The transformation temperatures upon heating and cooling were determined by dilatometry for different rates in the range 0.0028-100 deg. C/s. The prior austenitic grain size of Eurofer97, measured as a function of the austenitization temperature, does not change appreciably up to 1050 deg. C and then increases with increasing austenite temperature from 1050 up to 1200 deg. C. Continuous cooling transformation diagrams were determined for the austenitization temperatures of 980, 1060 and 1140 deg. C. They show a well-known form with two main phase fields, martensite and ferrite. Values of the critical cooling rates and ferrite start temperatures depend on the austenitization temperature. After thermal cycles samples were further characterized by optical microscopy, scanning electron microscopy and thermoelectric power measurements

  11. Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules

    International Nuclear Information System (INIS)

    Tanigawa, H.; Hirose, T.; Shiba, K.; Kasada, R.; Wakai, E.; Serizawa, H.; Kawahito, Y.; Jitsukawa, S.; Kimura, A.; Kohno, Y.; Kohyama, A.; Katayama, S.; Mori, H.; Nishimoto, K.; Klueh, R.L.; Sokolov, M.A.; Stoller, R.E.; Zinkle, S.J.

    2008-01-01

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. The RAFM F82H was developed in Japan with emphasis on high-temperature properties and weldability. Extensive irradiation studies have conducted on F82H, and it has the most extensive available database of irradiated and unirradiated properties of all RAFMs. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of an ITER test blanket module (TBM) suggested from the recent research achievements in Japan. This work clarified that the primary issues with F82H involve welding techniques and the mechanical properties of weld joints. This is the result of the distinctive nature of the joint caused by the phase transformation that occurs in the weld joint during cooling, and its impact on the design of a TBM will be discussed

  12. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel

    Science.gov (United States)

    Prieto, G.; Tuckart, W. R.

    2017-11-01

    The objective of the present work is to characterize the wear behavior of a cryogenically treated low-carbon AISI 420 martensitic stainless steel, by means of ball-on-disk tribological tests. Wear tests were performed under a range of applied normal loads and in two different environments, namely a petrolatum bath and an argon atmosphere. Wear tracks were analyzed by both optical and scanning electron microscopy and Raman spectroscopy to evaluate wear volume, track geometry, surface features and the tribolayers generated after testing. This paper is an extension of the work originally reported in the VIII Iberian Conference of Tribology (Prieto and Tuckart, in: Ballest Jiménez, Rodríguez Espinosa, Serrano Saurín, Pardilla Arias, Olivares Bermúdez (eds) VIII Iberian conference of tribology, Cartagena, 2015). In this study, it has been experimentally demonstrated that cryogenically treated specimens showed a wear resistance improvement ranging from 35 to 90% compared to conventionally treated ones.

  13. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    International Nuclear Information System (INIS)

    Petersen, C.; Rodrian, D.

    2002-01-01

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 deg. C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials

  14. Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Hirose, T.; Tanigawa, H.; Ando, M.; Kohyama, A.; Katoh, Y.; Narui, M.

    2002-01-01

    The reduced activation ferritic/martensitic steel, RAFs F82H IEA heat has been fatigue-tested at ambient temperature under diametral strain controlled conditions. In order to evaluate the effects of radiation damage and transmutation damage on fatigue characteristics, post-neutron irradiation and post-helium ion implantation fatigue tests were carried out. Fracture surfaces and fatigue crack initiation on the specimen surface were observed by SEM. Low-temperature irradiation caused an increase in stress amplitude and a reduction in fatigue lifetime corresponding to radiation hardening and loss of ductility. Neutron irradiated samples showed brittle fracture surface, and it was significant for large strain tests. On the other hand, helium implantation caused delay of cyclic softening. However, brittle crack initiation and propagation did not depend on the helium concentration profiles

  15. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  16. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  17. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam

    Directory of Open Access Journals (Sweden)

    Juntao Yuan

    2014-04-01

    Full Text Available Oxidation of ferritic/martensitic steel P92 was investigated in pure oxygen and in pure steam at 600–800 °C by thermogravimetric analysis (TGA, optical microscopy (OM, scanning electron microscopy (SEM, and X-ray diffraction (XRD. The results showed that the oxidation of P92 was significantly enhanced and multilayer scale with an outer iron oxides layer formed in pure steam. At 700 °C, the gas switch markedly influenced the scaling kinetics and scale microstructure. It was supposed that the higher affinity of iron to steam would be attributed to the enhanced oxidation of P92 in pure steam, and the much easier transport of hydroxyl would account for the significant difference induced by gas switch.

  18. Mechanical characterization of a reduced activation 9 Cr ferritic/martensitic steel of spanish production

    International Nuclear Information System (INIS)

    Rodriguez, D.; Serrano, M.

    2012-01-01

    This paper shows the first results concerning the characterization of two heats of a reduced activation 9 Cr ferritic/martensitic steel (RAFM) made in Spain, called AF1B and AF2A. The results of this characterization are compared with their European counterparts, EUROFER97-2, which was chosen as reference material. All activities described were performed in the Structural Materials Unit of CIEMAT, within the national project TECNO-FUS CONSOLIDER INGENIO.The two Spanish heats have the same production process and heat treatment. Both heats have a similar tensile behaviour similar to EUROFER97-2, but on the other hand impact properties are lower. The microstructure of AF1B reveals large biphasic inclusions that affecting its mechanical properties, especially the impact properties. AF2A casting was free of these inclusions. (Author) 24 refs.

  19. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, Vladimir, E-mail: vladimir.krsjak@psi.ch; Dai, Yong

    2015-10-15

    This paper presents the use of an internal {sup 44}Ti/{sup 44}Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of {sup 44}Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton–neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain {sup 44}Ti → {sup 44}Sc → {sup 44}Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of {sup 44}Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  20. Fracture toughness of China low activation martensitic (CLAM) steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunfeng [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, Gang; Jiang, Siben [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-15

    Highlights: • The fracture toughness of CLAM steel at room temperature is 417.9 kJ/m{sup 2} measured by unloading compliance method according to the ASTM E1820-11. • The fracture toughness of CLAM steel at room temperature can be calculated on the basis of the fractal dimensions measured under plane strain conditions. The calculated result and relative error for this experiment are 454.6 kJ/m{sup 2} and 8.78% respectively. • The calculation method could be used to estimate the fracture toughness of materials with analysis of the fracture surface. - Abstract: The fracture toughness (J{sub IC}) of China low activation martensitic (CLAM) steel was tested at room temperature through the compact tension specimen, the result is 417.9 kJ/m{sup 2}, which is similar to the JLF-1 at same experimental conditions. The microstructural observation of the fracture surface shows that the fracture mode is a typical ductile fracture. Meanwhile, the fracture toughness is also calculated on the basis of the fractal dimension and the calculated result is 454.6 kJ/m{sup 2}, which is consistent well with the experimental result. This method could be used to estimate the fracture toughness of materials by analyzing of the fracture surface.

  1. Development of ferritic-martensitic P9 steel for wrapper application in future SFRs

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Mathew, M.D.; Isaac Samuel, E.; Moitra, A.

    2011-01-01

    The paper deals with the outcome of the research and development efforts directed towards the development of ferritic-martensitic P9 steel for wrapper application in future sodium cooled fast reactors with an objective to achieve high fuel burnup and more economical nuclear energy. The important and critical issues involved for the development of P9 wrappers such as optimisation of chemical composition in terms of trace elements like sulphur and phosphorous and appropriate thermo-mechanical treatments along with thermal ageing and irradiation effects on fracture properties have been discussed. Tensile properties evaluated at temperatures ranging from 300 to 873 K on the experimental three heats of P9 steel with different silicon contents and made using primary vacuum induction melting followed by secondary electro slag refining route, have been presented. Fracture behaviour examined mainly in terms of ductile to brittle transition temperature and upper shelf energy provided encouraging results. Based on these investigations, a roadmap has been drawn to make experimental P9 steel wrappers for tests in fast breeder test reactor and prototype fast breeder reactor. (author)

  2. Formation of epsilon martensite by high-pressure torsion in a TRIP steel

    International Nuclear Information System (INIS)

    Figueiredo, Roberto B.; Sicupira, Felipe L.; Malheiros, Livia Raquel C.; Kawasaki, Megumi; Santos, Dagoberto B.; Langdon, Terence G.

    2015-01-01

    An Fe–17% Mn–0.06% C–2% Si–3% Al–1% Ni steel exhibiting a phase transformation induced by room temperature deformation was processed by high-pressure torsion (HPT) using a pressure of 6.0 GPa and with the samples subjected to different amounts of torsional straining up to a maximum of 10 turns. A microstructural analysis revealed a phase transformation in the early stages of deformation and a gradual evolution towards a fully-deformed structure. Microhardness measurements showed two stages of hardening with eventual softening at large strains. From X-ray diffraction (XRD) analysis, there is evidence for a reverse martensitic transformation and the stabilization of an h.c.p. epsilon (ε) structure. The formation of an h.c.p. structure takes place in this steel at lower pressures than for pure iron but the results agree with earlier reports of the presence of an ε phase in stainless steel processed by HPT and with the expected reduction in the transition pressure due to the Mn addition

  3. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  4. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  5. Post-irradiation characterization of PH13-8Mo martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.; Schmalz, F.; Rensman, J.W. [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Wouters, O.; Hegeman, J.B.J.; Laan, J.G. van der [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-10-01

    The irradiation response of PH13-8Mo stainless steel was measured up to 2.5 dpa at 200 and 300 deg. C irradiation temperatures. The PH13-8Mo, a martensitic precipitation-hardened steel, was produced by Hot Isostatic Pressing at 1030 deg. C. The fatigue tests (high cycle fatigue and fatigue crack propagation) showed a test temperature dependency but no irradiation effects. Tensile tests showed irradiation hardening (yield stress increase) of approximately 37% for 200 deg. C irradiated material tested at 60 deg. C and approximately 32% for 300 deg. C irradiated material tested at 60 deg. C. This contradicts the shift in reference temperature (T{sub 0}) measured in toughness tests (Master Curve approach), where the {Delta}T{sub 0} for 300 deg. C irradiated is approximately 170 deg. C and the {Delta}T{sub 0} for the 200 deg. C irradiated is approximately 160 deg. C. This means that the irradiation hardening of PH13-8Mo steel is not suitable to predict the shift in the reference temperature for the Master Curve approach.

  6. Formation of epsilon martensite by high-pressure torsion in a TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Roberto B., E-mail: figueiredo-rb@ufmg.br [Department of Materials Engineering and Civil Construction, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Sicupira, Felipe L.; Malheiros, Livia Raquel C. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Kawasaki, Megumi [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Santos, Dagoberto B. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2015-02-11

    An Fe–17% Mn–0.06% C–2% Si–3% Al–1% Ni steel exhibiting a phase transformation induced by room temperature deformation was processed by high-pressure torsion (HPT) using a pressure of 6.0 GPa and with the samples subjected to different amounts of torsional straining up to a maximum of 10 turns. A microstructural analysis revealed a phase transformation in the early stages of deformation and a gradual evolution towards a fully-deformed structure. Microhardness measurements showed two stages of hardening with eventual softening at large strains. From X-ray diffraction (XRD) analysis, there is evidence for a reverse martensitic transformation and the stabilization of an h.c.p. epsilon (ε) structure. The formation of an h.c.p. structure takes place in this steel at lower pressures than for pure iron but the results agree with earlier reports of the presence of an ε phase in stainless steel processed by HPT and with the expected reduction in the transition pressure due to the Mn addition.

  7. Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen Chong; Zhang, Chi; Yang, Zhigang [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing (China); Zhao, Ji Jun [State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology, Dalian (China)

    2017-04-15

    One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7–9 wt.%Cr) RAFM steels in a condition characterized by 0.1–5 dpa (or 0 dpa) and a temperature range of 25–500°C.

  8. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    Science.gov (United States)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  9. Mössbauer studies of a martensitic transformation and of cryogenic treatments of a D2 tool steel

    Science.gov (United States)

    Costa, B. F. O.; Blumers, M.; Kortmann, A.; Theisen, W.; Batista, A. C.; Klingelhöfer, G.

    2013-04-01

    A D2 tool steel X153CrVMo12 with composition C1.53 Cr12 V0.95 Mo0.80 Mn0.40(wt% Fe balanced) was studied by use of Mössbauer spectroscopy and X-ray diffraction. It was observed that the study of carbides by X-ray diffraction was difficult while Mössbauer spectroscopy gives some light on the process occurring during cryogenic treatment. With the increase of the martensitic phase the carbides decrease and are dissolved in solid solution of martensite as well as the chromium element.

  10. Variation of martensite lath width and precipitate size during creep deformation in a 10Cr-Mo steel

    International Nuclear Information System (INIS)

    Kim, S. H.; Song, B. Z.; Lu, W. S.

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitie steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  11. Interfacial properties of HIP joint between beryllium and reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Hirose, T.; Ogiwara, H.; Enoeda, M.; Akiba, M.

    2007-01-01

    Full text of publication follows: ITER test blanket module is the most important components to validate energy production and fuel breeding process for future demonstration reactor. Reduced activation ferritic / martensitic steel is recognized as a promising structural material for breeding blanket systems. And Beryllium must be used as plasma facing materials for ITER in vessel components. In this work, interfacial properties of beryllium/reduced activation ferritic/martensitic steel (RAF/Ms) joint were investigated for a first wall of ITER test blanket module (TBM). The starting materials were ITER grade Beryllium, S65C and a Japanese RAF/M, F82H. The joint was produced by solid state hot isostatic pressing (HIP) method. Chromium layer with the thickness of 1 μm and 10 μm were formed by plasma vapor deposition on the beryllium surface as a diffusion barrier. The HIP was carried out at 1023 K and 1233 K which are determined by standard normalizing and tempering temperature of F82H. The joint made at 1233 K was followed by tempering at 1033 K. The bonding interface was characterized by electron probe microanalysis (EPMA). The bonding strength was also investigated by isometric four point bending tests at ambient temperature. EPMA showed chromium layer effectively worked as a diffusion barrier at 1023 K. However, the beryllium rich layer was formed in F82H after HIP at 1233 K followed by tempering. Bending tests revealed that thin chromium layer and low temperature HIP is preferable. The high temperature HIP introduce brittle BeFe inter metallic compounds along bonding interface. On the other hand, joint with thick chromium layer suffer from brittleness of chromium itself. (authors)

  12. Interfacial properties of HIP joint between beryllium and reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ogiwara, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Enoeda, M. [Naka Fusion Research Establishment, J.A.E.R.I., Japan Atomic Energy Research Institute, Naka-gun, Ibaraki-ken (Japan); Akiba, M. [Naka Fusion Institute, Japan Atomic Energy Agency, Naka, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: ITER test blanket module is the most important components to validate energy production and fuel breeding process for future demonstration reactor. Reduced activation ferritic / martensitic steel is recognized as a promising structural material for breeding blanket systems. And Beryllium must be used as plasma facing materials for ITER in vessel components. In this work, interfacial properties of beryllium/reduced activation ferritic/martensitic steel (RAF/Ms) joint were investigated for a first wall of ITER test blanket module (TBM). The starting materials were ITER grade Beryllium, S65C and a Japanese RAF/M, F82H. The joint was produced by solid state hot isostatic pressing (HIP) method. Chromium layer with the thickness of 1 {mu}m and 10 {mu}m were formed by plasma vapor deposition on the beryllium surface as a diffusion barrier. The HIP was carried out at 1023 K and 1233 K which are determined by standard normalizing and tempering temperature of F82H. The joint made at 1233 K was followed by tempering at 1033 K. The bonding interface was characterized by electron probe microanalysis (EPMA). The bonding strength was also investigated by isometric four point bending tests at ambient temperature. EPMA showed chromium layer effectively worked as a diffusion barrier at 1023 K. However, the beryllium rich layer was formed in F82H after HIP at 1233 K followed by tempering. Bending tests revealed that thin chromium layer and low temperature HIP is preferable. The high temperature HIP introduce brittle BeFe inter metallic compounds along bonding interface. On the other hand, joint with thick chromium layer suffer from brittleness of chromium itself. (authors)

  13. Effect of Microstructures and Tempering Heat Treatment on the Mechanical Properties of 9Cr-2W Reduced-Activation Ferritic-Martensitic Steel

    International Nuclear Information System (INIS)

    Park, Min-Gu; Kang, Nam Hyun; Moon, Joonoh; Lee, Tae-Ho; Lee, Chang-Hoon; Kim, Hyoung Chan

    2015-01-01

    The aim of this study was to investigate the effect of microstructures (martensite, ferrite, or mixed ferrite and martensite) on the mechanical properties. Of particular interest was the Charpy impact results for 9Cr-2W reduced-activation ferritic-martensitic (RAFM) steels. Under normalized conditions, steel with martensitic microstructure showed superior tensile strength and Charpy impact results. This may result from auto-tempering during the transformation of martensite. On the other hand, both ferrite, and ferrite mixed with martensite, showed unusually poor Charpy impact results. This is because the ferrite phases, and coarse M_23C_6 carbides at the ferrite-grain boundaries acted as cleavage crack propagation paths, and as preferential initiation sites for cleavage cracks, respectively. After the tempering heat treatment, although tensile strength decreased, the energy absorbed during the Charpy impact test drastically increased for martensite, and ferrite mixed with martensite. This was due to the tempered martensite. On the other hand, there were no distinctive differences in tensile and Charpy impact properties of steel with ferrite microstructure, when comparing normalized and tempered conditions.

  14. Influence of helium embrittlement on post-irradiation creep rupture behaviour of austenitic and martensitic stainless steels

    International Nuclear Information System (INIS)

    Wassilew, C.

    1982-01-01

    The author has investigated the influence of helium embrittlement on the creep rupture properties of the austenitic stainless steels 1.4970 and 1.4962 and the martensitic stainless steel 1.4914 after irradiation in the BR-2 reactor in Mol, Belgium. The results show that austenitic steels react much more strongly to the embrittlement effect of the helium than do martensitic steels. The causes of the lower embrittlement tendency of the martensitic than of both austenitic stainless steels were analysed carefully. A new embrittlement model was developed on the basis of data derived from the creep rupture experiments, and reinforced by a simple metallographic investigation of the fracture zone and its immediate environment. This model pays specific attention to the role of the twin planes as the most efficient area of increased vacancy production, and takes into account the ability of the twin boundaries to transport these vacancies with reduced energy and low loss into the high-angle grain boundaries. (author)

  15. Influence of a magnetic field on the corrosion of austenitic and martensitic steels by semi-stagnant Pb17Li

    International Nuclear Information System (INIS)

    Terlain, A.; Dufrenoy, T.

    1994-01-01

    The influence of a magnetic field on the compatibility of 316L austenitic and 1.4914 martensitic steels with Pb17Li has been studied in conditions simulating the special features of the water-cooled Pb17Li blanket (low Pb17Li velocity, significant radial thermal gradient and short distances between hot and cold zones). In the 420-475 C temperature range, the results show an increase of the corrosion rate in the presence of a magnetic field. This increase is about 50% for 316L steel and 30% for 1.4914 martensitic steel. Moreover the magnetic field induces a loss of symmetry in the deposition process: the amount of recovered deposit is greater in the direction parallel to the magnetic field than in the perpendicular one. ((orig.))

  16. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  17. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Song, M.; Sun, C.; Fan, Z.; Chen, Y.; Zhu, R.; Yu, K.Y.; Hartwig, K.T.; Wang, H.; Zhang, X.

    2016-01-01

    Ferritic/martensitic (F/M) steels with high strength and excellent ductility are important candidate materials for the life extension of the current nuclear reactors and the design of next generation nuclear reactors. Recent studies show that equal channel angular extrusion (ECAE) was able to improve mechanical strength of ferritic T91 steels moderately. Here, we examine several strategies to further enhance the mechanical strength of T91 while maintaining its ductility. Certain thermo-mechanical treatment (TMT) processes enabled by combinations of ECAE, water quench, and tempering may lead to “ductile martensite” with exceptionally high strength in T91 steel. The evolution of microstructures and mechanical properties of T91 steel were investigated in detail, and transition carbides were identified in water quenched T91 steel. This study provides guidelines for tailoring the microstructure and mechanical properties of T91 steel via ECAE enabled TMT for an improved combination of strength and ductility.

  18. A study of the prospects for development of low-activation martensitic stainless steels for first-wall and blanket structures in fusion reactors

    International Nuclear Information System (INIS)

    Tupholme, K.W.; Orr, J.; Dulieu, D.; Butterworth, G.J.

    1986-04-01

    This study examines the potential of the elemental substitution approach to the design of low-activity martensitic stainless steels, subject to the requirement that the contact γ dose rate falls to a value that would allow essentially unrestricted handling of discarded material after a cooling period of 100 years. The factors governing the structure and properties of the 9-12%Cr martensitic steels are reviewed. Practicable substitutes for the proscribed elements molybdenum, nickel and niobium include tungsten, tantalum and an increased vanadium content in conjunction with optimised carbon, nitrogen and boron levels. Given the generally attractive combination of properties offered by the martensitic steels, the prospects for developing a satisfactory low-activity composition appear favourable. A series of experimental compositions and a programme of investigations are proposed to explore possible alloys with the objective of reproducing, as far as possible, the characteristics of existing fully martensitic high strength stainless steels. (author)

  19. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  20. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Christien, F., E-mail: frederic.christien@univ-nantes.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Telling, M.T.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Knight, K.S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Earth Sciences, The Natural History Museum, Cromwell Road, London (United Kingdom)

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)

  1. Compatibility Behavior of the Ferritic-Martensitic Steel Cladding under the Liquid Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Baek, Jong Hyuk; Kim, Sung Ho; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fuel cladding is a component which confines uranium fuel to transport energy into the coolant as well as protect radioactive species from releasing outside. Sodium-cooled Fast Reactor (SFR) has been considered as one of the most probable next generation reactors in Korea because it can maximize uranium resource as well as reduce the amount of PWR spent fuel in conjunction with pyroprocessing. Sodium has been selected as the coolant of the SFR because of its superior fast neutron efficiency as well as thermal conductivity, which enables high power core design. However, it is reported that the fuel cladding materials like austenitic and ferritic stainless steel react sodium coolant so that the loss of the thickness, intergranular attack, and carburization or decarburization process may happen to induce the change of the mechanical property of the cladding. This study aimed to evaluate material property of the cladding material under the liquid sodium environment. Ferritic-martensitic steel (FMS) coupon and cladding tube were exposed at the flowing sodium then the microstructural and mechanical property were evaluated. mechanical property of the cladding was evaluated using the ring tension test

  2. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    Science.gov (United States)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  3. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  4. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    Science.gov (United States)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  5. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

    Science.gov (United States)

    Luo, Min; Zhou, Bing; Li, Rong-bin; Xu, Chun; Guo, Yan-hui

    2017-09-01

    In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s-1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

  6. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    Science.gov (United States)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  7. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  8. The influence of elevated temperature transformation and mechanical properties of a precipitation hardening martensitic stainless steel on its wear behaviour

    International Nuclear Information System (INIS)

    Smith, A.F.

    1989-11-01

    Self wear tests of a martensitic stainless steel in CO 2 in the temperature range 20-300degC showed transitional behaviour at 20 and 300degC. In the mid temperature range a severe wear rate of ∼ 2 x 10 -13 m 3 /Nm persisted for sliding distances up to 2000 m. A possible explanation was that while strain induced transformation of retained austenite at low temperatures provided a sufficiently hardened substrate that allowed inelastic rather than plastic interactions this did not occur at 200degC. Tests were carried out to determine the temperature above which strain no longer transformed austenite into martensite. Although a martensite start temperature of ∼ 150degC was found for the present steel the presence of only ∼ 10% retained austenite in the ''as heat treated'' material suggests that its transformation to martensite at 200degC would not materially affect the extent of subsurface hardening. It is proposed that a surface reaction plays a role in transition behaviour. At 300degC the reaction product is an oxide but at room temperature it is possibly a carbonate. The stability of the carbonate decreases with temperature thus giving an intermediate temperature range where metal/metal contacts prevail leading to the persistent high wear behaviour. (author)

  9. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel

    International Nuclear Information System (INIS)

    Sabooni, S.; Karimzadeh, F.; Enayati, M.H.; Ngan, A.H.W.

    2015-01-01

    In the present study, metastable AISI 304L austenitic stainless steel samples were subjected to different cold rolling reductions from 70% to 93%, followed by annealing at 700 °C for 300 min to form ultrafine grained (UFG) austenite with different grain structures. Transmission electron microscopy (TEM) and nanoindentation were used to characterize the martensitic transformation, in order to relate it to the bimodal distribution of the austenite grain size after subsequent annealing. The results showed that the martensite morphology changed from lath type in the 60% rolled sample to a mixture of lath and dislocation-cell types in the higher rolling reductions. Calculation of the Gibbs free energy change during the reversion treatment showed that the reversion mechanism is shear controlled at the annealing temperature and so the morphology of the reverted austenite is completely dependent on the morphology of the deformation induced martensite. It was found that the austenite had a bimodal grain size distribution in the 80% rolled and annealed state and this is related to the existence of different types of martensite. Increasing the rolling reduction to 93% followed by annealing caused changing of the grain structure to a monomodal like structure, which was mostly covered with small grains of around 300 nm. The existence of bimodal austenite grain size in the 80% rolled and annealed 304L stainless steel led to the improvement of ductility while maintaining a high tensile strength in comparison with the 93% rolled and annealed sample

  10. γ→α′ Martensitic transformation and magnetic property of cold rolled Fe–20Mn–4Al–0.3C steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Biao; Li, Changsheng, E-mail: lics@ral.neu.edu.cn; Han, Yahui; Wang, Jikai

    2016-12-01

    Direct γ→α′ martensitic transformation during cold rolling deformation was investigated for a high-Mn non-magnetic steel. Its influence on magnetic property was also analyzed. The magnetization under rolling reduction less than 50% almost presents a linear increase with the applied magnetic field. With deformation up to 73% and 93% thickness reductions, strain induced α′-martensite transformation starts to occur, causing the steel to be slightly magnetized. The α′-martensite prefers to nucleate directly at either microband–microband or microband-twin intersections without participation of intermediate ε-martensite. The volume fraction of α′-martensite is estimated as 0.070% and 0.17%, respectively, based on the magnetic hysteresis loops. Such a small fraction of ferromagnetic α′-martensite shows little influence on the magnetic induction intensity and low relative permeability. - Highlights: • Magnetic property of high-Mn austenitic steel was examined after cold rolling. • Nucleation mode for direct γ→α′ martensitic transformation was observed and discussed. • Volume fraction of strain induced α′-martensite was estimated by magnetic measurement.

  11. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

    DEFF Research Database (Denmark)

    Villa, M.; Niessen, F.; Somers, M. A. J.

    2018-01-01

    Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were...... measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro......-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain...

  12. characterization and weldability of plasma nitrided P/M martensitic stainless steel X 20 Cr Ni 172

    International Nuclear Information System (INIS)

    Abdel-Karim, R.A.; El-demellawy, M.A; Waheed, A.F.

    2004-01-01

    stainless steels are widely used in nuclear applications, as a construction material. in these applications stainless steels suffer from corrosion degradation due severe environment and operating conditions. improving the engineering properties of such material prolong the service life time.in the present study, powder metallurgy technique namely plasma rotating electrode process (PREP) was used to produce martensitic steel DIN X 20 Cr Ni 172 with 0.5 % N. this step was followed by hot isostatic pressing process (HIP) . the effect of N on the weldability of this steel has been investigated . this included microstructure characterization, hardness evaluation and ferrite content measurements. the results showed that the presence of high nitrogen content in this steel resulted in a pore free structure with improved the hardness across the welding area. A single phase with few precipitates was detected on the grain boundaries in the heat affected zone. the results were supplemented by x-ray diffraction patterns and EDAX analysis

  13. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Jitsukawa, S. E-mail: jitsukawa@ifmif.tokai.jaeri.go.jp; Tamura, M.; Schaaf, B. van der; Klueh, R.L.; Alamo, A.; Petersen, C.; Schirra, M.; Spaetig, P.; Odette, G.R.; Tavassoli, A.A.; Shiba, K.; Kohyama, A.; Kimura, A

    2002-12-01

    Tensile, fracture toughness, creep and fatigue properties and microstructural studies of the reduced-activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) before and after irradiation are reported. The design concept used for the development of this alloy is also introduced. A large number of collaborative test results including those generated under the International Energy Agency (IEA) implementing agreements are collected and are used to evaluate the feasibility of using reduced-activation martensitic steels for fusion reactor structural materials, with F82H as one of the reference alloys. All the specimens used in these tests were prepared from plates obtained from 5-ton heats of F82H supplied to all participating laboratories by JAERI. Many of the results have been entered into relational databases with emphasis on traceability of records on how the specimens were prepared from plates and ingots.

  14. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Tamura, M.; Schaaf, B. van der; Klueh, R.L.; Alamo, A.; Petersen, C.; Schirra, M.; Spaetig, P.; Odette, G.R.; Tavassoli, A.A.; Shiba, K.; Kohyama, A.; Kimura, A.

    2002-01-01

    Tensile, fracture toughness, creep and fatigue properties and microstructural studies of the reduced-activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) before and after irradiation are reported. The design concept used for the development of this alloy is also introduced. A large number of collaborative test results including those generated under the International Energy Agency (IEA) implementing agreements are collected and are used to evaluate the feasibility of using reduced-activation martensitic steels for fusion reactor structural materials, with F82H as one of the reference alloys. All the specimens used in these tests were prepared from plates obtained from 5-ton heats of F82H supplied to all participating laboratories by JAERI. Many of the results have been entered into relational databases with emphasis on traceability of records on how the specimens were prepared from plates and ingots

  15. Microstructure and mechanical properties in the weld heat affected zone of 9Cr-2W-VTa reduced activation ferritic/martensitic steel for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh; Lee, Changhoon; Lee, Taeho; Jang, Minho; Park, Mingu [Korea Institute of Materials Science, Changwon (Korea, Republic of); Kim, Hyoung Chan [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Reduced activation ferritic/martensitic (RAFM) steel demonstrated excellent resistance to the neutron irradiation and mechanical properties. The investigation of weldability in company with the development of RAFM steel is essential for construction of the fusion reactor. Generally, the superior mechanical properties of the RAFM steel can be upset during welding process due to microstructural change by rapid heating and cooling in the weld heat affected zone (HAZ). The phase transformation and mechanical properties in the weld HAZ of RAFM steel were investigated. The base steel consisted of tempered martensite and two carbides. During rapid welding thermal cycle, the microstructure of the base steel was transformed into martensite and δ-ferrite. In addition, the volume fraction of δ-ferrite and grain size increased with increase in the peak temperature and heat input. The strength of the HAZs was higher than that of the base steel due to the formation of martensite, whereas the impact properties of the HAZs deteriorated as compared with the base steel due to the formation of δ-ferrite. The PWHT improved the impact properties of the HAZs, resulting from the formation of tempered martensite.

  16. Creep behavior of double tempered 8% Cr-2% WVTa martensitic steel

    International Nuclear Information System (INIS)

    Tamura, Manabu; Shinozuka, Kei; Esaka, Hisao; Nowell, Matthew M.

    2006-01-01

    Creep testing was carried out at around 650degC for a martensitic 8Cr-2WVTa steel (F82H), which is a candidate alloy for the first wall of the fusion reactors of the Tokamak type. Rupture strength of the double tempered steel (F82HD) is lightly higher than that of simple tempered steel (F82HS). On the other hand, creep rate of F82HD is obviously smaller than that of F82HS in acceleration creep, though creep strain of F82HD in transition creep, where creep rate decreases with increasing strain, is larger than that of F82HS. Hardness of the crept H82HD decreases with increasing creep strain, which corresponded with the transmission electron microscopy (TEM) observation. On the contrary, X-ray diffraction and electron back-scattered diffraction pattern measurements show that fine sub-grains are created during transition creep. The creep curves were analyzed using an exponential type creep equation and the apparent activation energy, the activation volume and the pre-exponential factor were calculated as a function of creep strain. Then, these parameters were converted into two parameters, i.e. equivalent obstacle spacing (EOS) and mobile dislocation density parameter (MDDP). While EOS decreases with increasing creep strain, MDDP increases with increasing strain during transition creep. The decrease in EOS and the increase in either EOS or MDDP are rate-controlling factors in transition and acceleration creep, respectively. On the other hand, in case of F82HS, EOS increases and MDDP decreases during transition creep. In this case, the decrease in MDDP controls the creep rate during transition creep of F82HS. It is concluded that both EOS and MDDP are representative parameters of the change in substructure during creep. (author)

  17. Lattice defect inheritance during γ-α-γ transformation in steel having no ''reverse'' (martensite) transition during austenization

    International Nuclear Information System (INIS)

    Bernshtejn, M.L.; Zajmovskij, V.A.; Kozlova, A.G.; Kolupaeva, T.L.

    1979-01-01

    An investigation was carried out, using an electron microscope technique, of the substructure of austenite in the 120Kh3G steel. It was shown that the austenite substructure, resulting from high-temperature mechanical working, is inherited on deep cooling by the low-temperature phase (martensite), and in subsequent heating is again inherited by austenite. If the disintegration of the hot-deformed austenite takes place in the pearlite phase, reheating gives rise to an austenite free from the substructure

  18. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, S.Bulent

    2015-01-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  19. IRRADIATION CREEP AND MECHANICAL PROPERTIES OF TWO FERRITIC-MARTENSITIC STEELS IRRADIATED IN THE BN-350 FAST REACTOR

    International Nuclear Information System (INIS)

    Porollo, S. I.; Konobeev, Yu V.; Dvoriashin, A. M.; Budylkin, N. I.; Mironova, E. G.; Leontyeva-Smirnova, M. V.; Loltukhovsky, A. G.; Bochvar, A. A.; Garner, Francis A.

    2002-01-01

    Russian ferritic/martensitic steels EP-450 and EP-823 were irradiated to 20-60 dpa in the BN-350 fast reactor in the form of pressurized creep tubes and small rings used for mechanical property tests. Data derived from these steels serves to enhance our understanding of the general behavior of this class of steels. It appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation-related densification. The irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels, and that the loss of strength at test temperatures above 500 degrees C is a problem generic to all F/M steels. This conclusion is supported by post-irradiation measurement of short-term mechanical properties. At temperatures below 500 degrees C both steels retain their high strength (yield stress 0.2=550-600 MPa), but at higher test temperatures a sharp decrease of strength properties occurs. However, the irradiated steels still retain high post-irradiation ductility at test temperatures in the range of 20-700 degrees C.

  20. Orientation relationship in various 9% Cr ferritic/martensitic steels-EBSD comparison between Nishiyama-Wassermann, Kurdjumov-Sachs and Greninger-Troiano

    International Nuclear Information System (INIS)

    Barcelo, F.; Bechade, J. L.; Fournier, B.

    2010-01-01

    EBSD measurements were carried out on four different martensitic steels (T91, P92, EM10 and Eurofer) in various metallurgical conditions (nine different microstructural states). The usual orientation relationships (ORs) between the parent austenitic phase and the resulting martensite in martensitic steels are those of Nishiyama-Wassermann (NW) and Kurjumov-Sachs (KS). The present study first proposes a methodology based on the combined analysis of the misorientation distribution, the pole figures (PFs) and the angle/axis pairs. This methodology leads to the conclusion that neither NW nor KS relationships are able to account for all the features observed whatever the material under study. A third OR proposed by Greninger and Troiano (GT) proves to describe the relationship between austenite and ferrite in all four different martensitic steels much more accurately. (authors)

  1. Structure and microstructure evolution of a ternary Fe–Cr–Ni alloy akin to super martensitic stainless steel

    International Nuclear Information System (INIS)

    Ravi Kumar, B.; Sharma, Sailaja; Munda, Parikshit; Minz, R.K.

    2013-01-01

    Highlights: • Reaustenisation by recrystallisation rather by a diffusion controlled process. • Ultrafine grained austenite formation in martensite matrix by recrystallisation. • In situ high temperature austenite transformation studies by X-ray diffraction. • Microstructure tailoring to achieve tensile strength (∼1 GPa) with good ductility. - Abstract: A ternary Fe–Cr–Ni alloy, akin to super martensitic stainless steels was prepared in vacuum induction furnace. The as cast ingot was solution treated at 1200 °C for 25 h and then hot forged and rolled to reduce into plate form. The hot rolled plate of martensitic microstructure was then cold rolled to 80% of thickness reduction. The phase transformation studies by X-ray diffraction analysis of hot and cold rolled specimens showed presence of retained austenite in air cooled as well as in water quenched state after annealing/austenising temperature of 1060 °C. The reaustenisation behaviour of the cold rolled alloy in water quenched state was studied by high temperature X-ray diffraction analysis. It showed very stable martensitic phase and the completion of reaustenisation process were observed to occur at about 950 °C. The recrystallisation behaviour of cold rolled material under isothermal and repeated annealing treatment was studied in detail by electron microscope. The tensile properties of the material were evaluated after various annealing treatments. The study revealed that by a suitable sequence of repetitive annealing process microstructure could be tailored to achieve tensile strength above 1 GPa with good ductility in a super martensitic stainless steel

  2. It was the demonstration of industrial steel production capacity ferritic-martensitic Spanish ASTURFER scale demand ITER

    International Nuclear Information System (INIS)

    Coto, R.; Serrano, M.; Moran, A.; Rodriguez, D.; Artimez, J. A.; Belzunce, J.; Sedano, L.

    2013-01-01

    Reduced Activation Ferritic-Martensitic (RAFM) structural steels are considered as candidate materials with notable possibilities to be incorporated to fusion reactor ITER, nowadays under construction, and future fusion reactor DEMO, involving a notable forecasting of supply materials, with a considerable limitation due to the few number of furnishes currently on the market. The manufacture at an industrial scale of the ASTURFER steel, developed at laboratory scale by ITMA Materials Technology and the Structural Materials Division of the Technology Division of CIEMAT would be a significant business opportunity for steelwork companies.

  3. Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel

    International Nuclear Information System (INIS)

    Checchetto, R.; Horino, Y.; Benamati, G.

    1996-01-01

    The efficiency of TiN-TiC bilayer coatings, deposited by ion-beam-assisted deposition on martensitic steel, as a hydrogen permeation barrier was investigated by a gas phase method; the hydrogen permeability in the TiN-TiC bilayers is very low, at least 10 4 times lower than in the steel substrate in the temperature interval 470-570 K. Possible physical mechanisms, responsible for the reduced permeability of the ceramic bilayers, are discussed. In particular, from our experimental results, it can be concluded that chemisorption and/or hydrogen jumping from surface sites to the first subsurface atomic layer represents the hydrogen permeation limiting process. (orig.)

  4. Refinement of the magnetic composite model of type 304 stainless steel by considering misoriented ferromagnetic martensite particles

    Science.gov (United States)

    Kinoshita, Katsuyuki

    2017-05-01

    We improved a magnetic composite model that combines the Jiles-Atherton model and Eshelby's equivalent inclusion method to consider misoriented martensite particles. The magnetic permeability of type 304 stainless steel were analyzed by using both experimental data on the orientation distribution of type 304 stainless steel specimens and the improved model. We found that the model is able to qualitatively explain the variation of permeability with the orientation angle and orientation distribution, an effect that depends on the direction of the excitation magnetic field.

  5. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Schubert, L.E. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  6. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    International Nuclear Information System (INIS)

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry

  7. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel – Experiments and model

    International Nuclear Information System (INIS)

    Bardelcik, Alexander; Worswick, Michael J.; Wells, Mary A.

    2014-01-01

    Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s −1 ) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with

  8. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Kim, S.W.; Tanigawa, H.; Hirose, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  9. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  10. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  11. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: ksato@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Xu, Q.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Dai, Y. [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kikuchi, K. [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan)

    2012-12-15

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<{approx}0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  12. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    International Nuclear Information System (INIS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-01-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<∼0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  13. Effect of W and Ta on creep–fatigue interaction behavior of reduced activation ferritic–martensitic (RAFM) steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Institute for Plasma Research, Ahmedabad 382428 (India); Mariappan, K.; Sandhya, R.; Laha, K.; Jayakumar, T.; Kumar, E. Rajendra [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Institute for Plasma Research, Ahmedabad 382428 (India)

    2015-11-15

    Highlights: • SR correlated with deformation under CFI in RAFM steels. • Stress relaxation directly related to plastic strain accumulated, inversely to CFI life. • Optimum combination of W and Ta best for CFI life. • RAFM steels demonstrated compressive dwell sensitivity. • SR tends toward constant value at long hold. - Abstract: The aim of this work is to understand the effect of varying tungsten and tantalum contents on creep–fatigue interaction (CFI) behavior of reduced activation ferritic–martensitic (RAFM) steels. Increase in W improved CFI life. Effect of changing Ta and W upon the resultant CFI life seems to be interrelated and an optimum combination of both W and Ta works out to be the best for CFI life. Stress relaxation obtained during application of hold can be a useful parameter to relate deformation and damage in the RAFM steels.

  14. Aging between 300 and 450 deg C of wrought martensitic 13-17 wt-%Cr stainless steels

    International Nuclear Information System (INIS)

    Yrieix, B.; Guttmann, M.

    1993-06-01

    Martensitic stainless steels containing 13-17 wt-% Cr, some also containing nickel and some having precipitation hardening additions, have been aged between 300 and 450 deg C for times up to 30 000 h. For all the steels examined, the aging response takes the form of an increase of strength and hardness, correlated with embrittlement. The rate and intensity of aging increase with increasing chromium and molybdenum concentrations. In addition, two steels exhibit some temper embrittlement on long term aging at 400 deg C; such embrittlement of these materials is not expected in service at temperatures up to 300 deg C. A general method of prediction of the mechanical properties of these steels as a function of aging conditions is proposed. (authors). 11 refs., 17 figs., 7 tabs

  15. Effect of W and Ta on creep–fatigue interaction behavior of reduced activation ferritic–martensitic (RAFM) steels

    International Nuclear Information System (INIS)

    Shankar, Vani; Mariappan, K.; Sandhya, R.; Laha, K.; Jayakumar, T.; Kumar, E. Rajendra

    2015-01-01

    Highlights: • SR correlated with deformation under CFI in RAFM steels. • Stress relaxation directly related to plastic strain accumulated, inversely to CFI life. • Optimum combination of W and Ta best for CFI life. • RAFM steels demonstrated compressive dwell sensitivity. • SR tends toward constant value at long hold. - Abstract: The aim of this work is to understand the effect of varying tungsten and tantalum contents on creep–fatigue interaction (CFI) behavior of reduced activation ferritic–martensitic (RAFM) steels. Increase in W improved CFI life. Effect of changing Ta and W upon the resultant CFI life seems to be interrelated and an optimum combination of both W and Ta works out to be the best for CFI life. Stress relaxation obtained during application of hold can be a useful parameter to relate deformation and damage in the RAFM steels.

  16. Progress of reduced activation ferritic/martensitic steel development in Japan

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Kimura, A.; Kohyama, A.; Ukai, S.; Sawai, T.; Wakai, E.; Shiba, K.; Miwa, Y.; Furuya, K.; Tanigawa, H.; Ando, M.

    2005-01-01

    Recent accomplishment by the Japanese activity for the reduced activation ferritic/martensitic steel (RAF/M) development has been reviewed. Some of the results obtained in EU and US by international collaborative activities are also introduced. Effect of irradiation on the shift of ductile-to-brittle transition temperature (DBTT) has been evaluated to a dose of 20dpa. Results suggest that RAF/M appears to satisfy the requirement on DBTT-shift for the blanket application in the dose range up to several tens of dpa. Also, enhancement effect of DBTT-shift by transmutation produced helium (He) atoms was revealed to be smaller than has been suggested previously. Preliminary studies about the effect of irradiation on fatigue mechanism, the susceptibility to environmentally assisted cracking in water and flow stress-strain relation have been conducted for the specimens irradiated to several dpa, including the post irradiation tensile property examination of the joints by Hot-isostatic press (HIP) bonding method. The results also indicate that RAF/Ms exhibit suitable properties for ITER test blanket module. (author)

  17. Hydroforming simulation and preparation of low activation martensitic steel Y-shapes

    International Nuclear Information System (INIS)

    Guo, X.Z.; Tao, J.; Yuan, Z.; Tang, Q.S.

    2011-01-01

    Highlights: → We hydroformed CLAM Y-shapes successfully after optimizing important parameters. → The feed of left punch decreased with the increasing protrusion angle. → The axial feed of the right punch increased with increasing the angle. → To obtain the highest protrusion, loading path 3 was the optimum. → The friction coefficient value of 0.07 is relatively superior. - Abstract: The hydroforming process to prepare China low activation Martensitic steel (CLAM) Y-shapes with desired protrusion height and uniform thinning rate was studied in this work. The axial feed distances for Y-shapes of the different protrusion angles were determined. Then, the effects of the loading path and the friction coefficient on the protrusion height and the distribution of thinning rate of the 45 o Y-shapes were investigated by numerical simulation, respectively. The optimized parameters were obtained: left axial feed 79 mm, right axial feed 60 mm and friction coefficient 0.07. In addition, the optimal loading path with the maximum rise rate of the internal pressure was determined. Subsequently, CLAM Y-shapes were hydroformed successfully based on the simulation results. The experimental results were approximately accordant with the simulative ones. It was indicated that the qualified CLAM Y-shapes could be obtained by the optimized hydroforming process.

  18. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    Science.gov (United States)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  19. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    International Nuclear Information System (INIS)

    Zhu, X.X.; Yang, H.G.; Yuan, X.M.; Zhao, W.W.; Zhan, Q.

    2014-01-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe 2 Al 5 layer was formed on CLAM substrate by pack cementation process with Fe 2 Al 5 donor powder and NH 4 Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe 2 Al 5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe 2 Al 5 as a function of processing parameters. The Wagner’s equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al

  20. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  1. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-01-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation

  2. Fatigue life assessment based on crack growth behavior in reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Sato, Yuki; Hasegawa, Akira

    2010-01-01

    Crack growth behavior under low cycle fatigue in reduced activation ferritic/martensitic steel, F82H IEA-heat (Fe-8Cr-2W-0.2V-0.02Ta), was investigated to improve the fatigue life assessment method of fusion reactor structural material. Low cycle fatigue test was carried out at room temperature in air at a total strain range of 0.4-1.5% using an hourglass-type miniature fatigue specimen. The relationship between the surface crack length and life fraction was described using one equation independent of the total strain range. Therefore, the fatigue life and residual life could be estimated using the surface crack length. Moreover, the microcrack initiation life could be estimated using the total strain range if there was a one-to-one correspondence between the total strain range and number of cycles to failure. The crack growth rate could be estimated using the total strain range and surface crack length by introducing the concept of the normalized crack growth rate. (author)

  3. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    Science.gov (United States)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  4. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    Science.gov (United States)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-04-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  5. Weldability examination of ASTM A 240 S41500 martensitic stainless steel by thermal cycles simulation testings

    Directory of Open Access Journals (Sweden)

    Alberto Velázquez-del Rosario

    2015-07-01

    Full Text Available The weldability assets of ASTM A 240 S41500 (ASTM A 240/A 240M martensitic stainless steel are presented through the study of the effects of single and double thermal weld cycles on mechanical properties and microstructure of base metal (BM and the artificial heat affected zone (HAZ created by thermal weld simulations. For single cycles, separate peak temperatures of 1000 ºC/12 s and 1350 ºC/12 s (cooling times: 12 s in both cases were evaluated, whilst two combinations of peak temperatures: (1350 ºC/5 s + 1000 ºC/5 s ºC and (1350 ºC/12 s + 1000 ºC/12 s ºC (cooling times: 5 s and 12 s, were applied for double cycles. Post weld heat treatment (PWHT with short and long holding times were applied and Vickers hardness, impact toughness and metallographic examinations were used in order to assess mechanical and metallographic properties in the as-simulated (no heat treated and postweld heat treated conditions. Best properties of the welded joint for double thermal weld cycles with long holding times were reached, which reveals the good weldability and applicability of the tested material in post weld heat treated conditions.

  6. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.Y., E-mail: songyuanyuan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Li, X.Y.; Rong, L.J.; Li, Y.Y. [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Nagai, T. [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan)

    2014-01-15

    The austenite reversion process and the distribution of carbon and other alloying elements during tempering in 0Cr13Ni4Mo martensitic stainless steel have been investigated by in-situ high temperature X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The microstructure of the reversed austenite was characterized using transmission electron microscopy (TEM). The results revealed that the amount of the reversed austenite formed at high temperature increased with the holding time. Direct experimental evidence supported carbon partitioning to carbides and Ni to the reversed austenite. The reversed austenite almost always nucleated in contact with lath boundary M{sub 23}C{sub 6} carbides during tempering and the diffusion of Ni promoted its growth. The Ni enrichment and the ultrafine size of the reversed austenite were considered to be the main factors that accounted for the stability of the reversed austenite. - Highlights: • The amount of the reversed austenite formed at high temperature increases with the holding time. • STEM results directly show that carbon is mainly partitioned into the carbides and Ni into the reversed austenite. • The Ni enrichment and the ultrafine size are the main factors leading to the stabilization of the reversed austenite.

  7. Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang; Miao, Yinbin; Li, Meimei; Kirk, Marquis A.; Maloy, Stuart A.; Stubbins, James F.

    2017-07-01

    In this paper, in situ transmission electron microscopy investigations were carried out to study the microstructural evolution of ferritic/martensitic steel T91 under 1 MeV Krypton ion irradiation up to 4.2 x 10(15) ions/cm(2) at 573 K, 673 K, and 773 K. At 573 K, grown-in defects are strongly modified by black dot loops, and dislocation networks together with black-dot loops were observed after irradiation. At 673 K and 773 K, grown-in defects are only partially modified by dislocation loops; isolated loops and dislocation segments were commonly found after irradiation. Post irradiation examination indicates that at 4.2 x 1015 ions/cm(2), about 51% of the loops were a(0)/2 < 111 > type for the 673 K irradiation, and the dominant loop type was a(0)< 100 > for the 773 K irradiation. Finally, a dispersed barrier hardening model was employed to estimate the change in yield strength, and the calculated ion data were found to follow the similar trend as the existing neutron data with an offset of 100-150 MPa. (C) 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of mechanical properties of weldments for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T. [Muroran Institute of Technology, Dept. of Materials Science and Engineeering, Muroran, Hokkaido (Japan); Tanigawa, H.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Komazaki, S.; Kohno, Y. [Muroran Institute of Technology, Muroran (Japan)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels are the first candidate material for fusion reactor, and will be used as the structural materials of ITER test blanket modules (TBM). TBM will be assembled by welding various parts, it is important to be clearly mechanical properties of weldments to qualify TBM structure. In this paper, unirradiated mechanical properties of weldments, which is consisted of weld metal, heat affected zone (HAZ) and base metal region, obtained from TIG and EB welded F82H IEA-heat were evaluated by tensile, Charpy impact and creep test. Charpy impact test revealed that impact properties of weld metal does not deteriorate compared with that of base metal. The creep tests were carried out at temperatures of 773-873 K and at stress levels of 130-280 MPa, with the specimens which include weld metal and HAZ region in the gage section. In these conditions, rupture time of weldments yield to about 100-1000 hours. In the high-stress range, creep lives of welded joint decreased about 40% of base metal. However, in the low-stress range, creep lives of welded joint decrease about 60 to 70% of base metal. The failure at fine grain HAZ region (Type IV failure) does not occur in these conditions. The mechanism of these properties deterioration will be discussed based on the detailed analyses on microstructure changes. (authors)

  9. New elements to understand hydrogen diffusion and trapping mechanisms in quenched and tempered HSLA martensitic steels

    International Nuclear Information System (INIS)

    Frappart, S.

    2011-01-01

    Hydrogen Embrittlement is a complex phenomenon responsible of metal degradation. It mainly depends on the material (chemical composition, heat treatment), the environment or the mechanical state. The main goal of this study is to give new elements to understand hydrogen diffusion and trapping mechanisms in High Strength Low Alloy martensitic steels used in the field of 'Oil and Gas' applications and nuclear industry. In this way, the purpose is to identify hydrogen trapping sites related to microstructural features as a basis for a better knowledge concerning hydrogen embrittlement. Thus, accurate electrochemical permeation set-up (with or without a mechanical state) were developed as well as a procedure to thoroughly analyze experimental data. An original approach on how to interpret electrochemical permeation results has been therefore performed. Afterward, the effect of different critical parameters has been assessed i.e. the membrane thickness, the surface state of the detection side as well as the microstructure and the mechanical state. The relationship between physical parameters associated to diffusion and trapping with the microstructure evolution will give rise to a first thought 'toward the embrittlement'

  10. Effect of helium on fatigue crack growth and life of reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Takahashi, Manabu; Hasegawa, Akira; Yamazaki, Masanori

    2013-01-01

    The effects of helium on the fatigue life, micro-crack growth behavior up to final fatigue failure, and fracture mode under fatigue in the reduced activation ferritic/martensitic steel, F82H IEA-heat, were investigated by low cycle fatigue tests at room temperature in air at a total strain range of 0.6–1.5%. Significant reduction of the fatigue life due to helium implantation was observed for a total strain range of 1.0–1.5%, which might be attributable to an increase in the micro-crack propagation rate. However, the reduction of fatigue life due to helium implantation was not significant for a total strain range of 0.6–0.8%. A brittle fracture surface (an original point of micro-crack initiation) and a cleavage fracture surface were observed in the helium-implanted region of fracture surface. A striation pattern was observed in the non-implanted region. These fracture modes of the helium-implanted specimen were independent of the strain range

  11. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    International Nuclear Information System (INIS)

    Naderi, M.; Saeed-Akbari, A.; Bleck, W.

    2008-01-01

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s -1 to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases

  12. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, M. [Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Shariati Street, Arak (Iran, Islamic Republic of)], E-mail: malek.naderi@iehk.rwth-aachen.de; Saeed-Akbari, A.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany)

    2008-07-25

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s{sup -1} to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases.

  13. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  14. Effects of Mn addition on microstructures and mechanical properties of 10Cr ODS ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic (FM) steels are very attractive for the structural materials of fast fission reactors such as a sodium cooled fast reactor (SFR) owing to their excellent irradiation resistance to a void swelling, but are known to reveal an abrupt loss of their creep and tensile strengths at temperatures above 600 .deg. C. Accordingly, high temperature strength should be considerably improved for an application of the FM steel to the structural materials of SFR. Oxide dispersion strengthened (ODS) FM steels are considered to be promising candidate materials for high- temperature components operating in severe environments such as nuclear fusion and fission systems due to their excellent high temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in the ferritic/martensitic matrix.. To develop an advanced ODS steel for core structural materials for next generation nuclear reactor system applications, it is important to optimize its compositions to improve the high temperature strength and radiation resistance. This study investigates effects of Mn addition on microstructures and mechanical properties of 10Cr ODS FM steel. For this, two 10 Cr ODS FM steels were prepared by mechanical alloying (MA), hot isostatic pressing (HIP), and hot rolling process. Tensile tests were carried out at room temperature and 700 .deg. C to evaluate the influences of the Mn element on the mechanical properties. The microstructures were observed using SEM, electron back-scatter diffraction (EBSD) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS). In the present study, the effects of Mn addition on the microstructure and mechanical properties of ODS FM steels were investigated. The ODS FM steels were manufactured by the MA, HIP and hot-rolling processes

  15. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Jang, Min-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, Seongdong-ku, Seoul 133-791 (Korea, Republic of); Park, Min-Gu [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Department of Material Science and Engineering, Pusan National University, 30 Jangjeon-Dong, Geumjeong-gu, Pusan 609-735 (Korea, Republic of); Han, Heung Nam [Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-12-15

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  16. The Potential of Self-Tempered Martensite and Bainite in Improving the Fatigue Strength of Thermomechanically Processed Steels

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2018-01-01

    Full Text Available In contrast to a two-stage hardening and tempering process, the definition of optimized cooling routes after hot working of low-alloy Cr steel allows the adjustments of high-strength microstructures with a sufficient degree of ductility at the same time without any additional heat-treatment. While compressed air cooling after hot forging of micro-alloyed steel grades leads to the formation of lower bainite with finedispersed cementite platelets, quenching by water spray down to the martensite start temperature results in the formation of martensite, that is self-tempered during the subsequent slow-cooling in air. The precipitation of nano-sized cementite precipitates result in superior mechanical properties with respect to impact and tensile testing. Cyclic deformation and crack propagation tests being carried out using resonance testing (100Hz and ultrasonic fatigue testing (20kHz systems revealed a pronounced increase in fatigue strength by about 150MPa of the self-tempered martensite condition as compared to the bainitic modification. For the latter one, a steady decrease of the fatigue strength is observed rather than the existence of a real fatigue limit.

  17. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    Science.gov (United States)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  18. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels

    International Nuclear Information System (INIS)

    Zhao, P.; Cheng, C.; Gao, G.; Hui, W.; Misra, R.D.K.; Bai, B.; Weng, Y.

    2016-01-01

    We elucidate here the effect of microalloying with niobium (Nb) on very high cycle fatigue (VHCF) behavior in high-strength C–Mn–Si–Cr bainite/martensite (B/M) multiphase steels studied through ultrasonic fatigue testing. The tensile strength (R_m) and fatigue limit strength after 10"9 cycles (σ_w_9) and in the non-failure condition of the steel microalloyed with Nb were 1640 MPa and 900 MPa, respectively. Thus, the value of σ_w_9/R_m exceeded in comparison to conventional steels and was approximate 0.55. Three types of failure modes were observed in Nb-bearing steels depending on the surface condition, inclusion, and the matrix microstructure, i.e., surface defect-induced failure mode (S-mode), inclusion-induced failure mode (I-mode), and non-inclusion induced failure mode (N-mode). Only two failure modes were observed in Nb-free steels, the S-mode and the N-mode. The study clearly suggests that Nb had a distinct effect on the VHCF properties of B/M steels. The VHCF limit of Nb-bearing steel was enhanced by 200 MPa because of refinement of the microstructure and pinning of dislocations by randomly distributed nanometer-sized Nb(C, N) precipitates. It is underscored that microalloying with Nb is a potential approach to enhance VHCF properties in advanced high-strength steels.

  19. Effect of heat treatment and irradiation temperature on mechanical properties and structure of reduced-activation Cr-W-V steels of bainitic, martensitic, and martensitic-ferritic classes

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.; Nesterova, E.V.; Klepikov, E.Yu.

    2000-01-01

    Effects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic-ferritic classes containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic steels were varied by changing the cooling rates from the austenitization temperature (from values typical for normalization up to V=3.3 x 10 -2 deg. C/s) and then tempering. The steels were irradiated to a fluence of 4x10 23 n/m 2 (≥0.5 MeV) at 270 deg. C and to fluences of 1.3x10 23 and 1.2x10 24 n/m 2 (≥0.5 MeV) at 70 deg. C. The 2.5Cr-1.4WV and 8Cr-1.5WV steels have shown lower values of the shifts in ductile-brittle transition temperature (DBTT) under irradiation in comparison with corresponding Cr-Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest in bainitic 2.5Cr-1.4WV steel and martensitic-ferritic 11Cr-1.5WV steel. The positive effect of molybdenum replacement by tungsten at irradiation temperature ∼300 deg. C is reversed at T irr =70 deg. C

  20. Corrosion behavior of austenitic and ferritic/martensitic steels in oxygen-saturated liquid Pb-Bi eutectic at 450circC and 550circC

    OpenAIRE

    倉田 有司; 二川 正敏; 斎藤 滋

    2005-01-01

    Static corrosion tests of various austenitic and ferritic/martensitic steels were conducted in oxygen-saturated liquid Pb-Bi at 450circC and 550circC for 3000h to study the effects of temperature and alloying elements on corrosion behavior. Oxidation, grain boundary corrosion, dissolution and penetration were observed. The corrosion depth decreases at 450circC with increasing Cr content in steels regardless of ferritic/martensitic or austenitic steels. Appreciable dissolution of Ni and Cr doe...

  1. Experimental Analysis of Residual Stresses in Samples of Austenitic Stainless Steel Welded on Martensitic Stainless Steel Used for Kaplan Blades Repairs

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2011-01-01

    Full Text Available Residual stresses occur in materials as a result of mechanical processes: welding, machining, grinding etc. If residual stresses reach high values they can accelerate the occurrence of cracks and erosion of material. An experimental research was made in order to study the occurrence of residual stresses in the repaired areas of hydraulic turbine components damaged by cavitation erosion. An austenitic stainless steel was welded in various layer thicknesses on a martensitic stainless steel base. The residual stresses were determined using the hole drilling strain gage method.

  2. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  3. Thermally activated formation of martensite in Fe-C alloys and Fe-17%Cr-C stainless steels during heating from boiling nitrogen temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2016-01-01

    The thermally activated austenite-to-martensite transformation was investigated by magnetometry in three Fe-C alloys and in two 17%Cr stainless steels. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequent (re......)heating to room temperature. Different tests were performed applying heating rates from 0.5 K/min to 10 K/min. An additional test consisted in fast (re)heating the samples by immersion in water. Thermally activated martensite formation was demonstrated for all investigated materials by a heating rate......-dependent transformation curve. Moreover, magnetometry showed that the heating rate had an influence on the fraction of martensite formed during sub-zero Celsius treatment. The activation energy for thermally activated martensite formation was quantified in the range 11‒21 kJ/mol by a Kissinger-like method....

  4. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels

    International Nuclear Information System (INIS)

    Abe, F.

    2004-01-01

    The coarsening behavior of martensite lath has been investigated by means of transmission electron microscopy for tempered martensitic 9 wt.% Cr-(0, 1, 2, 4 wt.%) W steels during creep at 823-923 K. During creep, the recovery of excess dislocations, the agglomeration of carbides and the coarsening of laths take place. The coarsening of laths with absorbing excess dislocations is the major process in the creep acceleration. The coarsening rate of lath decreases with increasing W concentration, which is correlated with the rate of Ostwald ripening of M 23 C 6 carbides. The progressive local-coalescence of two adjacent laths boundaries near the Y-junction causes the movement of Y-junction, resulting in the coarsening of lath

  5. In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements

    Directory of Open Access Journals (Sweden)

    Carola Celada-Casero

    2017-07-01

    Full Text Available An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ to martensite (α′ phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite has been found by comparing the results to the ex-situ characterization by magnetization measurements, light optical microscopy, and X-ray diffraction. The sensor has allowed for the observation of the stepwise transformation behavior, a not-well-understood phenomena that takes place in large regions of the bulk material and that so far had only been observed by synchrotron X-ray diffraction.

  6. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Energy Technology Data Exchange (ETDEWEB)

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  7. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    International Nuclear Information System (INIS)

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-01-01

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  8. Compatibility of graphite with a martensitic-ferritic steel, an austenitic stainless steel and a Ni-base alloy up to 1250 C

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-08-01

    To study the chemical interactions between graphite and a martensitic-ferritic steel (1.4914), an austenitic stainless steel (1.4919; AISI 316), and a Ni-base alloy (Hastelloy X) isothermal reaction experiments were performed in the temperature range between 900 and 1250 C. At higher temperatures a rapid and complete liquefaction of the components occurred as a result of eutectic interactions. The chemical interactions are diffusion-controlled processes and can be described by parabolic rate laws. The reaction behavior of the two steels is very similar. The chemical interactions of the steels with graphite are much faster above 1100 C than those for the Ni-base alloy. Below 1000 C the effect is opposite. (orig.) [de

  9. The effect of alloying and treatment on martensite transformation during deformation in Fe-Cr-Mn steels with unstable austenite

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop, V.I.; Sokolov, K.N.

    1977-01-01

    The effect is studied of alloying with chromium (6-10%), silicon (1-2%), molybdenum (1-3%), and copper (2%), the heat treatment conditions, and the deformation conditions, or the martensitic transformation and mechanical properties of Fe-Cr-Mn steels of the transitional class based on 0G8AM2S. It is shown that appropriate alloying and treatment, taking into account the degree of stability of the austenite, can ensure a complex of high mechanical properties of the steels investigated. For instance, the treatment of steel 0Kh10AG8MD2S by the technique: hardening+ 40% deformation at 400 deg C + 10% deformation at room temperature has yielded the following mechanical properties: sigmasub(B)=150 kgf/mm 2 , sigmasub(T)=110 kgf/mm 2 , sigma=18%, psi=32%

  10. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    Science.gov (United States)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  11. Metallurgical properties of reduced activation martensitic steel Eurofer'97 in the as-received condition and after thermal ageing

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2002-01-01

    This paper describes the microstructural studies and the mechanical testing (hardness, tensile and charpy tests) performed on the Eurofer'97 steel in the as-received condition and after thermal ageing treatments up to 600 deg. C. In addition, fracture toughness tests on the as-received condition have been carried out in order to determine the Master Curve. During the thermal ageing treatments studied (500 deg. C/5000 h and 600 deg. C/1000 h) the general microstructure of the steel (tempered martensite with M 23 C 6 and MX precipitates) remained stable. Only a slight growth of the particles has been observed. In terms of mechanical properties, the Eurofer'97 steel exhibited similar values of tensile properties (tensile and yield strength) and ductile-brittle transition temperature regardless of the material condition studied.

  12. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Isore, A; Miyada, L T

    1975-05-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280/sup 0/C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600/sup 0/C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions.

  13. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 6000C

    International Nuclear Information System (INIS)

    Isore, A.; Miyada, L.T.

    1975-01-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280 0 C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600 0 C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions

  14. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    International Nuclear Information System (INIS)

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-01-01

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  15. Numerical investigation by finite element simulation of the bail punch test: application to tempered martensitic steels

    International Nuclear Information System (INIS)

    Campitelli, E.; Spatig, P.; Bertsch, J.

    2007-01-01

    Full text of publication follows: Over the years, the small ball punch test technique has been used to evaluate conventional tensile properties of a variety of materials. The development and use of this type of small specimen techniques is indispensable for an efficient use of the limited irradiation volume of the future fusion material intense neutron source. Up to now, empirical correlations between features of the load-displacement curves of the ball punch test and the mechanical properties, such as the yield stress or the ultimate tensile stress, are established on materials in the unirradiated condition. These correlations are believed to be applicable to irradiated materials and they have been very often used to estimate the irradiation hardening. However, it is well known that the overall constitutive behavior of the materials is generally affected by neutron irradiation. Therefore, there is a need to quantify the effect of the constitutive behavior on the correlations. In this paper, we employ a 3D non-linear finite element model for the ball punch test to address these effects of the irradiation-induced changes on the ball punch test curve. We apply first the model on the tempered martensitic steel EUROFER97 in the unirradiated condition with variations in the post-yield behavior, either in the low strain domain ( 10%). The effects on the ball punch test load deflection curve are outlined. Second, we study the effects of the irradiation hardening on the same constitutive behaviors as those used for the unirradiated condition. We show that that the usual correlations must be considered with great care on irradiated materials since strong variation on the strain-hardening may lead to erroneous estimation of the irradiation hardening. We also propose a novel approach to calibrate the yield stress to features of the ball punch test curve that decreases the uncertainty related to the post-yield behavior and that, as a consequence, makes the technique more

  16. Materials design data for reduced activation martensitic steel type F82H

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. E-mail: tavassoli@cea.fr; Rensman, J.-W.; Schirra, M.; Shiba, K

    2002-11-01

    This paper presents materials data for design of ITER test blanket modules with the reduced activation ferritic martensitic steel type F82H as structural material. From the physical properties databases, variations of modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. Also reported are Poisson's ratio and magnetic properties. From the tension test results, nominal and minimum stress values of S{sub y} and S{sub u} are derived and used for calculation of allowable primary membrane stress intensity S{sub m}. Likewise, uniform and total elongations, as well as reduction of area data, are used for calculation of minimum and true ductility at rupture values. From the instrumented Charpy impact and fracture toughness test data, ductile to brittle transition temperature, toughness and behavior of material in different fracture modes are evaluated. The effect of specimen size and geometry are discussed but preference is given to standard size specimens. From the fatigue data, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves, using a reduction factor of 2 on strain and a reduction factor of 20 on number of cycles to failure. Cyclic hardening curves are also derived and compared with monotonic hardening curves. From the creep data, time dependent allowable stresses S{sub r} and S{sub t} are calculated. Combination of tension and creep results are used to deduce S{sub mt} and isochronus curves. Finally, irradiated and aged materials data are compared to insure that the safety margins incorporated in unirradiated design limits are not exceeded.

  17. Hardening and embrittlement mechanisms of reduced activation ferritic/martensitic steels irradiated at 573 K

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Hashimoto, N. [Hokkaido Univ., Materials Science and Engineering Div., Graduate School of Engineering, Sapporo (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: It has been reported that reduced-activation ferritic/martensitic steels (RAFMs), such as F82H, ORNL9Cr-2WVTa, and JLF-1, showed a variety of changes in ductile-brittle transition temperature and yield stress after irradiation at 573 K up to 5 dpa, and those differences could not be interpreted solely by the difference of dislocation microstructure induced by irradiation. To investigate the impact of other microstructural feature, i.e. precipitates, the precipitation behavior of F82H, ORNL 9Cr-2WVTa, and JLF-1 was examined. It was revealed that irradiation-induced precipitation and amorphization of precipitates partly occurred and caused the different precipitation on block, packet and prior austenitic grain boundaries. In addition to these phenomena, irradiation-induced nano-size precipitates were also observed in the matrix. It was also revealed that the chemical compositions of precipitates approached the calculated thermal equilibrium state of M{sub 23}C{sub 6} at an irradiation temperature of 573 K. The calculation also suggests the presence of Laves phase at 573 K, which is usually not observed at this temperature, but the ion irradiation on aged F82H with Laves phase suggests that Laves phase becomes amorphous and could not be stable under irradiation at 573 K. This observation indicates the possibility that the irradiation-induced nano-size precipitation could be the consequence of the conflict between precipitation and amorphization of Laves phase. Over all, these observations suggests that the variety of embrittlement and hardening of RAFMs observed at 573 K irradiation up to 5 dpa might be the consequence of the transition phenomena that occur as the microstructure approaches thermal equilibrium during irradiation at 573 K. (authors)

  18. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    Science.gov (United States)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  19. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 deg. C

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-01-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 deg. C and 550 deg. C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 deg. C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 deg. C. Corrosion depth of ferritic/martensitic steels also decreases at 550 deg. C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 deg. C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 deg. C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr

  20. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  1. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  2. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C

    Science.gov (United States)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-06-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between -170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.

  3. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tavassoli, A.-A.F.; Henry, J. [DMN/Dir, DEN, CEA Saclay, 91191, Gif-sur-Yvette Cedex (France); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe, 76021 (Germany); Sakasegawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tanigawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-10-15

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. In addition to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti, X = C/N) precipitates and reducing coarse M{sub 23}C{sub 6} (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. Limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic are presented and compared with data for F82H and Eurofer97 irradiated up to ∼70 displacements per atom at ∼300–325 °C.

  4. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting

    Science.gov (United States)

    Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong

    2018-03-01

    Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.

  5. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  6. Material science and manufacturing of heat-resistant reduced-activation ferritic-martensitic steels for fusion

    International Nuclear Information System (INIS)

    Ioltukhovskiy, A.G.; Blokhin, A.I.; Budylkin, N.I.; Chernov, V.M.; Leont'eva-Smirnova, M.V.; Mironova, E.G.; Medvedeva, E.A.; Solonin, M.I.; Porollo, S.I.; Zavyalsky, L.P.

    2000-01-01

    A number of issues regarding the development and use of 10-12% Cr reduced-activation ferritic-martensitic steels (RAFMS) for fusion are considered. These include: (1) problems of manufacturing and modifying their composition and metallurgical condition; (2) the influence on properties of their composition, purity, δ-ferrite concentration and cooling rates in the final stages of manufacturing; and (3) the effects of neutron irradiation at 320-650 deg. C up to 108 dpa on their mechanical properties. In addition, neutron activation and nuclear accumulation of elements in RAFMS with different initial concentrations of alloying and impurity elements for typical fusion reactor (DEMO) irradiation regimes have been calculated

  7. Martensitic transformation and residual stresses after thermomechanical treatment of heat treatable steel 42CrMo4 (SAE 4140)

    Energy Technology Data Exchange (ETDEWEB)

    Weise, A. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik; Fritsche, G. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik

    1996-01-01

    The influence of thermomechanical deformation on the residual stresses caused by quenching in bar shaped specimens of heat treatable steel 42CrMo4 has been investigated using a mechanical method for determining the distribution of residual stresses of the first kind. The results obtained show that the residual stress distribution after quenching is affected by the strengthening and softening of the austenite as a result of deformation and recrystallization and the modified transformation behaviour in martensite stage. An attempt is made to discuss qualitatively the influence of these changes on the generation of residual stresses as compared to results obtained after conventional hardening. (orig.).

  8. Martensitic transformation and residual stresses after thermomechanical treatment of heat treatable steel 42CrMo4 (SAE 4140)

    International Nuclear Information System (INIS)

    Weise, A.; Fritsche, G.

    1996-01-01

    The influence of thermomechanical deformation on the residual stresses caused by quenching in bar shaped specimens of heat treatable steel 42CrMo4 has been investigated using a mechanical method for determining the distribution of residual stresses of the first kind. The results obtained show that the residual stress distribution after quenching is affected by the strengthening and softening of the austenite as a result of deformation and recrystallization and the modified transformation behaviour in martensite stage. An attempt is made to discuss qualitatively the influence of these changes on the generation of residual stresses as compared to results obtained after conventional hardening. (orig.)

  9. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    Science.gov (United States)

    Xu, Lin-qing; Zhang, Dan-tian; Liu, Yong-chang; Ning, Bao-qun; Qiao, Zhi-xia; Yan, Ze-sheng; Li, Hui-jun

    2014-05-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  10. Coolant compatibility studies. The effect of irradiation on tensile properties and stress corrosion cracking sensitivity of martensitic steels. MANET 4 - complementary studies

    International Nuclear Information System (INIS)

    Nystrand, A.C.

    1994-02-01

    Tensile and stress corrosion cracking tests have been carried out on MANET-type (1.4914 and FV448) and reduced activation (LA12TaLC) high-chromium martensitic steels. The materials had previously been exposed up to 5000 h at ∼275 degrees C in the core, above the core and remote from the core of a high pressure water loop in the Studsvik R2 reactor. After the mechanical testing the materials were examined visually and metallographically. The steel samples exposed in the core section showed large increases in tensile yield strengths when tested at 250 degrees C. However, the magnitude of the radiation hardening was considerably smaller in the reduced activation steel compared to the commercial steels; this observation is consistent with published data on other high-chromium martensitic steels and is associated with the lower chromium content of the LA12TaLC steel (8.9%) compared with those of the commercial steels (10.6 and 11.3%). Irradiation assisted stress corrosion cracking (IASCC) was not detected in any of the stressed steel samples after autoclave testing for times up to 1500 h at 250 degrees C in air-saturated high purity water. This apparent resistance to IASCC may be due to the high chromium martensitic steels not being sensitized by the irradiation in a comparable manner to that shown by the austenitic steels. However, additional studies are required to clarify some of the existing uncertainties with respect to IASCC of these martensitic steels

  11. Influence of microstructural development during annealing at 780oC on creep resistance of ferritic-martensitic T91 (9%Cr-1%Mo-V-Nb) steel

    International Nuclear Information System (INIS)

    De Cicco, H; Zavaleta Gutierrez, N; Marrero, J; Luppo, M.I; Danon, C.A

    2006-01-01

    Due to its good properties of creep resistance, toughness and rust resistance, martensitic-ferritic 9%Cr-1%Mo steels are widely used for the production of heating plant components, boilers, heat exchangers, piping and tubing, etc. The effectiveness in steels of MX carbonitrides such as (Nb,V) (C,N) on improving creep resistance at high temperatures is well known. Controlling the behavior of the MX phases to precipitation, during annealing, is essential for obtaining a stable microstructure that can resist high temperatures. This study investigates the relationship between creep resistance and the microstructural changes that occur at different annealing times at a temperature of 780 o C -used industrially during the production and post-welding- in T91 steel. Creep trials were carried out at 600 o C and 190 MPa, and the samples were characterized using optic microscopy (OM), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and transmission electron microscopy (TEM), the latter including a facility for energy dispersive spectroscopy (EDS). Based on its morphological characteristics, the MX precipitates are classified into three types, types I, II and III. Tempering time at 780 o C has been found to be one of the factors that determines which MX is dominant in the annealed steel. The presence of type MX-III, formed by the secondary precipitation of a VN particle adhering to a NbX, commonly called 'wing', seems to favor creep resistance in these steels. This type of of precipitate, then, fills an effective role in the anchoring of dislocations during creep (cw)

  12. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  13. Anti-Corrosion Performance of 1,3-BENZOTHIAZOLE on 410 Martensitic Stainless Steel in H2SO4

    Science.gov (United States)

    Loto, Roland Tolulope

    The corrosion inhibition effect of synthesized 1,3-benzothiazole at very low concentrations on 410 martensitic stainless steel in 3MH2SO4 solution was studied through potentiodynamic polarization and weight loss measurements. The observation showed that the organic compound performed effectively with average inhibition efficiencies of 94% and 98% at the concentrations studied from both electrochemical methods due to the inhibition action of protonated inhibitor molecules in the acid solution. The amine and aromatics functional groups of the molecules active in the corrosion inhibition reaction were exposed from Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopic analysis. Thermodynamic calculations showed cationic adsorption to be chemisorption adsorption, obeying the Langmuir adsorption isotherm. Images from optical microscopy showed an improved morphology in comparison to images from corroded stainless steel. Severe surface deterioration and macro-pits were observed in the uninhibited samples.

  14. Creep behavior of 8Cr2WVTa martensitic steel designed for fusion DEMO reactor. An assessment on helium embrittlement resistance

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Murase, Yoshiharu; Nagakawa, Johsei; Shiba, Kiyoyuki

    2001-01-01

    Mechanical response against transmutational helium production, alternatively susceptibility to helium embrittlement, in a nuclear fusion reactor was examined on 8Cr2WVTa martensitic steel, a prominent structural candidate for advanced fusion systems. In order to simulate DEMO (demonstrative) reactor environments, helium was implanted into the material at 823 K with concentrations up to 1000 appmHe utilizing an α-beam from a cyclotron. Creep rupture properties were subsequently determined at the same temperature and were compared with those of the material without helium. It has been proved that helium caused no meaningful deterioration in terms of both the creep lifetime and rupture elongation. Furthermore, failure occurred completely in a transgranular and ductile manner even after high concentration helium introduction and there was no symptom of grain boundary decohesion which very often arises in helium bearing materials. These facts would mirror preferable resistance of this steel toward helium embrittlement. (author)

  15. Carbon Contamination During Ion Irradiation - Accurate Detection and Characterization of its Effect on Microstructure of Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Toloczko, Mychailo B.; Kruska, Karen; Schreiber, Daniel K.; Edwards, Danny J.; Zhu, Zihua; Zhang, Jiandong

    2017-11-17

    Accelerator-based ion beam techniques have been used to study radiation effects in materials for decades. Although carbon contamination induced by ion beam in target materials is a well-known issue, it has not been fully characterized nor quantified for studies in ferritic/martensitic (F/M) steels that are candidate materials for applications such as core structural components in advanced nuclear reactors. It is an especially important issue for this class of material because of the effect of carbon level on precipitate formation. In this paper, the ability to quantify carbon contamination using three common techniques, namely time-of-flight secondary ion mass spectroscopy (ToF-SIMS), atom probe tomography (APT) and transmission electron microscopy (TEM) is compared. Their effectiveness and short-comings in determining carbon contamination will be presented and discussed. The corresponding microstructural changes related to carbon contamination in ion irradiated F/M steels are also presented and briefly discussed.

  16. Metallurgical characterization of the reduced activation ferritic/martensitic steel Eurofer'97 on as-received condition

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Hernandez-Mayoral, M.

    2001-01-01

    A new European reduced activation ferrous alloy (denominated Eurofer'97) developed as possible first wall and breeder blanket structural material for fusion applications is being characterized. In this paper, activities specially focussed to investigate the microstructural and mechanical properties of this material on the as-received state (normalized at 980 degree sign C/27' plus tempered at 760 degree sign C/90'/air cooled) are presented. Chemical analyses, a detailed microstructural study, hardness, tensile and Charpy tests have been carried out and are compared to the reduced activation material F-82H modified previously studied. The results show that the Eurofer'97 is a fully martensitic steel free of δ-ferrite with similar tensile and better impact properties than the F-82H modified steel. Two types of carbides have been observed in the Eurofer'97, namely, Cr rich precipitates and Ta/V rich precipitates, tentatively identified as M 23 C 6 type and (Ta,V)C type, respectively

  17. In Situ Investigation of the Evolution of Lattice Strain and Stresses in Austenite and Martensite During Quenching and Tempering of Steel

    Science.gov (United States)

    Villa, M.; Niessen, F.; Somers, M. A. J.

    2018-01-01

    Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.

  18. Stress Corrosion cracking susceptibility of reduced-activation martensitic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan); Jitsukawa, S.; Tsukada, T. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: For fusion power source in near future, supercritical water-cooled type blanket system was planned in Japan Atomic Energy Agency. The blankest system was designed by the present knowledge base and a reasonable extrapolation in material and design technology. Reduced-activation martensitic steel, F82H, is one of the blanket system structural materials. Therefore durability of the F82H for corrosion and stress corrosion cracking (SCC) is one of the concerns for this water-cooling concept of the blanket system. In this paper, SCC susceptibility of F82H was studied after heat treatments simulating post weld heat treatment (PWHT) or neutron-irradiation at 493 K to a dose level of 2.2 dpa. In order to evaluate SCC susceptibility of F82H, slow strain rate testing (SSRT) in high-purity, circulating water was conducted at 513-603 K in an autoclave. The strain rate was 1.0- 2.0x10{sup -7} s{sup -1}. Concentration of dissolved oxygen and hydrogen of the circulating water was controlled by bubbling with these gases. Specimens were heat treated after normalization at 1313 K for 40 min and water quenching. Some of the specimens were tempered at 873-1073 K for 1 h. Since the temperature control during PWHT in vacuum vessel by remote handling will be difficult, it is expected the tempering temperature will be different at place to place. Some specimens after tempering at 1033 K for 1 h were irradiated at 493 K to 2.2 dpa in Japan Research Reactor No.3 at Japan Atomic Energy Agency. The SSRT results showed the as-normalized specimens failed by IGSCC in oxygenated temperature water at 573 K. SSRT results of specimens with other tempering temperature conditions will be presented at conference. In irradiated specimen, IGSCC did not occur in oxygenated water at 5113-603 K. IGSCC also did not occur in hydrogenated water at 573 K. However TGSCC occurred in the irradiated specimen with a round notch (radius= {approx}0.2 mm) in oxygenated water at 573 K

  19. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  20. Mechanical and fatigue properties of martensitic Fe-13Cr steel in contact with lead and lead-bismuth melts

    Energy Technology Data Exchange (ETDEWEB)

    Yaskiv, O.I., E-mail: oleh.yaskiv@ipm.lviv.ua; Fedirko, V.M.

    2014-01-15

    Highlights: •We investigated the influence of Pb and Pb-Bi melts on mechanical properties of Fe-13Cr steel at high temperatures. •We revealed the temperature interval of liquid metal embrittlement of Fe-13Cr steel. •Pb-Bi has more negative impact as compared with Pb for both plasticity and fatigue. -- Abstract: The influence of stagnant liquid-metal environments (Pb and Pb-Bi) on mechanical (strength and plasticity) and fatigue properties (low cycle fatigue) of martensitic Fe-13Cr steel in temperature interval of 250–600 °S have been investigated. Heavy liquid metals facilitate decreasing in ultimate strength by 10–20% against that in vacuum. The increase of temperature enhances this effect. Fe-13Cr steel is susceptible to liquid-metal embrittlement in the temperature interval of 350–450 °S, which manifests itself more substantially in lead-bismuth eutectic. The decrease of plasticity in Pb is 11% at 450 °S and in Pb-Bi is 30% in temperature interval 350–400 °S. Liquid metal environments significantly reduce fatigue life of Fe-13Cr steel. Pb-Bi has a more negative impact. In particular, with increasing total strain amplitude (up to 1.0%), the decrease in the cycle number to fracture by more than two orders of magnitude occurs.

  1. Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel

    Science.gov (United States)

    Lu, Si-Yuan; Yao, Ke-Fu; Chen, Yun-Bo; Wang, Miao-Hui; Ge, Xue-Yuan

    2015-12-01

    The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl--containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ-M3C carbides, nano-sized Cr-rich M23C6 carbides, and micro/submicron-sized Cr-rich M23C6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl--containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.

  2. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  3. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mariappan, K.; Nagesha, A.; Prasad Reddy, G.V.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Effect of tungsten and tantalum on low cycle fatigue behavior of RAFM steels. Black-Right-Pointing-Pointer Both alloying elements W and Ta improved fatigue life. Black-Right-Pointing-Pointer Increase in Ta content improved fatigue life more than W. Black-Right-Pointing-Pointer Optimization of W content at 1.4 wt.%. Black-Right-Pointing-Pointer Softening behavior closely related to W and Ta content. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of International Thermonuclear Experimental Reactor (ITER). Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood in order to estimate the component lifetime and issues concerning the structural integrity of components. The current work focuses on the effect of tungsten and tantalum on the low cycle fatigue (LCF) behavior of RAFM steels. Both alloying elements tungsten and tantalum improved the fatigue life. Influence of Ta on increasing fatigue life was an order of magnitude higher than the influence of W on improving the fatigue life. Based on the present study, the W content was optimized at 1.4 wt.%. Softening behavior of RAFM steels showed a strong dependence on W and Ta content in RAFM steels.

  4. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  5. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic–martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-01-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic–Martensitic (RAFM) steel (9Cr–1W–0.06Ta–0.22V–0.08C) have been investigated over a temperature range of 300–873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  6. On the cryogenic magnetic transition and martensitic transformation of the austenite phase of 7MoPLUS duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.m [Department of Electromechanical Engineering, University of Macau, Macau (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2010-08-15

    The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of 'old' and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the 'old', simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.

  7. Martensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties

    Directory of Open Access Journals (Sweden)

    Mohammad Shirdel

    2015-06-01

    Full Text Available Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjected to heavy cold rolling to produce a nearly complete martensitic structure. Subsequently, a wide range of annealing temperatures (600 to 800°C and times (1 to 240 min were employed to assess the reversion behavior and to find the best annealing condition for the production of the nano/ultrafine grained austenitic microstructure. Microstructural characterizations have been performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and magnetic measurement, whereas the mechanical properties were assessed by tensile and hardness tests. After thermomechanical treatment, a very fine austenitic structure was obtained, which was composed of nano sized grains of ~ 85 nm in an ultrafine grained matrix with an average grain size of 480 nm. This microstructure exhibited superior mechanical properties: high tensile strength of about 1280 MPa with a desirable elongation of about 41%, which can pave the way for the application of these sheets in the automotive industry.

  8. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Gu [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Lee, Chang-Hoon, E-mail: lee1626@kims.re.kr [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kang, Namhyun [Pusan National University, Busan 609-735 (Korea, Republic of); Chan Kim, Hyoung [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2017-03-15

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M{sub 23}C{sub 6} carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20–100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M{sub 23}C{sub 6} carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  9. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  10. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  11. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel

    International Nuclear Information System (INIS)

    Kisko, A.; Misra, R.D.K.; Talonen, J.; Karjalainen, L.P.

    2013-01-01

    In order to improve understanding on the behavior of ultrafine-grained austenitic stainless steels during deformation, the influence of the austenite grain size and microstructure on the strain-induced martensite transformation was investigated in an austenitic 15Cr–9Mn–Ni–Cu (Type 204Cu) stainless steel. By different reversion treatments of the 60% cold-rolled sheet, varying grain sizes from ultrafine (0.5 μm), micron-scale (1.5 μm), fine (4 μm) to coarse (18 μm) were obtained. Some microstructures also contained a mixture of ultrafine or micron-scale and coarse initially cold-worked austenite grains. Samples were tested in tensile loading and deformation structures were analyzed after 2%, 10% and 20% engineering strains by means of martensite content measurements, scanning electron microscope together with a electron backscatter diffraction device and transmission electron microscope. The results showed that the martensite nucleation sites and the rate of transformation vary. In ultrafine grains strain-induced α′-martensite nucleates at grain boundaries and twins, whereas in coarser grains as well as in coarse-grained retained austenite, α′-martensite formation occurs at shear bands, sometimes via ε-martensite. The transformation rate of strain-induced α′-martensite decreases with decreasing grain size to 1.5 μm. However, the rate is fastest in the microstructure containing a mixture of ultrafine and retained cold-worked austenite grains. There the ultrafine grains transform quite readily to martensite similarly as the coarse retained austenite grains, where the previous cold-worked microstructure is still partly remaining

  12. High Temperature Creep-Fatigue-Oxidation Interactions in 9% Cr Martensitic Steels

    International Nuclear Information System (INIS)

    Fournier, B.; Sauzay, M.; Pineau, A.

    2007-01-01

    Full text of publication follows: Martensitic steels of the 9-12%Cr family are widely used in the energy industry and were selected as candidate materials for structural components of future fusion reactors [1,2]. Typical in-service conditions require operating temperatures between 673 and 873 K, which means that the creep behaviour of these steels is of primary interest. In addition, some components are anticipated to operate in a pulsed mode, leading to complex time-dependencies of temperature, stress and strain in materials. Therefore, in design procedures, fatigue and creep-fatigue data are required. Furthermore, to meet the need for very long inservice lifetime of components (with very long hold times ∼ one month) reliable cyclic lifetime models are necessary, since complete tests with such long holding periods cannot, of course, be carried out in laboratory. To make these extrapolations safer and more reliable a precise understanding of the damage and interaction mechanisms is required. Fatigue, creep-fatigue and relaxation-fatigue tests were carried out at high temperature (823 K), under three different atmospheres (air, vacuum and He+impurities) and for a large panel of applied fatigue and creep strain. Holding periods are found to decrease the fatigue lifetime. Surprisingly enough compressive holding periods are more deleterious than tensile ones in air. Observations were carried out on fracture surfaces, specimen surfaces and cross sections. No creep cavity is visible, whatever the holding period duration, but a major influence of oxidation is highlighted. Oxidation is all the more predominant for low applied strains. Tests carried out under vacuum and helium show that the formation of a thick oxide layer can lead to a fatigue lifetime 4 times shorter. Crack propagation is mainly transgranular for all applied strains. Both damage observations and a theoretical study of oxide layers fracture mechanisms allow qualitative explanations for recorded fatigue

  13. OPTIFER, a further step in development of Low Activation Martensitic Steels. Results of Characterization Experiments; OPTIFER, un paso mas hacia el desarrollo de un acero martensitico de baja activacion. Resultados de los ensayos de caracterizacion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.P.; Lapena, J.; Hernandez, M.T.; Schirra, M.

    1996-07-01

    Within the framework of the development of low activation structural materials to be used in nuclear fusion reactors four martensitic Fe-9,5 Cr alloys were conceived with different contents of tungsten-tantalum and/or germanium as substitutions for Mo, Ni, Nb and Al. As a result of recent activation calculations, the maximum concentrations of all accompanying elements, which are not desirable under radiological aspects, were determined for the first time for these OPTIFER steels, and laid down in specifications for the manufacturers of the alloys, after double-vacuum melting, only the real alloys with some of these accompanying elements added are within the specifications. For the majority of alloys the gap between request in radiological terms and the metallurgical/analytical reality is still considerable. The behavior during transformation and heat treatment roughly corresponds to that of conventional martensitic 9-12%Cr steels. Progress has been conspicuous as regards the notch impact toughness behavior, both at upper shelf level and in ductile brittle transition (DBTT) the W(Ce) alloyed OPTIFER variant exhibits more favorable values than the conventional MANET-II steel from the fusion program, with better strength characteristics above 500 degree centigree. With only a moderate decrease in strength values (compared to MANET-II), the Ge (Ce) variant excels by a distinct improvement in notch impact toughness values and, theoretically, a stronger reduction in dose rate than the W(Ce) variant and comes close to the decay curve of pure iron. (Author) 21 refs.

  14. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel

    International Nuclear Information System (INIS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-01-01

    The magnetic properties of ferrite–martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels. - Highlights: • Normalized impedance decreased as the ASTM grain size number increased. • An increase in martensite percentage resulted in a decrease in normalized impedance. • As the martensite in the DP steels increased, the MBN signals increased. • Barkhausen jumps increased with increasing the ASTM grain size number. • Both ECT and MBN had a high potential to detect microstructural changes of DP steels

  15. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    Science.gov (United States)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  16. An acoustic emission study of martensitic and bainitic transformations in carbon steel

    NARCIS (Netherlands)

    Van Bohemen, S.M.C.

    2004-01-01

    Steel is one of the most commonly used materials today, especially in industrial sectors such as ship building and the automotive industry. In order to meet the requirements for steel applications, new multi-phase steels are being developed. The microstructure of these steels consists of a variety

  17. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E., E-mail: vtp@igcar.gov.in

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  18. Study of the first stages of oxidation of a ferritic-martensitic steel Fe-12Cr in CO2

    International Nuclear Information System (INIS)

    Bouhieda, S.

    2012-01-01

    In the framework of the development of Sodium Fast Reactors in France, supercritical carbon dioxide integrated in the Brayton cycle is proposed as new cycle energy conversion system to replace current steam generators. Ferritic-Martensitic steels with 9-12 wt% Cr are good candidates for heat exchanger application because they have good mechanical properties up to a temperature of 600 C, a high thermal conductivity, a low coefficient of thermal expansion and a lower cost than that of austenitic steels. However, it has been found that these steels present a high parabolic oxide growth rate and a strong carburization in the temperature and pressure conditions of the SC-CO 2 cycle (550 C, 250 bar). This study aims to investigate the influence of different parameters (impurities present in CO 2 , thermal ramp rate and surface state) on the oxidation mechanism of a Fe-12 Cr steel in CO 2 at 550 C. It has been shown that depending on these parameters, a thin protective oxide scale without any strong carburization can be obtained. A model is proposed to explain the experimental results. (author) [fr

  19. Effects of Ti element on the microstructural stability of 9Cr–WVTiN reduced activation martensitic steel under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jin, Shuoxue; Li, Tiecheng; Chen, Jihong [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada)

    2014-12-15

    Microstructure of 9Cr–WVTiN reduced-activation martensitic steels with two different Ti concentrations irradiated with Fe{sup +}, He{sup +} and H{sup +} at 300 °C was studied with transmission electron microscopy. Small dislocation loops were observed in the irradiated steels. The mean size and number density of dislocation loops decreased with the increase of Ti concentration. The segregation of Cr and Fe in carbides was observed in both irradiated steels, and the enrichment of Cr and depletion of Fe were more severe in the low Ti-concentration 9Cr–WVTiN steel.

  20. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang, E-mail: thaksang.byun@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hoelzer, David T. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Jeoung Han [Hanbat National University, Daejeon 305-719 (Korea, Republic of); Maloy, Stuart A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-15

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The K{sub JQ} versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.