Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)
1996-11-01
Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.
Dynamics of Electrically Driven Martensitic Phase Transitions in Fe Nanoislands
Gerhard, L.; Wesselink, R.J.H.; Ostanin, S.; Ernst, A.; Wulfhekel, W.
2013-01-01
Magnetoelectric coupling has attracted interest due to its potential to write magnetic information with electric fields. In the model system of Fe islands on Cu(111), electric fields can induce martensitic phase transitions between ferromagnetic body-centered cubic and antiferromagnetic face-centere
Ab initio simulations of phase stability and martensitic transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-12-01
For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Diffusion Quantum Monte Carlo Study of Martensitic Phase Transition: The Case of Phosphorene
Reeves, Kyle G; Kanai, Yosuke
2016-01-01
Recent technical advances in dealing with finite-size errors make quantum Monte Carlo methods quite appealing for treating extended systems in electronic structure calculations, especially when commonly-used density functional theory (DFT) methods might not be satisfactory. We present a theoretical study of martensitic phase transition of a two-dimensional phosphorene by employing diffusion Monte Carlo (DMC) approach to investigate the energetics of this phase transition. The DMC calculation supports DFT prediction of having a rather diffusive barrier that is characterized by having two transition states, in addition to confirming that the so-called black and blue phases of phosphorene are essentially degenerate. At the same time, the calculation shows the importance of treating correlation energy accurately for describing the energy changes in the martensitic phase transition, as is already widely appreciated for chemical bond formation/dissociation. Building on the atomistic characterization of the phase tr...
Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals
Kexel, Christian; Schramm, Stefan; Solov'yov, Andrey V.
2015-09-01
Shape-memory (SM) alloys can, after initial inelastic deformation, reconstruct their pristine lattice structure upon heating. The underlying phenomenon is the structural solid-solid phase transition from low-temperature lower-symmetry martensite to the high-temperature higher-symmetry austenite. Conventional nickel-titanium (NiTi) with near-equiatomic concentration already possesses an eminent importance for many applications, whereas the nanostructured equivalent can exhibit yet enhanced thermomechanical properties. However, no plausible microscopic theory of the SM effect in NiTi exists, especially for nanoscale systems. We investigate the thermally induced martensite-austenite phase transition in free equiatomic nanocrystals, comprising up to approximately 40 000 atoms, by means of molecular-dynamics simulations (MD) using a classical Gupta-type many-body scheme. Thereby we complement and extend a previously published study [D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)]. The structural transition, revealing features of a first-order phase transition, is demonstrated. It is contrasted with the melting phase transition, a quantum solid model and bulk experimental findings. Moreover, a nucleation-growth process is observed as well as the irreversibility of the transition upon cooling.
Torrents, Genís; Illa, Xavier; Vives, Eduard; Planes, Antoni
2017-01-01
A simple model for the growth of elongated domains (needle-like) during a martensitic phase transition is presented. The model is purely geometric and the only interactions are due to the sequentiality of the kinetic problem and to the excluded volume, since domains cannot retransform back to the original phase. Despite this very simple interaction, numerical simulations show that the final observed microstructure can be described as being a consequence of dipolar-like interactions. The model is analytically solved in 2D for the case in which two symmetry related domains can grow in the horizontal and vertical directions. It is remarkable that the solution is analytic both for a finite system of size L ×L and in the thermodynamic limit L →∞ , where the elongated domains become lines. Results prove the existence of criticality, i.e., that the domain sizes observed in the final microstructure show a power-law distribution characterized by a critical exponent. The exponent, nevertheless, depends on the relative probabilities of the different equivalent variants. The results provide a plausible explanation of the weak universality of the critical exponents measured during martensitic transformations in metallic alloys. Experimental exponents show a monotonous dependence with the number of equivalent variants that grow during the transition.
Striped periodic minimizers of a two-dimensional model for martensitic phase transitions
Giuliani, Alessandro
2010-01-01
In this paper we consider a simplified two-dimensional scalar model for the formation of mesoscopic domain patterns in martensitic shape-memory alloys at the interface between a region occupied by the parent (austenite) phase and a region occupied by the product (martensite) phase, which can occur in two variants (twins). The model, first proposed by Kohn and Mueller, is defined by the following functional:
Lindgård, Per-Anker; Mouritsen, Ole G.
1990-01-01
-dimensional Monte Carlo simulation, showing clear precursor phenomena near the first-order transition and spontaneous nucleation. The kinetics of the domain growth is studied and found to be exceedingly slow. The results are applicable for martensitic transformations and structural surface...
Khan, Mahmud; Brock, Jeffrey; Sugerman, Ian
2016-02-01
The martensite-austenite phase transition in a series of N i2M n1 -xC rxGa Heusler alloys has been investigated by x-ray diffraction, dc magnetization, and electrical resistivity measurements. With increasing Cr concentration, the martensitic phase transformation shifts to higher temperature while the ferromagnetic transition shifts to lower temperature. For x 0.5 , the transition occurs in a paramagnetic state. The Cr doping results in a reconstruction of the electronic structure, particularly, near the Fermi level, which is indicated in the resistivity data where a systematic jumplike anomaly is observed in the vicinity of the martensite-austenite phase transformation. With increasing Cr concentration, the magnitude of the jump in resistivity changes dramatically from less than 1 % to nearly 18 % The results are discussed considering the fundamental interactions in Heusler alloys.
Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai
2015-07-01
The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.
Agouram, S.; Bensalah, M.O.; Ghazali, A. [Mohammed V Univ., Rabat (Morocco). Lab. of Mechanics and Materials
1998-12-11
The hysteretic behavior of Cu-Zn-Al shape memory alloys (SMAs) in thermally induced martensitic phase transition is dealt with. The problem is studied by means of a kinematic analysis where the internal variables describing the material`s microstructure are regarded as implicit functions of the applied thermomechanical loading parameters ({Sigma}{sub ij}, {Tau}). On the other hand, a thermodynamic approach is used in which the local balance formalism is based on the thermoelastic equilibrium concept. Considering that thermoelastic equilibrium temperatures between phases, in the forward and reverse transformation, are dependent on the location in the transformation path enables the hysteretic behavior to be determined. Hence, a set of non-linear equations is deduced simulating the complete and partial cycles. Results obtained in this way, in the thermally induced phase transition with no applied stress, are in good agreement with experimental observations performed on Cu-based SMAs.
Dincer, I., E-mail: idincer@eng.ankara.edu.tr [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara (Turkey); Yuezueak, E.; Durak, G.; Elerman, Y. [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Besevler, Ankara (Turkey); Bell, A.M.T. [HASYLAB/DESY, Notkestrasse 85, 22607 Hamburg (Germany); Ehrenberg, H. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen (Germany)
2012-11-05
Highlights: Black-Right-Pointing-Pointer CoMnGe{sub 0.95}Ga{sub 0.05} alloy shows a structural phase transformation from hexagonal to orthorhombic. Black-Right-Pointing-Pointer In CoMnGe{sub 0.95}Ga{sub 0.05}, the giant magnetocaloric effect is observed around room temperature. Black-Right-Pointing-Pointer The maximum magnetic entropy change is -5.2 J kg{sup -1} K{sup -1} in magnetic field change of 1 T. - Abstract: The structural, magnetic and magnetocaloric properties of CoMnGe{sub 0.95}Ga{sub 0.05} have been investigated by using electron microscopy, calorimetric, synchrotron and magnetic measurements. The substitution of Ga for Ge leads to decreasing on the martensitic transition temperature from 650 K to 315 K. CoMnGe{sub 0.95}Ga{sub 0.05} has hexagonal structure (space group P6{sub 3}/mmc) above the martensitic transition temperature and orthorhombic structure (space group Pnma) below this temperature. The magnetic field dependence of magnetization measurements are performed in the heating and cooling processes around the martensitic transition temperature to determine magnetocaloric effect. It is observed that the magnetic entropy change associated with the martensitic transition temperature can be as high as -5.2 J kg{sup -1} K{sup -1} in field of 1 T.
Influence of. beta. -phase unhomogeneity on titanium martensite structure
Gridnev, V.N.; Ivasishin, O.M.; Markovskij, P.E.; Oshkaderov, S.P.; Svechnikov, V.L. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)
Martensite structure is studied, formed by the hardening of unhomogeneous ..beta..-solid solution, its concentration unhomogeneity being formed under accelerated heating while hardening. It is established that changes in morphology and crystal geometry of martensite are observed with hardening temperature increasing. The concentration unhomogeneity of ..beta..-phase may lead to the simultaneous existence of various types of martensite together with the increased quantity of the residual ..beta..-phase.
Influence of magnetic fields on structural martensitic transitions
Lashley, J C [Los Alamos National Laboratory; Cooley, J C [Los Alamos National Laboratory; Smith, J L [Los Alamos National Laboratory; Fisher, R A [NON LANL; Modic, K A [Los Alamos National Laboratory; Yang, X- D [TEMPLE UNIV; Riseborough, P S [TEMPLE UNIV.; Opeil, C P [BOSTON COLLEGE; Finlayson, T R [UNIV OF MELBOURNE; Goddard, P A [UNIV OF OXFORD; Silhanek, A V [INPAC
2009-01-01
We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.
Influence of martensitic transformation on the magnetic transition in Ni-Mn-Ga
Kokorin, V. V.; Konoplyuk, S. M.; Dalinger, A.; Maier, H. J.
2017-06-01
The magnetic transition with a temperature hysteresis of about 7 K was observed in the martensitic phase of Ni51.9Mn27Ga211. The measurements of AC magnetic susceptibility in constant magnetic fields up to 570 kA/m have proved its magnetic origin. The transport and caloric measurements were used to gain better understanding of the nature of this phenomenon. The variation of the martensite lattice parameters with temperature is suggested to account for the hysteresis of the magnetic transition.
D.M. Raj kumar
2016-06-01
Full Text Available The effect of Fe on the martensitic transitions, magnetic and inverse magnetocaloric effect in Ni47Mn40-xFexIn13 ribbons (x = 1, 2, 3 and 5 has been investigated. All the ribbon compositions under study have shown the presence of austenite phase at room temperature. The variation of martensitic transition with the increase in Fe-content is non-monotonic. The thermal hysteresis of the martensitic transition increased with the increase in Fe-content. The martensitic transitions shifted to lower temperatures in the presence of high magnetic fields. A maximum magnetic entropy change (∆SM of 50 Jkg-1K-1 has been achieved in the Ni47Mn38Fe2In13 (x = 1 ribbon at 282 K for an applied field of 5 T.
Li Zhe; Jing Chao; Zhang Hao-Lei; Cao Shi-Xun; Zhang Jin-Cang
2011-01-01
This paper presents a study of the inverse magnetocaloric effect (MCE)corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn3sSn12 and Ni50CoMn34In,5 Heusler alloy. Through heat capacity measurements, it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases, as well as thermal hysteresis during martensitic transition. However, careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.
Complexion-mediated martensitic phase transformation in Titanium
Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A.-C.; Raabe, D.
2017-02-01
The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α'' (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.
Complexion-mediated martensitic phase transformation in Titanium
Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.
2017-01-01
The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484
Planes, Antoni; Vives, Eduard
2017-08-01
Martensitic transitions take place intermittently as a sequence of avalanches which are accompanied by the emission of acoustic waves. The study of this acoustic emission (AE) reveals the scale-free nature of the avalanches. In a number of shape memory materials undergoing a martensitic transition it has been found that, in spite of relatively low hysteresis, the dynamics of forward and reverse transitions are different, which may explain the fact that the AE activity is different in both forward and reverse transitions. The asymmetry could be a consequence of the fact that, while nucleation is required for the transition from the parent to martensitic phase to take place, reverse transition occurs by fast shrinkage of martensitic domains. We have analysed in detail the distribution of avalanches in cooling and heating runs in Fe-Pd and Cu-Zn-Al shape-memory alloys. In the former, the martensitic transition is weakly first order while it shows a significant first order character in the latter. We have found that in Fe-Pd the distributions are power law for the forward and reverse transitions characterized by the same critical exponents. For Cu-Zn-Al the distribution of avalanches is critical in forward transitions but exponentially damped in the reverse transition. It is suggested that this different behaviour could originate from the different dynamic mechanisms in forward and reverse transitions. This paper is dedicated to our friend Ekhard Salje in the occasion of his 70th birthday.
Strain partitioning in dual-phase steels containing tempered martensite
Han, Qihang, E-mail: hanqihang@baosteel.com [Research Institute, Baoshan Iron and Steel Co., Ltd., Shanghai 201900 (China); State Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel), Shanghai 201900 (China); Institute for Frontier Materials, Deakin University, Geelong, VIC. 3217 (Australia); Asgari, Alireza; Hodgson, Peter D.; Stanford, Nicole [State Key Laboratory of Development and Application Technology of Automotive Steels (BaoSteel), Shanghai 201900 (China)
2014-08-12
Tempering has been used as a method to develop a range of dual phase steels with the same martensite morphology and volume fraction, but containing phases with different relative strengths. These steels were used to examine the strain partitioning between the two constituent phases experimentally through mechanical testing and numerically through finite element modelling. It was found that increasing the differential in strength between the two phases not only produces regions of high strain, but also regions of low strain. On average, a larger difference in strength between the phases increased the strain carried by the softer phase. There was no discernible preferential strain localisation to the ferrite/martensite interface, with the regions of strain localisation being determined by the morphology of the microstructure. A direct correlation between the average strain in the ferrite, and the measured ductility has been found.
Solé, Ricard V
2011-01-01
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation o
Phase-field simulation of lenticular martensite and inheritance of the accommodation dislocations
Kundin Julia
2015-01-01
Full Text Available A phase-field simulation is performed to study the substructure evolution of lenticular martensite in TRIP steels. The evolution of martensitic phase variants and dislocations is calculated by a coupled phase-field micro-elasticity model. The simulations at isothermal conditions show that during the phase transformation, the accommodation dislocations evolving in the austenite are inherited by the martensitic phase and cause the further evolution of a single martensitic variant in the direction of the dislocation slip. As a result of the interaction, a change of the growth mode from twining to slip can be observed in accordance to the substructure formation of lenticular martensite. This interaction between the dislocations and martensitic phase depends on dislocation slip systems and the orientation of the martensitic variants as well as on the energy barriers for the phase transformation and for the dislocation motion.
Effect of hardness of martensite and ferrite on void formation in dual phase steel
Azuma, M.; Goutianos, Stergios; Hansen, Niels;
2012-01-01
The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...
MARTENSITIC CREEP RESISTANT STEEL STRENGTHENED BY Z-PHASE
2008-01-01
% the following components: 9 to 15% Cr, 0.01-0.20% N, C in an amount less than 0.1%, one or more of: 0.01- 0.5%V,0.01-1%Nb, 0.01-2%Ta, and a balance being substantially iron and inevitable impurities. The invention further relates to a method of manufacturing such a steel alloy, a component comprising......The present invention relates to steel alloys having a martensitic or martensitic- ferritic structure and comprising Z-phase (CrXN) particles, where X is one or more of the elements V, Nb, Ta, and where the Z-phase particles have an average size of less than 400 nm. The alloy comprises by wt...... such a steel alloy, and to the use of such a steel alloy for high temperature components....
Texture evolution during nitinol martensite detwinning and phase transformation
Cai, S.; Schaffer, J. E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Ave., Fort Wayne, Indiana 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., 433/D008, Argonne, Illinois 60439 (United States); Yu, C. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing (China)
2013-12-09
Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.
Texture evolution during nitinol martensite detwinning and phase transformation
Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.
2013-12-01
Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.
STRESS-INDUCED MARTENSITIC TRANSFORMATION AND A NEW 7-LAYER MARTENSITE PHASE IN THE 63.1Ni-Al ALLOY
Martynov, V.; Enami, K.; Khandros, L.; Tkachenko, A.; Nenno, S.
1982-01-01
It is well known that the nickel-rich Ni-Al β phase alloy exhibits the martensitic transformation and the crystal structures of the as-quenched martensites are Llo(α'2) and 2H, (1,2). However, there is no systematic investigation on the deformation behaviour and stress-induced martensitic transformation in this alloy system, other than the deformation behaviour of the α'2 martensite (3). Recently we investigated the deformation behaviour and the stress-induced martensitic transformation of th...
Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys
Q. Tao
2012-12-01
Full Text Available A series of Ni50-xMn41+xSn9 (x = 0–19 alloys from Ni-rich to Mn-rich composition were prepared, and the composition dependence of phase transitions and magnetic properties were investigated. No γ-phase can be observed until x = 17. Martensitic transformation from ferromagnetic austenite to weak-magnetic or ferromagnetic martensite was observed in alloys with Mn content between 52 and 58, and magnetic-field-induced transformation was confirmed. A large magnetization change of 44 Am2/kg across the martensitic transformation is observed in Ni37Mn54Sn9. Our results indicate that Mn-rich Ni-Mn-Sn alloys show promise as metamagnetic shape memory alloys.
Gitterman, Moshe
2014-09-01
In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...
Stability analysis of the martensitic phase transformation in Co2NiGa Heusler alloy
Talapatra, Anjana; Arróyave, Raymundo; Entel, Peter; Valencia-Jaime, I.; Romero, Aldo H.
2015-08-01
Phase competition and the subsequent phase selection are important characteristics of alloy systems exhibiting numerous states of distinct symmetry but comparable energy. The stoichiometric Co2NiGa Heusler alloy exhibits a martensitic transformation with concomitant reduction in symmetry from an austenitic L 21 phase (cubic) to a martensitic L 10 phase (tetragonal). A structural search was carried out for this alloy and it showed the existence of a number of structures with monoclinic and orthorhombic symmetry with ground state energies comparable to and even less than that of the L 10 structure, usually reported as the ground state at low temperatures. We describe these structures and focus in particular on the structural transition path from the L 21 to tetragonal and orthorhombic structures for this material. Calculations were carried out to study the Bain (L 21-L 10 ) and Burgers (L 21-hcp ) transformations. The barrierless Burgers path yielded a stable martensitic phase with orthorhombic symmetry (O ) with energy much lower—beyond the expected uncertainty of the calculation methods—than the known tetragonal L 10 martensitic structure. This low-energy structure (O ) has yet to be observed experimentally and it is thus of scientific interest to discern the cause for the apparent discrepancy between experiments and calculations. It is postulated that the Co2NiGa Heusler system exhibits a classic case of the phase selection problem: although the unexpected O phase may be relatively more stable than the L 10 phase, the energy barrier for the (L 21-O ) transformation may be much higher than the barrier to the (L 21-L 10 ) transformation. To validate this hypothesis, the stability of this structure was investigated by considering the contributions of elastic and vibrational effects, configurational disorder, magnetic disorder, and atomic disorder. The calculations simulating the effect of magnetic disorder/high temperature as well as the atomic disorder
Kundin, J.; Raabe, D.; Emmerich, H.
2011-10-01
If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.
B. Zhang; X. Lu; Z.X. Qin; H.B. Chang; X.Y. Ruan
2002-01-01
The aims of the work were to study the effect of Ge (0-6wt. %) on the paramagnetic-antiferromagnetic transition and martensitic transformation of Fe-Mn alloy using the susceptibility, microstructure examination, X-ray diffraction (XRD) and lattice parameter measurement. Ge lowers the Neel temperature, TN, and enhances the mag-netic susceptibility X, changing the Pauli paramagnetism above TN to paramagnetism state obeying the Curie Weiss law, which is essentially similar to that of γ-Fe-Mn alloys containing Al or Si; Ge depresses γ → ε martensitic transformation, which attribute to Ge increasing the stacking fault energy; Moreover, Ge increases the lat-tice parameter of 7 phase, and low content Ge increases the lattice parameter of γphase more than that of high Ge content. Comparing Ge(4s2 4p2 ) with Si(3s2 3p2 ) and Al(3s2 3p1), which have the same outer-shell of electron structures, we found that their effects on the martensitic transformation of Fe-Mn alloy are completely different. The result suggests the outer-shell of electron is not the main factor of governing the Ms temperature of Fe-Mn alloy although it is essential in the alloy's antiferromagnetic transition. The relation among the Ms temperature, stacking fault energy and lattice parameter of austenite, has been discussed in brief.
Sharma, Jyoti; Suresh, K. G.
2016-12-01
In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.
S. Hesamodin Talebi
2017-09-01
Full Text Available Phase transformations during non-isothermal tempering of bainitic or martensitic microstructures obtained after quenching of a medium-carbon low-alloy steel was studied. The microstructures correspond to different locations of an as-quenched large-sized forged ingot used as a die material in the automotive industry. High-resolution dilatometry experiments were conducted to simulate the heat treatment process, as well as to investigate different phenomena occurring during non-isothermal tempering. The microstructures were characterized using optical and scanning electron microscopy. Dilatometry analyses demonstrated that tempering behavior varied significantly from bainitic to martensitic microstructures. Retained austenite, which exists between bainitic ferrite sheaves, decomposes to lower bainite causing a remarkable volume increase. It was found that this decomposition finishes below 386 °C. By contrast, martensite tempering was accompanied with a volume decrease due to the decomposition of medium-carbon martensite to low carbon martensite and carbides.
Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.
Pun, G P Purja; Mishin, Y
2010-10-01
Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.
Xiurong Zuo
2012-12-01
Full Text Available A kind of medium-carbon low-alloy dual-phase steels with high-content martensite produced by intercritical annealing at 785-830 ºC for 10-50 minutes were studied in aspect of microstructures and work hardening behavior using SEM and tensile testing machine. The experimental results showed that the work hardening of the studied steels obeyed the two-stage work hardening mechanism, whose work hardening exponent of the first stage was higher than that of the second stage. The work hardening exponent increased with increasing the intercritical annealing temperature and time. For series A steel intercritically annealed at 785 ºC with starting microstructure of ferrite plus pearlite, austenite nucleated at the pearlite colonies, so the holding time of only 50 minutes can increase the work hardening exponent obviously. For series B steel with starting microstructure of martensite, austenite nucleated at lath interfaces, lath colony boundaries of primary martensite and carbides, accelerating the formation of austenite, so holding time for 30 minutes made the work hardening exponent increase obviously. High work hardening rate during initial plastic deformation (<0.5% strain was observed.
Mazaheri, Yousef, E-mail: y.mazaheri@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Faculty of Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Kermanpur, Ahmad; Najafizadeh, Abbas [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2015-07-15
Dual phase (DP) steels consisting different volume fractions of ferrite and martensite and different ferrite grain size were produced by a new route utilizing cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structure at 770 °C for different times. Scanning electron microscopy has been supplemented by nanoindentation and tensile test to follow microstructural changes and their correlations to the variation in phase's hardness and mechanical properties. The results showed that longer holding times resulted in coarser and softer ferrite grains in DP microstructures. Martensite nanohardness variation with holding time is related to change in its carbon content. Mechanical properties such as strength, elongation and toughness are well correlated with the martensite/ferrite hardness ratio.
Singh, Nidhi; Borgohain, Barsha; Srivastava, A. K.; Dhar, Ajay; Singh, H. K.
2016-03-01
Nanocrystalline ribbons of inverse Heusler alloy Mn2Ni1.6Sn0.4 have been synthesised by melt spinning of the arc-melted bulk precursor. The single-phase ribbons crystallize into a cubic structure and exhibit very fine crystallite size of phase transition that begins at M S ≈ 249 K and finishes at M f ≈ 224 K. During warming, the reverse AFM-M to FM-A transitions begins at A s ≈ 240 K and finishes at A f ≈ 261 K. A re-entrant FM transition is observed in the M-phase at T_{{CM}} ≈ 145 K. These transitions are also confirmed by temperature-dependent resistivity ( ρ- T) measurements. The hysteretic behaviour of M- T and ρ- T in the temperature regime spanned by the A-M transition is a manifestation of the first-order phase transition. M- T and ρ- T data also provide unambiguous evidence in favour of spin glass at T AC susceptibility measurements, confirms the existence of canonical spin glass at T phase.
Han Zhida, E-mail: zhida.han@gmail.com [Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Department of Physics, Nanjing University, Nanjing 210093 (China); Chen Xi; Zhang Yao; Chen Jie [Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Qian Bin; Jiang Xuefan [Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Wang Dunhui; Du Youwei [Department of Physics, Nanjing University, Nanjing 210093 (China)
2012-02-25
Highlights: Black-Right-Pointing-Pointer The first study of 4d transition-metal addition in Ni-Mn-based ferromagnetic shape memory alloys. Black-Right-Pointing-Pointer The martensitic transformation temperatures decrease with the increase of Nb content. Black-Right-Pointing-Pointer 4d transition-metal doping provide an alternative way to tailor the phase transitions and magnetocaloric effect Ni-Mn-X (X = In, Sn, Sb) alloys. - Abstract: The influence of 4d transition-metal Nb substitution for Ni in Mn{sub 50}Ni{sub 50-y}Sn{sub y} (y = 9, 10) alloys on the phase transitions and magnetocaloric effect was investigated. Austenitic phase of Nb-doped Mn{sub 50}Ni{sub 50-y}Sn{sub y} alloys have the cubic structure, and Nb addition results in the expansion of cell volume. The martensitic transformation temperatures decrease with the increase of Nb content, which could be explained by the decrease of valence electron concentration. Our results indicate that 4d transition-metal doping may provide an alternative way to tailor the martensitic transformation and the magnetocaloric effect in ferromagnetic shape memory alloys.
Atomistic Study on Size Effects in Thermally Induced Martensitic Phase Transformation of NiTi
Sourav Gur
2016-01-01
Full Text Available The atomistic study shows strong size effects in thermally induced martensitic phase transformation evolution kinetics of equiatomic NiTi shape memory alloys (SMAs. It is shown that size effects are closely related to the presence of free surfaces; thus, NiTi thin films and nanopillars are studied. Quasi-static molecular dynamics simulations for several cell sizes at various (constant temperatures are performed by employing well-established interatomic potentials for NiTi. The study shows that size plays a crucial role in the evolution of martensite phase fraction and, importantly, can significantly change the phase transformation temperatures, which can be used for the design of NiTi based sensors, actuators, or devices at nano- to microscales. Interestingly, it is found that, at the nanometer scale, Richard’s equation describes very well the martensite phase fraction evolution in NiTi thin films and nanopillars as a function of temperature.
A study on fatigue crack growth in dual phase martensitic steel in air environment
K V Sudhakar; E S Dwarakadasa
2000-06-01
Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, respectively to evaluate the potential of DP steels. The crack growth rates (/) at different stress intensity ranges ( ) were determined to obtain the threshold value of stress intensity range ( th). Crack path morphology was studied to determine the influence of microstructure on crack growth characteristics. After the examination of crack tortuosity, the compact tension (CT) specimens were pulled in static mode to determine fracture toughness values. FCG rates decreased and threshold values increased with increase in vol.% martensite in the DP steel. This is attributed to the lower carbon content in the martensite formed at higher intercritical annealing (ICA) temperatures, causing retardation of crack growth rate by crack tip blunting and/or deflection. Roughness induced crack closure was also found to contribute to the improved crack growth resistance at higher levels of martensite content. Scanning electron fractography of DP steel in the near threshold region revealed transgranular cleavage fracture with secondary cracking. Results indicate the possibility that the DP steels may be treated to obtain an excellent combination of strength and fatigue properties.
Ab initio calculations of martensitic phase behavior in Ni{sub 2}FeGa magnetic shape memory alloys
Soykan, C. [Department of Physics, Pamukkale University, Denizli, TR 20020 (Turkey); Özdemir Kart, S., E-mail: ozsev@pau.edu.tr [Department of Physics, Pamukkale University, Denizli, TR 20020 (Turkey); Sevik, C. [Department of Mechanical Engineering, Anadolu University, Eskişehir, TR 26470 (Turkey); Çağın, T. [Department of Material Science and Engineering, Texas A and M University, Texas, TX 77843-3003 (United States)
2014-10-25
Highlights: • L2{sub 1}, NM and 5M phases have the energy minimum at a = 5.76 Å, c/a = 1.33 and c/a = 0.99. • Decrement in moment of Ni and increment in that of Fe reflect electrons transfer. • Differences in minority DOS over MT lead to stabilize the final structure. • C' taking small value in L2{sub 1} leads to elastic instability in MT. - Abstract: A series of spin polarized energy calculations based on density functional theory (DFT) have been carried out to investigate the structural, magnetic, electronic and mechanical properties of Ni{sub 2}FeGa magnetic shape memory alloys (MSMA’s) in the austenitic and martensitic structures. We report that L2{sub 1} austenitic phase is metastable at a = 5.76 Å, the NM tetragonal and 5M monoclinic martensitic structures are stable at c/a = 1.33 and c/a = 0.99, respectively. That the electron removes from Ni to Fe site during phase transformation to martensite is confirmed by the increment in the magnetic moment of Ni, while decrement in that of Fe. The analysis of the partial density of states show that some distinguishable differences in the minority spin states occur upon martensitic phase transformation, such as, the replacement of the Fe states (e{sub g} and t{sub 2g}) above Fermi level by only Fe-t{sub 2g} states during L2{sub 1}-5M transformation and the splitting of Fe-t{sub 2g} states near Fermi level during 5M-NM transformation (through 7M). These changes lower the energy of the system, indicating that the final structure becomes stable. The soft tetragonal shear constant C′ of the austenitic phase designates the ease of the phase transition into martensitic phase. It is shown that the results calculated in this study are in good agreement with the previous calculations and the available experiments.
Cong, Daoyong; Rule, Kirrily Clair; Li, Wen-Hsien; Lee, Chi-Hung; Zhang, Qinghua; Wang, Haoliang; Hao, Yulin; Wang, Yandong; Huang, E-Wen (UST - China); (NCU-Taiwan); (Beijing Inst. Tech.); (Chinese Aca. Sci.); (ANSTO); (NCTU)
2016-09-02
Here we describe insights into the phase transformation kinetics and lattice dynamics associated with the newly discovered confined martensitic transformation, which are of great significance to the in-depth understanding of the phase transformation behavior responsible for the rich new physical phenomena in shape memory alloys and could shed light on the design of novel multifunctional properties through tuning the confined martensitic transformation.
Shibutani, Y.; Taniyama, A.; Tomita, Y.; Adachi, T. [Kobe University, Kobe (Japan). Faculty of Engineering
1997-08-15
By the duplex effect produced by two kinds of phases of austenite and martensite, the transformation-induced plasticity (TRIP) steel is improved in ductility and fracture toughness. The strain-induced martensitic phase transformation could be associated with the strain localization behavior. Accordingly, the measurement of the amount of local transformation is necessary in order to construct a more physical evolution model in the constitutive equation. In this study, a new measurement system using a micro-hardness tester is proposed to obtain a volume fraction map of the martensitic phase expanding in the neighbor of strain localization. Then the system is applied to investigate the inhomogenous transformation behavior around the notch root of SUS 304 stainless steel bar under uniaxial tension. 27 refs., 11 figs., 1 tab.
Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys
Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J
2005-02-09
In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic
Powder x-ray diffraction study of the thermoelastic martensitic transition in Ni2Mn1.05Ga0.95
Ranjan, Rajeev; Banik, S.; Barman, S. R.; Kumar, U.; Mukhopadhyay, P. K.; Pandey, Dhananjai
2006-12-01
Results of temperature-dependent magnetic susceptibility and powder x-ray diffraction (XRD) measurements on Ni2Mn1.05Ga0.95 and Ni2.13Mn0.87Ga magnetic shape memory alloys are compared. The transformation behavior of these two alloys is found to be entirely different. Detailed LeBail and Rietveld analyses of powder XRD data of Ni2Mn1.05Ga0.95 alloy show that the martensite phase belongs to the Pnnm space group with 7M modulation. The limits of the supercooled austenite and the superheated martensite phases have been determined by Rietveld analysis of powder XRD data recorded at close temperature intervals. It is shown that the martensite and the austenite phases coexist over ˜30K temperature range around the martensitic transition temperature. The transformation strains during cooling in [001], [010], and [100] directions are found to be -4% , +1.6% , and 2.1% , respectively, while the volume change is only 0.06%.
Modeling the coupling between martensitic phase transformation and plasticity in shape memory alloys
Manchiraju, Sivom
The thermo-mechanical response of NiTi shape memory alloys (SMAs) is predominantly dictated by two inelastic deformation processes---martensitic phase transformation and plastic deformation. This thesis presents a new microstructural finite element (MFE) model that couples these processes and anisotropic elasticity. The coupling occurs via the stress redistribution induced by each mechanism. The approach includes three key improvements to the literature. First, transformation and plasticity are modeled at a crystallographic level and can occur simultaneously. Second, a rigorous large-strain finite element formulation is used, thereby capturing texture development (crystal rotation). Third, the formulation adopts recent first principle calculations of monoclinic martensite stiffness. The model is calibrated to experimental data for polycrystalline NiTi (49.9 at% Ni). Inputs include anisotropic elastic properties, texture, and DSC data as well as a subset of pseudoelastic and load-biased thermal cycling data. This calibration process provides updated material values---namely, larger self-hardening between similar martensite plates. It is then assessed against additional pseudoelastic and load-biased thermal cycling experimental data and neutron diffraction measurements of martensite texture evolution. Several experimental trends are captured---in particular, the transformation strain during thermal cycling monotonically increases with increasing bias stress, reaching a peak and then decreasing due to intervention of plasticity---a trend which existing MFE models are unable to capture. Plasticity is also shown to enhance stress-induced martensite formation during loading and generate retained martensite upon unloading. The simulations even enable a quantitative connection between deformation processing and two-way shape memory effect. Some experimental trends are not captured---in particular, the ratcheting of macrostrain with repeated thermal cycling. This may
Bhattacharyya, A.; Sakaki, T.; Weng, G. J.
1993-02-01
A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.
A study on Z-phase nucleation in martensitic chromium steels
Golpayegani, Ardeshir; Andrén, Hans-Olof; Danielsen, Hilmar Kjartansson;
2008-01-01
9–12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550–650 ◦C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work...
Magnetic analysis of martensitic and austenitic phases in metamagnetic NiMn(In, Sn) alloys
Lázpita, P., E-mail: patricia.lazpita@ehu.es [University of Basque Country (UPV/EHU), Leioa (Spain); Escolar, J. [University of Basque Country (UPV/EHU), Leioa (Spain); Chernenko, V.A. [University of Basque Country (UPV/EHU), Leioa (Spain); BCMaterials, Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain); Ikerbasque, Basque Foundation for Science, Bilbao 48013 (Spain); Barandiarán, J.M. [University of Basque Country (UPV/EHU), Leioa (Spain); BCMaterials, Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain)
2015-09-25
Highlights: • NiMnIn austenite and martensite have similar Ising-type critical exponents. • NiMnIn critical exponents rule out disordered states as spin-glass in martensite. • In NiMnIn alloys, magnetism arises mainly from moments localized at Mn atoms. • NiCoMnSn critical exponents are close to the ones from tricritical mean field model. • NiCoMnSn complex magnetic state results from three different magnetic atoms. - Abstract: Two different metamagnetic shape memory alloys of nominal composition Ni{sub 50}Mn{sub 36}In{sub 14} and Ni{sub 42}Co{sub 8}Mn{sub 39}Sn{sub 11} have been studied by means of modified Arrott plots to give insight into the magnetic states of both the austenitic and martensitic phases. For Ni{sub 50}Mn{sub 36}In{sub 14} alloy, the same critical exponents (β = 0.32 and γ = 2.0) are obtained in austenite and martensite. They suggest that localized moments at Mn atoms are responsible for the magnetism of both phases according to the Ising model. The martensite, however, displays a rather complex behavior because β continuously changes with temperature. In Ni{sub 43}Co{sub 6.5}Mn{sub 39}Sn{sub 11.5}, critical exponents in the austenite are β = 0.27 and γ = 1.0. They are close to the tricritical mean field model, but no reliable fits were obtained in the martensite. The results are discussed in terms of microscopically different magnetic states in two alloys reflecting a complex interplay between the ferromagnetic and antiferromagnetic contributions.
The Z-Phase in 9Cr Ferritic/martensitic Heat Resistant Steel
Yin, Fengshi; Chen, Fuxia; Jiang, Xuebo; Xue, Bing; Zhou, Li; Jung, Woosang
The precipitation behavior of Z-phase was investigated during long-term aging at 650°C in an ultra low carbon 9Cr ferritic/martensitic heat resistant steel. The steel was prepared by vacuum induction melting followed by hot forging and rolling into a plate. The plate was normalized at 1100°C for 1h, cooled in air and tempered at 700°C for 1h. Bimodal nano-sized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. After aging at 650°C for 1200h, the Z-phase was found to nucleate on the larger nano-sized MX. The Z-phase and MX have the following orientation relationship: Z-phase//MX and (1bar 10){Z-phase}//(200){MX} .
无
2002-01-01
The martensite transformation induced by tensile elongation and its effect on the behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. The results show that the content of ((-martensite in stainless steel 304 increases with the true strain. As ((-martensite content increased, free corrosion potential and pitting potential of stainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also found that pitting nucleated preferentially at the phase interfaces between martensite and austenite. There existed apparent difference between electrochemical properties of austenite and of martensite for stainless steel 304 and 316L in 3.5% NaCl solution.
Morrison, Keith; Cherukara, Mathew; Kim, Hojin; Strachan, Alejandro
2014-01-01
Shape memory alloys (SMAs) owe their distinct properties to a diffusion less martensitic phase transformation from a high temperature, high symmetry phase (austenite) to a low temperature (martensite) phase upon cooling or strain. Their shape memory and pseudoelastic properties make SMAs useful as active components in microdevices, medical implants and for vibrational damping. Despite their widespread application, the miniaturization limit of SMAs is not known. In this study, we use large-sca...
Phase transitions modern applications
Gitterman, Moshe
2014-01-01
This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.
A A Prasanna and Shanker Ram
2013-01-01
Full Text Available Ni39+xMn50Sn11−x (x = 0.5, 1.0, 1.5 and 2 alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ~15 mm diameter and 8 mm width. A single martensite phase with a L10 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% (x = 2, whereas an austenite cubic L21 phase turns up at smaller x ≤ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips (x ≥ 1.5 with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite–austenite (or reverse phase transition. A net residual enthalpy change ΔHM↔A = −0.12 J g−1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (–26% at 10 T is observed together with a large entropy change of 11.8 mJ g−1 K−1, nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The ΔHM↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features.
许可; 李未
1999-01-01
Phase transition is an important feature of SAT problem. For random k-SAT model, it is proved that as r（ratio of clauses to variables） increases, the structure of solutions will undergo a sudden change like satisfiability phase transition when r reaches a threshold point (r=rcr). This phenomenon shows that the satisfying truth assignments suddenly shift from being relatively different from each other to being very similar to each other.##属性不符
Energy Barriers and Hysteresis in Martensitic Phase Transformations
2008-08-01
As sources of energy, we consider the interfacial energy on the twin boundaries modeled by a sharp interface theory, the bulk elastic energy stored...profiles of twin boundaries to a Landau theory. Waitz et al. [45] extracts atomic positions from high resolution images of twin boundaries and uses these...to more general transition layers, we assume that z(x1, x2 + ζ) = z(x1, x2), ζ = ε m⊥ · n . (45) We do not expect the twin boundaries necessarily to
Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels
Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)
1997-08-01
Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.
A study on Z-phase nucleation in martensitic chromium steels
Golpayegani, Ardeshir [Department of Applied Physics, Chalmers University of Technology (Sweden)], E-mail: ardeshir.golpayegani@sandvik.com; Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology (Sweden); Danielsen, Hilmar; Hald, John [Department of Manufacturing Engineering and Management, Technical University of Denmark (Denmark)
2008-08-20
9-12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550-650 deg. C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work, initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small. Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase.
Kopaev, YuV
1992-01-01
Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele
Photoinduced phase transitions
Nasu, K
2004-01-01
A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called "photoinduced phase transition", and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.
Dmitrieva, O.; Ponge, D.; Inden, G.; Millan, J.; Choi, P. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Sietsma, J. [Delft University of Technology, Faculty 3mE, Dept. MSE, 2628 CD Delft (Netherlands); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)
2011-01-15
Partitioning at phase boundaries of complex steels is important for their properties. We present atom probe tomography results across martensite/austenite interfaces in a precipitation-hardened maraging-TRIP steel (12.2 Mn, 1.9 Ni, 0.6 Mo, 1.2 Ti, 0.3 Al; at.%). The system reveals compositional changes at the phase boundaries: Mn and Ni are enriched while Ti, Al, Mo and Fe are depleted. More specific, we observe up to 27 at.% Mn in a 20 nm layer at the phase boundary. This is explained by the large difference in diffusivity between martensite and austenite. The high diffusivity in martensite leads to a Mn flux towards the retained austenite. The low diffusivity in the austenite does not allow accommodation of this flux. Consequently, the austenite grows with a Mn composition given by local equilibrium. The interpretation is based on DICTRA and mixed-mode diffusion calculations (using a finite interface mobility).
Roy, Tufan; Pandey, Dhanshree; Chakrabarti, Aparna
2016-05-01
Using first-principles calculations based on density functional theory, we have studied the mechanical, electronic, and magnetic properties of Heusler alloys, namely, Ni2B C and Co2B C (B = Sc, Ti, V, Cr, and Mn as well as Y, Zr, Nb, Mo, and Tc; C = Ga and Sn). On the basis of electronic structure (density of states) and mechanical properties (tetragonal shear constant), as well as magnetic interactions (Heisenberg exchange coupling parameters), we probe the properties of these materials in detail. We calculate the formation energy of these alloys in the (face-centered) cubic austenite structure to probe the stability of all these materials. From the energetic point of view, we have studied the possibility of the electronically stable alloys having a tetragonal phase lower in energy compared to the respective cubic phase. A large number of the magnetic alloys is found to have the cubic phase as their ground state. On the other hand, for another class of alloys, the tetragonal phase has been found to have lower energy compared to the cubic phase. Further, we find that the values of tetragonal shear constant show a consistent trend: a high positive value for materials not prone to tetragonal transition and low or negative for others. In the literature, materials which have been seen to undergo the martensite transition are found to be metallic in nature. We probe here if there is any Heusler alloy which has a tendency to undergo a tetragonal transition and at the same time possesses a high spin polarization at the Fermi level. From our study, it is found that out of the four materials which exhibit a martensite phase as their ground state, three of these, namely, Ni2MnGa , Ni2MoGa , and Co2NbSn have a metallic nature; on the contrary, Co2MoGa exhibits a high spin polarization.
A study of a hamiltonian model for martensitic phase transformations including microkinetic energy
Theil, F
1998-01-01
How can a system in a macroscopically stable state explore energetically more favorable states, which are far away from the current equilibrium state? Based on continuum mechanical considerations we derive a Boussinesq-type equation which models the dynamics of martensitic phase transformations. The solutions of the system, which we refer to as microkinetically regularized wave equation exhibit strong oscillations after short times, thermalization can be confirmed. That means that macroscopic fluctuations of the solutions decay at the benefit of microscopic fluctuations. First analytical and numerical results on the propagation of phase boundaries and thermalization effects are presented. Despite the fact that model is conservative, it exhibits the hysteretic behavior. Such a behavior is usually interpreted in macroscopic models in terms of dissipative threshold which the driving force has to overcome to ensure that the phase transformation proceeds. The threshold value depends on the amount of the transforme...
Emergence and Phase Transitions
Sikkema, Arnold
2006-05-01
Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.
Understanding quantum phase transitions
Carr, Lincoln
2010-01-01
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth
Phase transitions in geometrothermodynamics
Quevedo, H; Taj, S; Vazquez, A
2010-01-01
Using the formalism of geometrothermodynamics, we investigate the geometric properties of the equilibrium manifold for diverse thermodynamic systems. Starting from Legendre invariant metrics of the phase manifold, we derive thermodynamic metrics for the equilibrium manifold whose curvature becomes singular at those points where phase transitions of first and second order occur. We conclude that the thermodynamic curvature of the equilibrium manifold, as defined in geometrothermodynamics, can be used as a measure of thermodynamic interaction in diverse systems with two and three thermodynamic degrees of freedom.
Influence of Z-phase on long-term creep stability of martensitic 9-12% Cr steels
Danielsen, Hilmar K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Hald, John [DONG Energy A/S (Denmark); Vattenfall (Denmark)
2010-07-01
The long-term creep strength of the new generation of martensitic creep resistant 9-12%Cr steels since the well-known steel Grade 91 relies strongly on particle strengthening by fine Mn nitrides based on V and Nb. During long-term high-temperature exposures the Mn nitrides may be replaced by the thermodynamically more stable Z-phases (Cr(V,Nb)N) causing a breakdown in creep strength. Cr contents above 10.5% strongly accelerate Z-phase precipitation, which explains the lack of success for all attempts to develop martensitic creep resistant steels with high Cr content for oxidation protection. However 9%Cr steels do not seem to be affected by the Z-phase. Careful control of the Z-phase precipitation process has led to the design of experimental 12%Cr martensitic steels strengthened by fine Z-phase nitrides based on Nb or Ta. Such steels may again enable the combination of high strength and oxidation resistance in the same alloy. This opens a new pathway for further alloy development of the heat resistant martensitic steels. (orig.)
Fodor, Z
2000-01-01
Recent developments on the four dimensional (4d) lattice studies of the finite temperature electroweak phase transition (EWPT) are summarized. The phase diagram is given in the continuum limit. The finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses m/sub H/<66.5+or-1.4 GeV. Above this endpoint only a rapid cross-over can be seen. The full 4d result agrees completely with that of the dimensional reduction approximation. The Higgs-boson endpoint mass in the standard model (SM) would be 72.1+or-1. 4 GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any EWPT in the SM. A one-loop calculation of the static potential in the SU(2)-Higgs model enables a precise comparison between lattice simulations and perturbative results. The most popular extension of the SM, the minimal supersymmetric SM (MSSM) is also studied on 4d lattices. (17 refs).
Gradient Distribution of Martensite Phase in Melt-Spun Ribbons of a Fe-Ni-Ti-Al Alloy.
Bondar, Volodymyr; Danilchenko, Vitalij; Dzevin, Ievgenij
2016-12-01
Metallographic, X-ray diffraction and magnetometric analysis were used to study the regularities of martensitic transformation in melt-spun ribbons of a Fe - 28 wt. % Ni - 2.1 wt. % Ti - 2 wt. % Al - 0.05 wt. % C alloy. The substantial differences in volume fractions of the martensite phase in local regions of thin melt-spun ribbons of the alloy are related to the size effect of the transformation and structural inhomogeneity of the ribbons. The distribution of austenitic grain size in different local areas of melt-spun ribbons is significantly different. The principal factor for changing the completeness of the martensitic transformation is the size effect of transformation. Difference in the martensite volume fraction in local regions of a ribbon is mainly determined by the different volume fractions of ultrafine-grained (500-1000 nm) and nanosized (80-100 nm and less) initial austenite grains, in which the transformation was slowed down or completely suppressed. Other factors almost do not affect the completeness of the martensitic transformation. The strong stabilizing effect of the reverse α-γ transformation with respect to the subsequent direct γ-α transformation in the melt-spun ribbons is also related to the grain size effect.
无
2000-01-01
@@The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LDOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ∑BOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.
Neodymium-rich precipitate phases in a high-chromium ferritic/martensitic steel
Shen, Yinzhong; Zhou, Xiaoling; Shang, Zhongxia
2016-05-01
Neodymium being considered as nitride forming element has been used in a design of advanced ferritic/martensitic (FM) steels for fossil fired power plants at service temperatures of 630 °C to 650 °C to effectively improve the creep strength of the steels. To fully understand the characteristics of neodymium precipitates in high-Cr FM steels, precipitate phases in an 11Cr FM steel with 0.03 wt% addition of Nd have been investigated by transmission electron microscopy. Three neodymium phases with a face-centered cubic crystal structure and different composition were observed in the steel. They consisted of neodymium carbonitride with an average lattice parameter of 1.0836 nm, Nd-rich carbonitride mainly containing Mn, and Nd-rich MN nitride mainly containing Mn and Co. Other three Nd-rich and Nd-containing phases, which appear to be Nd-Co-Cr/Nd-rich intermetallic compounds and Cr-Fe-rich nitride containing Nd, were also detected in the steel. Nd-relevant precipitates were found to be minor phases compared with M23C6 and Nb/V/Ta-rich MX phases in the steel. The content of Nd in other precipitate phases was very low. Most of added Nd is considered to be present as solid solution in the matrix of the steel.
Precipitate phases in normalized and tempered ferritic/martensitic steel P92
Shen, Yinzhong; Liu, Huan; Shang, Zhongxia; Xu, Zhiqiang
2015-10-01
Ferritic/martensitic steel P92 is a promising candidate for cladding and duct applications in Sodium-Cooled Fast Reactor. The precipitate phases of the P92 steel normalized at 1323 K (1050 °C) for 30 min and tempered at 1038 K (765 °C) for 1 h have been investigated using transmission electron microscopes. Four types of phases consisting of M23C6, MX, M2X and sigma-FeCr were identified in the steel. MX phases consist of Nb-rich M(C,N) carbonitride, Nb-rich MC carbide, V-rich M(C,N) carbonitride, V-rich MC carbide, V-rich MN nitride, and complex MC carbides with Nb-rich MC core and V-rich MC wings. M2X phases consist of Cr-rich M2(C,N) carbonitride, Cr-rich M2C carbide and M2N nitride. Sigma-FeCr has a simple tetragonal lattice and a typical chemical formula of Fe0.45Cr0.45W0.1. M23C6 and MX are the dominant phases, while the sigma-FeCr has the lowest content. The formation of sigma-FeCr and M2X phases in the steel is also discussed.
Guan, Shu-Hui; Liu, Zhi-Pan
2016-02-14
Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.
An EFTEM study on Z-phase nucleation in martensitic chromium steels
Golpayegani, A.; Andren, H.O. [Chalmers Univ. of Technology, Gothenburg (Sweden). Microscopy and Microanalysis, Dept. of Applied Physics
2006-07-01
9-12% Cr martensitic steels that are used in crucial parts of steam power plants have been found liable to the precipitation of Z-phase after long time at service temperature. This complex nitride consumes vanadium nitrides and leaves the matrix with a relatively big vanadium poor region causing the creep strength of material to fall drastically after several thousand hours. it is of great importance to monitor the initial stages of precipitation of this phase to understand the factors promoting it and to get ideas about ways to suppress or eliminate it. In this work, Z-phase has been characterized using energy-filtered TEM. lt has been found that VN provides the most suitable nucleation site for Z-phase since its lattice has the minimum misfit for starting the nucleation and it also provides vanadium for the growth. it has also been observed that the presence of niobium carbide close to the nucleation site is crucial for the nucleation and growth of this phase. (orig.)
无
2007-01-01
Phase transformation from austenite to martensite in NiTi alloy strips under the uniaxial tension has been observed in experiments and numerically simulated as a localized deformation. This work presents an analysis using the theory of phase transformation. The jump of deformation gradient across the interface between two phases and the Maxwell relation are considered. Governing equations for the phase transformation are derived. The analysis is reduced to finding the minimum value of the loading at which the governing equations have a unique, real and physically acceptable solution. The equations are solved numerically and it is verified that the unique solution exists definitely.The Maxwell stress, the stresses and strains inside both austenite and martensite phases,and the transformation-front orientation angle are determined to be in reasonably good agreement with experimental observations.
Mixed phases during the phase transitions
Tatsumi, Toshitaka; Maruyama, Toshiki
2011-01-01
Quest for a new form of matter inside compact stars compels us to examine the thermodynamical properties of the phase transitions. We closely consider the first-order phase transitions and the phase equilibrium on the basis of the Gibbs conditions, taking the liquid-gas phase transition in asymmetric nuclear matter as an example. Characteristic features of the mixed phase are figured out by solving the coupled equations for mean-fields and densities of constituent particles self-consistently within the Thomas-Fermi approximation. The mixed phase is inhomogeneous matter composed of two phases in equilibrium; it takes a crystalline structure with a unit of various geometrical shapes, inside of which one phase with a characteristic shape, called "pasta", is embedded in another phase by some volume fraction. This framework enables us to properly take into account the Coulomb interaction and the interface energy, and thereby sometimes we see the mechanical instability of the geometric structures of the mixed phase...
Degenerate Blume-Emery-Griffiths model for the martensitic transformation
Vives, E.; Castan, T.; Lindgård, Per-Anker
1996-01-01
between two ordered phases. This is relevant for the martensitic transition problem. Mean-field calculations and Monte Carlo simulations are presented. The model predicts a constant entropy change at the transition for various transition temperatures in agreement with the behavior found experimentally....
Learning phase transitions by confusion
van Nieuwenburg, Evert P L; Huber, Sebastian D
2016-01-01
Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find phase transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored phase transitions.
Phase transformation and long-term service of high-temperature martensitic chromium steels
Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.
2001-02-01
Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.
Arabi-Hashemi, A.; Mayr, S. G., E-mail: smayr@uni-leipzig.de [Leibniz–Institute for Surface Modification (IOM), Translational Center for Regenerative Medicine, and Faculty of Physics and Earth Sciences, University of Leipzig, Permoserstrasse 15, 04318 Leipzig (Germany)
2015-03-02
Conductivity in Fe{sub 7}Pd{sub 3} is characterized by an anomalous increase when traversing the face–centered–cubic (fcc) austenite to face–centered–tetragonal (fct) martensite transition, contrary to most other conventional and ferromagnetic shape memory alloys. Experiments on molecular– beam–epitaxy–grown single crystals indicate a resistivity change of ≈20% during the transformation on top of a quadratic temperature dependence reaching up to room temperature. The physical foundations of residual resistivity changes along the full Bain path are addressed by a Kubo– Greenwood approach within the framework of density functional theory. To do so, a concept to reliably extract the DC conductivities is proposed that yields reproducible results consistent with experiments. Finding that conductivity peaks in the fct phase, we identify a large density of states paired with high velocities at the Fermi level in the majority spin sub–bands in presence of minimum s–d electron scattering as underlying physical origin.
Helbert, Guillaume; Saint-Sulpice, Luc; Arbab Chirani, Shabnam; Dieng, Lamine; Lecompte, Thibaut; Calloch, Sylvain; Pilvin, Philippe
2017-02-01
The well-known martensitic transformation is not always the unique solid-solid phase change in NiTi shape memory alloys (SMA). For this material, R-phase can occur from both austenite and martensite. In some applications, macroscopic strain of the material can be limited to 2%. In these cases, R-phase contribution can not be neglected anymore when compared with martensite. Furthermore, different thermomechanical couplings have to be taken into account to carefully predict strain rate effects and to better describe application conditions. In this paper, a new model taking into account various phase transformations with thermomechanical couplings is presented. This model is based on several transformation criteria. In most applications, SMA are used as wires, submitted to tensile-tensile loadings, in the superelasticity working range. Consequently, a uniaxial reduction of the model is presented for its simplicity. A thermodynamic framework is proposed. It enables to describe the internal variables evolution laws. The simple and fast identification process of model parameters is briefly presented. To verify the validity of the proposed model, simulation results are compared with experimental ones. The influences of testing temperature and strain amplitude on the material behavior is discussed. The damping capacity is also studied, using an energy-based criterion.
Phase Transitions of Simple Systems
Berry, Stephen
2008-01-01
This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems in terms of classical physics. The origins of such phase changes are derived from simple but physically relevant models of how transitions between rigid crystalline, glassy and fluid states occur, how phase equilibria arise, and how bulk properties evolve from those of small systems.
Electroweak phase transition in technicolor
Jarvinen, Matti
2010-01-01
Several phenomenologically viable walking technicolor models have been proposed recently. I demonstrate that these models can have first order electroweak phase transitions, which are sufficiently strong for electroweak baryogenesis. Strong dynamics can also lead to several separate transitions at the electroweak scale, with the possibility of a temporary restoration and an extra breaking of the electroweak symmetry. First order phase transitions will produce gravitational waves, which may be detectable at future experiments.
Magnetic resonance of phase transitions
Owens, Frank J; Farach, Horacio A
1979-01-01
Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also
Factors influencing martensite transitions in Fe-based shape memory alloys
Mihalache Elena
2015-01-01
Full Text Available Fe-14Mn-6Si-9Cr-5Ni (mass % shape memory alloy (SMA specimens were obtained by powder metallurgy in as-blended state (0_MA and with particle volume fractions of 10 and 20 % MA’d powders, respectively. After hot rolling and solution treatment, between 973 and 1373 K, the specimens were pre-strained up to 4 %, on a tensile testing machine. The influences of: (i MA’d fractions, (ii solution treatment temperature and (iii pre-straining degree were analysed by X-ray diffraction (XRD, optical (OM and scanning electron (SEM microscopy. In this purpose, the gauges of pre-strained specimens were cut and metallographically prepared. Dynamic mechanical analysis (DMA was employed to emphasize the reverse transformation, during heating, of thermally induced martensite, obtained after solution treatment. The results proved that, as an effect of PM-MA processing, mechanical properties were improved, the amount of stress induced martensite increased and the reverse martensitic transformation was enhanced.
Multiobjective Optimization and Phase Transitions
Seoane, Luís F
2015-01-01
Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
Angular distortive matrices of phase transitions in the fcc-bcc-hcp system
Cayron, Cyril
2016-01-01
This work generalizes the one-step model previously developed on fcc-bcc martensitic transformations to the larger family of phase transitions in the fcc-bcc-hcp system. The angular distortive matrices are calculated for the bcc-fcc, bcc-hcp and fcc-hcp transitions, and for fcc-fcc mechanical twinning. The analytical expressions of the continuous atomic displacements, lattice distortion and lattice correspondence matrices result directly from the orientation relationships; the unique assumpti...
Pei Li; Jun Li; Qing-ge Meng; Wen-bin Hu; Chun-fu Kuang
2015-01-01
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vol%were produced by intercritical an-nealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP micro-structures using the differential Crussard–Jaoul technique demonstrate two stages of work hardening for all samples.
Muddle, B. C.; Nie, J. F.; Hugo, G. R.
1994-09-01
It has been demonstrated that the theory of martensite crystallography is capable of accounting successfully for the form and crystallography of a range of plate- or lath-shaped transformation products, even when the formation of the product phase involves significant substitutional diffusion. These transformations include the precipitation of metastable hexagonal γ’ (Ag2Al) plates in disordered face-centered cubic (fcc) solid-solution Al-Ag alloys, the formation of ordered AuCu II plates from disordered fcc solid solution in equiatomic Au-Cu alloys, and the formation of metastable 9R α 1, plates in ordered (B2) Cu-Zn and Ag-Cd alloys. The application of the theory to these transformations is reviewed critically and the features common to them identified. It is confirmed that, in all three transformations, the product phase produces relief at a free surface consistent with an invariant plane-strain shape change and that the transformations are thus properly described as displacive. The agreement between experimental observations and theoretical predictions of the transformation crystallography is in all cases excellent. It is proposed that successful application of the theory implies a growth mechanism in which the coherent or semicoherent, planar interface between parent and product phases maintains its structural identity during migration and that growth proceeds atom by atom in a manner consistent with the maintenance of a correspondence of lattice sites. In the case of the coherent, planar interfaces associated with γ’ precipitate plates in Al-Ag alloys, there is direct experimental evidence that this is accomplished by the motion of transformation dislocations across the coherent broad faces of the precipitate plates; the transformation dislocations define steps that are two atom layers in height normal to the habit plane and have a Burgers vector at least approximately equivalent to an (α/6)(112) Shockley partial dislocation in the parent fcc
Learning phase transitions by confusion
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
Opportunities in Martensite Theory
Olson, G.
1995-01-01
A workshop has explored interactions of materials science, applied mechanics, physics and mathematics in understanding fundamentals of martensitic transformations. System theory offers a framework for addressing realistic complexity. Theory of invariant-plane kinematics has been extended to multivariant plate groups and hierarchical structures. Electronic total energy calculations explore the origins of martensitic phase stability, and Landau-Ginzberg models for transformations with and witho...
Pinto, R.P. [IFIMUP, Rua do Campo Alegre, 678, 4169-007 Porto (Portugal); Sousa, J.B. [IFIMUP, Rua do Campo Alegre, 678, 4169-007 Porto (Portugal)]. E-mail: jbsousa@fc.up.pt; Correia, F.C. [IFIMUP, Rua do Campo Alegre, 678, 4169-007 Porto (Portugal); Araujo, J.P. [IFIMUP, Rua do Campo Alegre, 678, 4169-007 Porto (Portugal); Braga, M.E. [IFIMUP, Rua do Campo Alegre, 678, 4169-007 Porto (Portugal); Pereira, A.M. [IFIMUP, Rua do Campo Alegre, 678, 4169-007 Porto (Portugal); Morellon, L. [DFMC and ICMA, Univ. De Zaragoza.-CSIC, 50009 Zaragoza (Spain); Algarabel, P.A. [DFMC and ICMA, Univ. De Zaragoza.-CSIC, 50009 Zaragoza (Spain); Magen, C. [DFMC and ICMA, Univ. De Zaragoza.-CSIC, 50009 Zaragoza (Spain); Ibarra, M.R. [DFMC and ICMA, Univ. De Zaragoza.-CSIC, 50009 Zaragoza (Spain)
2005-04-15
Recently, the Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} system exhibits fascinating physical properties, namely giant magnetocaloric, magnetoresistance and magnetostriction effects near a first-order (martensitic like; T=T{sub S}) magneto-structural transition. We report the thermopower behavior S(T) between 10 and 300K for compounds with x=0, 0.10 and 0.45, belonging to three distinct regions of the magnetic/structural phase diagram. Large thermopower changes are observed near T{sub S} for x=0.10 (T{sub S}=78K; AFM-Orthorhombic II/FM-Ortho.I) and for x=0.45 (T{sub S}=242K; PM-Monoc/FM-Ortho.I) with a Gaussian distribution in dS/dT, characteristic of a first-order phase transition. Near the purely magnetic transitions (PM/AFM) for x=0(T{sub N}=122K) and x=0.10(T{sub N}=127K) we observe dS/dT peaks governed by spin fluctuation effects. A comparative analysis between dS/dT and the resistivity derivative d{rho}/dT near T{sub S} is made. At low temperatures S(T) behaves similarly in the ferromagnetic x=0.10 and 0.45 compounds (S{approx}AT+BT{sup 2}), the anomalous B term being related to the mean internal field (spin wave excitations). For x=0 (AFM phase at low T) one has S=AT (no B term; zero mean internal field)
Incommensurate phase transitions
Currat, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1996-11-01
We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.
Possible martensitic transformation and ferrimagnetic properties in Heusler alloy Mn{sub 2}NiSn
Duan, Ying-Ni, E-mail: duanyingni@163.com [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Fan, Xiao-Xi; Kutluk, Abdugheni [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Du, Xiu-Juan [School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi (China); Zhang, Zheng-Wei [Chemistry and Chemical Engineering Laboratory, The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Song, Yu-Ling [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)
2015-07-15
The electronic structure and magnetic properties of Hg{sub 2}CuTi-type Mn{sub 2}NiSn have been studied by performing the first-principle calculations. It is found that the phase transformation from the cubic to the tetragonal structure reduces the total energy, indicating that the martensitic phase is more stable and the phase transition from austenite to martensite may happen at low temperature for Hg{sub 2}CuTi-type Mn{sub 2}NiSn. Concerning the magnetism of Hg{sub 2}CuTi-type Mn{sub 2}NiSn, both austenitic and martensitic phases are suggested to be ferrimagnets. Furthermore, martensitic transformation decreases the magnetic moment per formula unit compared with austenitic phase. The results are helpful to accelerate the use of Mn{sub 2}NiSn alloys in the series for magnetic shape memory applications. - Highlights: • It is found that the phase transition from austenite to martensite may happen at low temperature for Mn{sub 2}NiSn with the Hg{sub 2}CuTi-type structure. • Both austenitic and martensitic Mn{sub 2}NiSn are ferrimagnets. • Martensitic transformation decreases the magnetization.
2010-01-01
between phase transformation and thermoelasticity equations has important computational con- sequences: finite element thermoelasticity codes can be...combination of four herring bone types of micro- structure is developed (Fig. 10). At some stage, the equivalence of both variants is violated-units...preceding analysis . At these high driving forces the interface motion is governed by the phonon (and at lower temperatures, by the electron) drag
Poruks, Peter
The fracture mechanisms of low carbon microalloyed plate steels based on the acicular ferrite + marten site/austenite microstructure (AF + M/A) are investigated. The final microstructure consists of a dispersed phase of submicron equi-axed martensite particles with a bainitic ferrite matrix. A series of plates with M/A volume fractions of 0.076--0.179 are studied. Brittle fracture is investigated by Instrumented Charpy impact testing of samples at -196°C and subsequent metallography. The M/A particles are identified as the crack nucleation sites and the cleavage fracture stress calculated to be 2400 MPa in a complete AF microstrucuture. This value is significantly larger than in steels that contain significant proportions of conventional bainite. Standard Charpy and Instrumented Charpy impact testing is conducted through a temperature range from -80 to + 22°C to study ductile fracture behaviour. The total absorbed energy is separated into energies of crack nucleation and of crack propagation. It is found that the energy of crack nucleation is weakly dependent on the volume fraction of M/A and completely independent of temperature over the range studied. The crack propagation energy varies significantly with both variables, decreasing with increased volume fraction of M/A and with decreasing temperature. The peak load in the instrumented Charpy data is used to calculate the dynamic fracture toughness, KId, which is found to be 105--120 MPa-m1/2. The void nucleation and void growth stages of ductile fracture are studied by metallographic examination of tensile bars. The sites of void nucleation are identified as inclusions and M/A particles. Voids nucleate at the M/A particles by decohesion of the particle-matrix interface. A constant void nucleation strain of epsilon = 0.90 +/- 0.05 is measured for all of the samples independent of the volume fraction of M/A. A stress-based criterion is used to predict void nucleation and the interface strength is determined to be
Phase transitions in operational risk.
Anand, Kartik; Kühn, Reimer
2007-01-01
In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. Consequences of the analytical theory developed are analyzed using phase diagrams. We find coexistence of operational and nonoperational phases, much as in liquid-gas systems. Such systems are susceptible to discontinuous phase transitions from the operational to nonoperational phase via catastrophic breakdown. We find this feature to be robust against variation of the microscopic modeling assumptions.
Martensitic transformations; Martensite hentai
Otsuka, K. [University of Tsukuba, Tsukuba (Japan)
1997-09-20
This paper explains the recent studies on martensitic transformation (M transformation). The classical theory on nucleation in M transformation gives non-realistic activation energy as large as 10{sup 4}eV for Fe system. Although various theoretical and experimental approaches have been attempted, a universal theory is not yet established. The {beta}{sub 1}(DO{sub 3})-{gamma}{sub 1} transformation of Cu- Al-Ni alloy was resolved as lattice-invariable deformation by introducing the second kind twin. Various subsequent comparative studies for alloy systems between a phenomenology and experimental results showed the validity of a phenomenology due to lattice-invariable deformation. In the thermodynamics of M transformation, it has been recognized that the mechanism of transformation is entirely different between athermal and isothermal transformations, however, a statistical thermodynamic model was proposed for dealing with these transformations integrally. The study on intelligent materials is under active investigation from the viewpoint of application of M transformation. 44 refs.
Symmetry structure and phase transitions
Ashok Goyal; Meenu Dahiya; Deepak Chandra
2003-05-01
We study chiral symmetry structure at ﬁnite density and temperature in the presence of external magnetic ﬁeld and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.
Phase transitions in finite systems
Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire
2002-07-01
In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)
Liu, Changqin; Li, Zhe; Zhang, Yuanlei; Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan; Xu, Kun; Deng, Dongmei; Jing, Chao
2017-03-01
In this paper, we have systematically prepared a serials of polycrystalline Mn48-xCuxNi42Sn10 alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (TcM) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (TcA) is almost unchanged. It was found that the structures undergo L21 and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn48Ni42Sn10 was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn48Ni42Sn10 alloys.
Pressure induced phase transition in FeGa alloys
Devreugd, Christopher; Ahart, Muhtar; Gehring, Peter; Viehland, Dwight; Hemley, Russell
2011-03-01
Giant magnetostriction in Fe-- x Ga alloys (15 -- x - 27) offers potential for future generations of sensors and actuators. A maximum in the magnetostrictive strain is found at Ga content of about 19 percent, which is ten times higher than that of pure alpha-Fe. To investigate the behavior of FeGa alloys under pressure, we chose a slow cooled alloy of FeGa-19 as our sample and performed x-ray diffraction experiments in a diamond anvil cell up to 45 GPa. Diffraction pattern shows powder rings associated with (110), (200), and (211) Bragg reflections from expected bcc structure of iron below 24 GPa. We also observed the intensity increases along the powder rings associated with the crystal structure of Galfenol. Considering the (110) Bragg peak splits into three peaks above 24 GPa, our results indicate that FeGa alloy undergoes a bcc cubic to a hexagonal transition around 24 GPa. When the pressure is decreased, the hcp phase transforms back to the bcc phase. The transition mechanism can be understood by using the analogy to the bcc-hcp phase transition in pure iron under pressure. The transition in iron is a martensitic or displacive one. The hcp structure can be derived from the bcc structure through a relatively minor distortion of the bcc structure.
Phase transitions and critical phenomena
Domb, Cyril
2001-01-01
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in
Sliding Over a Phase Transition
Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.
2011-03-01
The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).
Odette, G. R.; Rathbun, H. J.; Rensman, J. W.; van den Broek, F. P.
2002-12-01
An analysis of the transition fracture toughness and constitutive behavior of F82H and Eurofer97 reduced activation martensitic steels are presented in both unirradiated and irradiated conditions. The unirradiated toughness data for F82H show very steep temperature dependence and the Eurofer97 toughness data measured with 5 mm versus 10 mm thick specimens are systematically higher. Both of these observations indicate a loss of constraint. Constraint loss adjustments are applied using a three-dimensional finite element analysis based toughness scaling model. The adjusted F82H results can be represented by a master curve (MC) and the corresponding 5 and 10 mm adjusted data fall in the same scatter band. The 10 mm irradiated specimens, with generally lower toughness levels, suffer minimal constraint loss. The irradiation induced MC T0 shifts (Δ T0) are analyzed in terms of changes in constitutive properties. The Δ T0 are generally consistent with the observed irradiation hardening. However, the effects of irradiation on post-yield strain hardening behavior must be considered to obtain self-consistent hardening-shift relations.
Electroweak phase transition recent results
Csikor, Ferenc
2000-01-01
Recent results of four-dimensional (4d) lattice simulations on the finite temperature electroweak phase transition (EWPT) are discussed. The phase transition is of first order in the SU(2)-Higgs model below the end point Higgs mass 66.5$\\pm$1.4 GeV. For larger masses a rapid cross-over appears. This result completely agrees with the results of the dimensional reduction approach. Including the full Standard Model (SM) perturbatively the end point is at 72.1$\\pm$1.4 GeV. Combined with recent LEP Higgs mass lower bounds, this excludes any EWPT in the SM. A one-loop calculation of the static potential makes possible a precise comparison of the lattice and perturbative results. Recent 4d lattice studies of the Minimal Supersymmetric SM (MSSM) are also mentioned.
On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels
Danielsen, Hilmar Kjartansson; Hald, John
2009-01-01
Precipitation of large Z-phase particles, Cr(V,Nb)N, replacing fine MX nitrides, (V,Nb)N, has recently been identified as a major cause of premature breakdown in long-term creep strength of a number of new 9–12%Cr martensitic steels. The Z-phase precipitates slowly during long-term exposure...... at around 650 ◦C accelerated by high Cr content in the steels. It appears that the nucleation process controls the precipitation rate of Z-phase. A 12%Cr steel, which had precipitated Z-phase during long-term operation at 660 ◦C/12,000 h, was further heat treated in order to investigate the dissolution...... and reappearance processes for the Z-phase. In both cases it appears that Z-phase and MXphase are in physical contact and have a preferred crystallographic orientation relationship. The proposed nucleation mechanism is a chromium diffusion controlled transformation of MX into Z-phase, which explains the rather low...
Deformation Behavior across the Zircon-Scheelite Phase Transition
Yue, Binbin; Hong, Fang; Merkel, Sébastien; Tan, Dayong; Yan, Jinyuan; Chen, Bin; Mao, Ho-Kwang
2016-09-01
The pressure effects on plastic deformation and phase transformation mechanisms of materials are of great importance to both Earth science and technological applications. Zircon-type materials are abundant in both nature and the industrial field; however, there is still no in situ study of their deformation behavior. Here, by employing radial x-ray diffraction in a diamond anvil cell, we investigate the dislocation-induced texture evolution of zircon-type gadolinium vanadate (GdVO4 ) in situ under pressure and across its phase transitions to its high-pressure polymorphs. Zircon-type GdVO4 develops a (001) compression texture associated with dominant slip along ⟨100 ⟩{001 } starting from 5 GPa. This (001) texture transforms into a (110) texture during the zircon-scheelite phase transition. Our observation demonstrates a martensitic mechanism for the zircon-scheelite transformation. This work will help us understand the local deformation history in the upper mantle and transition zone and provides fundamental guidance on material design and processing for zircon-type materials.
Deformation Behavior across the Zircon-Scheelite Phase Transition.
Yue, Binbin; Hong, Fang; Merkel, Sébastien; Tan, Dayong; Yan, Jinyuan; Chen, Bin; Mao, Ho-Kwang
2016-09-23
The pressure effects on plastic deformation and phase transformation mechanisms of materials are of great importance to both Earth science and technological applications. Zircon-type materials are abundant in both nature and the industrial field; however, there is still no in situ study of their deformation behavior. Here, by employing radial x-ray diffraction in a diamond anvil cell, we investigate the dislocation-induced texture evolution of zircon-type gadolinium vanadate (GdVO_{4}) in situ under pressure and across its phase transitions to its high-pressure polymorphs. Zircon-type GdVO_{4} develops a (001) compression texture associated with dominant slip along ⟨100⟩{001} starting from 5 GPa. This (001) texture transforms into a (110) texture during the zircon-scheelite phase transition. Our observation demonstrates a martensitic mechanism for the zircon-scheelite transformation. This work will help us understand the local deformation history in the upper mantle and transition zone and provides fundamental guidance on material design and processing for zircon-type materials.
Luo, Hongzhi, E-mail: luo_hongzhi@163.com [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bohua; Xin, Yuepeng; Jia, Pengzhong; Meng, Fanbin [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Enke; Wang, Wenhong; Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-12-01
The martensitic transformation and electronic structure of Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd, Pt) have been investigated by both first-principles calculation and experimental investigation. Theoretical calculation reveals that, the energy difference ΔE between the tetragonal martensitic phase and cubic austenitic phase increases with Y varying from Ni to Pt in Mn{sub 2}YIn. Thus a structural transition from cubic to tetragonal is most likely to happen in Heusler alloy Mn{sub 2}PtIn. A single Heusler phase can be obtained in both Mn{sub 2}PtIn and Mn{sub 2}PdIn. A martensitic transformation temperature of 615 K has been identified in Mn{sub 2}PtIn. And in Mn{sub 2}PdIn, the austenitic phase is stable and no martensitic transformation is observed till 5 K. This indicates there may exist a positive relation between ΔE and martensitic transformation temperature. Calculated results show that Mn{sub 2}YIn are all ferrimagnets in both austenitic and martensitic phases. The magnetic properties are mainly determined by the antiparallel aligned Mn spin moments. These findings can help to develop new FSMAs with novel properties. - Highlights: • Positive relation between ΔE and martensitic transformation temperature has been observed. • Heusler alloy Mn{sub 2}PdIn has been synthesized successfully and investigated. • Martensitic transformation in Heusler alloys can be predicted by first -principles calculations.
Phase transitions at finite density
Friman, Bengt
2012-01-01
I discuss the analytic structure of thermodynamic quantities for complex values of thermodynamic variables within Landau theory. In particular, the singularities connected with phase transitions of second order, first order and cross over types are examined. A conformal mapping is introduced, which may be used to explore the thermodynamics of strongly interacting matter at finite values of the baryon chemical potential $\\mu$ starting from lattice QCD results at $\\mu^{2}\\leq 0$. This method allows us to improve the convergence of a Taylor expansion about $\\mu=0$ and to enhance the sensitivity to physical singularities in the complex $\\mu$ plane. The technique is illustrated by an application to a second-order transition in a chiral effective model.
Wang Dun-Hui; Han Zhi-Da; Xuan Hai-Cheng; Ma Sheng-Can; Chen Shui-Yuan; Zhang Cheng-Liang; Du You-Wei
2013-01-01
Ferromagnetic shape memory alloys,which undergo the martensitic transformation,are famous multifunctional materials.They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure.Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance.In this paper,the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.
Interacting Weyl fermions: Phases, phase transitions, and global phase diagram
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2017-05-01
We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength n . We show that any local interaction has a negative scaling dimension -2 /n . Consequently, all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first-order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At the one-loop order, the correlation length exponent for continuous transitions is ν =n /2 , indicating their non-Gaussian nature for any n >1 . We also discuss the scaling of the thermodynamic and transport quantities in general Weyl semimetals as well as inside broken symmetry phases.
Phase Transition in Tensor Models
Delepouve, Thibault
2015-01-01
Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a $1/N$ expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resummation of the entire leading order in $1/N$ (a resummation of the melonic family). We then prove that the critical regime in which the continuum limit in the sense of dynamical triangulations is reached is precisely a phase transition in the field theory sense for the fluctuation field.
Gibbs measures and phase transitions
Georgii, Hans-Otto
2011-01-01
From a review of the first edition: ""This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert."" (F. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.
Light scattering near phase transitions
Cummins, HZ
1983-01-01
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Phase transitions and critical phenomena
Domb, Cyril
2000-01-01
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m
Multiple steady state phenomenon in martensitic transformation
无
2001-01-01
Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non-equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation.
Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.
2014-01-01
While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation
Blondé, R.J.P.; Jimenez-Melero, E.; Anusuya Ponnusami, S.; Zhao, L.; Schell, N.; Brück, E.H.; Van der Zwaag, S.; Van Dijk, N.H.
2014-01-01
While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation
Quark Deconfinement Phase Transition in Neutron Stars
Alaverdyan, G B
2009-01-01
The hadron-quark phase transition in the interior of compact stars is investigated, when the transition proceeds through a mixed phase. The hadronic phase is described in the framework of relativistic mean-field theory, when also the scalar-isovector delta-meson mean-field is taken into account. The changes of the parameters of phase transition caused by the presence of delta-meson field are explored. The results of calculation of structure of the mixed phase (Glendenning construction) are compared with the results of usual first-order phase transition (Maxwell construction).
Interacting Weyl fermions: Phases, phase transitions and global phase diagram
Roy, Bitan; Juricic, Vladimir
2016-01-01
We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength $n$. We show that any local interaction has a \\emph{negative} scaling dimension $-2/n$. Consequently all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At one loop level, the correlation length exponent for continuous transitions is $\
Oberste-Brandenburg, C.
1999-06-01
In this thesis, a model to describe the austenite martensite transformation was developed. The transformation induced plasticity (TRIP) was taken into consideration. The model can be used to design complex structures. A local examination of the energy and entropy balance at the phase boundary serves as the starting point for the identification of the thermodynamical driving force and the thermodynamic flow. For both, a tensorial description is necessary for a general nonhydrostatically stressed solid. In the second part, a material law for the description of TRIP-Steels was developed based on the values derived in the first part. The different mechanical behavior of the phases, especially the differing yield stresses, was taken into account. The model developed was implemented into the finite element program MARC. Simulations of the material and the structural behavior were performed. The experimentally observed strong dependence of the transformation kinetics on the yield stress of the austenite and the dependence of the orientation of the martensite inclusion on the stress state could be verified. (orig.) [German] Im Rahmen dieser Arbeit wurde ein Materialmodell zur Beschreibung der Austenit-Martensit Phasenumwandlung unter Beruecksichtigung der transformationsinduzierten Plastizitaet (TRIP) entwickelt. Das Modell ist zur Berechnung ausgedehnter Strukturen einsetzbar. Eine lokale Betrachtung der Energie- und Entropiebilanz an der Phasengrenze bildet den Ausgangspunkt zur Identifikation der thermodynamischen Kraft und des thermodynamischen Flusses bei Beschreibung der Transformationskinetik. Fuer beide Groessen muss fuer den allgemein nichthydrostatischen Spannungszustand eine tensorielle Beschreibung verwendet werden. Im zweiten Teil der Arbeit bilden diese Groessen die Basis zur Entwicklung eines Stoffgesetzes zur Beschreibung des TRIP-Phaenomens. Es wird das unterschiedliche mechanische Verhalten der Phasen, insbesondere die stark unterschiedlichen
QCD Phase Transitions, Volume 15
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena
Jin, Yongmei M.; Wang, Yu U.; Ren, Yang
2015-12-01
Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.
The Structural Phase Transition in Solid DCN
Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.
1976-01-01
Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...
QGP phase transition and multiplicity fluctuations
杨纯斌; 王晓荣; 蔡勖
1997-01-01
The scaled factorial moments in QGP phase transitions are studied analytically by the extended Ginzburg-Landau model.The dependence of InFq on phase space interval is different for the first- and second-order QGP phase transitions.When lnFq are fitted to polynomials of X=δ1/3,the relative sign between the fitted coefficients of X and bq,l calculated theoretically can be used to judge the order of phase transitions.Two sets of experimental data are reanalysed and the phase transitions are the first order for one set of data but the second order for another.
Phase separation and superparamagnetism in the martensitic phase of N i50 -xC oxM n40S n10
Yuan, S.; Kuhns, P. L.; Reyes, A. P.; Brooks, J. S.; Hoch, M. J. R.; Srivastava, V.; James, R. D.; Leighton, C.
2016-03-01
N i50 -xC oxM n40S n10 shape memory alloys in the approximate range 5 ≤x ≤8 display desirable properties for applications as well as intriguing magnetism. These off-stoichiometric Heusler alloys undergo a martensitic phase transformation at a temperature TM of 300-400 K, from ferromagnetic (FM) to nonferromagnetic, with unusually low thermal hysteresis and a large change in magnetization. The low temperature magnetic structures in the martensitic phase of such alloys, which are distinctly inhomogeneous, are of great interest but are not well understood. Our present use of spin echo nuclear magnetic resonance in the large hyperfine fields at 55Mn sites provides compelling evidence that nanoscale magnetic phase separation into FM and antiferromagnetic (AFM) regions occurs below TM in alloys with x in the range 0 to 7. At finite Co substitution, the FM regions are found to be of two distinct types, corresponding to high and low local concentrations of Co on Ni sites. Estimates of the size distributions of both the FM and AFM nanoregions have been made. At x =7 , the AFM component is not long-range ordered, even below 4 K, and is quite different from the AFM component found at x =0 ; by x =14 , the FM phase is completely dominant. Of particular interest, we find for x =7 that field cooling leads to dramatic changes in the AFM regions. These findings provide insight into the origins of magnetic phase separation and superparamagnetism in these complex alloys, particularly their intrinsic exchange bias, which is of considerable current interest.
Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel
Cipolla, L.; Danielsen, Hilmar Kjartansson; Venditti, D.
2010-01-01
of Laves phase were avoided by keeping the C, W and Mo contents as low as possible. Transmission electron microscopy and X-ray diffraction analysis of extracted particles were used to follow the evolutions of phase composition, phase morphology and phase fraction, particularly of the precipitation of Z...
Current fluctuations at a phase transition
Gerschenfeld, A.; Derrida, B.
2011-10-01
The ABC model is a simple diffusive one-dimensional non-equilibrium system which exhibits a phase transition. Here we show that the cumulants of the currents of particles through the system become singular near the phase transition. At the transition, they exhibit an anomalous dependence on the system size (an anomalous Fourier's law). An effective theory for the dynamics of the single mode which becomes unstable at the transition allows one to predict this anomalous scaling.
Cosmological phase transitions from lattice field theory
Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2011-11-22
In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.
Holographic Phase Transition Probed by Nonlocal Observables
Xiao-Xiong Zeng
2016-01-01
Full Text Available From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordström-AdS black hole is probed by the two-point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes that the black hole undergoes a Hawking-Page phase transition, a first-order phase transition, and a second-order phase transition successively before it reaches a stable phase. In addition, for these probes, we find that the equal area law for the first-order phase transition is valid always and the critical exponent of the heat capacity for the second-order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.
When is the deconfinement phase transition universal?
Holland, K; Wiese, U J
2003-01-01
Pure Yang-Mills theory has a finite-temperature phase transition, separating the confined and deconfined bulk phases. Svetitsky and Yaffe conjectured that if this phase transition is of second order, it belongs to the universality class of transitions for particular scalar field theories in one lower dimension. We examine Yang-Mills theory with the symplectic gauge groups Sp(N). We find new evidence supporting the Svetitsky-Yaffe conjecture and make our own conjecture as to which gauge theories have a universal second order deconfinement phase transition.
Phase transitions of quadrupolar fluids
O'Shea, Seamus F.; Dubey, Girija S.; Rasaiah, Jayendran C.
1997-07-01
Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of strength Q*=Q/(ɛσ5)1/2=2.0 where ɛ and σ are the Lennard-Jones parameters. Calculations revealing the effect of the dispersive forces on the liquid-vapor coexistence were carried out by scaling the attractive r-6 term in the Lennard-Jones pair potential by a factor λ ranging from 0 to 1. Liquid-vapor coexistence is observed for all values of λ including λ=0 for Q*=2.0, unlike the corresponding dipolar fluid studied by van Leeuwen and Smit et al. [Phys. Rev. Lett. 71, 3991 (1993)] which showed no phase transition below λ=0.35 when the reduced dipole moment μ*=2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid and their dependence on the strength λ of the dispersive force. The critical temperature and pressure show a clear quadratic dependence on λ, while the density is less confidently identified as being linear in λ. The compressibility is roughly linear in λ.
Theory and Model for Martensitic Transformations
Lindgård, Per-Anker; Mouritsen, Ole G.
1986-01-01
Martensitic transformations are shown to be driven by the interplay between two fluctuating strain components. No soft mode is needed, but a central peak occurs representing the dynamics of strain clusters. A two-dimensional magnetic-analog model with the martensitic-transition symmetry...
Z phase precipitation in martensitic 12CrMoVNb steels
Vodarek, V.; Strang, A.
2003-10-01
Precipitation of Z phase contributes significantly to degradation of creep properties of 12CrMoVNb steels because its precipitation is accompanied by dissolution offinely dispersed nitrides and carbonitrides of M2X and/or MX type. The orientation relationship between Z phase and the ferritic matrix was determined as: (001)_z// (001)_{α}, [010]_z // [010]_{α}. Prolonged thcrmal/creep exposure is accompanied by recrystallisation of the matrix and this orientation relationship is destroyed. Nevertheless Z phase particles preserve the form of thin plates. Z phase is a nitride which is rich in vanadium, niobium and chromium and its composition depends on both the temperature of precipitation and the initial chemical composition of steels. The composition of Z phase does not change during long term exposure at the original precipitation temperature. A relationship between the composition of Z phase and its temperature of formation may be able to be used as a temperature exposure indicator of steels. However it is also necessary to know the Z phase composition for a given cast of material.
Rie Y Umetsu
2017-10-01
Full Text Available Specific heat measurements were performed at low temperatures for Ni50Mn50−xInx alloys to determine their Debye temperatures (θD and electronic specific heat coefficients (γ. For x ≤ 15, where the ground state is the martensite (M phase, θD decreases linearly and γ increases slightly with increasing In content. For x ≥ 16.2, where the ground state is the ferromagnetic parent (P phase, γ increases with decreasing In content. Extrapolations of the composition dependences of θD and γ in both the phases suggest that these values change discontinuously during the martensitic phase transformation. The value of θD in the M phase is larger than that in the P phase. The behavior is in accordance with the fact that the volume of the M phase is more compressive than that of the P phase. On the other hand, γ is slightly larger in the P phase, in good agreement with the reported density of states around the Fermi energy obtained by the first-principle calculations.
Phase transitions in the web of science
Phillips, J. C.
2015-06-01
The Internet age is changing the structure of science, and affecting interdisciplinary interactions. Publication profiles connecting mathematics with molecular biology and condensed matter physics over the last 40 years exhibit common phase transitions indicative of the critical role played by specific interdisciplinary interactions. The strengths of the phase transitions quantify the importance of interdisciplinary interactions.
Quantum Phase Transitions in a Finite System
Leviatan, A
2006-01-01
A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.
The Structural Phase Transition in Solid DCN
Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.
1975-01-01
Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....
Microstructure of Z-phase strengthened martensitic steels: Meeting the 650°C challenge
Liu, Fang; Rashidi, Masoud; Hald, John
2017-01-01
We studied three series of Z-phase strengthened steels using scanning electron microscopy, transmission electron microscopy, and atom probe tomography to reveal the detailed microstructure of these steels. In particular, the phase transformation from M(C,N) to Z-phase (CrMN) was studied. Carbon...... content in the steels is the governing factor in this transformation. The impact toughness of some test alloys was rather low. This is attributed to the formation of a continuous W-rich film along prior austenite grain boundaries. Cu and C addition to the test alloys changed Laves phase morphology...... to discrete precipitates and improved toughness dramatically. BN particles were found in some steels. Formation of BN is directly linked to the B concentration in the steels....
Skovgaard, Mette; Ahniyaz, Anwar; Sørensen, Bent F.
2010-01-01
For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders...... effective in de-agglomeration of our nanocrystalline porous ZrO2 particles into discrete nanocrystals. However, the t → m phase transformation could not be avoided totally even at very mild milling condition. This suggests that the metastable t-ZrO2 is extreme sensitive to microscale shear stress induced...... was observed. Ball-milling induced microscale stress has a similar effect on the t → m phase transformation. Furthermore, it was found that even very mild milling condition, such as 120 rpm, 1 h (0.5 mm balls) was enough to induce phase transformation. Surfactant assisted ball-milling was found to be very...
SUSY and the Electroweak Phase Transition
Farrar, Glennys R S; Farrar, Glennys R.; Losada, Marta
1996-01-01
We analyze the effective 3 dimensional theory previously constructed for the MSSM and multi-Higgs models to determine the regions of parameter space in which the electroweak phase transition is sufficiently strong for a $B+L$ asymmetry to survive in the low temperature phase. We find that the inclusion of all supersymmetric scalars and all 1-loop corrections has the effect of enhancing the strength of the phase transition. Without a light stop or extension of the MSSM the phase transition is sufficiently first order only if the lightest Higgs mass $M_{h}\\lsi 70$ GeV and $tan\\beta\\lsi 1.75$.
Martensitic Transformation in Magnetically Controlled Shape Memory Alloys Co50Ni20Ga30
Fanbin MENG; Yangxian LI; Heyan LIU; Jingping QU; Ming ZHANG; Jinglan CHEN; Guangheng WU
2004-01-01
The martensitic transformation for Co50Ni20Ga30 ribbon synthesized by the melt-spinning technique was studied by means of X-ray diffraction and ac magnetic susceptibility. The Co50Ni20Ga30 ribbon, having bcc phase with calculated lattice parameters of a=0.57431 nm at 313 K. It exhibits a structure transition from parent phase to martensite during cooling. The martensitic phase in Co50Ni20Ga30 ribbon is tetragonal structure with lattice parameters of a=b=0.5422 nm and c=0.6401 nm. (c/a＞1). According to the changing of diffraction intensity for martensite and the change of ac magnetic susceptibility, the process of the martensitic transformation can be divided into three parts during cooling from 283 K to 213 K. When the temperature decreasing sequentially from 193 K to 110 K, the structure of the martensite has a cha nge in which the a-axis decreases and c-axis increases. The morphologies of selfaccommodation were observeds. The parallelogram morphology, the diamond morphology and the fork morphology were found.
无
2000-01-01
The effect of C content (0.014～0.39 wt pct) on the paramagnetic-antiferromagnetic transition and γ -→ ε martensitic transformation of Fe-24Mn alloys has been investigated by the resistivity,dilation, tensile properties measurement and microstructure examination. The results have shown that C decreases TN; increases the thermal expansion coefficients both above and below the TN; increases the resistivity above the TN and antiferromagnetic scattering resistivity below TN. It strongly depresses the γ→ε martensitic transformation and reduces the Ms of Fe-24Mn alloys.Moreover, it increases the lattice parameter of austenite, enhances the tensile ductility, but almost does not affect the tensile strength. With increasing C content from 0.014 to 0.19 wt pct, theyield strength of Fe-24Mn alloy decreases obviously arising from the decreasing of preexisting εmartensite, but it increases from 0.19 to 0.39 wt pct C due to the solution hardening of C.
Chirality effects on 2D phase transitions
Scalas, E.; Brezesinski, G.; Möhwald, H.
1996-01-01
-nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...... and distortion continuously vary from a direction close to NN to a direction close to NNN. The nature of the phase transition and the influence of chirality on it are discussed within the framework of Landau's theory of phase transitions....
Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C
2010-08-11
Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.
Cosmological perturbations from an inhomogeneous phase transition
Matsuda, Tomohiro, E-mail: matsuda@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)
2009-07-21
A mechanism for generating metric perturbations in inflationary models is considered. Long-wavelength inhomogeneities of light scalar fields in a decoupled sector may give rise to superhorizon fluctuations of couplings and masses in the low-energy effective action. Cosmological phase transitions may then occur that are not simultaneous in space, but occur with time lags in different Hubble patches that arise from the long-wavelength inhomogeneities. Here an interesting model in which cosmological perturbations may be created at the electroweak phase transition is considered. The results show that phase transitions may be a generic source of non-Gaussianity.
Effect of Multiple Martensitic Transformations on Structure of Fe-Ni Alloys
V.Danilchenko; Ie.Dzevin; V.Sagaradze
2013-01-01
Effect of multiple direct and reverse martensitic transformations on fragmentation of austenitic grains in Fe-Ni alloys have been studied by X-ray diffraction and scanning electron microscopy.An ultra-fine structure was formed by fragmentation inside austenitic grains due to progressing misorientation of austenitic sub-grains during multiple γ-α-γ-martensitic phase transitions.An increase in the number of γ-α-γ-transformations increases misorientation angle between austenitic sub-grains and leads to transformation of an austenitic single crystal into a textured polycrystal.It has been shown that multiple γ-α-γ-martensitic phase transitions change the mechanism of internal stress relaxation from dislocation-based to deformation twinning.
Phase transitions in dissipative Josephson chains
Bobbert, P.A.; Fazio, R.; Schoen, G. (Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (NL)); Zimanyi, G.T. (Department of Physics, University of California, Davis, Davis, California 95616 (USA))
1990-03-01
We study the zero-temperature phase transitions of a chain of Josephson junctions, taking into account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipation. We map the problem onto a generalized Coulomb gas model, which then is transformed into a sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a transition between globally superconducting and resistive behavior, we find a quadrupole unbinding transition at a critical strength of the dissipation. This transition separates two superconducting states characterized by different local properties.
Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon
Liu, Z.H. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)]. E-mail: zhliu@aphy.iphy.ac.cn; Liu, H. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, X.X. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, M. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Dai, X.F. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Hu, H.N. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen, J.L. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu, G.H. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: userm201@aphy.iphy.ac.cn
2004-08-23
The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni{sub 50+x}Fe{sub 25-x}Ga{sub 25} (x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L21->B2 transition occurs in the samples treated at 873 K, while the {gamma} phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni{sub 2}FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni{sub 2}FeGa on the saturation magnetization and exchange interaction are also discussed.
Xu, Yuantao [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Mingjia, E-mail: mingjiawangysu@126.com [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Yan; Gu, Tao [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Chen, Lei [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China); Zhou, Xuan; Ma, Qian; Liu, Yuming; Huang, Jing [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)
2015-02-05
Highlights: • Having used EBSD, SEM–BSE, and TEM techniques to investigate the nucleation and growth of Laves phase in the 10% Cr steel. • Most of Laves phases appear on grain boundaries with a misorientation angle of 40–60° and only a small amount of them at 3–10°. • Carbon atoms will segregate on the vicinity of phase interfaces between Laves phase and α-Fe during decomposition of M{sub 23}C{sub 6} carbides and formation of Laves phases. - Abstract: The nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging have been investigated in this paper. Laves phase, (Fe, Cr){sub 2} (Mo, W), was observed after long-term (>750 h) aging at 650 °C. It is found that Laves phases prefer to locate at prior austenite grain boundaries and martensite lath boundaries, especially, most of them precipitate at grain boundaries with a misorientation angle of 40–60° and only a small amount of them at 3–10°. Moreover, the size of Laves phase at 40–60° grain boundaries is larger than that at 3–10° grain boundaries. In addition, some Laves phases are formed in the regions adjacent to M{sub 23}C{sub 6} particles, with increasing aging time they will gradually swallow the Cr-rich M{sub 23}C{sub 6} carbides in close vicinity, resulting in carbon atoms segregation on the vicinity of phase interfaces between Laves phase and α-Fe.
Conductor-insulator quantum phase transitions
Trivedi, Nandini; Valles, James M
2012-01-01
When many particles come together how do they organise themselves? And what destroys this organisation? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them.
Magnetic Fields from the Electroweak Phase Transition
Törnkvist, O
1998-01-01
I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.
The transition to chaotic phase synchronization
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system, this p...
Transit time MESFET phase shifter
Walters, Peter C.; Roger D. Pollard; Richardson, John R.
1992-01-01
The phase shift of a signal through a common-source MESFET can be changed with little effect on the amplitude by altering the gate-drain spacing. The feasibility of employing this principle to realize a highly compact, monolithic phase shifter has been investigated. The behaviour of the devices with differing gate-drain spacing has been measured and modelled and a design for a monolithic implementation is presented.
Molecular markers of phase transition in locusts
ARNOLD DE LOOF; ILSE CLAEYS; GERT SIMONET; PETER VERLEYEN; TIM VANDERSMISSEN; FILIP SAS; JURGEN HUYBRECHTS
2006-01-01
The changes accompanying the transition from the gregarious to the solitary phase state in locusts are so drastic that for a long time these phases were considered as distinct species. It was Boris Uvarov who introduced the concept of polyphenism. Decades of research revealed that phase transition implies changes in morphometry, the color of the cuticle, behavior and several aspects of physiology. In particular, in the recent decade, quite a number of molecular studies have been undertaken to uncover phase-related differences.They resulted in novel insights into the role of corazonin, neuroparsins, some protease inhibitors, phenylacetonitrile and so on. The advent of EST-databases of locusts (e.g. Kang et al., 2004) is a most encouraging novel development in physiological and behavioral locust research. Yet, the answer to the most intriguing question, namely whether or not there is a primordial molecular inducer of phase transition, is probably not within reach in the very near future.
Polymorphic phase transition in Superhydrous Phase B
Koch-Müller, M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Orman, J. Van; Wirth, R.
2005-09-01
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200°C (LT) and 1400°C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180°C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group ( Pnn2), whereas the HT polymorph assumes a higher symmetry space group ( Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.
Polymorphic Phase Transition in Superhydrous Phase B
Koch-Muller,M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Van Orman, J.; Wirth, R.
2005-01-01
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200 C (LT) and 1400 C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180 C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.
Contemporary research of dynamically induced phase transitions
Hull, L. M.
2017-01-01
Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.
无
2002-01-01
In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature.
An absorbing phase transition from a structured active particle phase
Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)
2007-02-14
In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.
Magnetic phase transitions in layered intermetallic compounds
Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.
2012-10-01
Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.
Microstructure and low-temperature phase transition in Ni{sub 2}FeGa Heusler alloy
Liu Libao [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China) and Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China) and Harbin Institute of Technology at Weihai, Weihai 264209 (China)]. E-mail: lbliu@blem.ac.cn; Fu Shiyou [Harbin Institute of Technology at Weihai, Weihai 264209 (China); Liu Zhuhong [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu Guangheng [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Sun Xiudong [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li Jianqi [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)
2006-11-30
The microstructure features and structural phase transition in the Ni{sub 2}FeGa alloy has been systematically investigated by means of transmission electron microscopy (TEM). A number of ordered states have been observed at room temperature; certain short-range orders are found to be in metastable states which are temperature sensitive and become invisible when annealed. In situ cooling TEM observations revealed evident structural changes along with the martensitic transition with T {sub c}{approx}145 K. Low-temperature microstructure domains, superstructures and variations of monoclinic distortion have been analyzed in detail.
Numerical Study of Phase Transition in Thermoviscoelasticity
ShaoqingTANG
1997-01-01
We study the spatially periodic problem of thermoviscoelasticity with nonmonotone structure relations.By pseudo-spectral method.we demosnstrate numerically phase transitions for certain symmetric initial data.Without symmetry,the simulations show that a translation occurs for the phase boundary.
Phase Transition in the Simplest Plasma Model
Iosilevskiy, Igor
2009-01-01
We have investigated the phase transition of the gas-liquid type, with an upper critical point, in a variant of the One Component Plasma model (OCP) that has a uniform but compressible compensating background. We have calculated the parameters of the critical and triple points, spinodals, and two-phase coexistence curves (binodals). We have analyzed the connection of this simplest plasma phase transition with anomalies in the spatial charge profiles of equilibrium non-uniform plasma in the local-density approximations of Thomas-Fermi or Poisson-Boltzmann-type.
Theory of phase transitions rigorous results
Sinai, Ya G
1982-01-01
Theory of Phase Transitions: Rigorous Results is inspired by lectures on mathematical problems of statistical physics presented in the Mathematical Institute of the Hungarian Academy of Sciences, Budapest. The aim of the book is to expound a series of rigorous results about the theory of phase transitions. The book consists of four chapters, wherein the first chapter discusses the Hamiltonian, its symmetry group, and the limit Gibbs distributions corresponding to a given Hamiltonian. The second chapter studies the phase diagrams of lattice models that are considered at low temperatures. The no
End point of the electroweak phase transition
Csikor, Ferenc; Heitger, J; Aoki, Y; Ukawa, A
1999-01-01
We study the hot electroweak phase transition (EWPT) by 4-dimensional lattice simulations on lattices with symmetric and asymmetric lattice spacings and give the phase diagram. A continuum extrapolation is done. We find first order phase transition for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. Above this end point a rapid cross-over occurs. Our result agrees with that of the dimensional reduction approach. It also indicates that the fermionic sector of the Standard Model (SM) may be included perturbatively. We get for the SM end point $72.4 the SM.
Phase Transition Induced Fission in Lipid Vesicles
Leirer, C; Myles, V M; Schneider, M F
2010-01-01
In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T
Landau theory of martensitic transformation in Fe-Mn-Si based alloys
无
2002-01-01
Considering the features of martensitic transformation in Fe-Mn-Si based alloys, the Landau theory is established by introducing the density of stacking faults as a new order parameter ηand the corresponding free energy function. By using such an order parameter, the stacking fault mechanism of the nucleation and growth for the γ(fcc)→ε(hcp) martensitic transformation can be reasonably explained, and a further detailed mechanism is proposed. The stacking faults are generated and overlapped in an irregular form at the beginning and then becoming regular to create some transition structures till a stable phase forms at a certain temperature. The importance of the interface soliton is to complete the transformations into various structures of martensite but not the twinned one. The thermodynamics of fcc→hcp transformation and those between different transition structures are described by the free energy function established in the present note.
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
PT phase transition in multidimensional quantum systems
Bender, Carl M
2012-01-01
Non-Hermitian PT-symmetric quantum-mechanical Hamiltonians generally exhibit a phase transition that separates two parametric regions, (i) a region of unbroken PT symmetry in which the eigenvalues are all real, and (ii) a region of broken PT symmetry in which some of the eigenvalues are complex. This transition has recently been observed experimentally in a variety of physical systems. Until now, theoretical studies of the PT phase transition have generally been limited to one-dimensional models. Here, four nontrivial coupled PT-symmetric Hamiltonians, $H=p^2/2+x^2/2+q^2/2+y^2/2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2/2+r^2/2+z^2/2+igxyz$, and $H=p^2/2+x^2/2+q^2/2+y^2+r^2/2+3z^2/2+igxyz$ are examined. Based on extensive numerical studies, this paper conjectures that all four models exhibit a phase transition. The transitions are found to occur at $g\\approx 0.1$, $g\\approx 0.04$, $g\\approx 0.1$, and $g\\approx 0.05$. These results suggest that the PT phase transition is a robust phen...
Frommen, Christoph; Wilde, Gerhard; Roesner, Harald
2004-09-08
Nanometre-sized freestanding alloy particles of B2-ordered AuCd with an average composition of Au{sub 50}Cd{sub 50} (at.%) were synthesized by a wet-chemical process. The thermoelastic transformation behaviour with respect to particle size was investigated by means of calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The martensitic transformation start temperature, M{sub s}, of nanometre-sized AuCd particles was determined to about 49 K and thus drastically lowered compared to AuCd bulk alloys. The lowering of the transformation temperatures is discussed on the basis of the obtained calorimetric data regarding the following two aspects: firstly, a reduction in the thermodynamic equilibrium temperature, T{sub 0}, and secondly, a suppression of the martensite formation due to the absence of pre-existing nucleation sites in the small AuCd particles. Moreover, it is demonstrated that due to a coarsening of the nanometre-sized alloy particles during a heat treatment, the martensitic transformation was shifted towards ambient temperature.
Martensitic nucleation mechanism
陈奇志; 桑灿; 吴杏芳; 柯俊
1997-01-01
A sort of special dislocation configuration was deformation-induced in an Fe-Ni-V-C alloy by in-situ elongation tests of TEM. The cooling in-situ observations, as well as the SADPs from the region of the special dislocation configurations, proved that they are martensitic nuclei. In martensitic transformation, a nucleus changed into a small martensitic sub-plate, and a group of parallel sub-plates that formed from a group of parallel nuclei made up a big martensitic plate Martensitic transformation involved opposite shear between adjacent martensitic nuclei. By using the reduced-cell method, the crystallographic structure of observed martensitic nuclei was indexed as a face-centered orthogonal (FCO) lattice, which was explained by the nucleation mechanism proposed by the present authors. The crystallographic analysis confirmed that the defect faulting involved in martensitic nucleation took place among three close pakked planes, instead of between two adjacent planes as an ordinary stacking fault.
Thomas Paul, V.; Sudha, C.; Saroja, S.
2015-08-01
9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.
The diamagnetic phase transition in Magnetars
Wang, Zhaojun; Zhu, Chunhua; Wu, Baoshan
2016-01-01
Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen (dHvA) effect and diamagnetic phase transition which is associated with magnetic domain formation. The "magnetic interaction" between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in "low-field" magnetar, the depinning phase transition of domain wall motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magne...
Thermogeometric phase transition in a unified framework
Banerjee, Rabin; Samanta, Saurav
2016-01-01
Using geomterothermodynamics (GTD), we investigate the phase transition of black hole in a metric independent way. We show that for any black hole, curvature scalar (of equilibrium state space geometry) is singular at the point where specific heat diverges. Previously such a result could only be shown by taking specific examples on a case by case basis. A different type of phase transition, where inverse specific heat diverges, is also studied within this framework. We show that in the latter case, metric (of equilibrium state space geometry) is singular instead of curvature scalar. Since a metric singularity may be a coordinate artifact, we propose that GTD indicates that it is the singularity of specific heat and not inverse specific heat which indicates a phase transition of black holes.
Quantum phase transitions with dynamical flavors
Bea, Yago; Ramallo, Alfonso V
2016-01-01
We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.
Quantum phase transitions with dynamical flavors
Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.
2016-07-01
We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.
Martensitic transformation in rapidly solidified Heusler Ni{sub 49}Mn{sub 39}Sn{sub 12} ribbons
Zheng Hongxing, E-mail: hxzheng@shu.edu.cn [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Wu Dianzhen; Xue Sichuang [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Frenzel, Jan; Eggeler, Gunther [Institute of Materials, Ruhr University Bochum, Bochum 44801 (Germany); Zhai Qijie [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)
2011-08-15
In the present work, the microstructure evolution and kinetics of the martensitic transformation are investigated in as-spun and annealed ribbons of Heusler Ni{sub 49}Mn{sub 39}Sn{sub 12} using electron microscopy, X-ray diffraction and differential scanning calorimetry. Both ribbons undergo a reversible martensitic transformation during thermal cycling and the low-temperature martensite is confirmed to be a modulated four-layered orthorhombic (4O) structure through in situ cooling transmission electronic microscopy investigation. The annealing effect on the martensitic transformation behavior is discussed from the viewpoints of electron concentration, Mn-Mn interatomic distance, atomic order degree and grain size. A strong cooling-rate dependence of phase transition kinetics is found and the mechanism is analyzed. The satisfactory reproducibility obtained during thermal cycling test of this alloy ribbons offers great potential for practical applications.
Late-time cosmological phase transitions
Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))
1990-11-01
It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.
Fluctuations near the deconfinement phase transition boundary
Mishustin, I N
2005-01-01
In this talk I discuss how a first order phase transition may proceed in rapidly expanding partonic matter produced in a relativistic heavy-ion collision. The resulting picture is that a strong collective flow of matter will lead to the fragmentation of a metastable phase into droplets. If the transition from quark-gluon plasma to hadron gas is of the first order, it will manifest itself by strong nonstatistical fluctuations in observable hadron distributions. I discuss shortly existing experimental data on the multiplicity fluctuations.
Queueing phase transition: theory of translation.
Romano, M Carmen; Thiel, Marco; Stansfield, Ian; Grebogi, Celso
2009-05-15
We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in this work, is the process responsible for the classification of the proteins having different biological functions.
Exceptional Points and Dynamical Phase Transitions
I. Rotter
2010-01-01
Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.
Phase Transition in Loop Quantum Gravity
Mäkelä, Jarmo
2016-01-01
We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole the characteristic temperature $T_C$ corresponds to the Hawking temperature of the hole.
Scaling Concepts in Describing Continuous Phase Transitions
2016-10-01
Phase transitions, like the boiling of water upon increasingtemperature, are a part of everyday experience and are yet,upon closer inspection, unusual phenomena, and reveal a hostof fascinating features. Comprehending key aspects of phasetransitions has lead to the uncovering of new ways of describingmatter composed of large numbers of interacting elements,which form a dominant way of analysis in contemporarystatistical mechanics and much else. An introductorydiscussion is presented here of the concepts of scaling, universalityand renormalization, which forms the foundation ofthe study of continuous phase transitions, such as the spontaneousmagnetization of ferromagnetic substances.
Endpoint of the hot electroweak phase transition
Csikor, Ferenc; Heitger, J
1999-01-01
We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. The Monte-Carlo analysis is done on lattices with different lattice spacings ($a$). A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. At this endpoint the phase transition is of second order, whereas above it only a rapid cross-over can be seen. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the Standard Model is $72.4 \\pm 1.7$ GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the Standard Model.
Wu, Yuye; Wang, Jingmin, E-mail: jingmin@buaa.edu.cn; Hua, Hui; Jiang, Chengbao; Xu, Huibin
2015-05-25
Highlights: • Effect of Tb addition on phase transition temperatures of Ni{sub 50}Mn{sub 29}Ga{sub 21} were clarified. • Coupled magneto-structural transition were observed in Ni{sub 50}Mn{sub 29}Ga{sub 21}Tb{sub 0.2} alloy. • Large magnetocaloric effect was monitored from the magneto-structural transition. - Abstract: Ni{sub 50}Mn{sub 29}Ga{sub 21−x}Tb{sub x} (0 ⩽ x ⩽ 1) alloys were studied with the microstructure, phase transition, and magnetocaloric effect. Dual-phase microstructure containing the martensite matrix and Tb-rich precipitations were formed. The martensitic transformation was observed over the whole composition range, with the transformation temperature T{sub M} significantly increased by the addition of terbium. The magnetic transition temperatures of the austenite and martensite, i.e. T{sub C}{sup A} and T{sub C}{sup M}, were monitored for 0 ⩽ x ⩽ 0.16 and 0.27 ⩽ x ⩽ 1, respectively. Both T{sub C}{sup A} and T{sub C}{sup M} were slightly decreased by the addition of terbium. For 0.16 ⩽ x ⩽ 0.27 the martensitic transformation was coincided with the magnetic transition in case of T{sub M} = T{sub C}, giving rise to the coupled magneto-structural transition from ferromagnetic martensite to paramagnetic austenite. Sizable magnetic entropy change was induced by magnetic field in the vicinity of the coupled magneto-structural transition.
Transition to turbulence in pipe flow as a phase transition
Vasudevan, Mukund; Hof, Björn
2015-11-01
In pipe flow, turbulence first arises in the form of localized turbulent patches called puffs. The flow undergoes a transition to sustained turbulence via spatio-temporal intermittency, with puffs splitting, decaying and merging in the background laminar flow. However, the due to mean advection of the puffs and the long timescales involved (~107 advective time units), it is not possible to study the transition in typical laboratory set-ups. So far, it has only been possible to indirectly estimate the critical point for the transition. Here, we exploit the stochastic memoryless nature of the puff decay and splitting processes to construct a pipe flow set-up, that is periodic in a statistical sense. It then becomes possible to study the flow for sufficiently long times and characterize the transition in detail. We present measurements of the turbulent fraction as a function of Reynolds number which in turn allows a direct estimate of the critical point. We present evidence that the transition has features of a phase transition of second order.
Deconfinement phase transition in neutron star matter
LI Ang; PENG Guang-Xiong; Lombardo U
2009-01-01
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.
Liu, Changqin [Department of Physics, Shanghai University, Shanghai 200444 (China); Li, Zhe [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Zhang, Yuanlei [Department of Physics, Shanghai University, Shanghai 200444 (China); Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Xu, Kun [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Deng, Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Jing, Chao, E-mail: cjing@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China)
2017-03-01
In this paper, we have systematically prepared a serials of polycrystalline Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (T{sub c}{sup M}) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (T{sub c}{sup A}) is almost unchanged. It was found that the structures undergo L2{sub 1} and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn{sub 48}Ni{sub 42}Sn{sub 10} was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn{sub 48}Ni{sub 42}Sn{sub 10} alloys.
Liquid gas phase transition in hypernuclei
Mallik, S
2016-01-01
The fragmentation of excited hypernuclear system formed in heavy ion collisions has been described by the canonical thermodynamical model extended to three component systems. The multiplicity distribution of the fragments has been analyzed in detail and it has been observed that the hyperons have the tendency to get attached to the heavier fragments. Another important observation is the phase coexistence of the hyperons, a phenomenon which is linked to liquid gas phase transition in strange matter.
Akkera, Harish Sharma [Functional Nanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Choudhary, Nitin [Department of Materials Science and Engineering, University of North Texas, North Texas Discovery Park, 3940 North Elm St., Denton, TX 76207 (United States); Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in [Functional Nanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India)
2015-08-15
Highlights: • The Al content leads to a increase in the martensitic transformation temperature. • A maximum ΔS{sub M} = 23 mJ/cm{sup 3} K at 300 K was observed in the N{sub 49.8}Mn{sub 32.97}Al{sub 4.43}Sb{sub 12.8}. • The refrigeration capacity RC = 64.4 mJ/cm{sup 3} at 2 T for N{sub 49.8}Mn{sub 32.97}Al{sub 4.43}Sb{sub 12.8} film. - Abstract: We systematically investigated the influence of aluminium (Al) content on the martensitic transformations and magnetocaloric effect (MCE) in Ni–Mn–Sb ferromagnetic shape memory alloy (FSMA) thin films. The temperature-dependent magnetization (M–T) and resistance (R–T) results displayed a monotonic increase in martensitic transformation temperature (T{sub M}) with increasing Al content. From the isothermal magnetization (M–H) curves, a large magnetic entropy change (ΔS{sub M}) of 23 mJ/cm{sup 3} K was observed in N{sub 49.8}Mn{sub 32.97}Al{sub 4.43}Sb{sub 12.8}. A remarkable enhancement of MCE could be attributed to the significant change in the magnetization of Ni–Mn–Sb films with increasing Al content. Furthermore, a high refrigerant capacity (RC) was observed in Ni–Mn–Sb–Al thin films as compared to pure Ni–Mn–Sb. The substitution of Al for Mn in Ni–Mn–Sb thin films with field induced MCE are potential candidates for micro length scale magnetic refrigeration applications where low magnetic fields are desirable.
Passive Supporters of Terrorism and Phase Transitions
August, Friedrich; Delitzscher, Sascha; Hiller, Gerald; Krueger, Tyll
2010-01-01
We discuss some social contagion processes to describe the formation and spread of radical opinions. The dynamics of opinion spread involves local threshold processes as well as mean field effects. We calculate and observe phase transitions in the dynamical variables resulting in a rapidly increasing number of passive supporters. This strongly indicates that military solutions are inappropriate.
Hysteresis in the phase transition of chocolate
Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua
2016-01-01
We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.
Caloric materials near ferroic phase transitions
Moya, X.; Kar-Narayan, S.; Mathur, N. D.
2014-05-01
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Neutrino Oscillation Induced by Chiral Phase Transition
MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei
2009-01-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Higgs Couplings and Electroweak Phase Transition
Katz, Andrey
2014-01-01
We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3)_c. Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is...
Chaos: Butterflies also Generate Phase Transitions
Leplaideur, Renaud
2015-10-01
We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.
Phase Transitions, Diffraction Studies and Marginal Dimensionality
Als-Nielsen, Jens Aage
1985-01-01
Continuous phase transitions and the associated critical phenomena have been one of the most active areas of research in condensed matter physics for several decades. This short review is only one cut through this huge subject and the author has chosen to emphasize diffraction studies as a basic...
Problem of phase transitions in nuclear structure
Scharff-Goldhaber, G
1980-01-01
Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures. (RWR)
The Structural Phase Transition in Octaflournaphtalene
Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.
1977-01-01
The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...
Dimensional phase transitions in small Yukawa clusters
Sheridan, T E
2009-01-01
We investigate the one- to two-dimensional zigzag transition in clusters consisting of a small number of particles interacting through a Yukawa (Debye) potential and confined in a two-dimensional biharmonic potential well. Dusty (complex) plasma clusters with $n \\le 19$ monodisperse particles are characterized experimentally for two different confining wells. The well anisotropy is accurately measured, and the Debye shielding parameter is determined from the longitudinal breathing frequency. Debye shielding is shown to be important. A model for this system is used to predict equilibrium particle configurations. The experiment and model exhibit excellent agreement. The critical value of $n$ for the zigzag transition is found to be less than that predicted for an unshielded Coulomb interaction. The zigzag transition is shown to behave as a continuous phase transition from a one-dimensional to a two-dimensional state, where the state variables are the number of particles, the well anisotropy and the Debye shield...
Phase transition to QGP matter : confined vs deconfined matter
Maire, Antonin
2015-01-01
Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.
Mohammad Shirdel
2015-06-01
Full Text Available Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjected to heavy cold rolling to produce a nearly complete martensitic structure. Subsequently, a wide range of annealing temperatures (600 to 800°C and times (1 to 240 min were employed to assess the reversion behavior and to find the best annealing condition for the production of the nano/ultrafine grained austenitic microstructure. Microstructural characterizations have been performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and magnetic measurement, whereas the mechanical properties were assessed by tensile and hardness tests. After thermomechanical treatment, a very fine austenitic structure was obtained, which was composed of nano sized grains of ~ 85 nm in an ultrafine grained matrix with an average grain size of 480 nm. This microstructure exhibited superior mechanical properties: high tensile strength of about 1280 MPa with a desirable elongation of about 41%, which can pave the way for the application of these sheets in the automotive industry.
Phase transition – Break down the walls
Wandahl, Søren
2012-01-01
-phase issues of the construction process. This research first identifies the problems theoretically, and looks into which framework to be used in understanding of the phase transition problem. This combined with data from interviews reveal 8 major issues in phase transition, which decrease the value....... In a popular term this problem is often called “over the wall syndrome”. The manufacturing industry has worked with this for many years, in e.g. integrated product development, concurrent engineering, supply chain management, etc. Now the construction industry needs to focus more on these crucial inter...... tender often is limited due to regulations. Therefore, contractors miss a large amount of non-operational information, and the client and his consulting engineers never mange to share their tacit knowledge of project preconditions....
Phase transitions in Pareto optimal complex networks
Seoane, Luís F
2015-01-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem finding phase transitions of different kinds. Distinct phases are associated to different arrangements of the connections; but the need of drastic topological changes does not determine the presence, nor the nature of the phase transit...
Phase diagrams and kinetics of phase transitions in protein solutions.
Vekilov, Peter G
2012-05-16
The phase behavior of proteins is of interest for fundamental and practical reasons. The nucleation of new phases is one of the last major unresolved problems of nature. The formation of protein condensed phases (crystals, polymers, and other solid aggregates, as well as dense liquids and gels) underlies pathological conditions, plays a crucial role in the biological function of the respective protein, or is an essential part of laboratory and industrial processes. In this review, we focus on phase transitions of proteins in their properly folded state. We first summarize the recently acquired understanding of physical processes underlying the phase diagrams of the protein solutions and the thermodynamics of protein phase transitions. Then we review recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We explore the transition from nucleation to spinodal decomposition for liquid-liquid separation and introduce the new concept of solution-to-crystal spinodal. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.
The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels
Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.
2017-01-01
Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.
Improving on calculation of martensitic phenomenological theory
无
2003-01-01
Exemplified by the martensitic transformation from DO3 to 18R in Cu-14.2Al-4.3Ni alloy and according to the principle that invariant-habit-plane can be obtained by self-accommodation between variants with twin relationships, and on the basis of displacement vector, volume fractions of two variants with twin relationships in martensitic transformation, habit-plane indexes, and orientation relationships between martensite and austenite after phase transformation can be calculated. Because no additional rotation matrixes are needed to be considered and mirror symmetric operations are used, the calculation process is simple and the results are accurate.
The comfortable driving model revisited: Traffic phases and phase transitions
Knorr, Florian
2013-01-01
We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast it with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner's three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides `hard' rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow (F) to a wide moving jam (J) often involves an intermediate transition; first from free flow F to synchronized flow S and then from synchronized flow to a wide moving jam. This is supported by the fact that the so called F->S transition (from free flow to synchronized t...
Dynamics of the chiral phase transition
van Hees, H; Meistrenko, A; Greiner, C
2013-01-01
The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Tina Fichtner
2015-03-01
Full Text Available We report on the effects of annealing on the martensitic phase transformation in the Ni-based Heusler system: Mn50Ni40Sn10 and Mn50Ni41Sn9 powder and Co50Ni21Ga32 nanoparticles. For the powdered Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys, structural and magnetic measurements reveal that post-annealing decreases the martensitic transformation temperatures and increases the transition hysteresis. This might be associated with a release of stress in the Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys during the annealing process. However, in the case of Co50Ni21Ga32 nanoparticles, a reverse phenomenon is observed. X-ray diffraction analysis results reveal that the as-prepared Co50Ni21Ga32 nanoparticles do not show a martensitic phase at room temperature. Post-annealing followed by ice quenching, however, is found to trigger the formation of the martensitic phase. The presence of the martensitic transition is attributed to annealing-induced particle growth and the stress introduced during quenching.
Priti S. Mohanty
2015-03-01
Full Text Available The nature of solid-solid phase transformations has been a long-standing question spanning the fields of metallurgy and condensed-matter physics, with applications from metallic alloys and ceramics to modern shape-memory materials. In spite of the importance of solid-to-solid transformations in many areas of materials science and condensed-matter physics and the numerous experimental and theoretical studies, a deep understanding of the microstructural changes and the underlying kinetic mechanisms is still missing. In this work, we establish a versatile model system composed of micron-scale ionic microgel colloids, where we not only probe the single-particle kinetics in real space and real time but also tune the phase transition in a multiple-parameter space. In the presence of an imposed electric field, a face-centered cubic (FCC crystal transforms diffusively into a body-centered tetragonal (BCT crystal via nucleation and growth. In the reverse direction, however, the BCT phase transforms cooperatively into a long-lived metastable body-centered orthorhombic phase, which only relaxes back to the equilibrium FCC when annealed at higher temperatures. The kinetics is thus either diffusive or martensitic depending on the path, and we believe that these two path-dependent transitions provide the first real-space, particle-level insights of diffusive and martensitic transformations, respectively, in a single system.
The Next Generation Transit Survey - Prototyping Phase
McCormac, James; Wheatley, Peter; West, Richard; Walker, Simon; Bento, Joao; Skillen, Ian; Faedi, Francesca; Burleigh, Matt; Casewell, Sarah; Chazelas, Bruno; Genolet, Ludovic; Gibson, Neale; Goad, Mike; Lawrie, Katherine; Ryans, Robert; Todd, Ian; Udry, Stephan; Watson, Christopher
2016-01-01
We present the prototype telescope for the Next Generation Transit Survey, which was built in the UK in 2008/09 and tested on La Palma in the Canary Islands in 2010. The goals for the prototype system were severalfold: to determine the level of systematic noise in an NGTS-like system; demonstrate that we can perform photometry at the (sub) millimagnitude level on transit timescales across a wide field; show that it is possible to detect transiting super-Earth and Neptune-sized exoplanets and prove the technical feasibility of the proposed planet survey. We tested the system for around 100 nights and met each of the goals above. Several key areas for improvement were highlighted during the prototyping phase. They have been subsequently addressed in the final NGTS facility which was recently commissioned at ESO Cerro Paranal, Chile.
Holographic phase transitions at finite chemical potential
Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.
2007-11-01
Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Nonequilibrium phase transitions in biomolecular signal transduction
Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David
2011-11-01
We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.
A nonequilibrium phase transition in immune response
Zhang Wei; Qi An-Shen
2004-01-01
The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.
Phase transition in the countdown problem
Lacasa, Lucas; Luque, Bartolo
2012-07-01
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
Structural phase transitions in monolayer molybdenum dichalcogenides
Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo
2015-03-01
The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
Dimension Changing Phase Transitions in Instanton Crystals
Kaplunovsky, Vadim
2013-01-01
We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3d->4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in [1]) we focus on lower dimensions -- the 1D lattice of instantons in a harmonic potential V M_2^2x_2^2+M_3^2x_2^2+M_4^2x_4^2 and the zigzag-shaped lattice as a first stage of the 1D->2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons' orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M_2/M_3/M_4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements ...
Extracellular ice phase transitions in insects.
Hawes, T C
2014-01-01
At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.
Holographic phase transitions at finite chemical potential
Mateos, David; Myers, Robert C; Thomson, Rowan M
2007-01-01
Recently holographic techniques have been used to study the thermal properties of N=2 SYM theory, with gauge group SU(Nc) and coupled to Nf Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Quantum phase transitions in constrained Bose systems
Bonnes, Lars
2011-01-01
This doctoral thesis studies low dimensional quantum systems that can be realized in recent cold atom experiments. From the viewpoint of quantum statistical mechanics, the main emphasis is on the detailed study of the different quantum and thermal phases and their transitions using numerical methods, such as quantum Monte Carlo and the Tensor Network Renormalization Group. The first part of this work deals with a lattice Boson model subject to strong three-body losses. In a quantum-Zeno li...
Recent theoretical advances on superradiant phase transitions
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-03-01
The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.
Dynamical quantum phase transitions (Review Article)
Zvyagin, A. A.
2016-11-01
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.
Superconducting phase transition in STM tips
Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)
2015-07-01
The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.
Zhu, Peicheng
2009-01-01
In the present article, we are interested in an initial boundary value problem for a coupled system of partial differential equations arising in martensitic phase transition theory of elastically deformable solid materials, e.g., steel. This model was proposed and investigated in previous work by Alber and Zhu in which the weak solutions are defined in a standard way, however the key technique is not applicable to multi-dimensional problem. Intending to solve this multi-dimensional problem and to investigate the sharp interface limits of our models, we thus define weak solutions in a different way by using the notion of viscosity solution, then prove the existence of weak solutions to this problem in one space dimension, yet the multi-dimensional problem is still open.
Deformation behavior of duplex austenite and ε-martensite high-Mn steel
Ki Hyuk Kwon, Byeong-Chan Suh, Sung-Il Baik, Young-Woon Kim, Jong-Kyo Choi and Nack J Kim
2013-01-01
Full Text Available Deformation and work hardening behavior of Fe–17Mn–0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.
Phase transitions of ε-HNIW in compound systems
Jing-yuan Zhang
2016-05-01
Full Text Available The heat-induced phase transitions of ε-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powder X-ray diffraction and differential scanning calorimetry. It was found that ε-HNIW, after being held at 70°C for 60h, remained in the ε-phase. Applying other conditions, various phase transition parameters were determined, including Tc (the critical phase transition temperature, T50 (the temperature at which 50% of the phase transition is complete and T180 (the percentage of γ-HNIW present in samples heated to 180°C. According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.
Stability and Existence of Multidimensional Subsonic Phase Transitions
Ya-Guang Wang; Zhouping Xin
2003-01-01
The purpose of this paper is to prove the uniform stability of multidimensional subsonic phase transitions satisfying the viscosity-capillarity criterion in a van der Waals fluid, and further to establish the local existence of phase transition solutions.
Holography and the Electroweak Phase Transition
Creminelli, P; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo
2002-01-01
We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.
X-ray measurements of the self-organization of martensitic variants during thermal cycling
Perez, Daniel; Sutton, Mark; Rogers, Michael
The deformation of most types of metals involves an irreversible flow of crystallographic dislocations. This allows for their ductility. The deformation of a metallic shape memory alloy (SMA), on the other hand, is accommodated by a solid-solid phase transition. If deformed in the low-temperature martensitic phase, an SMA can be returned to its original shape by raising its temperature to the point where it changes back to its high-temperature parent phase. When the reverse occurs and the transformation is from parent to martensitic phase, an SMA goes from a high-symmetry to a low-symmetry state in which a number of martensitic variants are produced. We monitored the self-organization of these variants during cycles of periodic thermal driving. This was done using in situ X-ray Photon Correlation Scectroscopy (XPCS), which uses correlation from X-ray speckle to quantify the degree of microstructural change in a material. Our measurements revealed enhanced reversibility in the organization of the martensitic variants as the system evolved during repeated thermal cycling.
Second-order phase transitions of pure substances
Schaftenaar, H.P.C.
2009-01-01
In this report we are dealing with the thermodynamic theory of second-order phase transitions or continuous transitions of unary systems. The first classification of these phase transitions is due to Ehrenfest (1933), based on chemical potentials. First-order transitions are changes in which the der
Landau Theory in the Region of First Order Phase Transitions
O.G. Medvedovskaya
2014-04-01
Full Text Available For the case when the line of the first order phase transitions does not transform into the line of the second order phase transitions, i.e. not as ends with the tricritical point but not with a critical one: critical lines, limiting the region of metastable states, by using the Landau theory of phase transitions were determined.
Scale invariance from phase transitions to turbulence
Lesne, Annick
2012-01-01
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...
Locating phase transitions in computationally hard problems
B Ashok; T K Patra
2010-09-01
We discuss how phase-transitions may be detected in computationally hard problems in the context of anytime algorithms. Treating the computational time, value and utility functions involved in the search results in analogy with quantities in statistical physics, we indicate how the onset of a computationally hard regime can be detected and the transit to higher quality solutions be quantified by an appropriate response function. The existence of a dynamical critical exponent is shown, enabling one to predict the onset of critical slowing down, rather than finding it after the event, in the specific case of a travelling salesman problem (TSP). This can be used as a means of improving efficiency and speed in searches, and avoiding needless computations.
Phase transition in SONFIS&SORST
Owladeghaffari, Hamed
2008-01-01
In this study, we introduce general frame of MAny Connected Intelligent Particles Systems (MACIPS). Connections and interconnections between particles get a complex behavior of such merely simple system (system in system).Contribution of natural computing, under information granulation theory, are the main topics of this spacious skeleton. Upon this clue, we organize two algorithms involved a few prominent intelligent computing and approximate reasoning methods: self organizing feature map (SOM), Neuro- Fuzzy Inference System and Rough Set Theory (RST). Over this, we show how our algorithms can be taken as a linkage of government-society interaction, where government catches various fashions of behavior: solid (absolute) or flexible. So, transition of such society, by changing of connectivity parameters (noise) from order to disorder is inferred. Add to this, one may find an indirect mapping among finical systems and eventual market fluctuations with MACIPS. Keywords: phase transition, SONFIS, SORST, many con...
Dynamical phase transitions in quantum mechanics
Rotter Ingrid
2012-02-01
Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Isothermal Martensite Formation
Villa, Matteo
Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanis...
Phases and phase transitions in the algebraic microscopic shell model
Georgieva A. I.
2016-01-01
Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
Firstov Georgiy
2015-01-01
Full Text Available It was shown very recently that despite high thermal stability some high entropy alloys, namely, intermetallic compounds of TiZrHfCoNiCu family, undergo martensitic transformation and exhibit shape memory effect [1]. It was also found that X-ray diffraction patterns taken from those compounds resemble qualitatively ones of B2 ordering type for austenitic state and B19` - for martensite. It is going to be shown [2] that the ordered structure of austenite phase is not B2 but is a result of group-subgroup transition down to triclinic P1 space group. Present paper reports onto the results of electron structure modelling combined with crystal structure analysis with the help of experimental data Rietveld refinement performed for TiZrHfCoNiCu intermetallics. Crystal structures of austenite and martensite phases for these high entropy intermetallics will be discussed.
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
Melonic phase transition in group field theory
Baratin, Aristide; Oriti, Daniele; Ryan, James P; Smerlak, Matteo
2013-01-01
Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of four dimensional models of quantum gravity.
Detonations and deflagrations in cosmological phase transitions
Megevand, Ariel
2009-01-01
We study the steady state motion of bubble walls in cosmological phase transitions. Taking into account the boundary and continuity conditions for the fluid variables, we calculate numerically the wall velocity as a function of the nucleation temperature, the latent heat, and a friction parameter. We determine regions in the space of these parameters in which detonations and/or deflagrations are allowed. In order to apply the results to a physical case, we calculate these quantities in a specific model, which consists of an extension of the Standard Model with singlet scalar fields. We also obtain analytic approximations for deflagrations and detonations.
Observables of non-equilibrium phase transition
Tomasik, Boris; Melo, Ivan; Kopecna, Renata
2015-01-01
Rapidly expanding fireball which undergoes first-order phase transition will supercool and proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as leftover matter filling the space between them. Emission from fragments should be visible in rapidity correlations, particularly of protons. Also, even within narrow centrality classes, rapidity distributions will be fluctuating from one event to another in case of fragmentation. This can be identified with the help of Kolmogorov-Smirnov test. Finally, a method is presented which allows to sort events with varying rapidity distributions in such a way, that events with similar rapidity histograms are grouped together.
Early Work on Defect Driven Phase Transitions
Kosterlitz, J. Michael; Thouless, David J.
2016-12-01
This article summarizes the early history of the theory of phase transitions driven by topological defects, such as vortices in superfluid helium films or dislocations and disclinations in two-dimensional solids. We start with a review of our two earliest papers, pointing out their errors and omissions as well as their insights. We then describe the work, partly done by Kosterlitz but mostly done by other people, which corrected these oversights, and applied these ideas to experimental systems, and to numerical and experimental simulations.
Berry phase transition in twisted bilayer graphene
Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.
2016-09-01
The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.
Adiabatic quantum computation and quantum phase transitions
Latorre, J I; Latorre, Jose Ignacio; Orus, Roman
2003-01-01
We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.
Phase transition equilibrium of terthiophene isomers
Costa, Jose C.S.; Lima, Carlos F.R.A.C.; Rocha, Marisa A.A. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Gomes, Ligia R. [CIAGEB, Faculdade de Ciencias de Saude Escola Superior de Saude da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto (Portugal); REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)
2011-02-15
The thermodynamic study of the phase transition (fusion and sublimation) of 2,2':5',2''-terthiophene and 3,2':5',3''-terthiophene is presented. The obtained data is used to evaluate the (solid + liquid) and (solid + gas) phase equilibrium, and draw the phase diagrams of the pure compounds near the triple point coordinates. For each compound the vapour pressures at different temperatures were measured by a combined Knudsen effusion method with a vacuum quartz crystal microbalance. Based on the previous results, the standard molar enthalpies, entropies and Gibbs energies of sublimation were derived at T = 298.15 K. For the two terthiophenes and for 3,3'-bithiophene, the temperature, and the molar enthalpies of fusion were measured in a power compensated differential scanning calorimetry. The relationship between structure and energetics is discussed based on the experimental results, ab initio calculations and previous literature data for 2,2'-bithiophene and 3,3'-bithiophene. The 3,2':5',3''-terthiophene shows a higher solid phase stability than the 2,2':5',2''-terthiophene isomer arising from the higher cohesive energy due to positioning of the sulphur atom in the thiophene ring. The higher phase stability of 3,3'-bithiophene relative to 2,2'-bithiophene isomer is also related to its higher absolute entropy in the solid phase associated with the ring positional degeneracy observed in the crystal structure of this isomer. A significant differentiation in the crystal phase stability between isomers was found.
Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys
Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2016-12-01
Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.
Xiao, Haibo; Yang, Changping; Wang, Ruilong; Xu, Linfang; Liu, Guozhen; Marchenkov, V. V.
2016-10-01
The magnetic properties, structural stabilities and martensitic transformation of carbon doped Ni-Mn-Sn Heusler alloys are investigated by means of ab initio calculations in framework of the density functional theory. The results of calculations have shown that the martensitic transformation can be realized in all series of carbon doped Ni2Mn1.5Sn0.5 - xCx alloys with tetragonal ratio of 1.34, 1.40,1.42 and 1.44, respectively for x = 0.125 , 0.25 , 0.375 and 0.5. The DOS peak at the Fermi level almost disappearing in the tetragonal phase near the Fermi level is the evidence of triggering martensitic transformation which is due to the structural Jahn-Teller effect. We have also found that the difference between the austenitic and martensitic phases increases with increasing carbon content, which implies an enhancement of the martensitic phase transition temperature (TM). Besides, the electron density difference shows the enhancement of bonding between Mn and carbon atoms with the distortion taken place.
Topological phase transitions in superradiance lattices
Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao
2015-01-01
The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...
Transitional Phenomena on Phase Change Materials
Wójcik Tadeusz M.
2014-03-01
Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.
Phase transitions in fluids and biological systems
Sipos, Maksim
metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.
On Phase Transition of Compressed Sensing in the Complex Domain
Yang, Zai; Xie, Lihua
2011-01-01
The phase transition is a performance measure of the sparsity-undersampling tradeoff in compressed sensing (CS). This letter reports, for the first time, the existence of an exact phase transition for the $\\ell_1$ minimization approach to the complex valued CS problem. This discovery is not only a complementary result to the known phase transition of the real valued CS but also shows considerable superiority of the phase transition of complex valued CS over that of the real valued CS. The results are obtained by extending the recently developed ONE-L1 algorithms to complex valued CS and applying their optimal and iterative solutions to empirically evaluate the phase transition.
Kosogor, Anna
2016-06-01
An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.
Tina Fichtner; Changhai Wang; Aleksandr A. Levin; Guido Kreiner; Catalina Salazar Mejia; Simone Fabbrici; Franca Albertini; Claudia Felser
2015-01-01
We report on the effects of annealing on the martensitic phase transformation in the Ni-based Heusler system: Mn50Ni40Sn10 and Mn50Ni41Sn9 powder and Co50Ni21Ga32 nanoparticles. For the powdered Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys, structural and magnetic measurements reveal that post-annealing decreases the martensitic transformation temperatures and increases the transition hysteresis. This might be associated with a release of stress in the Mn50Ni40Sn10 and Mn50Ni41Sn9 alloys during the an...
Nuclear Binding Near a Quantum Phase Transition
Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G.; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Lee, Dean; Rupak, Gautam
2016-09-01
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
Nuclear binding near a quantum phase transition
Elhatisari, Serdar; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam
2016-01-01
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. The existence of the nearby first-order ...
Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy
Umetsu, R.Y., E-mail: rieume@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ito, K.; Ito, W. [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Sendai 980-8579 (Japan); Koyama, K. [High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kanomata, T. [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Ishida, K.; Kainuma, R. [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aoba, Sendai 980-8579 (Japan)
2011-02-03
Research highlights: > NiMnZ (Z = Ga, Al, In, Sn, Sb) Heusler alloys are now very attractive because of their unique physical properties, such as, magnetic shape memory effect, magnetic field-induced phase transition, inverse magnetocaloric effect, magnetoresistance effect and the giant magnetothermal conductivity. > In our previous investigations for the NiCoMnSn alloy, the behavior of the shape recovery due to the magnetic field induced reverse transformation has been reported. However, the detailed investigations on the magnetic properties such as metamagnetic behavior have not been made. > In our present manuscript, we show the experimental results of the magnetic properties under the magnetic fields up to 12 T for NiCoMnSn alloy. We demonstrated the kinetic arresting behavior of the martensitic transformation under the high magnetic fields and thermodynamically discussed it. In addition, we analyzed the structure of the martensitic phase with a long period stacking structure and showed a lattice change between the before and the after the martensitic transformation. We believe that these results are high importance for understanding the interesting physical properties of the Ni-based ferromagnetic shape memory alloys and its applications. - Abstract: High-field magnetic measurements were carried out in order to investigate behaviors of field-induced reverse martensitic transformation and kinetic arrest of NiCoMnSn metamagnetic shape memory alloy. In the thermomagnetization curves, it was confirmed that the reverse martensitic transformation temperature decreases 67 K by applying magnetic field of 5 T, while in the magnetic field cooling process under 5 T, martensitic transformation does not occur down to low temperatures. Equilibrium magnetic field, defined from the critical magnetic fields of the metamagnetic evidence in the magnetization curves, exhibits almost constant below about 100 K, suggesting that the entropy change becomes zero, which is considered
Phase transition in the ABC model
Clincy, M.; Derrida, B.; Evans, M. R.
2003-06-01
Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-β/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero βc. The value of βc=2π(3) and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.
Phase transitions in Thirring’s model
Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano
2016-07-01
In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.
Multifractality and Network Analysis of Phase Transition
Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang
2017-01-01
Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414
Preon model and cosmological quantum-hyperchromodynamic phase transition
Nishimura, H.; Hayashi, Y.
1987-05-01
From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.
Stress induced phase transitions in silicon
Budnitzki, M.; Kuna, M.
2016-10-01
Silicon has a tremendous importance as an electronic, structural and optical material. Modeling the interaction of a silicon surface with a pointed asperity at room temperature is a major step towards the understanding of various phenomena related to brittle as well as ductile regime machining of this semiconductor. If subjected to pressure or contact loading, silicon undergoes a series of stress-driven phase transitions accompanied by large volume changes. In order to understand the material's response for complex non-hydrostatic loading situations, dedicated constitutive models are required. While a significant body of literature exists for the dislocation dominated high-temperature deformation regime, the constitutive laws used for the technologically relevant rapid low-temperature loading have severe limitations, as they do not account for the relevant phase transitions. We developed a novel finite deformation constitutive model set within the framework of thermodynamics with internal variables that captures the stress induced semiconductor-to-metal (cd-Si → β-Si), metal-to-amorphous (β-Si → a-Si) as well as amorphous-to-amorphous (a-Si → hda-Si, hda-Si → a-Si) transitions. The model parameters were identified in part directly from diamond anvil cell data and in part from instrumented indentation by the solution of an inverse problem. The constitutive model was verified by successfully predicting the transformation stress under uniaxial compression and load-displacement curves for different indenters for single loading-unloading cycles as well as repeated indentation. To the authors' knowledge this is the first constitutive model that is able to adequately describe cyclic indentation in silicon.
Martensitic transformation fcc(γ)→hcp(ε)
徐祖耀
1997-01-01
Criteria of the thermoelastic martensitic transformation are suggested, on the basis of which the martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys is classified as a semi-thermoelastic transformation In contrast with the martensitic transformation fcc(γ)→bct(bcc)α’ in iron-based alloys, the thermoelastic transformation in Cu-based alloys and the t→m transformation in ceramics containing ZrO2, in γ→ε of Fe-Mn-Si, the strengthening and grain size of the parent phase will not markedly affecl the Ms and the internal friction peak indicating the martensitic Transformation does not correspond to a significant lowering of the elastic modulus, implying that the nucleation of ε-martensite may occur directly through the stacking fault and may not strongly depend on soft mode. A comparison between the thermal and stress induced ε martensites is made and a brief discussion is given.
Quark-hadron phase transition in massive gravity
Atazadeh, K.
2016-11-01
We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Quark–hadron phase transition in massive gravity
Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir
2016-11-15
We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Premartensite transition in Ni{sub 2}FeGa Heusler alloy
Nath, Hrusikesh, E-mail: hrushikesh.nath@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Technology of Metals and Aviation Materials Science, Samara State Aerospace University, Samara 443086 (Russian Federation); Phanikumar, G., E-mail: gphani@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)
2015-04-15
Martensitic phase transformation of Ni{sub 2}FeGa Heusler alloy was studied by differential scanning calorimetry. Atomic ordering induced in the austenite structure by quenching from high temperature plays a significant role on martensitic phase transformation. Higher magnetization and larger magneto-crystalline anisotropy of martensite phase than that of austenite phase are noticed. Tweed contrast regions observed in the transmission electron microscopy were correlated to premartensite phenomena. A shift in premartensitic transition temperature prior to martensitic transformation as measured by differential scanning calorimetry is being reported for the first time in this system. - Highlights: • Atomic ordering influences martensitic transformation in Ni{sub 2}FeGa Heusler alloy. • Observation of tweed contrast in TEM was correlated to premartensite phenomena. • For the first time the shift in premartensite peak was observed in DSC.
Uniaxial Phase Transition in Si : Ab initio Calculations
Cheng, C.
2002-01-01
Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing t...
Exotic quantum phase transitions of strongly interacting topological insulators
Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke
2015-03-01
Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is a topological phase transition described by a bosonic O (4 ) nonlinear sigma model field theory with a Θ term.
Dynamical phase transitions in the two-dimensional ANNNI model
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Magnetocaloric materials and first order phase transitions
Neves Bez, Henrique
of the properties of such materials.The experimental characterization of these materials is done through various different methods, such as X-ray diffraction, magnetometry, calorimetry, direct measurements of entropy change, capacitance dilatometry, scanning electron microscopy,energy-dispersive X-ray spectrometry......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...... and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...
Information Dynamics at a Phase Transition
Sowinski, Damian
2016-01-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and processing of information is maximized at criticality.
The phase transition of Axelrod's model revisited
Reia, Sandro M
2016-01-01
Axelrod's model with $F=2$ cultural features, where each feature can assume $k$ states drawn from a Poisson distribution of parameter $q$, exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite size scaling to study the critical behavior of the order parameter $\\rho$, which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as $\\rho \\sim \\left (q_c^0 - q \\right)^\\beta$ with $\\beta \\approx 0.25$ at the critical point $q_c^0 \\approx 3.10$ and that the exponent that measures the width of the critical region is $\
Switchable Metal-Insulator Phase Transition Metamaterials.
Hajisalem, Ghazal; Nezami, Mohammadreza S; Gordon, Reuven
2017-05-10
We investigate the switching of a gap plasmon tunnel junction between conducting and insulating states. Hysteresis is observed in the second and the third harmonic generation power dependence, which arises by thermally induced disorder ("melting") of a two-carbon self-assembled monolayer between an ultraflat gold surface and metal nanoparticles. The hysteresis is observed for a variety of nanoparticle sizes, but not for larger tunnel junctions where there is no appreciable tunneling. By combining quantum corrected finite-difference time-domain simulations with nonlinear scattering theory, we calculate the changes in the harmonic generation between the tunneling and the insulating states, and good agreement is found with the experiments. This paves the way to a new class of metal-insulator phase transition switchable metamaterials, which may provide next-generation information processing technologies.
Phase transitions in open quantum systems
Jung, C; Rotter, I
1999-01-01
We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter $\\alpha$ being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value $\\alpha_{crit}$ of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.
Observables of non-equilibrium phase transition
Tomasik, Boris [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Ceske vysoke uceni technicke v Praze, FJFI, Prague (Czech Republic); Schulc, Martin; Kopecna, Renata [Ceske vysoke uceni technicke v Praze, FJFI, Prague (Czech Republic); Melo, Ivan [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Zilinska univerzita, Elektrotechnicka fakulta, Zilina (Slovakia)
2016-08-15
A rapidly expanding fireball which undergoes first-order phase transition will supercool and proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as the left-over matter filling the space between them. Emission from fragments should be visible in rapidity correlations, particularly of protons. In addition to that, even within narrow centrality classes, rapidity distributions will be fluctuating from one event to another in case of fragmentation. This can be identified with the help of the Kolmogorov-Smirnov test. Finally, we present a method which allows to sort events with varying rapidity distributions, in such a way that events with similar rapidity histograms are grouped together. (orig.)
Scaling theory of topological phase transitions
Chen, Wei
2016-02-01
Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.
Information Dynamics at a Phase Transition
Sowinski, Damian; Gleiser, Marcelo
2017-03-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.
Valleytronics and phase transition in silicene
Aftab, Tayyaba
2017-03-01
Magnetic and transport properties of silicene in the presence of perpendicular electromagnetic fields and a ferromagnetic material are studied. It is shown that for small exchange field, the magnetic moment associated with each valley is opposite for the other and it gives a shift in band energy, by a Zeeman-like coupling term. Thus opening a new horizon for valley-orbit coupling. Magnetic proximity effect is seen to adjust the spintronics of each valley. Valley polarization is calculated using the semi classical formulation of electron dynamics. It can be modified and measured due to its contribution in Hall conductivity. Quantum phase transitions are observed in silicene, providing a tool to control the topological state experimentally. The strong dependence of the physical properties on valley degree of freedom is an important step towards valleytronics.
Phase transitions in undoped BaCeO3
Kuzmin, A.V.; Gorelov, V.P.; Melekh, B.T.
2003-01-01
of the structural phase transitions in BaCeO3. Five second-order transitions at 480 +/- 10, 530 +/- 10, 900 +/- 10, 1030 +/- 20 and 1170 +/- 20 K, and also one first-order transition at 665 +/- 10 K, were found. The transitions at 900 and 1030 K have not been reported before. (C) 2003 Elsevier B.V. All rights...
Marini, B., E-mail: bernard.marini@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France); Averty, X. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SEMI (now DEN/DANS/DM2S/SEMT), F-91191 Gif-sur Yvette (France); Wident, P.; Forget, P.; Barcelo, F. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France)
2015-10-15
The hardening and the embrittlement under neutron irradiation of an A508 type RPV steel considering three different microstructures (bainite, bainite-martensite and martensite)have been investigated These microstructures were obtained by quenching after autenitization at 1100 °C. The irradiation induced hardening appears to depend on microstructure and is correlated to the yield stress before irradiation. The irradiation induced embrittlement shows a more complex dependence. Martensite bearing microstructures are more sensitive to non hardening embrittlement than pure bainite. This enhanced sensitivity is associated with the development of intergranular brittle facture after irradiation; the pure martensite being more affected than the bainite-martensite. It is of interest to note that this mixed microstructure appears to be more embrittled than the pure bainitic or martensitic phases in terms of temperature transition shift. This behaviour which could emerge from the synergy of the embrittlement mechanisms of the two phases needs further investigations. However, the role of microstructure on brittle intergranular fracture development appears to be qualitatively similar under neutron irradiation and thermal ageing.
Modeling the competing phase transition pathways in nanoscale olivine electrodes
Tang Ming, E-mail: tang25@llnl.go [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Carter, W. Craig [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Belak, James F. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Chiang, Yet-Ming [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2010-12-30
Recent experimental developments reveal that nanoscale lithium iron phosphate (LiFePO{sub 4}) olivine particles exhibit very different phase transition behavior from the bulk olivine phase. A crystalline-to-amorphous phase transition has been observed in nanosized particles in competition with the equilibrium phase transition between the lithium-rich and lithium-poor olivine phases. Here we apply a diffuse-interface (phase-field) model to study the kinetics of the different phase transition pathways in nanosized LiFePO{sub 4} particles upon delithiation. We find that the nucleation and growth kinetics of the crystalline-to-crystalline and crystalline-to-amorphous phase transformations are sensitive to the applied electrical overpotential and particle size, which collectively determine the preferred phase transition pathway. While the crystalline-to-crystalline phase transition is favored by either faster nucleation or growth kinetics at low or high overpotentials, particle amorphization dominates at intermediate overpotentials. Decreasing particle size expands the overpotential region in which amorphization is preferred. The asymmetry in the nucleation energy barriers for amorphization and recrystallization results in a phase transition hysteresis that should promote the accumulation of the amorphous phase in electrodes after repeated electrochemical cycling. The predicted overpotential- and size-dependent phase transition behavior of nanoscale LiFePO{sub 4} particles is consistent with experimental observations.
Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes.
Matsuki, Hitoshi; Endo, Shigeru; Sueyoshi, Ryosuke; Goto, Masaki; Tamai, Nobutake; Kaneshina, Shoji
2017-07-01
The bilayer phase transitions of four diacylphosphatidylethanolamines (PEs) with matched saturated acyl chains (Cn=12, 14, 16 and 18) and two PEs with matched unsaturated acyl chains containing a different kind of double bonds were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The temperature-pressure phase diagrams for these PE bilayer membranes were constructed from the obtained phase-transition data. The saturated PE bilayer membranes underwent two different phase transitions related to the liquid crystalline (Lα) phase, the transition from the hydrated crystalline (Lc) phase and the chain melting (gel (Lβ) to Lα) transition, depending on the thermal history. Pressure altered the gel-phase stability of the bilayer membranes of PEs with longer chains at a low pressure. Comparing the thermodynamic quantities of the saturated PE bilayer membranes with those of diacylphosphatidylcholine (PC) bilayer membranes, the PE bilayer membranes showed higher phase-transition temperatures and formed more stable Lc phase, which originates from the strong interaction between polar head groups of PE molecules. On the other hand, the unsaturated PE bilayer membranes underwent the transition from the Lα phase to the inverted hexagonal (HII) phase at a high temperature and this transition showed a small transition enthalpy but high pressure-responsivity. It turned out that the kind of double bonds markedly affects both bilayer-bilayer and bilayer-nonbilayer transitions and the Lα/HII transition is a volume driven transition for the reconstruction of molecular packing. Further, the phase-transition behavior was explained by chemical potential curves of bilayer phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Aspects of thermal martensite in a FeNiMnCo alloy.
Güler, M; Güler, E; Kahveci, N
2010-07-01
Thermal martensite characteristics in Fe-29%Ni-2%Mn-2%Co alloy were investigated with scanning electron microscopy (SEM) and Mössbauer spectroscopy characterization techniques. SEM observations obviously revealed the lath martensite morphology in the prior austenite phase of examined alloy. As well, the martensitic transformation kinetics was found to be as athermal type. On the other hand, Mössbauer spectroscopy offered the paramagnetic austenite phase and ferromagnetic martensite phase with their volume fractions. Also, the internal magnetic field of the martensite was measured as 32.9T from the Mössbauer spectrometer.
Phase Transitions in Living Neural Networks
Williams-Garcia, Rashid Vladimir
Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.
Phase Transitions in Networks of Memristive Elements
Sheldon, Forrest; di Ventra, Massimiliano
The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.
The Deconfinement Phase Transition in the Interior of Neutron Stars
Zhou, Xia
2010-01-01
The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.
Topological and geometrical aspects of phase transitions
Santos, F. A. N.; Rehn, J. A.; Coutinho-Filho, M. D.
2014-03-01
In the first part of this review, we use a topological approach to describe the frustration- and field-induced phase transitions exhibited by the infinite-range XY model on the AB2 chain, including noncollinear spin structures. For this purpose, we have computed the Euler characteristic, χ, as well as other topological invariants, which are found to behave similarly as a function of the energy level in the context of Morse theory. Our findings and those available in the literature suggest that the cusp-like singularity exhibited by χ at the critical energy, Ec, put together with the divergence of the density of Jacobian's critical points emerge as necessary and sufficient conditions for the occurrence of finite-temperature topology-induced phase transitions. In the second part, we present an alternative solution of the Ising chain in a field under free and periodic boundary conditions, in the microcanonical, canonical, and grand canonical ensembles, from a unified combinatorial and topological perspective. In particular, the computation of the per-site entropy as a function of the energy unveils a residual value for critical values of the magnetic field, a phenomenon for which we provide a topological interpretation and a connection with the Fibonacci sequence. We also show that, in the thermodynamic limit, the per-site microcanonical entropy is equal to the logarithm of the per-site Euler characteristic. Finally, we emphasize that our combinatorial approach to the canonical ensemble allows exact computation of the thermally averaged value (T) of the Euler characteristic; our results show that the conjecture (Tc)= 0, where Tc is the critical temperature, is valid for the Ising chain.
Stadler, Shane
2011-12-13
Our goal is to gain insight into the fundamental physics that is responsible for magnetocaloric effects (MCE) and related properties at the atomic level. We are currently conducting a systematic study on the effects of atomic substitutions in Ni2MnGa-based alloys, and also exploring related full- and half-Heusler alloys, for example Ni-Mn-X (X=In, Sn, Sb), that exhibit a wide variety of interesting and potentially useful physical phenomena. It is already known that the magnetocaloric effect in the Heusler alloys is fundamentally connected to other interesting phenomena such as shape-memory properties. And the large magnetic entropy change in Ni2Mn0.75Cu0.25Ga has been attributed to the coupling of the first-order, martensitic transition with the second-order ferromagnetic paramagnetic (FM-PM) transition. Our research to this point has focused on understanding the fundamental physics at the origin of these complex, compound phase transitions, and the novel properties that emerge. We synthesize the materials using a variety of techniques, and explore their material properties through structural, magnetic, transport, and thermo-magnetic measurements.
Phase Transition Properties of 3D Potts Models
Bazavov, Alexei; Dubey, Santosh
2008-01-01
Using multicanonical Metropolis simulations we estimate phase transition properties of 3D Potts models for q=4 to 10: The transition temperatures, latent heats, entropy gaps, normalized entropies at the disordered and ordered endpoints, interfacial tensions, and spinodal endpoints.
Non-equilibrium phase transitions in complex plasma
Sutterlin, K. R.; Wysocki, A.; Rath, C.; Ivlev, A. V.; Thomas, H. M.; Khrapak, S.; Zhdanov, S.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.
2010-01-01
Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separatio
Phase transitions in a gas of anyons
MacKenzie, R; Paranjape, M B; Richer, J
2010-01-01
We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however now in the presence of a topological term added to the action corresponding to the total linking number between the loops. We compute the linking number using certain notions from knot theory. Adding the topological term converts the particles into anyons. Using the correspondence that the model is an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. We find the following new results. The system continues to exhibit a phase transition as a function of the anyon mass as it becomes small \\cite{mnp}, although the phases do not change the manifestation of the symmetry. The Chern-Simons term has no effect on the Wilson loop, but it does affect the {\\rm '}t Hooft loop. For a given configuration it adds the linking number of the 't Hooft loo...
Vattré, A.; Denoual, C.
2016-07-01
A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.
Crystallographic theory of the martensitic transformation
Edwar A. Torres-López
2014-08-01
Full Text Available The martensitic transformation is one of the most researched topics in the materials science during the 20th century. The second half of this century was mainly remembered by the development of several theories related with the kinetics of phase transformation, the mechanisms involved in the nucleation phenomenon, and the way as the crystallographic change is produced. In this paper are described the fundamental concepts that are defined in the crystallographic framework of the martensitic transformation. The study is focused on the application of the most outstanding crystallographic models: the Bain; the Wechsler, Lieberman & Read; and the Bowles & Mackenzie. The topic is presented based upon the particular features of the martensitic transformation, such as its non-diffusional character, type of interface between parent (austenite and product (martensite phases, the formation of substructural defects, and the shape change; all of these features are mathematically described by equations aimed to predict how the transformation will take place rather than to explain the actual movement of the atoms within the structure. This mathematical development is known as the Phenomenological Theory of Martensite Crystallography (PTMC.
Pressure-induced phase transition in CrO2.
Alptekin, Sebahaddin
2015-12-01
The ab initio constant pressure molecular dynamics technique and density functional theory with generalized gradient approximation (GGA) was used to study the pressure-induced phase transition of CrO2. The phase transition of the rutile (P42/mnm) to the orthorhombic CaCl2 (Pnnm) structure at 30 GPa was determined successfully in a constant pressure simulation. This phase transition was analyzed from total energy calculations and, from the enthalpy calculation, occurred at around 17 GPa. Structural properties such as bulk modules, lattice parameters and phase transition were compared with experimental results. The phase transition at 12 ± 3 GPa was in good agreement with experimental results, as was the phase transition from the orthorhombic CaCl2 (Pnnm) to the monoclinic (P21/c) structure also found at 35 GPa.
Bubble nucleation and growth in very strong cosmological phase transitions
Megevand, Ariel
2016-01-01
Strongly first-order phase transitions, i.e., those with a large order parameter, are characterized by a considerable supercooling and high velocities of phase transition fronts. A very strong phase transition may have important cosmological consequences due to the departures from equilibrium caused in the plasma. In general, there is a limit to the strength, since the metastability of the old phase may prevent the transition to complete. Near this limit, the bubble nucleation rate achieves a maximum and thus departs from the widely assumed behavior in which it grows exponentially with time. We study the dynamics of this kind of phase transitions. We show that in some cases a gaussian approximation for the nucleation rate is more suitable, and in such a case we solve analytically the evolution of the phase transition. We compare the gaussian and exponential approximations with realistic cases and we determine their ranges of validity. We also discuss the implications for cosmic remnants such as gravitational ...
Quantum phase transition and entanglement in Li atom system
2008-01-01
By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.
Discord under the influence of a quantum phase transition
Wang Lin-cheng; Shen Jian; Yi Xue-Xi
2011-01-01
This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.
Gravitational waves from global second order phase transitions
Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)
2012-11-01
Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.
Baró, Jordi; Martín-Olalla, José-María; Romero, Francisco Javier; Gallardo, María Carmen; Salje, Ekhard K H; Vives, Eduard; Planes, Antoni
2014-03-26
The existence of temporal correlations during the intermittent dynamics of a thermally driven structural phase transition is studied in a Cu-Zn-Al alloy. The sequence of avalanches is observed by means of two techniques: acoustic emission and high sensitivity calorimetry. Both methods reveal the existence of event clustering in a way that is equivalent to the Omori correlations between aftershocks in earthquakes as are commonly used in seismology.
Low-temperature criticality of martensitic transformations of Cu nanoprecipitates in α-Fe.
Erhart, Paul; Sadigh, Babak
2013-07-12
Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.
Phase transition of holographic entanglement entropy in massive gravity
Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Hongbao, E-mail: hzhang@vub.ac.be [Department of Physics, Beijing Normal University, Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel, and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)
2016-05-10
The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.
Holographic phase transition probed by non-local observables
Zeng, Xiao-Xiong
2016-01-01
From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordstr\\"{o}m-AdS black hole is probed by the two point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes, the black hole undergos a Hawking-Page phase transition, a first order phase transition and a second order phase transition successively before it reaches to a stable phase. In addition, for these probes, we find the equal area law for the first order phase transition is valid always and the critical exponent of the heat capacity for the second order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.
Liu, Jinghua; Wang, Jingmin, E-mail: jingmin@buaa.edu.cn; Zhang, Linfang; Wang, Xiao; Hua, Hui; Jiang, Chengbao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)
2015-04-21
Effect of isoelectronic substitution of In for Ga on the phase transition and magnetic properties was studied in Ni{sub 57}Mn{sub 18}Ga{sub 25−x}In{sub x} (0 ≤ x ≤ 8) alloys. With the increasing In content, the room-temperature phase structure evolved from tetragonal martensite to cubic austenite. The martensitic transformation temperatures were significantly decreased by the substitution of In for Ga, but the austenitic Curie temperature was only slightly decreased. Especially, both thermal and isothermal magnetization measurements revealed that the Curie temperature and saturation magnetization of the martensite were independent on the isoelectronic substitution. The results were discussed by considering the phase structures and the atomic interactions.
Kazakov, Alexander; Prudnikov, Valerii; Granovsky, Alexander; Perov, Nikolai; Dubenko, Igor; Pathak, Arjun Kumar; Samanta, Tapas; Stadler, Shane; Ali, Naushad; Zhukov, Arcady; Ilyin, Maxim; Gonzalez, Julian
2012-09-01
The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.
Strain Induced Martensitic Transformation in Austempered Ductile Iron (ADI)
Li, X. H.; Saal, P.; Gan, W. M.; Landesberger, M.; Hoelzel, M.; Hofmann, M.
2016-09-01
The strain induced martensitic transformation in austempered ductile iron (ADI) has been investigated using high resolution neutron diffraction on samples compressed ex-situ to different plastic strains. In addition bulk texture measurements using neutron diffraction have been performed to calculate the orientation distribution of ferrite and austenite phases for different strain levels. Combing the detailed texture information with neutron diffraction pattern proved to be essential for quantitative phase analysis and extraction of martensite phase fractions. The martensite content induced by strain in ADI depends on austempering temperature and degree of deformation.
Time-resolved lattice measurements of shock-induced phase transitions in polycrystalline materials
Milathianaki, Despina
The response of materials under extreme temperature and pressure conditions is a topic of great significance because of its relevance in astrophysics, geophysics, and inertial confinement fusion. In recent years, environments exceeding several hundred gigapascals in pressure have been produced in the laboratory via laser-based dynamic loading techniques. Shock-loading is of particular interest as the shock provides a fiducial for measuring time-dependent processes in the lattice such as phase transitions. Time-resolved x-ray diffraction is the only technique that offers an insight into these shock-induced processes at the relevant spatial (atomic) and temporal scales. In this study, nanosecond resolution x-ray diffraction techniques were developed and implemented towards the study of shock-induced phase transitions in polycrystalline materials. More specifically, the capability of a focusing x-ray diffraction geometry in high-resolution in situ lattice measurements was demonstrated by probing shock-compressed Cu and amorphous metallic glass samples. In addition, simultaneous lattice and free surface velocity measurements of shock-compressed Mg in the ambient hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases between 12 and 45 GPa were performed. These measurements revealed x-ray diffraction signals consistent with a compressed bcc lattice above a shock pressure of 26.2+/-1.3 GPa, thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc phase transition in Mg. Our measurement of the hcp-bcc phase boundary in Mg was found to be consistent with the calculated boundary from generalized pseudopotential theory in the pressure and temperature region intersected by the principal shock Hugoniot. Furthermore, the subnanosecond timescale of the phase transition implied by the shock-loading conditions was in agreement with the kinetics of a martensitic transformation. In conclusion, we report on the progress and
Kinetics of shock-induced polymorphic phase transitions
Hayes, D.B.
1976-01-01
Shock-loading induces polymorphic phase transitions in some solids if the pressure exceeds that at which phase transition occurs under quasi-static compression. Volume changes in shock-induced transitions must occur very rapidly to produce the structured shock waves observed, so transition rates are large under these dynamic conditions. By contrast, the same transition might require minutes or hours under quasi-static loading. If shock-induced transition is so rapid that kinetic effects can be ignored, a steady two-wave structure is propagated. The first wave, of amplitude equal to the transition pressure, shocks the material to the phase boundary but produces no transition; the second, slower wave produces the transformed phase. When kinetic effects are important, this two-wave structure does not form immediately but by an evolutionary process which produces transients in the amplitudes and rise times of the stress waves. By measuring these transient effects, some facts about the kinetics of phase transitions have been inferred. Comprehensive studies on phase-transition kinetics in antimony, iron, and potassium chloride are described, with emphasis on a thermodynamic description of the intermediate states during transition. Complicating effects such as shear strength and wave perturbations due to free surfaces are discussed.
Elastic phase transitions in metals at high pressures.
Krasilnikov, O M; Vekilov, Yu Kh; Mosyagin, I Yu; Isaev, E I; Bondarenko, N G
2012-04-19
The elastic phase transitions of cubic metals at high pressures are investigated within the framework of Landau theory. It is shown that at pressures comparable with the magnitude of the bulk modulus the phase transition is connected with the loss of stability relative to uniform deformation of the crystalline lattice. Discontinuity of the order parameter at the transition point and its equilibrium value are expressed through the second- to fourth-order elastic constants. The second-,third- and fourth-order elastic constants and phonon dispersion curves of vanadium under hydrostatic pressure are obtained by first-principles calculations. Structural transformation in vanadium under pressure is studied using the obtained results. It is shown that the experimentally observed at P ≈ 69 GPa phase transition in vanadium is the first-order phase transition close to a second-order phase transition.
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
1988-12-01
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.
High Energy Rate Forming Induced Phase Transition in Austenitic Steel
Kovacs, T.; Kuzsella, L.
2017-02-01
In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea means indirect hardening setup. Austenitic stainless steels have high plasticity and can be cold formed easily. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness [1]. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.
Influence of Z-phase on Long-term Creep Stability of Martensitic 9 to 12 % Cr Steels
Danielsen, Hilmar Kjartansson; Hald, John
2009-01-01
stabileren Z-Phasen (Cr(V,Nb)N) mit einem Verlust an Kriechfestigkeit. Cr-Gehalte >10,5 % beschleunigen die Ausscheidung der Z-Phasen. Dies beschränkte Bemühungen, einen martensitischen, kriechfesten Stahl mit hohem Cr-Gehalt zum Schutz vor Oxidation zu entwickeln. 9-%-Cr-Stähle werden offensichtlich nicht...... durch die Z-Phase negativ beeinflusst. Die Untersuchung der Z-Phasen-Ausscheidung hat zur Entwicklung eines 12-%-Cr-martensitischen Versuchsstahls geführt, dessen Kriechfestigkeit durch die Z-Phase gewährleistet wird. Derartige Stähle erlauben die ombination hoher Festigkeit bei gleichzeitig guter...
Highly birefringent crystal for Raman transitions with phase modulators
Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo
2016-05-01
We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.
Van der Waals phase transition in the framework of holography
Zeng, Xiao-Xiong
2015-01-01
Phase structure of the quintessence Reissner-Nordstr\\"{o}m-AdS black hole is probed with the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the similar Van der Waals-like phase transition. To reinforce the conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.
Consistent lattice Boltzmann equations for phase transitions.
Siebert, D N; Philippi, P C; Mattila, K K
2014-11-01
Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling.
ATLAS Transition Region Upgrade at Phase-1
Song, H; The ATLAS collaboration
2014-01-01
This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...
Phase transitions in models of human cooperation
Perc, Matjaž
2016-08-01
If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.
Swarms, Phase Transitions, and Collective Intelligence
Millonas, M M
1993-01-01
A spacially extended model of the collective behavior of a large number of locally acting organisms is proposed in which organisms move probabilistically between local cells in space, but with weights dependent on local morphogenetic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. Such models have various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. It is hoped that the present model might serve as a paradigmatic example of a complex cooperative system in nature. In particular swarm models c...
Entanglement, quantum phase transitions and quantum algorithms
Orus, R
2006-01-01
The work that we present in this thesis tries to be at the crossover of quantum information science, quantum many-body physics, and quantum field theory. We use tools from these three fields to analyze problems that arise in the interdisciplinary intersection. More concretely, in Chapter 1 we consider the irreversibility of renormalization group flows from a quantum information perspective by using majorization theory and conformal field theory. In Chapter 2 we compute the entanglement of a single copy of a bipartite quantum system for a variety of models by using techniques from conformal field theory and Toeplitz matrices. The entanglement entropy of the so-called Lipkin-Meshkov-Glick model is computed in Chapter 3, showing analogies with that of (1+1)-dimensional quantum systems. In Chapter 4 we apply the ideas of scaling of quantum correlations in quantum phase transitions to the study of quantum algorithms, focusing on Shor's factorization algorithm and quantum algorithms by adiabatic evolution solving a...
Belyaev, S.; Rubanik, V.; Resnina, N.; Rubanik, V.; Rubanik, O.; Borisov, V.
2010-04-01
The aim of this work is an investigation of structure and martensitic transformation in bimetal composite 'TiNi-stainless steel' produced by explosion welding. The results have shown that the mixture of chemical elements is observed in very narrow intervals of 6 µm close to the joint - 2 µm from the TiNi side and 4 µm from the steel one. Micro-hardness distribution in the vicinity of the joint is non-monotonic in the interval of 60 µm. Connection of stainless steel and TiNi plates by explosion welding leads to a dramatic change of martensitic transformation kinetics. Temperatures and the temperature interval of phase transformation increase strongly and heat transformation decreases. Annealing at 500°C for 2 h of bimetal composite decreases the interval of micro-hardness variation and partially recovers kinetics of phase transitions.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Fast phase transitions induced by picosecond electrical pulses on phase change memory cells
Wang, W. J.; Shi, L. P.; Zhao, R.; Lim, K. G.; Lee, H. K.; Chong, T. C.; Wu, Y. H.
2008-07-01
The reversible and fast phase transitions induced by picosecond electrical pulses are observed in the nanostructured GeSbTe materials, which provide opportunities in the application of high speed nonvolatile random access memory devices. The mechanisms for fast phase transition are discussed based on the investigation of the correlation between phase transition speed and material size. With the shrinkage of material dimensions, the size effects play increasingly important roles in enabling the ultrafast phase transition under electrical activation. The understanding of how the size effects contribute to the phase transition speed is of great importance for ultrafast phenomena and applications.
Cosmological Consequences of QCD Phase Transition(s) in Early Universe
Tawfik, A
2008-01-01
We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.
Passamani, E.C., E-mail: edson@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Nascimento, V.P.; Larica, C.; Takeuchi, A.Y. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910 Vitoria, ES (Brazil); Alves, A.L.; Proveti, J.R. [Departamento de Ciencias Matematicas e Naturais, Universidade Federal do Espirito Santo, 29932-540, Sao Mateus, ES (Brazil); Pereira, M.C. [Instituto de Ciencia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39803-371 Teofilo Otoni, Minas Gerais (Brazil); Fabris, J.D. [Departamento de Quimica, UFVJM, 39100-000 Diamantina, Minas Gerais (Brazil)
2011-07-28
Highlights: > Chemical disorder affects martensitic transformation in Ni-Mn-Sn Heusler alloys. > Martensitic transition temperature depends on the L21-ferromagnetic fraction. > Grain boundaries induce drastic reduction of magnetization in milled Heusler alloys. > Magnetic properties of the milled Ni50Mn36Sn14 alloy get better after annealing. - Abstract: The effect of chemical disorder over the martensitic phase transformation of the Ni{sub 50}Mn{sub 36}Sn{sub 14} Heusler-type alloy was systematically investigated by performing X-ray diffractometry (DRX), DC magnetization and {sup 57}Fe-doping and {sup 119}Sn-Moessbauer spectroscopy measurements. DRX patterns are characteristics of a L2{sub 1}-type chemically disordered structure, where the presence of this disorder was first evaluated by analyzing the relative intensity of the (1 1 1) DRX reflection, which varies in the case of Fe-doped and practically disappears for the milled samples. In consequence, the magnetic properties of Fe-doped well-milled samples related to the martensitic phase transformation change substantially. 300 K {sup 57}Fe-Moessbauer spectroscopy data suggest that the changes in the magnetic properties related to the martensitic transformation are intrinsically correlated to the ferromagnetic and paramagnetic fractions, which are respectively associated with Fe atoms replacing Mn- and Sn-sites. In the case of milled samples, the drastic reduction of alloy magnetization was explained by the increase of the number of Mn atoms in the shell regions, which have a reduced magnetic moment comparatively to those in the grain cores. The magnetization change and the temperature transition in the martensitic transformation are governed by the grain core. The initial magnetic properties and martensitic transformation can be recovered by a subsequent annealing on the milled sample.
Crystalline damage development during martensitic transformations
Suiker, A.S.J.; Turteltaub, S.R.
2006-01-01
A recently developed thermo-mechanical model [1] is presented that can be used to simulate the interactions between martensitic phase transformations and crystalline damage growth at the austenitic grain level. Subgrain information is included in the model via the crystallographic theory of martensi
F. Forghani; M. Nili-Ahmadabadi
2014-01-01
In this study, the microstructure and second-phase particles in yttrium (0.05 wt.%and 0.8 wt.%) bearing Fe-10Ni-7Mn steels were characterized. The results of X-ray analysis as well as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy indicated the formation of (Fe, Ni, Mn)17Y2 precipitates with hexagonal structure in a Fe-10Ni-7Mn-0.8Y (wt.%) alloy. Lattice parameters of these precipitates were calculated as follows:a=0.8485 nm and c=0.8274 nm. Formation of Y2O3 sub-micron particles was also confirmed in both yttrium bearing steels via electrolytic phase extraction method. The effect of these precipitates on the prior austenite grain size was investigated. The results revealed that these precipitates had an effective role in controlling the prior austenite grain size.
Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad
2016-05-01
The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.
Pressure-Induced Phase Transitions of n-Tridecane
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Quantum phase transitions in Bose-Fermi systems
Petrellis, D; Iachello, F
2011-01-01
Quantum phase transitions in a system of N bosons with angular momentum L=0,2 (s,d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.
Liquid-Gas Phase Transition in Nuclear Equation of State
Lee, S J
1997-01-01
A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.
On the theory of phase transitions in polypeptides
Yakubovich, Alexander V.; Solov'yov, Ilia; Greiner, Walter
2008-01-01
We suggest a theoretical method based on the statistical mechanics for treating the alpha-helix random coil transition in polypeptides. This process is considered as a first-order-like phase transition. The developed theory is free of model parameters and is based solely on fundamental physical...... principles. We apply the developed formalism for the description of thermodynamical properties of alanine polypeptides of different length. We analyze the essential thermodynamical properties of the system such as heat capacity, phase transition temperature and latent heat of the phase transition...
Liquid-liquid phase transition in Stillinger-Weber silicon
Beaucage, Philippe; Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7 (Canada)
2005-04-20
It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.
On the Phase Transition of N-Isopropylcarbazole.
1986-05-01
vacinity of the phase transition (ca. T 137 + 40 K). We propose a semiquantitative interpretation of the phase transition in NIPC based on this assumption...the order parameter fluctuations in the vacinity of TO . V. Conclusions. The elastic properties of NIPC in the temperature range 90 K - 295 K have
Local discontinuous Galerkin methods for phase transition problems
Tian, Lulu
2015-01-01
In this thesis we develop a local discontinuous Galerkin (LDG) finite element method to solve mathematical models for phase transitions in solids and fluids. The first model we study is called a viscosity-capillarity (VC) system associated with phase transitions in elastic bars and Van der Waals
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata; Kimura, Taro
2016-12-01
We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Diamagnetic phase transitions in two-dimensional conductors
Bakaleinikov, L. A.; Gordon, A.
2014-11-01
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.
Nuclear Liquid-Gas Phase Transition: Experimental Signals
D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cannata, F.; Chomaz, Ph.; Casini, G.; Geraci, E.; Gramegna, F.; Moroni, A.; Vannini, G.
2005-03-01
The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.
Nuclear liquid-gas phase transition: Experimental signals
D' Agostino, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Bruno, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Gulminelli, F. [LPC Caen (IN2P3-CNRS/ISMRA et Universite), F-14050 Caen Cedex (France); Cannata, F. [Dipartimento di Fisica and INFN, Bologna (Italy); Chomaz, Ph. [GANIL, DSM-CEA/IN2P3-CNRS (France); Casini, G. [INFN Sezione di Firenze (Italy); Geraci, E. [Dipartimento di Fisica and INFN, Bologna (Italy); Gramegna, F. [INFN Laboratorio Nazionale di Legnaro (Italy); Moroni, A. [Dipartimento di Fisica and INFN, Milano (Italy); Vannini, G. [Dipartimento di Fisica and INFN, Bologna (Italy)
2005-03-07
The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.
Experimental and theoretical investigations on shock wave induced phase transitions
Gupta, Satish C.; Sikka, S. K.
2001-06-01
Shock wave loading of a material can cause variety of phase transitions, like polymorphism, amorphization, metallization and molecular dissociations. As the shocked state lasts only for a very short duration (about a few microseconds or less), in-situ microscopic measurements are very difficult. Although such studies are beginning to be possible, most of the shock-induced phase transitions are detected using macroscopic measurements. The microscopic nature of the transition is then inferred from comparison with static pressure data or interpreted by theoretical methods. For irreversible phase transitions, microscopic measurements on recovered samples, together with orientation relations determined from selected area electron diffraction and examination of the morphology of growth of the new phase can provide insight into mechanism of phase transitions. On theoretical side, the current ab initio band structure techniques based on density functional formalism provide capability for accurate computation of the small energy differences (a few mRy or smaller) between different plausible structures. Total energy calculation along the path of a phase transition can furnish estimates of activation barrier, which has implications for understanding kinetics of phase transitions. Molecular dynamics calculations, where the new structure evolves naturally, are becoming increasingly popular especially for understanding crystal to amorphous phase transitions. Illustrations from work at our laboratory will be presented.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata
2016-01-01
We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Two kinds of Phase transitions in a Voting model
Hisakado, Masato
2012-01-01
In this paper, we discuss a voting model with two candidates, C_1 and C_2. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist together. We compared our results to the conclusions of experiments and identified the phase transitions in the upper t limit using analysis of human behavior obtained from experiments.
High pressure phase transitions for CdSe
Bo Kong; Ti-Xian Zeng; Zhu-Wen Zhou; De-Liang Chen; Xiao-Wei Sun
2014-05-01
The structure and pressure-induced phase transitions for CdSe are investigated using first-principles calculations. The pressure-induced phase transition sequence WZ/ZB $\\to$ Rs $\\to$ $\\to$ CsCl for CdSe is drawn reasonably for the fist time, the corresponding transition pressures are 3.8, 29 and 107 GPa, respectively and the intermediate states between the structure and the CsCl structure should exist.
Quantum Phase Transitions in Odd-Mass Nuclei
Leviatan, A; Iachello, F
2011-01-01
Quantum shape-phase transitions in odd-even nuclei are investigated in the framework of the interacting boson-fermion model. Classical and quantum analysis show that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially near the critical point. Experimental evidence for the occurrence of spherical to axially-deformed transitions in odd-proton nuclei Pm, Eu and Tb (Z=61, 63, 65) is presented.
Deconfinement Phase Transition Heating and Thermal Evolution of Neutron Stars
Kang, Miao; Wang, Xiaodong
2007-01-01
The deconfinement phase transition will lead to the release of latent heat during spins down of neutron stars if the transition is the first-order one.We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. The results show that neutron stars may be heated to higher temperature.This feature could be particularly interesting for high temperature of low-magnetic field millisecond pulsar at late stage.
Chiral phase transition in QED3 at finite temperature
Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi
2016-12-01
In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.
Siruguri, V; Babu, P D; Kaushik, S D; Biswas, Aniruddha; Sarkar, S K; Krishnan, Madangopal; Chaddah, P
2013-12-11
Neutron diffraction measurements, performed in the presence of an external magnetic field, have been used to show structural evidence for the kinetic arrest of the first order phase transition from (i) the high temperature austenite phase to the low temperature martensite phase in the magnetic shape memory alloy Ni37Co11Mn42.5Sn9.5, (ii) the higher temperature ferromagnetic phase to the lower temperature antiferromagnetic phase in the half-doped charge ordered compound La0.5Ca0.5MnO3 and (iii) the formation of glass-like arrested states in both compounds. The cooling and heating under unequal fields protocol has been used to establish phase coexistence of metastable and equilibrium states, and also to demonstrate the devitrification of the arrested metastable states in the neutron diffraction patterns. We also explore the field–temperature dependent kinetic arrest line TK(H), through the transformation of the arrested phase to the equilibrium phase. This transformation has been observed isothermally in reducing H, as also on warming in constant H. TK is seen to increase as H increases in both cases, consistent with the low-T equilibrium phase having lower magnetization.
Influence of Z-phase on Long-term Creep Stability of Martensitic 9 to 12 % Cr Steels
Danielsen, Hilmar Kjartansson; Hald, John
2009-01-01
Die langfristige Kriechstabilität der neuesten Generation martensitischer 9 bis 12 % kriechfester Stähle basiert auf dem bekannten Grade 91, d. h. auf der Stärkung durch die feinen MNNitride (V und Nb). Langzeit-Hochtemperaturtests zeigen den Ersatz der MN-Nitride durch die thermodynamisch...... stabileren Z-Phasen (Cr(V,Nb)N) mit einem Verlust an Kriechfestigkeit. Cr-Gehalte >10,5 % beschleunigen die Ausscheidung der Z-Phasen. Dies beschränkte Bemühungen, einen martensitischen, kriechfesten Stahl mit hohem Cr-Gehalt zum Schutz vor Oxidation zu entwickeln. 9-%-Cr-Stähle werden offensichtlich nicht...... durch die Z-Phase negativ beeinflusst. Die Untersuchung der Z-Phasen-Ausscheidung hat zur Entwicklung eines 12-%-Cr-martensitischen Versuchsstahls geführt, dessen Kriechfestigkeit durch die Z-Phase gewährleistet wird. Derartige Stähle erlauben die ombination hoher Festigkeit bei gleichzeitig guter...
Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody
CHENG Ze
2008-01-01
We study the thermodynamics of phase transitions of a blackbody whose interior is filled by a Kerr nonlinear crystal. There is a transition temperature To, above which the Kerr nonlinear blackbody is in the normal thermal radiation state, and below which it is in the squeezed thermal radiation state. At To, the Gibbs free energy of the two phases is continuous but the entropy density of the two phases is discontinuous. Hence, there is a jump in the entropy density and this leads to a latent heat density. The photon system undergoes a first-order phase transition from the normal to the squeezed thermal radiation state.
Large N Phase Transitions, Finite Volume, and Entanglement Entropy
Johnson, Clifford V
2014-01-01
Holographic studies of the entanglement entropy of field theories dual to charged and neutral black holes in asymptotically global AdS4 spacetimes are presented. The goal is to elucidate various properties of the quantity that are peculiar to working in finite volume, and to gain access to the behaviour of the entanglement entropy in the rich thermodynamic phase structure that is present at finite volume and large N. The entropy is followed through various first order phase transitions, and also a novel second order phase transition. Behaviour is found that contrasts interestingly with an earlier holographic study of a second order phase transition dual to an holographic superconductor.
Reentrant Phase Transitions in Rotating AdS Black Holes
Altamirano, Natacha; Mann, Robert B
2013-01-01
We study the thermodynamics of higher-dimensional singly spinning asymptotically AdS black holes in the canonical (fixed J) ensemble of extended phase space, where the cosmological constant is treated as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Along with the usual small/large black hole phase transition, we find a new phenomenon of reentrant phase transitions for all d>5 dimensions, in which a monotonic variation of the temperature yields two phase transitions from large to small and back to large black holes. This situation is similar to that seen in multicomponent liquids.
Diamagnetic phase transitions in two-dimensional conductors
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)
2014-11-15
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.
Phase transition and PTCR effect in erbium doped BT ceramics
Leyet, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Instituto Federal de Educacao Ciencia e Tecnologia (IFAM), Av. 7 de Setembro 1975, Centro, Manaus 69020-120, AM (Brazil); Pena, R.; Zulueta, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Guerrero, F. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Anglada-Rivera, J. [CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Romaguera, Y. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J., E-mail: jcruz@inescporto.pt [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)
2012-06-25
Highlights: Black-Right-Pointing-Pointer Erbium influence the dielectric response BaTiO{sub 3} ceramics. Black-Right-Pointing-Pointer Features of the phase transition are not explained by phenomenological models. Black-Right-Pointing-Pointer Relaxation parameters do not show influence on ferroelectric-paraelectric phase transition. Black-Right-Pointing-Pointer Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO{sub 3} and Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO{sub 3} ceramics were measured in the 25-225 Degree-Sign C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric-paraelectric phase transition of the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramic was observed. The features of the samples phase transition were analysed by using Curie-Weiss, Santos-Eiras' and order parameter local phenomenological models. In the BaTiO{sub 3} system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric-paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO{sub 3} ceramics is associated with the processes that results in the PTCR effect.
Insight into Structural Phase Transitions from Density Functional Theory
Ruzsinszky, Adrienn
2014-03-01
Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.
Li, Yang; Li, JiaHao; Liu, BaiXin
2015-02-14
Applying the constructed Ti-Nb potentials, molecular dynamics simulations were conducted to investigate the martensitic transformation of Ti100-xNbx alloys (x = 5, 10…25) from the α' phase (hcp) to the β phase (bcc). It is found that the transformation involved four phases, i.e. α', α'', fco (face-centered orthorhombic), and β phases. The structures of the obtained phases exhibit consistency with experimental data, verifying the validity of atomic simulations. The simulations not only revealed the processes of atomic displacements during the transformation, but also elucidated the underlying mechanism of the martensitic transformation at the atomic level. The martensitic transformation incorporates three types of coinstantaneous deformations i.e. slide, shear as well as extension, and the subsequent lattice constant relaxation. Furthermore, according to the proposed mechanism, the crystallographic correlation between the initial α' phase and the final β phase has been deduced. The simulation results provide a clear landscape on the martensitic transformation mechanism, facilitating our comprehensive understanding on the phase transition in the Ti-Nb system.
Hamilton Ferreira Gomes de Abreu; Marcelo José Gomes da Silva; Luís Flávio Gaspar Herculano; Harry Bhadeshia
2009-01-01
Experiments have been conducted to study the strain induced transformation from austenite to martensite in a metastable AISI 301LN austenitic stainless steel, deformed by uniaxial tension applied along rolling direction. Samples deformed 10 and 20% have shown the presence of α´ martensite phase. Measured pole figures of martensite phase were compared to calculated ones, assuming no variant selection and selection of variants where interaction between stress and the plate of martensite ad...
CO2 Capture from Flue Gas by Phase Transitional Absorption
Liang Hu
2009-06-30
A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.
Shankaraiah, N.; Dubey, Awadhesh K.; Puri, Sanjay; Shenoy, Subodh R.
2016-12-01
In the conceptual framework of phase ordering after temperature quenches below transition, we consider the underdamped Bales-Gooding-type "momentum conserving" dynamics of a 2D martensitic structural transition from a square-to-rectangle unit cell. The one-component or NOP=1 order parameter is one of the physical strains, and the Landau free energy has a triple well, describing a first-order transition. We numerically study the evolution of the strain-strain correlation, and find that it exhibits dynamical scaling, with a coarsening length L (t ) ˜tα . We find at intermediate and long times that the coarsening exponent sequentially takes on respective values close to α =2 /3 and 1 /2 . For deep quenches, the coarsening can be arrested at long times, with α ≃0 . These exponents are also found in 3D. To understand such behavior, we insert a dynamical-scaling ansatz into the correlation function dynamics to give, at a dominant scaled separation, a nonlinear kinetics of the curvature g (t )≡1 /L (t ) . The curvature solutions have time windows of power-law decays g ˜1 /tα , with exponent values α matching simulations, and manifestly independent of spatial dimension. Applying this curvature-kinetics method to mass-conserving Cahn-Hilliard dynamics for a double-well Landau potential in a scalar NOP=1 order parameter yields exponents α =1 /4 and 1 /3 for intermediate and long times. For vector order parameters with NOP≥2 , the exponents are α =1 /4 only, consistent with previous work. The curvature kinetics method could be useful in extracting coarsening exponents for other phase-ordering dynamics.
Measuring techniques for martensitic transformations; Marutensaito hentai ni kansuru sokutei gijutsu
Murakami, Y.; Morito, S. [Univ. of Tsukuba, Tsukuba (Japan). Graduate School; Otsuka, K. [Univ. of Tsukuba, Ibaraki (Japan). Inst. of Materials Science
1996-03-20
It is better to measure physical amount that shows significant change during transformation in order to carry out precise detection of martensitic transformations or to decide the transformation temperature. One of it is Differential scanning calorimetry (DSC) method. This method is very easy along with the determination of transformation enthalpy and also specific heat and is used widely. In martensitic transformation, there exist the intrinsic crystal habit face to the alloy system and crystal azimuthal relation between parent phase and martensite, and it is important to decide them correctly as crystallographic parameters. Overhere, method for measuring crystallographic parameters from martensite caused in parent phase single crystal material is introduced. Further, role of electron microscope is extremely large regarding the revelation of martensitic transformation mechanism in atomic scale. In this report, as for what is revealed regarding martensitic transformation when using electron microscope, crystal structure of martensite, form, structure of the interface and so forth are cited. 39 refs., 5 figs.
Separation of the Martensite in TiNi Fiber Reinforced Aluminum Matrix Composite
Yanjun ZHENG; Lishan CUI; Yan LI; Dazhi YANG
2004-01-01
The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the selfaccommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.
High pressure structural phase transitions of PbPo
Bencherif, Y.; Boukra, A. [Departement de Physique, Faculte des Sciences, Universite de Mostaganem (Algeria); Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria); Zaoui, A., E-mail: azaoui@polytech-lille.fr [Universite Lille Nord de France, LGCgE (EA 4515) Lille1, Polytech' Lille, Cite Scientifique, Avenue Paul Langevin, 59655 Villeneuve D' Ascq Cedex (France); Ferhat, M. [Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria)
2012-09-01
First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.
Phase Transition Induced by Small Molecules in Confined Copolymer Films
ZHOU Ling
2007-01-01
We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.
Phase-separation transitions in asymmetric lipid bilayers
Shimobayashi, Shunsuke F; Taniguchi, Takashi
2015-01-01
Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.
Phase transitions in pure and dilute thin ferromagnetic films
Korneta, W.; Pytel, Z.
1983-10-01
The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.
Superradiant phase transitions with three-level systems
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-02-01
We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.
Superradiant phase transitions with three-level systems
Baksic, Alexandre; Ciuti, Cristiano
2013-01-01
We determine the phase diagram of $N$ identical three-level systems interacting with a single photonic mode in the thermodynamical limit ($N \\to \\infty$) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in presence of a diamagnetic term.
Topology-driven magnetic quantum phase transition in topological insulators.
Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu
2013-03-29
The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.
Geometrical phase transitions on hierarchical lattices and universality
Hauser, P. R.; Saxena, V. K.
1986-12-01
In order to examine the validity of the principle of universality for phase transitions on hierarchical lattices, we have studied percolation on a variety of hierarchical lattices, within exact position-space renormalization-group schemes. It is observed that the percolation critical exponent νp strongly depends on the topology of the lattices, even for lattices with the same intrinsic dimensions and connectivities. These results support some recent similar results on thermal phase transitions on hierarchical lattices and point out the possible violation of universality in phase transitions on hierarchical lattices.
On the Chiral Phase Transition in the Linear Sigma Model
Phat, T H; Hoa, L V; Phat, Tran Huu; Anh, Nguyen Tuan; Hoa, Le Viet
2004-01-01
The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged.
Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan
2017-10-01
The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg(-1)), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg(-1)), healthy amateur golfers (1.79 ± 1.05 N · kg(-1)) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg(-1)), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.
Phase sensitive quantum interference on forbidden transition in ladder scheme
Koganov, Gennady A
2014-01-01
A three level ladder system is analyzed and the coherence of initially electric-dipole forbidden transition is calculated. Due to the presence of two laser fields the initially dipole forbidden transition becomes dynamically permitted due to ac Stark effect. It is shown that such transitions exhibit quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index. Gain and dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and the probe fields. Unlike allowed transitions, gain/absorption behavior of ac-Stark allowed transitions exhibit antisymmetric feature on the Rabi sidebands. It is found that absorption/gain spectra possess extremely narrow sub-natural resonances on these ac Stark allowed forbidden transitions. An interesting finding is simultaneous existence of gain and negative dispersion at Autler-Townes transition which may lead to both reduction of the group velocity a...
Safety performance of traffic phases and phase transitions in three phase traffic theory.
Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin
2015-12-01
Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways.
Phase transitions in ferroelectric silicon doped hafnium oxide
Böscke, T. S.; Teichert, St.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T.
2011-09-01
We investigated phase transitions in ferroelectric silicon doped hafnium oxide (FE-Si:HfO2) by temperature dependent polarization and x-ray diffraction measurements. If heated under mechanical confinement, the orthorhombic ferroelectric phase reversibly transforms into a phase with antiferroelectric behavior. Without confinement, a transformation into a monoclinic/tetragonal phase mixture is observed during cooling. These results suggest the existence of a common higher symmetry parent phase to the orthorhombic and monoclinic phases, while transformation between these phases appears to be inhibited by an energy barrier.
Phase transitions in simplified models with long-range interactions
Rocha Filho, T. M.; Amato, M. A.; Mello, B. A.; Figueiredo, A.
2011-10-01
We study the origin of phase transitions in several simplified models with long-range interactions. For the self-gravitating ring model, we are unable to observe a possible phase transition predicted by Nardini and Casetti [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.060103 80, 060103R (2009).] from an energy landscape analysis. Instead we observe a sharp, although without any nonanalyticity, change from a core-halo to a core-only configuration in the spatial distribution functions for low energies. By introducing a different class of solvable simplified models without any critical points in the potential energy we show that a behavior similar to the thermodynamics of the ring model is obtained, with a first-order phase transition from an almost homogeneous high-energy phase to a clustered phase and the same core-halo to core configuration transition at lower energies. We discuss the origin of these features for the simplified models and show that the first-order phase transition comes from the maximization of the entropy of the system as a function of energy and an order parameter, as previously discussed by Hahn and Kastner [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.72.056134 72, 056134 (2005); Eur. Phys. J. BEPJBFY1434-602810.1140/epjb/e2006-00100-7 50, 311 (2006)], which seems to be the main mechanism causing phase transitions in long-range interacting systems.
Behavior of the Lyapunov Exponent and Phase Transition in Nuclei
WANG Nan; WU Xi-Zhen; LI Zhu-Xia; WANG Ning; ZHUO Yi-Zhong; SUN Xiu-Quan
2000-01-01
Based on the quantum molecular dynamics model, we investigate the dynamical behaviors of the excited nuclear system to simulate the latter stage of heavy ion reactions, which associate with a liquid-gas phase transition. We try to search a microscopic way to describe the phase transition in realnuclei. The Lyapunov exponent is employed and examined for our purpose. We find out that the Lyapunov exponent is one of good microscopic quantities to describe the phase transition in hot nuclei. Coulomb potential and the finite size effect may give a strong influence on the critical temperature. However, the collision term plays a minor role in the process of the liquid-gas phase transition in finite systems.
Phase transitions in the coal-water-methane system
Alexeev, A.D.; Ulyanova, E.V.; Kalugina, N.A.; Degtyar, S.E. [Institute of Physical & Mining Processes, Donetsk (Ukraine)
2006-07-01
Low temperature phase transitions in water and methane occurring in fossil coals were studied experimentally using Nuclear Magnetic Resonance (NMR) techniques. Contributions of constituent fluids into narrow line of {sup 1}H NMR wide line spectrum were analyzed.
Integrability and Quantum Phase Transitions in Interacting Boson Models
Dukelsky, J; García-Ramos, J E; Pittel, S
2003-01-01
The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.
Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model
Kubo, Katsunori
2015-09-01
We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.
Instabilities of uniform filtration flows with phase transition
Il'Ichev, A. T.; Tsypkin, G. G.
2008-10-01
New mechanisms of instability are described for vertical flows with phase transition through horizontally extended two-dimensional regions of a porous medium. A plane surface of phase transition becomes unstable at an infinitely large wavenumber and at zero wavenumber. In the latter case, the unstable flow undergoes reversible subcritical bifurcations leading to the development of secondary flows (which may not be horizontally uniform). The evolution of subcritical modes near the instability threshold is governed by the Kolmogorov-Petrovskii-Piskunov equation. Two examples of flow through a porous medium are considered. One is the unstable flow across a water-bearing layer above a layer that carries a vapor-air mixture under isothermal conditions in the presence of capillary forces at the phase transition interface. The other is the vertical flow with phase transition in a high-temperature geothermal reservoir consisting of two high-permeability regions separated by a low-permeability stratum.
Wet Process Induced Phase Transited Drug Delivery System as a ...
Nx 6110
effect of varying osmotic pressure of the dissolution medium on drug release was studied. ... results of in vivo toxicity studies may support the use of phase transited ... ocular inflammatory conditions [16]. ... Flurbiprofen was obtained from Sun.
Dynamical symmetries and causality in non-equilibrium phase transitions
Henkel, Malte
2015-01-01
Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions
Malte Henkel
2015-11-01
Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Entropy, Macroscopic Information, and Phase Transitions
Parrondo, Juan M. R.
1999-01-01
The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.
The QCD phase transitions: From mechanism to observables
Shuryak, E.V.
1997-09-22
This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.
Quantum Shape-Phase Transitions in Finite Nuclei
Leviatan, A
2007-01-01
Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.
Quantum Shape-Phase Transitions in Finite Nuclei
Leviatan, A. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2007-05-15
Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.
Phase transition of bismuth telluride thin films grown by MBE
Fülöp, Attila; Song, Yuxin; Charpentier, Sophie
2014-01-01
A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...
Phase transition in L-alaninium oxalate by photoacoustics
M Sivabarathy; S Natarajan; S K Ramakrishnan; K Ramachandran
2004-10-01
Phase transition in L-alaninium oxalate is studied by using TG, DTA and photoacoustic spectroscopy. A sharp transition at 378 K by photoacoustics is observed whereas at the same temperature the endothermic energy change observed by TG and DTA is not very sharp. This is discussed in detail with reference to the other known data for the organic crystals.
Baryogenesis via leptonic CP-violating phase transition
Pascoli, Silvia; Zhou, Ye-Ling
2016-01-01
We propose a new mechanism to generate a lepton asymmetry based on the vacuum CP-violating phase transition (CPPT). This approach differs from classical thermal leptogenesis as a specific seesaw model, and its UV completion, need not be specified. The lepton asymmetry is generated via the dynamically realised coupling of the Weinberg operator during the phase transition. This mechanism provides strong connections with low-energy neutrino experiments.
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Raman study of magnetic phase transitions of hexagonal manganites
Nam, Ji-Yeon; Hien, Nguyen T. M.; Huyen, Nguyen T.; Han, Kiok; Chen, Xiang-Bai; Cheong, S. W.; Lee, D.; Noh, T. W.; Sung, N. H.; Cho, B. K.; Yang, In-Sang
2014-03-01
Results of Raman studies of magnetic phase transitions of hexagonal LuMnO3 single crystal and HoMnO3 thin films are compared directly with the results of magnetic measurements. Our results show that the temperature dependent Raman study of magnon scattering provides a simple and accurate method for investigating magnetic phase transitions, especially in HoMnO3 thin films. In single crystal, our optical method provides results as good as magnetization measurements.
Quark-gluon plasma phase transition using cluster expansion method
Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.
2015-08-01
This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).
Ab initio theory of helix <-> coil phase transition
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2008-01-01
on fundamental physical principles. It describes essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated as a function of two dihedral angles, responsible for the polypeptide...... twisting. The suggested theory is general and with some modification can be applied for the description of phase transitions in other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes)....
Effect of point defects and disorder on structural phase transitions
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods to study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.
Quark-Hadron Phase Transitions in Viscous Early Universe
Tawfik, A
2011-01-01
Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about $1-10 \\mu$s old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density $\\rho$, temperature $T$, Hubble parameter $H$ and scale factor $a$ before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, $a$ and $H$ for instance, makes it clear that th...
Quantum Phase Transitions and Dimerized Phases in Frustrated Spin Ladder
WEN Rui; LIU Guang-Hua; TIAN Guang-Shan
2011-01-01
In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-chain next-nearestneighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.
Phase transition in extended thermodynamic phase space and charged Horava-Lifshitz black holes
Poshteh, Mohammad Bagher Jahani
2016-01-01
For charged black holes in Horava-Lifshitz gravity, it is shown that a second order phase transition takes place in extended phase space. We study the behavior of specific heat and free energy at the point of transition in canonical and grand canonical ensembles and show that the black hole falls into a state which is locally and globally stable. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. By taking cosmological constant as thermodynamic pressure for charged black holes, we extend Ehrenfest's equations. We obtain nine equations and show that, all of them are satisfied at the point in which the specific heat diverges. We also apply geometrothermodynamics to extended phase space and show that the scalar curvature of Quevedo metric diverges at the point at which the second order phase transition takes place.
A Quantum Phase Transition in the Cosmic Ray Energy Distribution
Widom, A; Srivastava, Y
2015-01-01
We here argue that the "knee" of the cosmic ray energy distribution at $E_c \\sim 1$ PeV represents a second order phase transition of cosmic proportions. The discontinuity of the heat capacity per cosmic ray particle is given by $\\Delta c=0.450196\\ k_B$. However the idea of a deeper critical point singularity cannot be ruled out by present accuracy in neither theory nor experiment. The quantum phase transition consists of cosmic rays dominated by bosons for the low temperature phase E E_c$. The low temperature phase arises from those nuclei described by the usual and conventional collective boson models of nuclear physics. The high temperature phase is dominated by protons. The transition energy $E_c$ may be estimated in terms of the photo-disintegration of nuclei.
Signals of the QCD Phase Transition in the Heavens
Schaffner-Bielich, J
2007-01-01
The modern phase diagram of strongly interacting matter reveals a rich structure at high-densities due to phase transitions related to the chiral symmetry of quantum chromodynamics (QCD) and the phenomenon of color superconductivity. These exotic phases have significant impacts on high-density astrophysics as the properties of neutron stars and the evolution of astrophysical systems as proto-neutron stars, core-collapse supernovae and neutron star mergers. Most recent pulsar mass measurements and constraints on neutron star radii are critically discussed. Astrophysical signals for exotic matter and phase transitions in high-density matter proposed recently in the literature are outlined. A strong first order phase transition leads to the emergence of a third family of compact stars besides white dwarfs and neutron stars. The different microphysics of quark matter results in an enhanced r-mode stability window for rotating compact stars compared to normal neutron stars. Future telescope and satellite data will...
Problem-solving phase transitions during team collaboration
Wiltshire, Travis; Butner, Jonathan E.; Fiore, Stephen M.
2017-01-01
) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem...... phases. Peaks in entropy thus corresponded to qualitative shifts in teams’ CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions......-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit...
Density Functional Theory for Phase-Ordering Transitions
Wu, Jianzhong [Univ. of California, Riverside, CA (United States)
2016-03-30
Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.
Twin structure of the lath martensite in low carbon steel
Pan Zhang
2016-04-01
Full Text Available It has been well accepted that the martensites in quenched carbon steels exhibit two typical morphologies which are closely dependent on the carbon content, i.e. lath martensite in low carbon steels and lenticular martensite in high carbon steels. Based on conventional belief, the lath martensites in low carbon steels are with high density dislocations as the substructure, in contrast to twin substructure in lenticular high carbon martensite. In the present work, an intensive transmission electron microscopy investigation was made to characterize the microstructures of the lath martensite in a low carbon steel of 0.2 wt%C. It was found that lots of lath martensites consist of twin as their substructure, rather than high density dislocations. In addition, nanoscale precipitates cohering with ferrite matrix were found at the twin interfaces. The orientation relationships between the precipitates and the ferrite matrix are in good agreement with that of primitive hexagonal ω phase in titanium alloys and other bcc metals or alloys.
Twin structure of the lath martensite in low carbon steel
Pan Zhang; Yulin Chen; Wenlong Xiao; Dehai Ping; Xinqing Zhao
2016-01-01
It has been well accepted that the martensites in quenched carbon steels exhibit two typical morphol-ogies which are closely dependent on the carbon content, i.e. lath martensite in low carbon steels and lenticular martensite in high carbon steels. Based on conventional belief, the lath martensites in low carbon steels are with high density dislocations as the substructure, in contrast to twin substructure in lenticular high carbon martensite. In the present work, an intensive transmission electron microscopy investigation was made to characterize the microstructures of the lath martensite in a low carbon steel of 0.2 wt%C. It was found that lots of lath martensites consist of twin as their substructure, rather than high density dislocations. In addition, nanoscale precipitates cohering with ferrite matrix were found at the twin interfaces. The orientation relationships between the precipitates and the ferrite matrix are in good agreement with that of primitive hexagonalωphase in titanium alloys and other bcc metals or alloys.&2016 Chinese Materials Research Society. Production and hosting by Elsevier B.V. This is an open access.
Antiferromagnetic phase transition and spin correlations in NiO
Chatterji, Tapan; McIntyre, G.J.; Lindgård, Per-Anker
2009-01-01
We have investigated the antiferromagnetic (AF) phase transition and spin correlations in NiO by high-temperature neutron diffraction below and above TN. We show that AF phase transition is a continuous second-order transition within our experimental resolution. The spin correlations manifested...... by this process. We determined the critical exponents =0.328±0.002 and =0.64±0.03 and the Néel temperature TN=530±1 K. These critical exponents suggest that NiO should be regarded as a 3dXY system...
Gravitational waves from cosmological first order phase transitions
Hindmarsh, Mark; Rummukainen, Kari; Weir, David
2015-01-01
First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unprecedented direct view of the Universe at the time of their creation. We study the generation of the gravitational waves during a first order phase transition using large-scale simulations of a model consisting of relativistic fluid and an order parameter field. We observe that the dominant source of gravitational waves is the sound generated by the transition, resulting in considerably stronger radiation than earlier calculations have indicated.
Collectivity, Phase Transitions and Exceptional Points in Open Quantum Systems
Heiss, W D; Rotter, I
1998-01-01
Phase transitions in open quantum systems, which are associated with the formation of collective states of a large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian. Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as functions of a coupling parameter. In the present paper this parameter is the coupling strength to the continuum. It is shown that the positions of the exceptional points (their accumulation point in the thermodynamical limit) depend on the particular type and energy dependence of the coupling to the continuum in the same way as the transition point of the corresponding phase transition.
Ludwig, Benno
2009-09-24
In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of
Ludwig, Benno
2009-09-24
In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of
Solid-solid phase transitions via melting in metals
Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.
2016-04-01
Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.
Spin-current probe for phase transition in an insulator
Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'diaye, Alpha T.; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z. Q.; Saitoh, Eiji
2016-08-01
Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.
Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem
Zhang, W
2011-01-01
In recent years, there has been much interest in phase transitions of combinatorial problems. Phase transitions have been successfully used to analyze combinatorial optimization problems, characterize their typical-case features and locate the hardest problem instances. In this paper, we study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard combinatorial optimization problem that has many real-world applications. Using random instances of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show that many properties of the problem, including the optimal tour cost and backbone size, experience sharp transitions as the precision of intercity distances increases across a critical value. Our experimental results on the costs of the ATSP tours and assignment problem agree with the theoretical result that the asymptotic cost of assignment problem is pi ^2 /6 the number of cities goes to infinity. In addition, we show that the average computation...
Dissipation-driven quantum phase transitions in collective spin systems
Morrison, S [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Parkins, A S [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)], E-mail: smor161@aucklanduni.ac.nz
2008-10-14
We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)
The Physics of Phase Transitions Concepts and Applications
Papon, Pierre; Meijer, Paul H.E
2006-01-01
The physics of phase transitions is an important area at the crossroads of several fields that play central roles in materials sciences. In this second edition, new developments had been included which came up in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. The presentation of several chapters had been improved by bringing better information on some phase transition mechanisms and by illustrating them with new application examples. This work deals with all classes of phase transitions in fluids and solids. It contains chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, etc., and is intended for graduate students in physics and engineering; for scientists it will serve both as an introduction and an overview. End-of-chapter problems and complete answers are included.
Structural phase transitions and topological defects in ion Coulomb crystals
Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Albert-Einstein Allee-11, Ulm University, 89069 Ulm (Germany); Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Institute for Theoretical Physics, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram (Israel); Zurek, Wojciech H. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Campo, Adolfo del [Department of Physics, University of Massachusetts Boston, Boston, MA 02125 (United States); Mehlstäubler, Tanja E., E-mail: tanja.mehlstaeubler@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)
2015-03-01
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Structural phase transitions and topological defects in ion Coulomb crystals
Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
2014-11-19
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Folding of a single polymer chain and phase transition
DING YanWei; ZHANG GuangZhao
2009-01-01
Using an ultra-sensitive differential scanning calorimetry (US-DSC), we have investigated the folding and aggregation behaviors of poly(N-isopropylacrylamide) (PNIPAM) chains in dilute and semidilute solutions. In the heating process, the intrachain folding and interchain aggregation simultaneously occur in the dilute solutions, and the ratio of intrachain folding increases with decreasing concentra-tion. In the semidilute solutions, PNIPAM chains show limited interchain aggregation with elevated temperature, because most of the PNIPAM chains have been collapsed at lower temperature. In an ex-tremely dilute solution, PNIPAM chains undergo a single folding transition in the heating process. By extrapolating heating rate and concentration to zero, we have obtained the phase transition tempera-ture (Ts) and enthalpy change (AHs) of the single chain folding. AHs is higher than that for a phase transition involving intrachain collapse and interchain aggregation, indicating that a single chain fold-ing can not be taken to be a macroscopic phase transition.
Origin of time before inflation from a topological phase transition
Bellini, Mauricio
2017-09-01
We study the origin of the universe (or pre-inflation) by suggesting that the primordial space-time in the universe suffered a global topological phase transition, from a 4D Euclidean manifold to an asymptotic 4D hyperbolic one. We introduce a complex time, τ, such that its real part becomes dominant after started the topological phase transition. Before the big bang, τ is a space-like coordinate, so that can be considered as a reversal variable. After the phase transition is converted in a causal variable. The formalism solves in a natural manner the quantum to classical transition of the geometrical relativistic quantum fluctuations: σ, which has a geometric origin.
Cascading dynamics on random networks: Crossover in phase transition
Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong
2012-02-01
In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.
Horava-Lifshitz early universe phase transition beyond detailed balance
Kheyri, F.; Khodadi, M.; Sepangi, H.R. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)
2013-01-15
The early universe is believed to have undergone a QCD phase transition to hadrons at about 10 {mu}s after the big bang. We study such a transition in the context of the non-detailed balance Horava-Lifshitz theory by investigating the effects of the dynamical coupling constant {lambda} in a flat universe. The evolution of the relevant physical quantities, namely the energy density {rho}, temperature T, scale factor a and the Hubble parameter H is investigated before, during and after the phase transition, assumed to be of first order. Also, in view of the recent lattice QCD simulations data, we study a cross-over phase transition of the early universe whose results are based on two different sets of lattice data. (orig.)
Pairing Phase Transitions of Matter under Rotation
Jiang, Yin
2016-01-01
The phases and properties of matter under global rotation have attracted much interest recently. In this paper we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.
Sample-dependent phase transitions in disordered exclusion models
Enaud, C.; Derrida, B.
2004-04-01
We give numerical evidence that the location of the first-order phase transition between the low- and the high-density phases of the one-dimensional asymmetric simple exclusion process with open boundaries becomes sample dependent when quenched disorder is introduced for the hopping rates.
Dynamics and phase transitions in A 1C 60 compounds
Schober, H.; Renker, B.; Heid, R.; Tölle, A.
1997-02-01
We present an overview of extensive inelastic neutron scattering experiments carried out on powders of A 1C 60. The various phases leave strong fingerprints in the microscopic dynamics confirming the solid-state chemical reactions. The strong kinetic phase transitions can be followed in real time and turn out to be highly complex.
Instabilities near the QCD phase transition in the holographic models
Gürsoy, U.; Lin, S.; Shuryak, E.
2013-01-01
This paper discusses phenomena close to the critical QCD temperature, using the holographic model. One issue studied is the overcooled high-T phase, in which we calculate quasinormal sound modes. We do not find instabilities associated with other first-order phase transitions, but nevertheless obser
Phase transitions in dense 2-colour QCD
Boz, Tamer; Fister, Leonard; Skullerud, Jon-Ivar
2013-01-01
We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu, with a pion mass of 700 MeV (m_pi/m_rho=0.8). From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We also present results for the Landau-gauge gluon propagator in the hot and dense medium.
Kinetics of silica-phase transitions
Duffy, C.J.
1993-07-01
In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.
Kinetics of silica-phase transitions
Duffy, C.J.
1993-07-01
In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.
The deconfining phase transition in and out of equilibrium
Bazavov, Oleksiy
Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Ferrofluid nucleus phase transitions in an external uniform magnetic field
B. M. Tanygin; S. I. Shulyma; V. F. Kovalenko; M. V. Petrychuk
2015-01-01
The phase transition between a massive dense phase and a diluted superparamagnetic phase has been studied by means of a direct molecular dynamics simulation. The equilibrium structures of the ferrofluid aggregate nucleus are obtained for different values of a temperature and an external magnetic field magnitude. An approximate match of experiment and simulation has been shown for the ferrofluid phase diagram coordinates “field–temperature”. The provided phase coexistence curve has an opposite trend comparing to some of known theoretical results. This contradiction has been discussed. For given experimental parameters, it has been concluded that the present results describe more precisely the transition from linear chains to a dense globes phase. The theoretical concepts which provide the opposite binodal curve dependency trend match other experimental conditions:a diluted ferrofluid, a high particle coating rate, a high temperature, and/or a less particles coupling constant value.
A third-order phase transition in random tilings
Colomo, F
2013-01-01
We consider the domino tilings of an Aztec diamond with a cut-off corner of macroscopic square shape and given size, and address the bulk properties of tilings as the size is varied. We observe that the free energy exhibits a third-order phase transition when the cut-off square, increasing in size, reaches the arctic ellipse---the phase separation curve of the original (unmodified) Aztec diamond. We obtain this result by studying the thermodynamic limit of certain nonlocal correlation function of the underlying six-vertex model with domain wall boundary conditions, the so-called emptiness formation probability (EFP). We consider EFP in two different representations: as a tau-function for Toda chains and as a random matrix model integral. The latter has a discrete measure and a linear potential with hard walls; the observed phase transition shares properties with both Gross-Witten-Wadia and Douglas-Kazakov phase transitions.
Theory of interfacial phase transitions in surfactant systems
Shukla, K. P.; Payandeh, B.; Robert, M.
1991-06-01
The spin-1 Ising model, which is equivalent to the three-component lattice gas model, is used to study wetting transitions in three-component surfactant systems consisting of an oil, water, and a nonionic surfactant. Phase equilibria, interfacial profiles, and interfacial tensions for three-phase equilibrium are determined in mean field approximation, for a wide range of temperature and interaction parameters. Surfactant interaction parameters are found to strongly influence interfacial tensions, reducing them in some cases to ultralow values. Interfacial tensions are used to determine whether the middle phase, rich in surfactant, wets or does not wet the interface between the oil-rich and water-rich phases. By varying temperature and interaction parameters, a wetting transition is located and found to be of the first order. Comparison is made with recent experimental results on wetting transitions in ternary surfactant systems.
Shear induced phase transitions induced in edible fats
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
Quantum phase transitions in the noncommutative Dirac Oscillator
Panella, O
2014-01-01
We study the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field in the non-commutative plane. It is shown that the effect of non-commutativity is twofold: $i$) momentum non commuting coordinates simply shift the critical value ($B_{\\text{cr}}$) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); $ii$) non-commutativity in the space coordinates induces a new critical value of the magnetic field, $B_{\\text{cr}}^*$, where there is a second quantum phase transition (right-left), --this critical point disappears in the commutative limit--. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetisation of the system. Possible applications to the physics of silicene and graphene are briefly discussed.
Where does the hot electroweak phase transition end?
Csikor, Ferenc; Heitger, J
1999-01-01
We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model (SM) can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the SM is $72.4 any electroweak phase transition in the SM.
Phase transition properties of a cylindrical ferroelectric nanowire
Wang Ying; Yang Xiong
2013-11-01
Based on the transverse Ising model (TIM) and using the mean-field theory, we investigate the phase transition properties of a cylindrical ferroelectric nanowire. Two different kinds of phase diagrams are constructed. We discuss systematically the effects of exchange interactions and the transverse field parameters on the phase diagrams. Moreover, the cross-over features of the parameters from the ferroelectric dominant phase diagram to the paraelectric dominant phase diagram are determined for the ferroelectric nanowire. In addition, the polarizations of the surface shell and the core are illustrated in detail by modifying the TIM parameters.
Quark-hadron phase transition and strangeness conservation constraints
Saeed-Uddin
1999-01-01
The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.
Martensitic transformation of Ti-18Nb(at.%) alloy with zirconium
无
2012-01-01
The addition of 3%～9% Zr on the martensitic transformation of Ti-18Nb(at.%) alloy was investigated. The results of microstructure and X-ray diffraction (XRD) analysis show that the phase constitution of as-quenched Ti-18Nb-9Zr(at.%) alloy consists of the retained matrix and martensite, while that of the other three alloys is single martensite. No trace of athermal phase was found in any of the as-quenched alloys. Unlike the effect of Nb addition on the martensitic transformation start temperature Ms of Ti-1...
New observations on formation of thermally induced martensite in Fe–30%Ni–1%Pd alloy
Gokcen Yildiz; Yasin Gokturk Yildiz; Saffet Nezir
2013-02-01
Kinetical, morphological, crystallographical and thermal characteristics of thermally induced martensite in an Fe–30%Ni–1%Pd alloy has been studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction method. Kinetics of transformation was found to be as athermal. SEM and TEM observations and X-ray method revealed ' () martensite formation in the austenite phase of alloy by thermal effect. The crystallographic orientation relationship between austenite and ' () martensite was found to be having Kurdjumov–Sachs (K–S) type relationship. In addition, the lattice parameters of austenite and martensite phases were calculated from X-ray diffraction patterns.
Ab initio theory of helix <-> coil phase transition
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2008-01-01
In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely ...... twisting. The suggested theory is general and with some modification can be applied for the description of phase transitions in other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes).......In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely...... on fundamental physical principles. It describes essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated as a function of two dihedral angles, responsible for the polypeptide...
Pressure-induced phase transitions of indium selenide
Rasmussen, Anya Marie
In2Se3 has potential as a phase-change material for memory applications. Understanding its phase diagram is important to achieve controlled switching between phases. Pressure-dependent phase transitions of In2Se3 bulk powders and nanowire samples were studied at room temperature and at elevated temperatures using synchrotron x-ray diffraction and diamond-anvil cells (DACs). alpha-In2Se3 transforms into the beta phase at 0.7 GPa, an order of magnitude lower than phase-transition critical pressures in typical semiconductors. The bulk moduli are reported and the c/a ratio for the beta phase is shown to have a highly nonlinear dependence on pressure. gamma-In2Se3, metastable under ambient conditions, transforms into to the high-pressure beta phase between 2.8 GPa and 3.2 GPa in bulk powder samples and at slightly higher pressures, between 3.2 GPa and 3.7 GPa in nanowire samples. While the gamma phase bulk modulus is similar to that of the beta phase, the decrease due to pressure in the unit cell parameter ratio, c/a, is less than half the decrease seen in the beta phase. Using high-temperature DACs, we investigated how elevated temperatures and pressures affect the crystal structure of In 2Se3. From these measurements, the high-pressure beta phase was found to be metastable. The high-pressure beta phase transitions into the high-temperature beta phase at temperatures above 380 °C.
Extended ensemble theory, spontaneous symmetry breaking, and phase transitions
Xiao, Ming-wen
2006-09-01
In this paper, as a personal review, we suppose a possible extension of Gibbs ensemble theory so that it can provide a reasonable description of phase transitions and spontaneous symmetry breaking. The extension is founded on three hypotheses, and can be regarded as a microscopic edition of the Landau phenomenological theory of phase transitions. Within its framework, the stable state of a system is determined by the evolution of order parameter with temperature according to such a principle that the entropy of the system will reach its minimum in this state. The evolution of order parameter can cause a change in representation of the system Hamiltonian; different phases will realize different representations, respectively; a phase transition amounts to a representation transformation. Physically, it turns out that phase transitions originate from the automatic interference among matter waves as the temperature is cooled down. Typical quantum many-body systems are studied with this extended ensemble theory. We regain the Bardeen Cooper Schrieffer solution for the weak-coupling superconductivity, and prove that it is stable. We find that negative-temperature and laser phases arise from the same mechanism as phase transitions, and that they are unstable. For the ideal Bose gas, we demonstrate that it will produce Bose Einstein condensation (BEC) in the thermodynamic limit, which confirms exactly Einstein's deep physical insight. In contrast, there is no BEC either within the phonon gas in a black body or within the ideal photon gas in a solid body. We prove that it is not admissible to quantize the Dirac field by using Bose Einstein statistics. We show that a structural phase transition belongs physically to the BEC happening in configuration space, and that a double-well anharmonic system will undergo a structural phase transition at a finite temperature. For the O(N)-symmetric vector model, we demonstrate that it will yield spontaneous symmetry breaking and produce
Inhomogeneous field configurations and the electroweak phase transition
Jungnickel, D U; Jungnickel, Dirk-Uwe; Walliser, Dirk
1994-01-01
We investigate the effects of inhomogeneous scalar field configurations on the electroweak phase transition. For this purpose we calculate the leading perturbative correction to the wave function correction term $Z(\\vph,T)$, i.e., the kinetic term in the effective action, for the electroweak Standard Model at finite temperature and the top quark self--mass. Our finding for the fermionic contribution to $Z(\\vph,T)$ is infra--red finite and disagrees with other recent results. In general, neither the order of the phase transition nor the temperature at which it occurs change, once $Z(\\vph,T)$ is included. But a non--vanishing, positive (negative) $Z(\\vph,T)$ enhances (decreases) the critical droplet surface tension and the strength of the phase transition. We find that in the range of parameter space, which allows for a first--order phase transition, the wave function correction term is negative --- indicating a weaker phase transition --- and especially for small field values so large that perturbation theory ...
New insight into the Berezinskii-Kosterlitz-Thouless phase transition
Gerber, Urs; Rejón-Barrera, Fernando G
2014-01-01
We investigate the 2d XY model by using the constraint angle action, which belongs to the class of topological lattice actions. These actions violate important features usually demanded for a lattice action, such as the correct classical continuum limit and the applicability of perturbation theory. Nevertheless, they still lead to the same universal quantum continuum limit and show excellent scaling behavior. By using the constraint angle action we gain new insight into the Berezinskii-Kosterlitz-Thouless phase transition of the 2d XY model. This phase transition is of special interest since it is one of the few examples of a phase transition beyond second order. It is of infinite order and therefore an essential phase transition. In particular, we observe an excellent scaling behavior of the helicity modulus, which characterizes this phase transition. We also observe that the mechanism of (un)binding vortex--anti-vortex pairs follows the usual pattern, although free vortices do not require any energy in the ...
A comparison of observables for solid-solid phase transitions
Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory
2009-01-01
The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.
Wang, Wei; Liu, Shao Jun; Xu, Gang; Zhang, Baoren; Huang, Qun Ying [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei (China)
2016-04-15
The thermal aging effects on mechanical properties and microstructures in China low-activation martensitic steel have been tested by aging at 550 degrees C for 2,000 hours, 4,000 hours, and 10,000 hours. The microstructure was analyzed by scanning and transmission electron microscopy. The results showed that the grain size and martensitic lath increased by about 4 μm and 0.3 μm, respectively, after thermal exposure at 550 degrees C for 10,000 hours. MX type particles such as TaC precipitated on the matrix and Laves-phase was found on the martensitic lath boundary and grain boundary on aged specimens. The mechanical properties were investigated with tensile and Charpy impact tests. Tensile properties were not seriously affected by aging. Neither yield strength nor ultimate tensile strength changed significantly. However, the ductile-brittle transition temperature of China low-activation martensitic steel increased by 46 degrees C after aging for 10,000 hours due to precipitation and grain coarsening.
Castro Bubani, Franco de, E-mail: franco@cab.cnea.gov.ar [Centro Atomico Bariloche (CNEA), Av. E. Bustillo km. 9,5 (8400) S.C. de Bariloche (Argentina); CONICET (Argentina); Sade, Marcos, E-mail: sade@cab.cnea.gov.ar [Centro Atomico Bariloche (CNEA), Av. E. Bustillo km. 9,5 (8400) S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina); Lovey, Francisco, E-mail: lovey@cab.cnea.gov.ar [Centro Atomico Bariloche (CNEA), Av. E. Bustillo km. 9,5 (8400) S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina)
2012-05-01
Highlights: Black-Right-Pointing-Pointer Mechanical properties of 6R martensite in CuZnAl are improved by nanoprecipitates. Black-Right-Pointing-Pointer Plastic deformation of 6R martensite is suppressed during 18R-6R transition. Black-Right-Pointing-Pointer 20% recoverable strain is obtained in full {beta}-18R-6R transition in single crystals. Black-Right-Pointing-Pointer 10% recoverable strain is obtained in 18R-6R transition with 150 MPa hysteresis. Black-Right-Pointing-Pointer The material could be used in mechanical damping or other applications. - Abstract: The 18R {r_reversible} 6R martensite-martensite transformation in Cu-based alloys exhibits large hysteresis, large pseudoelastic strain and weak transformation stress dependence on temperature. However, concomitant plastic deformation taking place in the 6R phase inhibits the use of these properties for applications. A novel approach to minimizing or even suppressing 6R plastic deformation during the 18R-6R transformation in CuZnAl shape-memory alloy single crystals with electronic concentration e/a = 1.48 is presented. The method is based on a thermal treatment that introduces nanoprecipitates in the alloy. Results suggest that the role of CuZnAl shape-memory alloys in engineering should be reconsidered, as many energy damping applications could benefit from the huge hysteresis associated with the 18R-6R transformation, once the 6R plastic deformation is suppressed.
Beam Combining by Phase Transition Nonlinear Media
1990-02-01
use the Redlich Kwong equation of state for the media we consider. This equation of state can be written RT a p - -b -FT(p.-’ + b)p ; 2-I M (2-1) where...as ac 3 dg-A7 C VA/\\CIIJT (6) The Redlich - Kwong equation of state; i.e., _ RT T-1/2 v-P v(v+P) (7) can be used to compute aP/lT, where the relevant...practical the application of nonlinear phase conjugate techniques to the beam combining of multiple lasers with a coherence characteristic of a
THE NEXT GENERATION TRANSIT SURVEY PROTOTYPING PHASE
J. McCormac
2014-01-01
Full Text Available El Next Generation Transit Survey (NGTS es un nuevo sondeo d e exoplanetas transitantes de campo amplio que tiene como objetivo descubrir exoplanetas del tama ̃no d e Neptuno y super-Tierras entorno a estrellas brillantes ( V < 13 cercanas. NGTS consiste de un arreglo de 12 telescopios o perados rob ́oticamente observando en la banda de 600 − 900 nm. NGTS sondear ́a m ́as de cinco veces el n ́umero de estre llas, con V < 13, que Kepler y por lo tanto proveer ́a los objetivos m ́as brillantes para s er caracterizados con instrumentaci ́on existente y futura (VLT, E-ELT y JWST. En 2009/10 un prototipo del NGTS f ue probado en La Palma, comprobando que un sistema as ́ı puede alcanzar nuestros objetivos de fot ometr ́ıa estelar esencialmente limitada s ́olo por el ruido blanco. Los resultados son resumidos aqu ́ı. NGTS se al imenta de la experiencia del proyecto SuperWASP, que, por muchos a ̃nos, ha liderado la detecci ́on terrestre d e exoplanetas transitantes.
Quantum phase transition in a common metal.
Yeh, A; Soh, Yeong-Ah; Brooke, J; Aeppli, G; Rosenbaum, T F; Hayden, S M
2002-10-03
The classical theory of solids, based on the quantum mechanics of single electrons moving in periodic potentials, provides an excellent description of substances ranging from semiconducting silicon to superconducting aluminium. Over the last fifteen years, it has become increasingly clear that there are substances for which the conventional approach fails. Among these are certain rare earth compounds and transition metal oxides, including high-temperature superconductors. A common feature of these materials is complexity, in the sense that they have relatively large unit cells containing heterogeneous mixtures of atoms. Although many explanations have been put forward for their anomalous properties, it is still possible that the classical theory might suffice. Here we show that a very common chromium alloy has some of the same peculiarities as the more exotic materials, including a quantum critical point, a strongly temperature-dependent Hall resistance and evidence for a 'pseudogap'. This implies that complexity is not a prerequisite for unconventional behaviour. Moreover, it should simplify the general task of explaining anomalous properties because chromium is a relatively simple system in which to work out in quantitative detail the consequences of the conventional theory of solids.
Non-equilibrium phase transitions in a liquid crystal
Dan, K.; Roy, M.; Datta, A.
2015-09-01
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the
Non-equilibrium phase transitions in a liquid crystal.
Dan, K; Roy, M; Datta, A
2015-09-07
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D
2016-01-01
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.
Disorienting the Chiral Condensate at the QCD Phase Transition
Rajagopal, K
1997-01-01
I sketch how long wavelength modes of the pion field can be amplified during the QCD phase transition. If nature had been kinder, and had made the pion mass significantly less than the critical temperature for the transition, then this phenomenon would have characterized the transition in thermal equilibrium. Instead, these long wavelength oscillations of the orientation of the chiral condensate can only arise out of equilibrium. There is a simple non-equilibrium mechanism, plausibly operational during heavy ion collisions, which naturally amplifies these oscillations. The characteristic signature of this phenomenon is large fluctuations in the ratio of the number of neutral pions to the total number of pions in regions of momentum space, that is in phase space in a detector. Detection in a heavy ion collision would imply an out of equilbrium chiral transition.
Phase transitions in the distribution of inelastically colliding inertial particles
Belan, Sergey; Falkovich, Gregory
2015-01-01
It was recently suggested that the sign of particle drift in inhomogeneous temperature or turbulence depends on the particle inertia: weakly inertial particles localize near minima of temperature or turbulence intensity (effects known as thermophoresis and turbophoresis), while strongly inertial particles fly away from minima in an unbounded space. The problem of a particle near minima of turbulence intensity is related to that of two particles in a random flow, so that the localization-delocalization transition in the former corresponds to the path-coalescence transition in the latter. The transition is signaled by the sign change of the Lyapunov exponent that characterizes the mean rate of particle approach to the minimum (which could be wall or another particle). Here we solve analytically this problem for inelastic collisions and derive the phase diagram for the transition in the inertia-inelasticity plane. An important feature of the phase diagram is the region of inelastic collapse: if the restitution c...
Characteristics of the chiral phase transition in nonlocal quark models
Dumm, D G
2004-01-01
The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.
Second- and First-Order Phase Transitions in CDT
Ambjorn, J; Jurkiewicz, J; Loll, R
2012-01-01
Causal Dynamical Triangulations (CDT) is a proposal for a theory of quantum gravity, which implements a path-integral quantization of gravity as the continuum limit of a sum over piecewise flat spacetime geometries. We use Monte Carlo simulations to analyse the phase transition lines bordering the physically interesting de Sitter phase of the four-dimensional CDT model. Using a range of numerical criteria, we present strong evidence that the so-called A-C transition is first order, while the B-C transition is second order. The presence of a second-order transition may be related to an ultraviolet fixed point of quantum gravity and thus provide the key to probing physics at and possibly beyond the Planck scale.
Nonequilibrium phase transition in a driven Potts model with friction.
Iglói, Ferenc; Pleimling, Michel; Turban, Loïc
2011-04-01
We consider magnetic friction between two systems of q-state Potts spins which are moving along their boundaries with a relative constant velocity ν. Due to the interaction between the surface spins there is a permanent energy flow and the system is in a steady state, which is far from equilibrium. The problem is treated analytically in the limit ν=∞ (in one dimension, as well as in two dimensions for large-q values) and for v and q finite by Monte Carlo simulations in two dimensions. Exotic nonequilibrium phase transitions take place, the properties of which depend on the type of phase transition in equilibrium. When this latter transition is of first order, a sequence of second- and first-order nonequilibrium transitions can be observed when the interaction is varied. ©2011 American Physical Society
Phase transitions in traffic flow on multilane roads.
Kerner, Boris S; Klenov, Sergey L
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Crystallite size and phase transition demeanor of ceramic steel
Gusain, Deepak; Srivastava, Varsha [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221 005 (India); Singh, Vinay K. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221 005 (India); Chandra Sharma, Yogesh, E-mail: ysharma.apc@itbhu.ac.in [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221 005 (India)
2014-06-01
Zirconia is an important oxide of zirconium used in variety of field ranging from dentistry, fuel cells, and thermal barrier coatings. Phase transition of zirconia is an important phenomenon controlling its fracture strength, low temperature degradability and ion conductivity. In the present study, effect of molar concentration of precursor and calcination temperature on phase transition and crystallite size of zirconia was investigated. All the samples were characterized by X-ray diffractometry (XRD), Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In sample having lowest precursor concentration crystallite size of monoclinic zirconia was found to be lower than that of tetragonal zirconia, simultaneously with the higher proportion of tetragonal zirconia (67.62%) as compared to all other samples (42.75%–58.04%). In all cases, monoclinic to tetragonal phase transition occurs with raise of temperature but in the sample with lowest precursor concentration, tetragonal to monoclinic phase transition occurred on raising the temperature. - Graphical abstract: Display Omitted - Highlights: • Highest proportion of tetragonal phase at lowest precursor concentration. • Tetragonal phase's crystallite size decreased with rise of temperature. • Average particle size of all samples lies in the range of 13 nm–20 nm.
Universality of Holographic Phase Transitions and Holographic Quantum Liquids
Benincasa, Paolo
2009-01-01
We explore the phase structure for defect theories in full generality using the gauge/gravity correspondence. On the gravity side, the systems are constructed by introducing M (probe) D(p+4-2k)-branes in a background generated by N Dp-branes to obtain a codimension-k intersection. The dual gauge theory is a U(N) Supersymmetric Yang-Mills theory on a (1+p-k)-dimensional defect with both adjoint and fundamental degrees of freedom. We focus on the phase structure in the chemical potential versus temperature plane. We observe the existence of two universality classes for holographic gauge theories, which are identified by the order of the phase transition in the interior of the chemical potential/temperature plane. Specifically, all the sensible systems with no defect show a third order phase transition. Gauge theories on a defect with (p-1)-spatial directions are instead characterised by a second order phase transition. One can therefore state that the order of this phase transition is intimately related to the ...
Tsuzaki, K.; T. Maki; Tamura, I.
1982-01-01
The effect of applied total strain range on the critical condition necessary for the onset of α'-martensitic transformation kinetics during the fatigue deformation was studied in AISI type 304 metastable austenitic stainless steel at room temperature. In the case of fatigue deformation, the α'-martensite formation was observed even in the condition that the saturated stress amplitude of austenite phase is smaller than the critical applied stress for the onset of α'-martensite formation for th...
Structural transitions in condensed colloidal virus phases
Schmidt, Nathan; Barr, Steve; Udit, Andrew; Gutierrez, Leonardo; Nguyen, Thanh; Finn, M. G.; Luijten, Erik; Wong, Gerard
2010-03-01
Analogous to monatomic systems colloidal phase behavior is entirely determined by the interaction potential between particles. This potential can be tuned using solutes such as multivalent salts and polymers with varying affinity for the colloids to create a hierarchy of attractions. Bacteriophage viruses are a naturally occurring type of colloidal particle with characteristics difficult to achieve by laboratory synthesis. They are monodisperse, nanometers in size, and have heterogeneous surface charge distributions. We use the MS2 and Qbeta bacteriophages (diameters 27-28nm) to understand the interplay between different attraction mechanisms on nanometer-sized colloids. Small Angle X-ray Scattering (SAXS) is used to characterize the inter-particle interaction between colloidal viruses using several polymer species and different salt types.
Error-correcting codes and phase transitions
Manin, Yuri I
2009-01-01
The theory of error-correcting codes is concerned with constructing codes that optimize simultaneously transmission rate and relative minimum distance. These conflicting requirements determine an asymptotic bound, which is a continuous curve in the space of parameters. The main goal of this paper is to relate the asymptotic bound to phase diagrams of quantum statistical mechanical systems. We first identify the code parameters with Hausdorff and von Neumann dimensions, by considering fractals consisting of infinite sequences of code words. We then construct operator algebras associated to individual codes. These are Toeplitz algebras with a time evolution for which the KMS state at critical temperature gives the Hausdorff measure on the corresponding fractal. We extend this construction to algebras associated to limit points of codes, with non-uniform multi-fractal measures, and to tensor products over varying parameters.
Quantum decoherence of subcritical bubble in electroweak phase transition
Shiromizu, T
1995-01-01
In a weakly first order phase transition the typical scale of a subcritical bubble calculated in our previous papers turned out to be too small. At this scale quantum fluctuations may dominate and our previous classical result may be altered. So we examine the critical size of a subcritical bubble where quantum-to-classical transition occurs through quantum decoherence. We show that this critical size is almost equal to the typical scale which we previously obtained.
Lifshitz scaling effects on holographic paramagnetism/ferromagneism phase transition
Zhang, Cheng-Yuan; Jin, Yong-Yi; Chai, Yun-Tian; Hu, Mu-Hong; Zhang, Zhuo
2016-01-01
In the probe limit, we investigate holographic paramagnetism-ferromagnetism phase transition in the four-dimensional (4D) and five-dimensional(5D) Lifshitz black holes by means of numerical and semi-analytical methods, which is realized by introducing a massive 2-form field coupled to the Maxwell field. We find that the Lifshitz dynamical exponent $z$ contributes evidently to magnetic moment and hysteresis loop of single magnetic domain quantitatively not qualitatively. Concretely, in the case without external magnetic field, the spontaneous magnetization and ferromagnetic phase transition happen when the temperature gets low enough, and the critical exponent for the magnetic moment is always $1/2$, which is in agreement with the result from mean field theory. And the increasing $z$ enhances the phase transition and increases the DC resistivity which behaves as the colossal magnetic resistance effect in some materials. Furthermore, in the presence of the external magnetic field, the magnetic susceptibility sa...
Canonical Entropy and Phase Transition of Rotating Black Hole
ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
Phase transition with an isospin dependent lattice gas model
Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)
1998-10-01
The nuclear liquid-gas phase transition is studied within an isospin dependent Lattice Gas Model in the canonical ensemble. Finite size effects on thermodynamical variables are analyzed by a direct calculation of the partition function, and it is shown that phase coexistence and phase transition are relevant concepts even for systems of a few tens of particles. Critical exponents are extracted from the behaviour of the fragment production yield as a function of temperature by means of a finite size scaling. The result is that in a finite system well defined critical signals can be found at supercritical (Kertesz line) as well as subcritical densities. For isospin asymmetric systems it is shown that, besides the modification of the critical temperature, isotopic distributions can provide an extra observable to identify and characterize the transition. (author) 21 refs.
Thermodynamics and Phase Transition in Rotational Kiselev Black Hole
Xu, Zhaoyi
2016-01-01
We calculate the thermodynamical features of rotational Kiselev black holes, specifically we use one order approximate of horizon to calculate thermodynamical features for all $\\omega$. The thermodynamics features include areas, entropies, horizon radii, surface gravities, surface temperatures, Komar energies and irreducible masses at the Cauchy horizon and Event horizon. At the same time the products of these features have been discussed. We find that the products are independent with mass of black hole and determined by $\\omega$ and $\\alpha$. The features in the situations of $\\omega=-2/3,1/3$ and $0$ (quintessence matter, radiation and dust) have been discussed in detail. We also generalize the Smarr mass formula and Christodoulou-Ruffini mass formula to these black holes. Finally we study the phase transition for black holes with different $\\omega$ and obtain the state equation. We analyze the phase transition for $\\omega=1/3$, and find that $\\alpha$ shifts the critical point of phase transition.
Optical Sensor for Characterizing the Phase Transition in Salted Solutions
Claverie, Rémy; Fontana, Marc D.; Duričković, Ivana; Bourson, Patrice; Marchetti, Mario; Chassot, Jean-Marie
2010-01-01
We propose a new optical sensor to characterize the solid-liquid phase transition in salted solutions. The probe mainly consists of a Raman spectrometer that extracts the vibrational properties from the light scattered by the salty medium. The spectrum of the O – H stretching band was shown to be strongly affected by the introduction of NaCl and the temperature change as well. A parameter SD defined as the ratio of the integrated intensities of two parts of this band allows to study the temperature and concentration dependences of the phase transition. Then, an easy and efficient signal processing and the exploitation of a modified Boltzmann equation give information on the phase transition. Validations were done on solutions with varying concentration of NaCl. PMID:22319327
A MATLAB GUI to study Ising model phase transition
Thornton, Curtislee; Datta, Trinanjan
We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.
Phase transitions of black holes in massive gravity
Fernando, Sharmanthie
2016-01-01
In this paper we have studied thermodynamics of a black hole in massive gravity in the canonical ensemble. The massive gravity theory in consideration here has a massive graviton due to Lorentz symmetry breaking. The black hole studied here has a scalar charge due to the massive graviton and is asymptotically anti-de Sitter. We have computed various thermodynamical quantities such as temperature, specific heat and free energy. Both the local and global stability of the black hole are studied by observing the behavior of the specific heat and the free energy. We have observed that there is a first order phase transition between small and large black hole for a certain range of the scalar charge. This phase transition is similar to the liquid/gas phase transition at constant temperature for a Van der Waals fluid. The coexistence curves for the small and large black hole branches are also discussed in detail.
Gravitational radiation from first-order phase transitions
Child, Hillary L.; Giblin, John T. Jr., E-mail: childh@kenyon.edu, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States)
2012-10-01
It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
Gravitational Radiation from First-Order Phase Transitions
Child, Hillary L
2012-01-01
It is believed that first order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase that greatly enhances this radiation even in the absence of turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
The crystal structure and phase transitions of the magnetic shape memory compound Ni{sub 2}MnGa
Brown, P J [Physics Department, Loughborough University, Leicestershire (United Kingdom); Crangle, J [Department of Physics, University of Sheffield, Sheffield (United Kingdom); Kanomata, T [Faculty of Engineering, Tohuku Gakuin University, Tadajo 985-8537 (Japan); Matsumoto, M [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Neumann, K-U [Physics Department, Loughborough University, Leicestershire (United Kingdom); Ouladdiaf, B [Institut Laue-Langevin, BP 156, 38042 Grenoble (France); Ziebeck, K R A [Physics Department, Loughborough University, Leicestershire (United Kingdom)
2002-11-04
High resolution neutron powder diffraction and single crystal measurements on the ferromagnetic shape memory compound Ni{sub 2}MnGa have been carried out. They enabled the sequence of transformations which take place when the unstressed, stoichiometric compound is cooled from 400 to 20 K to be established. For the first time the crystallographic structure of each of the phases which occur has been determined. At 400 K the compound has the cubic L2{sub 1} structure, and orders ferromagnetically at T{sub C} {approx} 365 K. On cooling below {approx} 260 K a super-structure, characterized by tripling of the repeat in one of the (110){sub cubic} directions, forms. This phase, known as the pre-martensitic phase, persists down to the structural phase transition at T{sub M} {approx} 200 K and can be described by an orthorhombic unit cell with lattice parameters a{sub ortho} = 1/{radical}2a{sub cubic}, b{sub ortho} = 3/{radical}2a{sub cubic}, c{sub ortho} = a{sub cubic} and space group Pnnm. Below T{sub M} the compound has a related orthorhombic super-cell with b{sub ortho} {approx} 7/{radical}2a{sub cubic}, which can be described within the same space group. The new modulation appears abruptly at T{sub M} and remains stable down to at least 20 K.
The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa
Brown, P. J.; Crangle, J.; Kanomata, T.; Matsumoto, M.; Neumann, K.-U.; Ouladdiaf, B.; Ziebeck, K. R. A.
2002-11-01
High resolution neutron powder diffraction and single crystal measurements on the ferromagnetic shape memory compound Ni2MnGa have been carried out. They enabled the sequence of transformations which take place when the unstressed, stoichiometric compound is cooled from 400 to 20 K to be established. For the first time the crystallographic structure of each of the phases which occur has been determined. At 400 K the compound has the cubic L21 structure, and orders ferromagnetically at TC ≈ 365 K. On cooling below ~ 260 K a super-structure, characterized by tripling of the repeat in one of the cubic directions, forms. This phase, known as the pre-martensitic phase, persists down to the structural phase transition at TM ≈ 200 K and can be described by an orthorhombic unit cell with lattice parameters aortho = 1/√2acubic, bortho = 3/√2acubic, cortho = acubic and space group Pnnm. Below TM the compound has a related orthorhombic super-cell with bortho ≈ 7/√2acubic, which can be described within the same space group. The new modulation appears abruptly at TM and remains stable down to at least 20 K.
Phase transition in aluminous silica in the lowermost mantle
Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.
2012-12-01
Lower mantle basaltic lithologies contain 35-40% Mg-perovskite, 20-30% Ca-perovskite, 15-25% Al-rich phases (NAL and Ca-ferrite phases) and 15-20% silica-dominated phases. The Fe-rich Mg-perovskite makes basaltic material denser than peridotite throughout the lower mantle below 720 km depth, with important implications for mantle dynamics. Partial separation of subducted basaltic crust from depleted lithosphere might occur within the strongly heterogeneous D" zone. Further details on phase transitions and equation of states for the various minerals, however, are needed for more complete insights. The silica-dominated phases have considerable solubility of alumina [1]. We investigated silica with 4 and 6 wt% alumina to 120 GPa, using LH-DAC at the Extreme Conditions Beamline (P02.2) at PETRA-III, DESY. Powdered glass mixed with 10-15 wt% Pt-powder was compressed and heated in NaCl pressure media in Re-gaskets. The transition from the CaCl2-structured phase to seifertite (alpha-PbO2-structure) occurs at about 116 GPa at 2500 K. This is intermediate between the transition pressures of about 122 GPa and 100-113 GPa reported for similar temperatures for pure SiO2 [2] and a basalt composition [1], respectively. The CaCl2-structured silica phase crystallized along with seifertite, consistent with a binary phase loop trending towards lower pressure with increasing Al-content. The presence of an Al-rich Ca-ferrite phase (near the MgAl2O4-NaAlSiO4-join) in basaltic material indicates that the Al-solubility limits for the silica-dominated phases in basaltic compositions may be similar to those in the binary system SiO2-AlO1.5. Based on the X-ray pattern refinement, our samples show no significant volume change across the transition. Even so, the transition could be associated with a significant density change if the Al substitution mechanisms are different in CaCl2-structured phase and seifertite. The most likely situation is that Al-substitution occurs via O-vacancies in the
Phase transition of lipid-like monolayer characterized by second harmonic generation
于安池; 常青; 赵新生; 周晴中; 李东; 黄岩谊; 程天蓉; 黄春辉
1999-01-01
Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.
Studies of phase transitions in the aripiprazole solid dosage form.
Łaszcz, Marta; Witkowska, Anna
2016-01-05
Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.
Cosmological phase transitions and their properties in the NMSSM
Kozaczuk, Jonathan; Profumo, Stefano; Haskins, Laurel Stephenson; Wainwright, Carroll L.
2015-01-01
We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or SU(2) directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and Δ β (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We estimate the wall velocity microphysically, taking into account the various sources of friction acting on the expanding bubble wall. Ultra-relativistic solutions to the bubble wall equations of motion typically exist when the electroweak phase transition features substantial supercooling. For somewhat weaker transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic, suggesting that successful electroweak baryogenesis may indeed occur in regions of the NMSSM compatible with the Higgs discovery.
Chern-Simons diffusion rate across different phase transitions
Rougemont, Romulo
2016-01-01
We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate $\\Gamma_{\\textrm{CS}}$ divided by the product of the entropy density $s$ and temperature $T$ behaves across different kinds of phase transitions in the class of bottom-up non-conformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, $\\Gamma_{\\textrm{CS}}/sT$ jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, $\\Gamma_{\\textrm{CS}}/sT$ behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. Furthermore, we also find that $\\Gamma_{\\textrm{CS}}/sT$ increases by orders of magnitude below the critical temperature in a second order phase transition and in a crossov...
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
1987-01-01
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
1987-01-01
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
Exploring first-order phase transitions with population annealing
Barash, Lev Yu.; Weigel, Martin; Shchur, Lev N.; Janke, Wolfhard
2017-03-01
Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition.
Crystal-liquid-gas phase transitions and thermodynamic similarity
Skripov, Vladimir P; Schmelzer, Jurn W P
2006-01-01
Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra
Beyond nuclear "pasta" : Phase transitions and neutrino opacity of new "pasta" phases
Alcain, P. N.; Giménez Molinelli, P. A.; Dorso, C. O.
2014-12-01
In this work, we focus on different length scales within the dynamics of nucleons in conditions according to the neutron star crust, with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities. While varying the temperature, we find that a solid-liquid phase transition exists, which can be also characterized with a morphology transition. For higher temperatures, above this phase transition, we study the neutrino opacity, and find that in the liquid phase, the scattering of low momenta neutrinos remain high, even though the morphology of the structures differ significatively from those of the traditional nuclear pasta.
Influences of cyclic loading on martensite transformation of TRIP steels
Dan, W. J.; Hu, Z. G.; Zhang, W. G.
2013-03-01
While austenite transformation into martensite induces increasing of the crack initiation life and restraining of the growth of fatigue cracks in cyclic-loading processes, TRIP-assisted steels have a better fatigue life than the AHSS (Advance High Strength Steels). As two key parameters in the cyclic loading process, strain amplitude and cyclic frequency are used in a kinetic transformation model to reasonably evaluate the phase transformation from austenite into martensite with the shear-band intersections theory, in which strain amplitude and cyclic frequency are related to the rate of shear-band intersection formation and the driving force of phase transformation. The results revealed that the martensite volume fraction increased and the rate of phase transformation decrease while the number of cycles increased, and the martensite volume fraction was almost constant after the number of cycles was more than 2000 times. Higher strain amplitude promotes martensite transformation and higher cyclic frequency impedes phase transformation, which are interpreted by temperature increment, the driving force of phase transformation and the rate of shearband intersection formation.
Chiral phase transition in QED$_3$ at finite temperature
Wei, Wei; Zong, Hong-Shi
2016-01-01
Chiral phase transition in (2+1)-dimensional quantum electrodynamics (QED$_3$) at finite temperature is investigated in the framework of truncated Dyson-Schwinger equations (DSEs). We go beyond the widely used instantaneous approximation and adopt a method that retains the full frequency dependence of the fermion self-energy. We also take further step to include the effects of wave-function renormalizations and introduce a minimal dressing of the bare vertex. Finally, with the more complete solutions of the truncated DSEs, we revisit the study of chiral phase transition in finite-temperature QED$_3$.
Computational diagnostics for detecting phase transitions during nanoindentation
Lee, S.M.; Hoover, C.G.; Kallman, J.S.; De Groot, A.J. (Lawrence Livermore National Lab., CA (United States)); Hoover, W.G. (Lawrence Livermore National Lab., CA (United States) California Univ., Livermore, CA (United States). Div. of Applied Science); Wooten, F. (California Univ., Livermore, CA (United States). Div. of Applied Science)
1992-12-01
We study nanoindenmtion of silicon using nonequilibrium molecular dynamics simulations. with up to a million particles. Both crystalline and amorphous silicon samples are considered. We use compumtional diffraction pattems as a diagnostic tool for detecting phase transitions resulting from structural changes. Simulations of crystalline samples show a transition to the amorphous phase in a region a few atomic layers thick surrounding the lateral faces of the indenter, as has been suggested by experimental results. Our simulation results provide estimates for the yield strength (nanohardness) of silicon for a range of temperatures.
Distribution of current in nonequilibrium diffusive systems and phase transitions
Bodineau, T.; Derrida, B.
2005-12-01
We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally to a current deviation. Depending on the current, one observes a phase transition between a regime where the density remains constant and another regime where the density becomes time dependent. Numerical data confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a ring.
Hadronic multiplicity distribution and dynamical fluctuations under QGP phase transitions
杨纯斌; 鄢文标; 蔡勖
1999-01-01
Hadronic multiplicity distributions in small bins are studied within the Ginzburg-Landau description for quark-hadron phase transitions. Direct comparison of the distributions with Poisson ones （with the same averages） is made in the light of dynamical factors dq for the distributions and ratios Dq≡dq/d1. Scaling behavior between Dq’ s is found, which can be used to detect the formation of quark-gluon plasma. The same method can be used in the analysis of other processes without phase transition.
The liquid to vapor phase transition in excited nuclei
Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.
2001-05-08
For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.