WorldWideScience

Sample records for mars giant planets

  1. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  2. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    International Nuclear Information System (INIS)

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-01-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ∼ 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  3. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-01-01

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to ∼0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of ∼30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  4. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  5. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  6. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  7. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  8. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  9. On the Terminal Rotation Rates of Giant Planets

    Science.gov (United States)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  10. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  11. On the Radii of Close-in Giant Planets.

    Science.gov (United States)

    Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky

    2000-05-01

    The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

  12. Giant Planets Can Act as Stabilizing Agents on Debris Disks

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264 Ciudad Universitaria, México (Mexico)

    2017-07-01

    We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total mass of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.

  13. Migration of planetesimals during last stages of giant planet accumulation

    International Nuclear Information System (INIS)

    Ipatov, S.I.

    1989-01-01

    The migration and accumulation of bodies from the giant planet's feeding zones are investigated after the main part of mass of these planets had been formed. These investigations are based on the computer simulation results for the evolving spatial disks which initially consisted of a few almost formed planets and hundreds of identical bodies in Uranus and Neptune zone. It is shown that the total mass of bodies penetrated in the asteroid zone from the giant planet zones could be ten times as large as the Earth mass. The beyond-Neptune belt could form during accumulation of the giant planets. Evolution of the planet orbits under encounters of planets with planetesimals is investigated

  14. PLANET ENGULFMENT BY ∼1.5-3 Msun RED GIANTS

    International Nuclear Information System (INIS)

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-01-01

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ∼1.5-3 M sun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M sun , which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M sun ), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses ∼> 2.5M sun , is required.

  15. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  16. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation

    Science.gov (United States)

    Schlaufman, Kevin C.

    2018-01-01

    Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.

  17. PLANETS AROUND THE K-GIANTS BD+20 274 AND HD 219415

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of planet-mass companions to two giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The less massive of these stars, K5-giant BD+20 274, has a 4.2 M J minimum mass planet orbiting the star at a 578 day period and a more distant, likely stellar-mass companion. The best currently available model of the planet orbiting the K0-giant HD 219415 points to a ∼> Jupiter-mass companion in a 5.7 year, eccentric orbit around the star, making it the longest period planet yet detected by our survey. This planet has an amplitude of ∼18 m s –1 , comparable to the median radial velocity 'jitter', typical of giant stars.

  18. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  19. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  20. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  1. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  2. Evolution of the giant planets

    International Nuclear Information System (INIS)

    Bodenheimer, P.

    1985-01-01

    The theory of the evolution of the giant planets is discussed with emphasis on detailed numerical calculations in the spherical approximation. Initial conditions are taken to be those provided by the two main hypotheses for the origin of the giant planets. If the planets formed by gravitational instability in the solar nebula, the initial mass is comparable to the present mass or larger. The evolution then goes through the following phases: (1) an initial contraction phase in hydrostatic equilibrium; (2) a hydrodynamic collapse induced by molecular dissociation; and (3) a second equilibrium phase involving contraction and cooling to the present state. During phase (1) a rock-ice core must form by precipitation or accretion. If, on the other hand, the giant planets formed by first accreting a solid core and then capturing gas from the surrounding nebula, then the evolutionary phases are as follows: (1) a period during which planetesimals accrete to form a core of about one earth mass, composed of rock and ice; (2) a gas accretion phase, during which a relatively low-mass gaseous envelope in hydrostatic equilibrium exists around the core, which itself continues to grow to 10 to 20 Earth masses; (3) the point of arrival at the ''critical'' core mass at which point the accretion of gas is much faster than the accretion of the core, and the envelope contracts rapidly; (4) continuation of accretion of gas from the nebula and buildup of the envelope mass to its present value (for the case of Jupiter or Saturn); and (5) a final phase, after termination of accretion, during which the protoplanet contracts and cools to its present state. Some observational constraints are described, and some problems with the two principal hypotheses are discussed

  3. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Science.gov (United States)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  4. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Izidoro, A.; Winter, O. C. [UNESP, Univ. Estadual Paulista - Grupo de Dinâmica Orbital and Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo (Brazil); Haghighipour, N. [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Tsuchida, M., E-mail: izidoro@feg.unesp.br, E-mail: nader@ifa.hawaii.edu [UNESP, Univ. Estadual Paulista, DCCE-IBILCE, São José do Rio Preto, CEP 15.054-000, São Paulo (Brazil)

    2014-02-10

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.

  5. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    Science.gov (United States)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  6. Very high-density planets: a possible remnant of gas giants.

    Science.gov (United States)

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  7. Giant planets. Holweck prize lecture 1982

    Energy Technology Data Exchange (ETDEWEB)

    Hide, R. (Meteorological Office, Bracknell (UK))

    1982-10-01

    The main characteristics of the giant planets, Jupiter and Saturn, are outlined. Studies which have been made of the circulation of their atmospheres, the structure of their interiors and the origin of their magnetic fields are discussed.

  8. Dynamically hot Super-Earths from outer giant planet scattering

    OpenAIRE

    Huang, Chelsea X.; Petrovich, Cristobal; Deibert, Emily

    2016-01-01

    The hundreds of multiple planetary systems discovered by the \\textit{Kepler} mission are typically observed to reside in close-in ($\\lesssim0.5$ AU), low-eccentricity, and low-inclination orbits. We run N-body experiments to study the effect that unstable outer ($\\gtrsim1$ AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple super-Earth systems. Our experiments show that the giant planets greatly reduce the multi...

  9. Hot-start Giant Planets Form with Radiative Interiors

    Energy Technology Data Exchange (ETDEWEB)

    Berardo, David; Cumming, Andrew, E-mail: david.berardo@mcgill.ca, E-mail: andrew.cumming@mcgill.ca [Department of Physics and McGill Space Institute, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2017-09-10

    In the hot-start core accretion formation model for gas giants, the interior of a planet is usually assumed to be fully convective. By calculating the detailed internal evolution of a planet assuming hot-start outer boundary conditions, we show that such a planet will in fact form with a radially increasing internal entropy profile, so that its interior will be radiative instead of convective. For a hot outer boundary, there is a minimum value for the entropy of the internal adiabat S {sub min} below which the accreting envelope does not match smoothly onto the interior, but instead deposits high entropy material onto the growing interior. One implication of this would be to at least temporarily halt the mixing of heavy elements within the planet, which are deposited by planetesimals accreted during formation. The compositional gradient this would impose could subsequently disrupt convection during post-accretion cooling, which would alter the observed cooling curve of the planet. However, even with a homogeneous composition, for which convection develops as the planet cools, the difference in cooling timescale will change the inferred mass of directly imaged gas giants.

  10. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  11. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXI. A GAS-GIANT PLANET IN A ONE YEAR ORBIT AND THE HABITABILITY OF GAS-GIANT SATELLITES

    International Nuclear Information System (INIS)

    Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; Horner, J.; Butler, R. Paul; Jones, Hugh R. A.; O'Toole, Simon J.; Carter, Brad D.

    2011-01-01

    We have detected the Doppler signature of a gas-giant exoplanet orbiting the star HD 38283, in an eccentric orbit with a period of almost exactly one year (P = 363.2 ± 1.6 d, m sin i = 0.34 ± 0.02 M Jup , e = 0.41 ± 0.16). The detection of a planet with period very close to one year critically relied on year-round observation of this circumpolar star. Discovering a planet in a 1 AU orbit around a G dwarf star has prompted us to look more closely at the question of the habitability of the satellites of such planets. Regular satellites orbit all the giant planets in our solar system, suggesting that their formation is a natural by-product of the planet formation process. There is no reason for exomoon formation not to be similarly likely in exoplanetary systems. Moreover, our current understanding of that formation process does not preclude satellite formation in systems where gas giants undergo migration from their formation locations into the terrestrial planet habitable zone. Indeed, regular satellite formation and Type II migration are both linked to the clearing of a gap in the protoplanetary disk by a planet, and so may be inextricably linked. Migration would also multiply the chances of capturing both irregular satellites and Trojan companions sufficiently massive to be habitable. The habitability of such exomoons and exo-Trojans will critically depend on their mass, whether or not they host a magnetosphere, and (for the exomoon case) their orbital radius around the host exoplanet.

  12. The interiors of the giant planets - 1983

    International Nuclear Information System (INIS)

    Smoluchowski, R.

    1983-01-01

    The last few years brought progress in understanding the interiors of the giant planets especially of the two larger ones which have been visited by Pioneer and Voyager spacecraft. An analysis of the formation of the giant planets also helped to clarify certain important common features. The presently available model of Jupiter is still based on certain somewhat bothersome approximations but it appears to satisfy the main observational constraints. Saturn's interior is much better understood than it was previously although the quantitative aspects of the role of the miscibility gap in the hydrogen-helium system have not yet been entirely resolved. Much attention has been directed at the interiors of Uranus and Neptune and the outstanding question appears to be the location and the amount of ices and methane present in their outer layers. Both the two- and the three-layer models are moderately successful. Serious difficulties arise from the considerable uncertainties concerning the rotational periods of both planets. Also the estimates of the internal heat fluxes and of the magnetic fields of both planets are not sufficiently certain. It is hoped that the forthcoming flyby of these two planets by a Voyager spacecraft will provide important new data for a future study of their interiors. (Auth.)

  13. Challenges in forming the solar system's giant planet cores via pebble accretion

    International Nuclear Information System (INIS)

    Kretke, K. A.; Levison, H. F.

    2014-01-01

    Though ∼10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  14. Lunar and terrestrial planet formation in the Grand Tack scenario

    Science.gov (United States)

    Jacobson, S. A.; Morbidelli, A.

    2014-01-01

    We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. PMID:25114304

  15. Isotopic ratios D/H and 15N/14N in giant planets

    Science.gov (United States)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  16. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Ida, Shigeru

    2013-01-01

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r ∼> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems

  17. Polarization Spectra of Extrasolar Giant Planets

    NARCIS (Netherlands)

    Stam, D.M.

    2004-01-01

    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  18. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  19. THE RINGS OF CHARIKLO UNDER CLOSE ENCOUNTERS WITH THE GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, R. A. N.; Sfair, R.; Winter, O. C., E-mail: ran.araujo@gmail.com, E-mail: rsfair@feg.unesp.br, E-mail: ocwinter@gmail.com [UNESP - Univ. Estadual Paulista, Grupo de Dinâmica Orbital e Planetologia, CEP 12516-410, Guaratingueta, SP (Brazil)

    2016-06-20

    The Centaur population is composed of minor bodies wandering between the giant planets that frequently perform close gravitational encounters with these planets, leading to a chaotic orbital evolution. Recently, the discovery of two well-defined narrow rings was announced around the Centaur 10199 Chariklo. The rings are assumed to be in the equatorial plane of Chariklo and to have circular orbits. The existence of a well-defined system of rings around a body in such a perturbed orbital region poses an interesting new problem. Are the rings of Chariklo stable when perturbed by close gravitational encounters with the giant planets? Our approach to address this question consisted of forward and backward numerical simulations of 729 clones of Chariklo, with similar initial orbits, for a period of 100 Myr. We found, on average, that each clone experiences during its lifetime more than 150 close encounters with the giant planets within one Hill radius of the planet in question. We identified some extreme close encounters that were able to significantly disrupt or disturb the rings of Chariklo. About 3% of the clones lose their rings and about 4% of the clones have their rings significantly disturbed. Therefore, our results show that in most cases (more than 90%), the close encounters with the giant planets do not affect the stability of the rings in Chariklo-like systems. Thus, if there is an efficient mechanism that creates the rings, then these structures may be common among these kinds of Centaurs.

  20. GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Alexander, Richard D.; Armitage, Philip J.

    2009-01-01

    We present models of giant planet migration in evolving protoplanetary disks. Our disks evolve subject to viscous transport of angular momentum and photoevaporation, while planets undergo Type II migration. We use a Monte Carlo approach, running large numbers of models with a range in initial conditions. We find that relatively simple models can reproduce both the observed radial distribution of extrasolar giant planets, and the lifetimes and accretion histories of protoplanetary disks. The use of state-of-the-art photoevaporation models results in a degree of coupling between planet formation and disk clearing, which has not been found previously. Some accretion across planetary orbits is necessary if planets are to survive at radii ∼<1.5 AU, and if planets of Jupiter mass or greater are to survive in our models they must be able to form at late times, when the disk surface density in the formation region is low. Our model forms two different types of 'transitional' disks, embedded planets and clearing disks, which show markedly different properties. We find that the observable properties of these systems are broadly consistent with current observations, and highlight useful observational diagnostics. We predict that young transition disks are more likely to contain embedded giant planets, while older transition disks are more likely to be undergoing disk clearing.

  1. Full exploration of the giant planet population around β Pictoris

    Science.gov (United States)

    Lagrange, A.-M.; Keppler, M.; Meunier, N.; Lannier, J.; Beust, H.; Milli, J.; Bonnavita, M.; Bonnefoy, M.; Borgniet, S.; Chauvin, G.; Delorme, P.; Galland, F.; Iglesias, D.; Kiefer, F.; Messina, S.; Vidal-Madjar, A.; Wilson, P. A.

    2018-05-01

    Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims: This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet-disk interactions. Methods: We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results: We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %. Based on data obtained with the ESO3.6 m/HARPS spectrograph at La Silla, and with NaCO on the VLT.The RV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A108

  2. On the Composition of Young, Directly Imaged Giant Planets

    Science.gov (United States)

    Moses, J. I.; Marley, M. S.; Zahnle, K.; Line, M. R.; Fortney, J. J.; Barman, T. S.; Visscher, C.; Lewis, N. K.; Wolff, M. J.

    2016-01-01

    The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the typically large orbital distances. Disequilibrium chemical processes such as these can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemical processes affect the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and c and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than; and H2O mixing ratios a factor of a few less than chemical equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a particularly major constituent when stratospheric temperatures are low and recycling of water following H2O photolysis becomes stifled. Young Jupiters with effective temperatures less than 700 degrees Kelvin are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.

  3. Characterizing Cool Giant Planets in Reflected Light

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  4. Changes in the metallicity of gas giant planets due to pebble accretion

    Science.gov (United States)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  5. LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b

    International Nuclear Information System (INIS)

    Crida, Aurelien; Masset, Frederic; Morbidelli, Alessandro

    2009-01-01

    Recent observations of exoplanets by direct imaging reveal that giant planets orbit at a few dozens to more than a hundred AU from their central star. The question of the origin of these planets challenges the standard theories of planet formation. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outward, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semimajor axes can increase by almost 1 order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.

  6. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  7. Search for giant planets in M 67. IV. Survey results

    Science.gov (United States)

    Brucalassi, A.; Koppenhoefer, J.; Saglia, R.; Pasquini, L.; Ruiz, M. T.; Bonifacio, P.; Bedin, L. R.; Libralato, M.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2017-07-01

    Context. We present the results of a seven-year-long radial velocity survey of a sample of 88 main-sequence and evolved stars to reveal signatures of Jupiter-mass planets in the solar-age and solar-metallicity open cluster M 67. Aims: We aim at studying the frequency of giant planets in this cluster with respect to the field stars. In addition, our sample is also ideal to perform a long-term study to compare the chemical composition of stars with and without giant planets in detail. Methods: We analyzed precise radial velocity (RV) measurements obtained with the HARPS spectrograph at the European Southern Observatory (La Silla), the SOPHIE spectrograph at the Observatoire de Haute-Provence (France), the HRS spectrograph at the Hobby Eberly Telescope (Texas), and the HARPS-N spectrograph at the Telescopio Nazionale Galileo (La Palma). Additional RV data come from the CORALIE spectrograph at the Euler Swiss Telescope (La Silla). We conducted Monte Carlo simulations to estimate the occurrence rate of giant planets in our radial velocity survey. We considered orbital periods between 1.0 day and 1000 days and planet masses between 0.2 MJ and 10.0 MJ. We used a measure of the observational detection efficiency to determine the frequency of planets for each star. Results: All the planets previously announced in this RV campaign with their properties are summarized here: 3 hot Jupiters around the main-sequence stars YBP1194, YBP1514, and YBP401, and 1 giant planet around the evolved star S364. Two additional planet candidates around the stars YBP778 and S978 are also analyzed in the present work. We discuss stars that exhibit large RV variability or trends individually. For 2 additional stars, long-term trends are compatible with new binary candidates or substellar objects, which increases the total number of binary candidates detected in our campaign to 14. Based on the Doppler-detected planets discovered in this survey, we find an occurrence of giant planets of 18

  8. Giant Planets in Reflected Light: What Science Can We Expect?

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  9. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-01-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  10. MAKING PLANET NINE: A SCATTERED GIANT IN THE OUTER SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Room 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-20

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  11. Making Planet Nine: A Scattered Giant in the Outer Solar System

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2016-07-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.

  12. The Giant Planet Satellite Exospheres

    Science.gov (United States)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  13. SHOCKS AND A GIANT PLANET IN THE DISK ORBITING BP PISCIUM?

    International Nuclear Information System (INIS)

    Melis, C.; Zuckerman, B.; Gielen, C.; Chen, C. H.; Rhee, Joseph H.; Song, Inseok

    2010-01-01

    Spitzer Infrared Spectrograph data support the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ∼75 K crystalline, magnesium-rich olivine; ∼75 K crystalline, magnesium-rich pyroxene; ∼200 K amorphous, magnesium-rich pyroxene; and ∼200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  14. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    OpenAIRE

    Tanigawa, Takayuki; Tanaka, Hidekazu

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insuffic...

  15. Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body

    Science.gov (United States)

    Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.

    2018-02-01

    Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.

  16. LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION

    International Nuclear Information System (INIS)

    Demory, Brice-Olivier; Seager, Sara

    2011-01-01

    The most irradiated transiting hot Jupiters are characterized by anomalously inflated radii, sometimes exceeding Jupiter's size by more than 60%. While different theoretical explanations have been applied, none of them provide a universal resolution to this observation, despite significant progress in the past years. We refine the photometric transit light curve analysis of 115 Kepler giant planet candidates based on public Q0-Q2 photometry. We find that 14% of them are likely false positives, based on their secondary eclipse depth. We report on planet radii versus stellar flux. We find an increase in planet radii with increased stellar irradiation for the Kepler giant planet candidates, in good agreement with existing hot Jupiter systems. We find that in the case of modest irradiation received from the stellar host, giant planets do not have inflated radii, and appear to have radii independent of the host star incident flux. This finding suggests that the physical mechanisms inflating hot Jupiters become ineffective below a given orbit-averaged stellar irradiation level of ∼2 × 10 8 erg s –1 cm –2 .

  17. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Soko [School of Engineering, Physics, and Mathematics, University of Dundee, DD1 4HN, Scotland (United Kingdom); Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550 (Japan)

    2016-02-10

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.

  18. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    International Nuclear Information System (INIS)

    Matsumura, Soko; Brasser, Ramon; Ida, Shigeru

    2016-01-01

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively

  19. Giant planet population synthesis: comparing theory with observations

    International Nuclear Information System (INIS)

    Benz, W; Mordasini, C; Alibert, Y; Naef, D

    2008-01-01

    The characteristics of the now over 250 known extra-solar giant planets begin to provide a database with which current planet formation theories can be put to the test. To do this, we synthesize the expected planet population based on the core-accretion scenario by sampling initial conditions in a Monte Carlo fashion. We then apply appropriate observational detection biases and compare the resulting population with the one actually detected. Quantitative statistical tests allow us to determine how well the models are reproducing the observed samples. The model can be applied to compute the expected planet population detectable with different techniques (radial velocity measurements, transits, gravitational lensing, etc) or orbiting stars of different masses. In the latter case, we show that forming Jupiter-mass planets orbiting M dwarfs within the lifetime of proto-planetary disks is indeed possible. However, the models predict that with decreasing stellar mass, the ratio of Jupiter- to Neptune-mass planets will sharply decrease

  20. Giant planet population synthesis: comparing theory with observations

    Science.gov (United States)

    Benz, W.; Mordasini, C.; Alibert, Y.; Naef, D.

    2008-08-01

    The characteristics of the now over 250 known extra-solar giant planets begin to provide a database with which current planet formation theories can be put to the test. To do this, we synthesize the expected planet population based on the core-accretion scenario by sampling initial conditions in a Monte Carlo fashion. We then apply appropriate observational detection biases and compare the resulting population with the one actually detected. Quantitative statistical tests allow us to determine how well the models are reproducing the observed samples. The model can be applied to compute the expected planet population detectable with different techniques (radial velocity measurements, transits, gravitational lensing, etc) or orbiting stars of different masses. In the latter case, we show that forming Jupiter-mass planets orbiting M dwarfs within the lifetime of proto-planetary disks is indeed possible. However, the models predict that with decreasing stellar mass, the ratio of Jupiter- to Neptune-mass planets will sharply decrease.

  1. BD+15 2940 AND HD 233604: TWO GIANTS WITH PLANETS CLOSE TO THE ENGULFMENT ZONE

    International Nuclear Information System (INIS)

    Nowak, G.; Niedzielski, A.; Adamów, M.; Maciejewski, G.; Wolszczan, A.

    2013-01-01

    We report the discovery of planetary-mass companions to two red giants by the ongoing Penn State-Toruń Planet Search (PTPS) conducted with the 9.2 m Hobby-Eberly Telescope. The 1.1 M ☉ K0-giant, BD+15 2940, has a 1.1 M J minimum mass companion orbiting the star at a 137.5 day period in a 0.54 AU orbit what makes it the closest—in planet around a giant and possible subject of engulfment as the consequence of stellar evolution. HD 233604, a 1.5 M ☉ K5-giant, is orbited by a 6.6 M J minimum mass planet which has a period of 192 days and a semi-major axis of only 0.75 AU making it one of the least distant planets to a giant star. The chemical composition analysis of HD 233604 reveals a relatively high 7 Li abundance which may be a sign of its early evolutionary stage or recent engulfment of another planet in the system. We also present independent detections of planetary-mass companions to HD 209458 and HD 88133, and stellar activity-induced radial velocity variations in HD 166435, as part of the discussion of the observing and data analysis methods used in the PTPS project.

  2. Survival of the Jovian planets with the Sun a red giant

    International Nuclear Information System (INIS)

    Vila, S.C.

    1985-01-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.)

  3. Survival of the Jovian planets with the Sun a red giant

    Energy Technology Data Exchange (ETDEWEB)

    Vila, S C

    1985-12-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.).

  4. A PLANET IN A 0.6 AU ORBIT AROUND THE K0 GIANT HD 102272

    International Nuclear Information System (INIS)

    Niedzielski, A.; Gozdziewski, K.; Nowak, G.; Zielinski, P.; Wolszczan, A.; Konacki, M.

    2009-01-01

    We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of at least one planet-mass body around the star. With an estimated stellar mass of 1.9 M sun , the minimum mass of the confirmed planet is 5.9 M J . The planet's orbit is characterized by a small but nonzero eccentricity e = 0.05 and a semimajor axis of 0.61 AU, which makes it the most compact planet discovered so far around GK spectral type giants. This detection adds to the existing evidence that, as predicted by theory, the minimum size of planetary orbits around intermediate-mass giants is affected by both planet-formation processes and stellar evolution. The currently available evidence of another planet around HD 102272 is insufficient to obtain an unambiguous two-orbit solution.

  5. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    Science.gov (United States)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin I of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  6. Earth-type planets (Mercury, Venus, and Mars)

    Science.gov (United States)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  7. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    Science.gov (United States)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  8. IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Koskinen, Tommi T.; Cho, James Y-K.; Achilleos, Nicholas; Aylward, Alan D.

    2010-01-01

    Many extrasolar planets orbit close in and are subject to intense ionizing radiation from their host stars. Therefore, we expect them to have strong, and extended, ionospheres. Ionospheres are important because they modulate escape in the upper atmosphere and can modify circulation, as well as leave their signatures, in the lower atmosphere. In this paper, we evaluate the vertical location Z I and extent D I of the EUV ionization peak layer. We find that Z I ∼1-10 nbar-for a wide range of orbital distances (a = 0.047-1 AU) from the host star-and D I /H p ∼>15, where H p is the pressure scale height. At Z I , the plasma frequency is ∼80-450 MHz, depending on a. We also study global ion transport, and its dependence on a, using a three-dimensional thermosphere-ionosphere model. On tidally synchronized planets with weak intrinsic magnetic fields, our model shows only a small, but discernible, difference in electron density from the dayside to the nightside (∼9 x 10 13 m -3 to ∼2 x 10 12 m -3 , respectively) at Z I . On asynchronous planets, the distribution is essentially uniform. These results have consequences for hydrodynamic modeling of the atmospheres of close-in extrasolar giant planets.

  9. The giant planets; Galileo Galilei to Project Galileo

    International Nuclear Information System (INIS)

    Hide, R.

    1984-01-01

    This article outlines some of the main characteristics of the giant planets Jupiter and Saturn, and discusses aspects of their study in which the author has been interested for a number of years, namely the circulation of their atmospheres, the structure of their interiors, and the origin of their magnetic fields. (author)

  10. THE McDONALD OBSERVATORY PLANET SEARCH: NEW LONG-PERIOD GIANT PLANETS AND TWO INTERACTING JUPITERS IN THE HD 155358 SYSTEM

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Wittenmyer, Robert A.; Horner, J.; Simon, Attila E.

    2012-01-01

    We present high-precision radial velocity (RV) observations of four solar-type (F7-G5) stars—HD 79498, HD 155358, HD 197037, and HD 220773—taken as part of the McDonald Observatory Planet Search Program. For each of these stars, we see evidence of Keplerian motion caused by the presence of one or more gas giant planets in long-period orbits. We derive orbital parameters for each system and note the properties (composition, activity, etc.) of the host stars. While we have previously announced the two-gas-giant HD 155358 system, we now report a shorter period for planet c. This new period is consistent with the planets being trapped in mutual 2:1 mean-motion resonance. We therefore perform an in-depth stability analysis, placing additional constraints on the orbital parameters of the planets. These results demonstrate the excellent long-term RV stability of the spectrometers on both the Harlan J. Smith 2.7 m telescope and the Hobby-Eberly telescope.

  11. SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS

    International Nuclear Information System (INIS)

    Spiegel, David S.; Burrows, Adam

    2012-01-01

    Gas-giant planets that form via core accretion might have very different characteristics from those that form via disk instability. Disk-instability objects are typically thought to have higher entropies, larger radii, and (generally) higher effective temperatures than core-accretion objects. In this paper, we provide a large set of models exploring the observational consequences of high-entropy (hot) and low-entropy (cold) initial conditions, in the hope that this will ultimately help to distinguish between different physical mechanisms of planet formation. However, the exact entropies and radii of newly formed planets due to these two modes of formation cannot, at present, be precisely predicted. It is possible that the distribution of properties of core-accretion-formed planets and the distribution of properties of disk-instability-formed planets overlap. We, therefore, introduce a broad range of 'warm-start' gas-giant planet models. Between the hottest and the coldest models that we consider, differences in radii, temperatures, luminosities, and spectra persist for only a few million to a few tens of millions of years for planets that are a few times Jupiter's mass or less. For planets that are ∼five times Jupiter's mass or more, significant differences between hottest-start and coldest-start models persist for on the order of 100 Myr. We find that out of the standard infrared bands (J, H, K, L', M, N) the K and H bands are the most diagnostic of the initial conditions. A hottest-start model can be from ∼4.5 mag brighter (at Jupiter's mass) to ∼9 mag brighter (at 10 times Jupiter's mass) than a coldest-start model in the first few million years. In more massive objects, these large differences in luminosity and spectrum persist for much longer than in less massive objects. Finally, we consider the influence of atmospheric conditions on spectra, and find that the presence or absence of clouds, and the metallicity of an atmosphere, can affect an object

  12. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  13. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    Science.gov (United States)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  14. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-01-01

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  15. The minimum area requirements (MAR) for giant panda: an empirical study.

    Science.gov (United States)

    Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang

    2016-12-08

    Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.

  16. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    Science.gov (United States)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  17. Outward Migration of Giant Planets in Orbital Resonance

    Science.gov (United States)

    D'Angelo, G.; Marzari, F.

    2013-05-01

    A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.

  18. Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    OpenAIRE

    Levison, H. F.; Thommes, E.; Duncan, M. J.

    2009-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very...

  19. Transits of extrasolar moons around luminous giant planets

    Science.gov (United States)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  20. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  1. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    Science.gov (United States)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  2. On the minimum core mass for giant planet formation at wide separations

    International Nuclear Information System (INIS)

    Piso, Ana-Maria A.; Youdin, Andrew N.

    2014-01-01

    In the core accretion hypothesis, giant planets form by gas accretion onto solid protoplanetary cores. The minimum (or critical) core mass to form a gas giant is typically quoted as 10 M ⊕ . The actual value depends on several factors: the location in the protoplanetary disk, atmospheric opacity, and the accretion rate of solids. Motivated by ongoing direct imaging searches for giant planets, this study investigates core mass requirements in the outer disk. To determine the fastest allowed rates of gas accretion, we consider solid cores that no longer accrete planetesimals, as this would heat the gaseous envelope. Our spherical, two-layer atmospheric cooling model includes an inner convective region and an outer radiative zone that matches onto the disk. We determine the minimum core mass for a giant planet to form within a typical disk lifetime of 3 Myr. The minimum core mass declines with disk radius, from ∼8.5 M ⊕ at 5 AU to ∼3.5 M ⊕ at 100 AU, with standard interstellar grain opacities. Lower temperatures in the outer disk explain this trend, while variations in disk density are less influential. At all distances, a lower dust opacity or higher mean molecular weight reduces the critical core mass. Our non-self-gravitating, analytic cooling model reveals that self-gravity significantly affects early atmospheric evolution, starting when the atmosphere is only ∼10% as massive as the core.

  3. The World is Spinning: Constraining the Origin of Supermassive Gas Giant Planets at Wide Separations Using Planetary Spin

    Science.gov (United States)

    Bryan, Marta; Knutson, Heather; Batygin, Konstantin; Benneke, Björn; Bowler, Brendan

    2017-01-01

    Planetary spin can inform our understanding of planet accretion histories, which determine final masses and atmospheric compositions, as well as the formation of moons and rings. At present, the physics behind how gas giant planets spin up is still very poorly understood. We know that when giant planets form, they accrete material and angular momentum via a circumplanetary disk, causing the planet to spin up. In order to prevent planet spins from reaching break-up velocity, some mechanism must regulate these spins. However, there is currently no well-formulated picture for how planet spins evolve. This is in part due to the fact that there are very few measurements of giant planet spin rates currently available. Outside the solar system, to date there has only been one published spin measurement of a directly imaged planet, beta Pic b. We use Keck/NIRSPEC to measure spin rates for a sample of bound and free-floating directly imaged planetary mass objects, providing a first look at the distribution of spin rates for these objects.

  4. Giant planet migration during FU Orionis outbursts: 1D disc models

    Science.gov (United States)

    Dunhill, A. C.

    2018-05-01

    I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet's ability to maintain a gap and can allow a massive giant planet's semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ˜10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets.

  5. Journey to Mars: the physics of travelling to the red planet

    Science.gov (United States)

    Stinner, Arthur; Begoray, John

    2005-01-01

    Mars has fascinated mankind since antiquity. The retrograde motion of the red planet provided the impetus for the Earth-centred solar system of Ptolemy, and 1500 years later, for the Sun-centred solar system of Copernicus. Kepler's laws of planetary motion were the result of his all-out 'war on Mars' that lasted for about 18 years. Fascination for Mars reappeared in the beginning of the last century with the astronomer Percival Lowell's well publicized claim that intelligent life was responsible for the 'canals' that were sighted with a new powerful telescope. We are seeing a resurgence of this interest in the wake of many successful attempts to land on Mars in the last 30 years to study the surface and the atmosphere of the planet. Indeed, the Canadian Space Agency (CSA) is now cooperating with NASA in the quest for a full scale scientific assault on the red planet. In response to this new interest, we wrote an interactive computer program (ICP), illustrating the physics of planetary motion, that we have used successfully in lecture-demonstrations and with students in classrooms. The main part of this article describes two missions to Mars, and a third one that illustrates the capabilities of the ICP.

  6. ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei; Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China); Guillochon, James; Ramirez-Ruiz, Enrico, E-mail: liushangfei@pku.edu.cn [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-01-01

    A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.

  7. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    Energy Technology Data Exchange (ETDEWEB)

    Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Mann, Andrew W.; Howard, Andrew W., E-mail: gaidos@hawaii.edu [Institute for Astronomy, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States)

    2013-07-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  8. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Howard, Andrew W.

    2013-01-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M ☉ and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% ± 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% ± 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  9. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  10. Dynamical shake-up and the low mass of Mars

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott

    2017-10-01

    The low mass of Mars and the lack of planets in the asteroid belt are important constraints on theories of planet formation. We revisit the idea that sweeping secular resonances involving the gas giants and theSun's dissipating protoplanetary disk can explain these features of our Solar System. To test this "dynamical shake-up" scenario, we perform an extensive suite of simulations to track terrestrial planet formation from planetesimals. We find that if the Sun’s gas disk depletes in roughly a million years, then a sweeping resonance with Jupiter inhibits planet formation in the asteroid belt and substantially limits the mass of Mars. We explore how this phenomenon might lead to asteroid belt analogs around other stars with long-period, massive planets.

  11. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  12. Camille Flammarion's the planet Mars as translated by Patrick Moore

    CERN Document Server

    2015-01-01

    Camille Flammarion (1842-1925) began his career at 16 as a human computer under the great mathematician U. J. J. Le Verrier at the Paris Observatory.  He soon tired of the drudgery; he was drawn to more romantic vistas, and at 19 wrote a book on an idea that he was to make his own—the habitability of other worlds.  There followed a career as France’s greatest popularizer of astronomy, with over 60 titles to his credit.  An admirer granted him a chateau at Juvisy-sur-l’Orge, and he set up a first-rate observatory dedicated to the study of the planet Mars. Finally, in 1892, he published his masterpiece, La Planete Mars et ses conditions d’habitabilite, a comprehensive summary of three centuries’ worth of literature on Mars, much of it based on his own personal research into rare memoirs and archives.  As a history of that era, it has never been surpassed, and remains one of a handful of indispensable books on the red planet. Sir Patrick Moore (1923-2012) needs no introduction; his record of popula...

  13. THE PROPERTIES OF HEAVY ELEMENTS IN GIANT PLANET ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Soubiran, François; Militzer, Burkhard [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States)

    2016-09-20

    The core-accretion model for giant planet formation suggests a two-layer picture for the initial structure of Jovian planets, with heavy elements in a dense core and a thick H–He envelope. Late planetesimal accretion and core erosion could potentially enrich the H–He envelope in heavy elements, which is supported by the threefold solar metallicity that was measured in Jupiter’s atmosphere by the Galileo entry probe. In order to reproduce the observed gravitational moments of Jupiter and Saturn, models for their interiors include heavy elements, Z , in various proportions. However, their effect on the equation of state of the hydrogen–helium mixtures has not been investigated beyond the ideal mixing approximation. In this article, we report results from ab initio simulations of fully interacting H–He– Z mixtures in order to characterize their equation of state and to analyze possible consequences for the interior structure and evolution of giant planets. Considering C, N, O, Si, Fe, MgO, and SiO{sub 2}, we show that the behavior of heavy elements in H–He mixtures may still be represented by an ideal mixture if the effective volumes and internal energies are chosen appropriately. In the case of oxygen, we also compute the effect on the entropy. We find the resulting changes in the temperature–pressure profile to be small. A homogeneous distribution of 2% oxygen by mass changes the temperature in Jupiter’s interior by only 80 K.

  14. ANALYTICAL SOLUTIONS FOR RADIATIVE TRANSFER: IMPLICATIONS FOR GIANT PLANET FORMATION BY DISK INSTABILITY

    International Nuclear Information System (INIS)

    Boss, Alan P.

    2009-01-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  15. Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars

    Science.gov (United States)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2017-05-01

    We consider a dynamical shake-up model to explain the low mass of Mars and the lack of planets in the asteroid belt. In our scenario, a secular resonance with Jupiter sweeps through the inner solar system as the solar nebula depletes, pitting resonant excitation against collisional damping in the Sun’s protoplanetary disk. We report the outcome of extensive numerical calculations of planet formation from planetesimals in the terrestrial zone, with and without dynamical shake-up. If the Sun’s gas disk within the terrestrial zone depletes in roughly a million years, then the sweeping resonance inhibits planet formation in the asteroid belt and substantially limits the size of Mars. This phenomenon likely occurs around other stars with long-period massive planets, suggesting that asteroid belt analogs are common.

  16. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  17. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Directory of Open Access Journals (Sweden)

    Gaulme Patrick

    2017-01-01

    Full Text Available For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the

  18. Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune

    Science.gov (United States)

    Gaulme, Patrick

    2017-10-01

    For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are

  19. Water Delivery and Giant Impacts in the 'Grand Tack' Scenario

    Science.gov (United States)

    O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.

    2014-01-01

    A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in

  20. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    The probe, weighing in at 1 120 kg, was built on ESA’s behalf by a European team led by Astrium. It set out on its journey to Mars aboard a Soyuz-Fregat launcher, under Starsem operational management. The launcher lifted off from Baïkonur in Kazakhstan on 2 June at 23.45 local time (17:45 GMT). An interim orbit around the Earth was reached following a first firing of the Fregat upper stage. One hour and thirty-two minutes after lift off the probe was injected into its interplanetary orbit. "Europe is on its way to Mars to stake its claim in the most detailed and complete exploration ever done of the Red Planet. We can be very proud of this and of the speed with which have achieved this goal", said David Southwood, ESA's Director of Science witnessing the launch from Baikonur. Contact with Mars Express has been established by ESOC, ESA’s satellite control centre, located in Darmstadt, Germany. The probe is pointing correctly towards the Sun and has deployed its solar panels. All on-board systems are operating faultlessly. Two days from now, the probe will perform a corrective manœuvre that will place it in a Mars-bound trajectory, while the Fregat stage, trailing behind, will vanish into space - there will be no risk of it crashing into and contaminating the Red Planet. Mars Express will then travel away from Earth at a speed exceeding 30 km/s (3 km/s in relation to the Earth), on a six-month and 400 million kilometre journey through the solar system. Once all payload operations have been checked out, the probe will be largely deactivated. During this period, the spacecraft will contact Earth only once a day. Mid-journey correction of its trajectory is scheduled for September. There in time for Christmas Following reactivation of its systems at the end of November, Mars Express will get ready to release Beagle 2. The 60 kg capsule containing the tiny lander does not incorporate its own propulsion and steering system and will be released into a collision

  1. Ammonium hydrosulfide and clouds in the atmospheres of the giant planets.

    Science.gov (United States)

    Ibragimov, K. Yu.; Solodovnik, A. A.

    The physicochemical properties of two possible compounds - ammonium hydrosulfide (NH4SH) and ammonium sulfide (NH4)2S - that may be formed in a reaction of ammonia NH3 with hydrogen sulfide H2S are discussed, and the probability of their formation is analyzed on the basis of the Le Chatelier principle. It is shown that the conditions of their formation on the basis of available data on the concentration ratio of the reagents (NH3 and H2S) in the atmospheres of giant planets make the appearance of enough NH4SH for cloud formation highly problematic. Accordingly, the authors propose as an alternative candidate for a cloud-forming role ammonium sulfide (NH4)2S, for whose formation the conditions in the atmospheres of the giant planets are more favorable. The possible spatial localization of (NH4)2S clouds is estimated, and the result is used in an attempt to identify this compound as one of the chromophores.

  2. How empty are disk gaps opened by giant planets?

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jeffrey [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Shi, Ji-Ming; Chiang, Eugene, E-mail: fung@astro.utoronto.ca [Department of Astronomy, UC Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States)

    2014-02-20

    Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong co-rotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, Σ{sub gap}, depends on planet-to-star mass ratio q, Shakura-Sunyaev viscosity parameter α, and disk height-to-radius aspect ratio h/r. Our results are derived from our new graphics processing unit accelerated Lagrangian hydrodynamical code PEnGUIn and are verified by independent simulations with ZEUS90. For Jupiter-like planets, we find Σ{sub gap}∝q {sup –2.2}α{sup 1.4}(h/r){sup 6.6}, and for near brown dwarf masses, Σ{sub gap}∝q {sup –1}α{sup 1.3}(h/r){sup 6.1}. Surface density contrasts inside and outside gaps can be as large as 10{sup 4}, even when the planet does not accrete. We derive a simple analytic scaling, Σ{sub gap}∝q {sup –2}α{sup 1}(h/r){sup 5}, that compares reasonably well to empirical results, especially at low Neptune-like masses, and use discrepancies to highlight areas for progress.

  3. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    International Nuclear Information System (INIS)

    Lehmer, Owen R.; Catling, David C.; Zahnle, Kevin J.

    2017-01-01

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. At some planet–star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.

  4. The Longevity of Water Ice on Ganymedes and Europas around Migrated Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lehmer, Owen R.; Catling, David C. [Dept. of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA (United States); Zahnle, Kevin J., E-mail: olehmer@gmail.com [NASA Ames Research Center, Moffett Field, CA (United States)

    2017-04-10

    The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the giant planet and icy moons migrate closer to the star. At some planet–star distance the stellar flux incident on the icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons. However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts. Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host planet that might be detectable in future observations.

  5. Tectonic patterns on a reoriented planet - Mars

    International Nuclear Information System (INIS)

    Melosh, H.J.

    1980-01-01

    Both geological and free-air-gravity data suggest that the positive mass anomaly associated with the Tharsis volcanoes may have reoriented Mars' lithosphere by as much as 25 deg. Since Mars is oblate, rotation of the lithosphere over the equatorial bulge by 25 deg produces membrane stresses of several kilobars, large enough to initiate faulting. Plots of the magnitude and direction of stresses in a reoriented planet show that near Tharsis the dominant fault type should be north-south-trending normal faults. This normal fault province is centered at 30 deg N latitude and extends about 45 deg east and west in longitude. Similar faults should occur at the antipodes, north of Hellas Planitia

  6. Spectral and Photometric Diagnostics of Giant Planet Formation Scenarios

    OpenAIRE

    Spiegel, David S.; Burrows, Adam

    2011-01-01

    Gas-giant planets that form via core accretion might have very different characteristics from those that form via disk-instability. Disk-instability objects are typically thought to have higher entropies, larger radii, and (generally) higher effective temperatures than core-accretion objects. We provide a large set of models exploring the observational consequences of high-entropy (hot) and low-entropy (cold) initial conditions, in the hope that this will ultimately help to distinguish betwee...

  7. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  8. Connecting Young Brown Dwarfs and Directly Imaged Gas-Giant Planets

    Science.gov (United States)

    Liu, Michael; Dupuy, Trent; Allers, Katelyn; Aller, Kimberly; Best, William; Magnier, Eugene

    2015-12-01

    Direct detections of gas-giant exoplanets and discoveries of young (~10-100 Myr) field brown dwarfs from all-sky surveys are strengthening the link between the exoplanet and brown dwarf populations, given the overlapping ages, masses, temperatures, and surface gravities. In light of the relatively small number of directly imaged planets and the modest associated datasets, the large census of young field brown dwarfsprovides a compelling laboratory for enriching our understanding of both classes of objects. However, work to date on young field objects has typically focused on individual discoveries.We present a large comprehensive study of the youngest field brown dwarfs, comprising both previously known objects and our new discoveries from the latest wide-field surveys (Pan-STARRS-1 and WISE). With masses now extending down to ~5 Jupiter masses, these objects have physical properties that largely overlap young gas-giant planets and thus are promising analogs for studying exoplanet atmospheres at unparalleled S/N, spectral resolution, and wavelength coverage. We combine high-quality spectra and parallaxes to determine spectral energy distributions, luminosities, temperatures, and ages for young field objects. We demonstrate that this population spans a continuum in the color-magnitude diagram, thereby forming a bridge between the hot and cool extremes of directly imaged planets. We find that the extremely dusty properties of the planets around 2MASS J1207-39 and HR 8799 do occur in some young brown dwarfs, but these properties do not have a simple correspondence with age, perhaps contrary to expectations. We find young field brown dwarfs can have unusually low temperatures and suggest a new spectral type-temperature scale appropriate for directly imaged planets.To help provide a reference for extreme-contrast imaging surveys, we establish a grid of spectral standards and benchmarks, based on membership in nearby young moving groups, in order to calibrate gravity

  9. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    Science.gov (United States)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  10. Comparative ionospheres: Terrestrial and giant planets

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  11. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  12. Geographies of Mars seeing and knowing the red planet

    CERN Document Server

    Lane, K Maria D

    2010-01-01

    One of the first maps of Mars, published by an Italian astronomer in 1877, with its pattern of canals, fueled belief in intelligent life forms on the distant red planet-a hope that continued into the 1960s. Although the Martian canals have long since been dismissed as a famous error in the history of science, K. Maria D. Lane argues that there was nothing accidental about these early interpretations. Indeed, she argues, the construction of Mars as an incomprehensibly complex and engineered world both reflected and challenged dominant geopolitical themes during a time of majo

  13. Discovery of a warm, dusty giant planet around HIP 65426

    Science.gov (United States)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Gratton, R.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Feldt, M.; Mouillet, D.; Meyer, M.; Cheetham, A.; Biller, B.; Boccaletti, A.; D'Orazi, V.; Galicher, R.; Hagelberg, J.; Maire, A.-L.; Mesa, D.; Olofsson, J.; Samland, M.; Schmidt, T. O. B.; Sissa, E.; Bonavita, M.; Charnay, B.; Cudel, M.; Daemgen, S.; Delorme, P.; Janin-Potiron, P.; Janson, M.; Keppler, M.; Le Coroller, H.; Ligi, R.; Marleau, G. D.; Messina, S.; Mollière, P.; Mordasini, C.; Müller, A.; Peretti, S.; Perrot, C.; Rodet, L.; Rouan, D.; Zurlo, A.; Dominik, C.; Henning, T.; Menard, F.; Schmid, H.-M.; Turatto, M.; Udry, S.; Vakili, F.; Abe, L.; Antichi, J.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Blanchard, P.; Bazzon, A.; Buey, T.; Carbillet, M.; Carle, M.; Charton, J.; Cascone, E.; Claudi, R.; Costille, A.; Deboulbe, A.; De Caprio, V.; Dohlen, K.; Fantinel, D.; Feautrier, P.; Fusco, T.; Gigan, P.; Giro, E.; Gisler, D.; Gluck, L.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Le Mignant, D.; Möller-Nilsson, O.; Llored, M.; Moulin, T.; Origné, A.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Puget, P.; Rabou, P.; Ramos, J.; Rigal, R.; Rochat, S.; Roelfsema, R.; Rousset, G.; Roux, A.; Salasnich, B.; Sauvage, J.-F.; Sevin, A.; Soenke, C.; Stadler, E.; Suarez, M.; Weber, L.; Wildi, F.; Antoniucci, S.; Augereau, J.-C.; Baudino, J.-L.; Brandner, W.; Engler, N.; Girard, J.; Gry, C.; Kral, Q.; Kopytova, T.; Lagadec, E.; Milli, J.; Moutou, C.; Schlieder, J.; Szulágyi, J.; Thalmann, C.; Wahhaj, Z.

    2017-09-01

    Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff = 1300-1600 K and R = 1.5 ± 0.1 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 RJup). Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. Based on observations collected at La Silla

  14. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    Science.gov (United States)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (T eff clouds brighten the planet: T eff ∼ 150 K, g ≳ 20 ms‑2, f sed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and T eff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High f sed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

  15. NH4SH and cloud cover in the atmospheres of the giant planets

    Science.gov (United States)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  16. THE CALIFORNIA PLANET SURVEY. I. FOUR NEW GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Peek, Kathryn M. G.; Johnson, John Asher; Fischer, Debra A.; Isaacson, Howard; Wright, Jason T.; Bernat, David; Henry, Gregory W.; Apps, Kevin; Endl, Michael; Cochran, William D.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2010-01-01

    We present precise Doppler measurements of four stars obtained during the past decade at Keck Observatory by the California Planet Survey (CPS). These stars, namely, HD 34445, HD 126614, HD 13931, and Gl 179, all show evidence for a single planet in Keplerian motion. We also present Doppler measurements from the Hobby-Eberly Telescope (HET) for two of the stars, HD 34445 and Gl 179, that confirm the Keck detections and significantly refine the orbital parameters. These planets add to the statistical properties of giant planets orbiting near or beyond the ice line, and merit follow-up by astrometry, imaging, and space-borne spectroscopy. Their orbital parameters span wide ranges of planetary minimum mass (M sin i = 0.38-1.9 M Jup ), orbital period (P = 2.87-11.5 yr), semimajor axis (a = 2.1-5.2 AU), and eccentricity (e = 0.02-0.41). HD 34445 b (P = 2.87 yr, M sin i = 0.79 M Jup , e = 0.27) is a massive planet orbiting an old, G-type star. We announce a planet, HD 126614 Ab, and an M dwarf, HD 126614 B, orbiting the metal-rich star HD 126614 (which we now refer to as HD 126614 A). The planet, HD 126614 Ab, has minimum mass M sin i = 0.38 M Jup and orbits the stellar primary with period P = 3.41 yr and orbital separation a = 2.3 AU. The faint M dwarf companion, HD 126614 B, is separated from the stellar primary by 489 mas (33 AU) and was discovered with direct observations using adaptive optics and the PHARO camera at Palomar Observatory. The stellar primary in this new system, HD 126614 A, has the highest measured metallicity ([Fe/H] = +0.56) of any known planet-bearing star. HD 13931 b (P = 11.5 yr, M sin i = 1.88 M Jup , e = 0.02) is a Jupiter analog orbiting a near solar twin. Gl 179 b (P = 6.3 yr, M sin i = 0.82 M Jup , e = 0.21) is a massive planet orbiting a faint M dwarf. The high metallicity of Gl 179 is consistent with the planet-metallicity correlation among M dwarfs, as documented recently by Johnson and Apps.

  17. Mars astronomy: observations concerning Ares myth. (Italian Title: L'astronomia di Marte: osservazioni celate nel mito di Ares)

    Science.gov (United States)

    Colona, P.

    2017-12-01

    We show that the myth of Ares defeated by the giants Aloads is a description of how the planet Mars appears in the sky during its synodic revolution. This criptoscientific myth reported by Homer holds enough astronomical information to make sound this archaeoastronomical interpretation.The tale accounts for the length of the semiperiod of the Martian revolution and presents the notion that Mercury is the only planet which is always visible when Mars recovers after the solar conjunction.

  18. Terrestrial Planet Formation from an Annulus -- Revisited

    Science.gov (United States)

    Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.

    2018-04-01

    Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.

  19. A Bayesian approach shows no correlation between transit-depth and stellar metallicity for confirmed and candidates Kepler gas giants planets

    International Nuclear Information System (INIS)

    Nehmé, C; Sarkis, P

    2017-01-01

    Previous study to investigate the correlation between the transit depth and the stellar metallicity of Kepler’s (Q1-Q12) gas giant planets (radii of 5-20R ⊙ ) has led to a weakly significant negative correlation. We use the cumulative catalog of planets detected by the NASA Kepler mission Q1-Q17 catalog, as of April 2015, to perform a solid statistical analysis of this correlation. In the present work, we revise this correlation, within a Bayesian framework, for two large samples: sample A confirmed planets and sample B (confirmed + candidates). We expand a hierarchical method to account for false positives in the studied samples. Our statistical analysis reveals no correlation between the transit depth and the stellar metallicity. This has implications for planet formation theory and interior structure of giant planets. (paper)

  20. A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Horner, J.; Wittenmyer, Robert A.; Simon, Attila E.

    2012-01-01

    We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M J ) on a ∼1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Ségransan et al., we discover an outer Jovian (Msin i = 1.6 M J ) planet with P ∼ 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.

  1. Accretion of Planetesimals and the Formation of Rocky Planets

    Science.gov (United States)

    Chambers, John E.; O'Brien, David P.; Davis, Andrew M.

    2010-02-01

    Here we describe the formation of rocky planets and asteroids in the context of the planetesimal hypothesis. Small dust grains in protoplanetary disks readily stick together forming mm-to-cm-sized aggregates, many of which experience brief heating episodes causing melting. Growth to km-sized planetesimals might proceed via continued pairwise sticking, turbulent concentration, or gravitational instability of a thin particle layer. Gravitational interactions between planetesimals lead to rapid runaway and oligarchic growth forming lunar-to-Mars-sized protoplanets in 10^5 to 10^6 years. Giant impacts between protoplanets form Earth-mass planets in 10^7 to 10^8 years, and occasionally lead to the formation of large satellites. Protoplanets may migrate far from their formation locations due to tidal interactions with the surrounding disk. Radioactive decay and impact heating cause melting and differentiation of planetesimals and protoplanets, forming iron-rich cores and silicate mantles, and leading to some loss of volatiles. Dynamical perturbations from giant planets eject most planetesimals and protoplanets from regions near orbital resonances, leading to asteroid-belt formation. Some of this scattered material will collide with growing terrestrial planets, altering their composition as a result. Numerical simulations and radioisotope dating indicate that the terrestrial planets of the Solar System were essentially fully formed in 100-200 million years.

  2. On the nature of obstacles braking solar wind near Mars and Venera planets and on specific features of the interaction between solar wind and atmospheres of these planets

    International Nuclear Information System (INIS)

    Breus, T.K.; Gringauz, K.I.

    1980-01-01

    Discussed is the nature of obstacles braking solar wind near Mars and Venera according to the data of soviet measurements at ''Mars'' and ''Venera'' series automatic interplanetary stations. It is shown that alongside with essential similarity there exist differences among the zones of flow-around of Venera and Mars by solar wind. Such differences include, particularly, smaller dimensions of the obstacle of Venera as compared with Mars, and correspondingly less remote position of the shock wave front from the planet, different peculiarities of property changes of day-time ionosphere depending on the Sun zenith angle and other. The analysis of the experimental data permits to conclude that ionosphere and correspondingly the induced magnetic field of Venera play a determining role in the formation of the shock wave and the picture of planet flow-around by solar wind, while the determining role in the obstacle formation braking solar wind of Mars is played by the eigen planet field

  3. Modelling of deep gaps created by giant planets in protoplanetary disks

    Science.gov (United States)

    Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki

    2017-12-01

    A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.

  4. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Richard S. [SETI Institute, Mountain View, CA (United States); Lustig-Yaeger, Jacob [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana E.; Marley, Mark S. [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States); Lodders, Katharina, E-mail: Richard.S.Freedman@nasa.gov [Planetary Chemistry Laboratory, Washington University, St. Louis, MO (United States)

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  5. Mars Express — how to be fastest to the Red Planet

    Science.gov (United States)

    2003-05-01

    Mars Express is the first example of ESA’s new style of developing scientific missions: faster, smarter and more cost-effective, but without compromising reliability and quality - there have been no cuts in tests or pre-launch preparations. Mars Express will face demanding technical challenges during its trip to the Red Planet and ESA engineers have worked hard to make sure it meets them. "With Mars Express, Europe is building its own expertise in many fields. This ranges from the development of science experiments and new technologies - new for European industry - to the control of a mission that includes landing on another planet. We have never done this before,” says Rudi Schmidt, Mars Express Project Manager. Quicker, smarter…safe! Mars Express’s design and development phase has taken about four years, compared with about six years for previous similar missions. And its cost, 300 million euros, is much less than other comparable planetary missions. The ‘magic’ lies in the new managerial approach being used. This new approach includes the reuse of existing hardware and instruments. Also, the mission was developed by a smaller ESA team, who gave more responsibility to industry. Mars Express has been built by a consortium of 24 companies from ESA’s 15 Member States and the United States, led by Astrium as prime contractor. However, mission safety was never compromised. “Although we were under heavy pressure towards the end of the project, we did not drop any of the planned tests to save time. I call this a fast design phase, followed by thorough testing activity,” says Schmidt. This new streamlined development method will continue with Venus Express and probably other future missions. Launch Mars Express will be launched on 2 June on board a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. The mission consists of an orbiter and a lander, called Beagle 2. In its launch configuration, Mars Express is a honeycombed aluminium box that

  6. Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers

    Science.gov (United States)

    Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara

    2014-01-01

    Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…

  7. Opportunities for Laboratory Opacity Chemistry Studies to Facilitate Characterization of Young Giant Planets and Brown Dwarfs

    Science.gov (United States)

    Marley, Mark; Freedman, Richard S.

    2015-01-01

    The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.

  8. Red Planet Mania: The Public Response to the 2003 Mars Opposition

    Science.gov (United States)

    Albin, E. F.; Dundee, D. A.

    2003-12-01

    Interest in Mars is at an all time high. For many weeks leading up to and after August 27th or, the date of opposition, record crowds flocked to observatories for a look at Mars. Even after the media "dropped" the event and moved on to other stories, the public response was still unusually strong. It is suggested that such an overwhelming public enthusiasm can be taken as good reason to seek a higher level of government funding for astronomy and the exploration of the Red Planet. Our observations and impressions of the public response to the close approach of Mars were taken from the authors affiliation with the Fernbank Science Center in Atlanta, Georgia - a museum which houses a well-equipped planetarium and observatory. The 500 seat planetarium features a Zeiss Mark V projector beneath a 21 meter diameter dome. A 0.9 meter reflecting telescope, situated not far from the planetarium, provided for stunning views of the Red Planet. Fernbank staff produced an original planetarium presentation entitled "Visions of Mars." Due to overflow crowds, special extended showings were offered. After the planetarium program, members of the public were invited to the observatory for a look at Mars. An average of approximately 120 people each hour looked through the telescope. On many evenings, centered around opposition, the observatory remained open from 9:00 p.m. until 5:30 a.m. the following morning. On each of these nights, we estimate that at least 950 people saw Mars through our telescope. An important tool, an Astrovid CCD video camera, was attached to a piggybacked 11-inch telescope. This instrument proved invaluable in preparing observers for their actual observation. Features such as a Polar Ice Cap, Syrtis Major, and Tharsis were easily identified on the TV monitor and then readily spotted through the telescope.

  9. Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration

    Science.gov (United States)

    Rummel, J. D.; Conley, C. A.

    2015-12-01

    Beyond the Earth's Moon, Mars is the most studied and to some the most compelling target in the solar system. Mars has the potential to have its own native life, and it has environments that appear quite capable of supporting Earth life. As such, Mars is subject to policies intended to keep Earth organisms from growing on Mars, and missions to Mars are controlled to ensure that we know that no Mars life gets to Earth onboard a returning spacecraft. It seems odd, then, that Mars is also the planet on which we have crashed the most (the Moon still owns the overall title), and is still the only body that has had positive results from a life-detection experiment soft-landed on its surface. Mars has very little water, yet it snows on Mars and we have seen regular night-time frosts and near-surface ice on more than half of the planet. Despite strong UV insolation, Mars also has regular dust storms and winds that can cover spacecraft surfaces with dust that itself may be poisonous, but also can protect microbial life from death by UV light. In spite of surface features and minerals that provide ample evidence of surface water in the past, on today's Mars only relatively short, thin lines that lengthen and retract with the seasons provide a hint that there may be water near the surface of Mars today, but the subsurface is almost totally unexplored by instruments needed to detect water, itself. In the face of these contradictions, the implementation of planetary protection requirements to prevent cross contamination has to proceed with the best available knowledge, and in spite of sometimes substantial costs to spacecraft development and operations. In this paper we will review the status of Mars as a potential (hopefully not inadvertent) abode for life, and describe the measures taken in the past and the present to safeguard the astrobiological study of Mars, and project the requirements for Mars planetary protection in a possible future that involves both sample return

  10. ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Scott, Edward R. D.

    2012-01-01

    In their model for the origin of the parent bodies of iron meteorites, Bottke et al. proposed differentiated planetesimals, formed in 1-2 AU during the first 1.5 Myr, as the parent bodies, and suggested that these objects and their fragments were scattered into the asteroid belt as a result of interactions with planetary embryos. Although viable, this model does not include the effect of a giant planet that might have existed or been growing in the outer regions. We present the results of a concept study where we have examined the effect of a planetary body in the orbit of Jupiter on the early scattering of planetesimals from the terrestrial region into the asteroid belt. We integrated the orbits of a large battery of planetesimals in a disk of planetary embryos and studied their evolutions for different values of the mass of the planet. Results indicate that when the mass of the planet is smaller than 10 M ⊕ , its effects on the interactions among planetesimals and planetary embryos are negligible. However, when the planet mass is between 10 and 50 M ⊕ , simulations point to a transitional regime with ∼50 M ⊕ being the value for which the perturbing effect of the planet can no longer be ignored. Simulations also show that further increase of the mass of the planet strongly reduces the efficiency of the scattering of planetesimals from the terrestrial planet region into the asteroid belt. We present the results of our simulations and discuss their possible implications for the time of giant planet formation.

  11. Shedding light on the eccentricity valley: Gap heating and eccentricity excitation of giant planets in protoplanetary disks

    International Nuclear Information System (INIS)

    Tsang, David; Cumming, Andrew; Turner, Neal J.

    2014-01-01

    We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.

  12. Shedding light on the eccentricity valley: Gap heating and eccentricity excitation of giant planets in protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, David; Cumming, Andrew [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Turner, Neal J., E-mail: dtsang@physics.mcgill.ca [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-02-20

    We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.

  13. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  14. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    Science.gov (United States)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from

  15. A new method for the determination of the mixing ratio hydrogen to helium in the giant planets.

    Science.gov (United States)

    Gautier, D.; Grossman, K.

    1972-01-01

    By using a numerical iterative method, it is demonstrated that the mixing ratio H2/He on the giant planets can be inferred from spectral measurements of the intensity emitted by these planets in the far infrared range. The method is successfully applied to synthetic spectra of Saturn computed from atmospheric thermal models. The effect of random and systematic measurement errors on the determination of the mixing ratio is also studied.

  16. Detection of planet candidates around K giants. HD 40956, HD 111591, and HD 113996

    Science.gov (United States)

    Jeong, G.; Lee, B.-C.; Han, I.; Omiya, M.; Izumiura, H.; Sato, B.; Harakawa, H.; Kambe, E.; Mkrtichian, D.

    2018-02-01

    Aims: The purpose of this paper is to detect and investigate the nature of long-term radial velocity (RV) variations of K-type giants and to confirm planetary companions around the stars. Methods: We have conducted two planet search programs by precise RV measurement using the 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) and the 1.88 m telescope at Okayama Astrophysical Observatory (OAO). The BOAO program searches for planets around 55 early K giants. The OAO program is looking for 190 G-K type giants. Results: In this paper, we report the detection of long-period RV variations of three K giant stars, HD 40956, HD 111591, and HD 113996. We investigated the cause of the observed RV variations and conclude the substellar companions are most likely the cause of the RV variations. The orbital analyses yield P = 578.6 ± 3.3 d, m sin i = 2.7 ± 0.6 MJ, a = 1.4 ± 0.1 AU for HD 40956; P = 1056.4 ± 14.3 d, m sin i = 4.4 ± 0.4 MJ, a = 2.5 ± 0.1 AU for HD 111591; P = 610.2 ± 3.8 d, m sin i = 6.3 ± 1.0 MJ, a = 1.6 ± 0.1 AU for HD 113996. Based on observations made with the BOES at BOAO in Korea and HIDES at OAO in Japan.Tables 3-5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A3

  17. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    Science.gov (United States)

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  18. Producing Distant Planets by Mutual Scattering of Planetary Embryos

    Science.gov (United States)

    Silsbee, Kedron; Tremaine, Scott

    2018-02-01

    It is likely that multiple bodies with masses between those of Mars and Earth (“planetary embryos”) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semimajor axes of hundreds of au. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets, so their semimajor axes are frozen in place. We conduct N-body simulations of this process and its effect on smaller planetesimals in the region of the giant planets and the Kuiper Belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40–70 au, semimajor axis less than 200 au, and inclination less than 30° (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar system ephemerides; (iv) whether or not an embryo has survived to the present day, its dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia >38 au and semimajor axes between 80 and 500 au).

  19. The physical characteristics of the surface of the satellites and rings of giant planets

    Science.gov (United States)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2017-10-01

    The book gives the main results of the study of the optical characteristics of the field diffusely reflected radiation and physical characteristics of the surface of the satellites of giant planets and their rings. The publication is intended for teachers of higher educational institutions, students - graduate students and professionals who specialize in experimental physics and astrophysics and solar system surfaces.

  20. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean?

    Science.gov (United States)

    Oehler, Dorothy Z; Allen, Carlton C

    2012-06-01

    This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this

  1. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    Science.gov (United States)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of

  2. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    International Nuclear Information System (INIS)

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-01-01

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M J ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  3. Wet Mars, Dry Mars

    Science.gov (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  4. ON THE VARIATION OF ZONAL GRAVITY COEFFICIENTS OF A GIANT PLANET CAUSED BY ITS DEEP ZONAL FLOWS

    International Nuclear Information System (INIS)

    Kong Dali; Zhang Keke; Schubert, Gerald

    2012-01-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients J-bar 2n , n=1,2,3,..., without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, ΔJ 2n =J 2n -J-bar 2n , n=1,2,3,..., caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4 . It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., ΔJ 2n >=J-bar 2n for n ≥ 5.

  5. Formation of giant planets

    International Nuclear Information System (INIS)

    Perri, F.

    1975-01-01

    When a planetary core composed of condensed matter is accumulated in the primitive solar nebula, the gas of the nebula becomes gravitationally concentrated as an envelope surrounding the planetary core. Models of such gaseous envelopes have been constructed subject to the assumption that the gas everywhere is on the same adiabat as that in the surrounding nebula. The gaseous envelope extends from the surface of the core to the distance at which the gravitational attraction of core plus envelope becomes equal to the gradient of the gravitational potential in the solar nebula; at this point the pressure and temperature of the gas in the envelope are required to attain the background values characteristic of the solar nebula. In general, as the mass of the condensed core increases, increasing amounts of gas became concentrated in the envelope, and these envelopes are stable against hydrodynamic instabilities. However, the core mass then goes through a maximum and starts to decrease. In most of the models tested the envelopes were hydrodynamically unstable beyond the peak in the core mass. An unstable situation was always created if it was insisted that the core mass contain a larger amount of matter than given by these solutions. For an initial adiabat characterized by a temperature of 450 0 K and a pressure of 5 x 10 -6 atmospheres, the maximum core mass at which instability occurs is approximately 115 earth masses. It is concluded that the giant planets obtained their large amounts of hydrogen and helium by a hydrodynamic collapse process in the solar nebula only after the nebula had been subjected to a considerable period of cooling

  6. Formation of telluric planets and the origin of terrestrial water

    Directory of Open Access Journals (Sweden)

    Raymond Sean

    2014-02-01

    Full Text Available Simulations of planet formation have failed to reproduce Mars’ small mass (compared with Earth for 20 years. Here I will present a solution to the Mars problem that invokes large-scale migration of Jupiter and Saturn while they were still embedded in the gaseous protoplanetary disk. Jupiter first migrated inward, then “tacked” and migrated back outward when Saturn caught up to it and became trapped in resonance. If this tack occurred when Jupiter was at 1.5 AU then the inner disk of rocky planetesimals and embryos is truncated and the masses and orbits of all four terrestrial planet are quantitatively reproduced. As the giant planets migrate back outward they re-populate the asteroid belt from two different source populations, matching the structure of the current belt. C-type material is also scattered inward to the terrestrial planet-forming zone, delivering about the right amount of water to Earth on 10-50 Myr timescales.

  7. Building the giant planet cores by convergent migration of pebble-accreting embryos

    Science.gov (United States)

    Chrenko, Ondrej; Broz, Miroslav

    2016-10-01

    An explanation of the accretion buildup of giant planet cores on rather short (~Myr) time scales remains a long-standing challenge for scenarios of planetary system formation. One of the recently proposed processes that can take part during this evolutionary stage is the convergent Type I migration of Earth-sized embryos towards the zero-torque radius, occurring at an opacity transition within the dusty-gaseous protoplanetary disk (e.g. Pierens et al. 2013). Inconveniently, simulations show that such groups of embryos do not merge easily because they often get locked in mutual mean-motion resonances and consequently form an inward-migrating convoy.We revise this possibility of merging embryos while taking into account their ongoing growth by pebble accretion. Our aim is to check whether the rapid changes of masses combined with the migration of embryos through the feeding zone can break the resonant chain and allow for the giant planet core formation.The environment of the protoplanetary disk is modeled with the 2D FARGO code (Masset 2000), which we modified in order to perform non-isothermal hydrodynamic simulations, assuming flux-limited radiative diffusion (Levermore & Pomraning 1981). The embedded massive bodies are evolved simultaneously in 3D using the hybrid Wisdom-Holman/Gauss-Radau integrator from the Rebound package (Rein & Spiegel 2015). A semi-analytic method is used to evolve the masses of embryos by pebble accretion (e.g. Levison et al. 2015).

  8. FORMATION, SURVIVAL, AND DETECTABILITY OF PLANETS BEYOND 100 AU

    International Nuclear Information System (INIS)

    Veras, Dimitri; Crepp, Justin R.; Ford, Eric B.

    2009-01-01

    Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational instability model for planet formation are hard pressed to form long-period planets in situ. Here, we show that dynamical instabilities among planetary systems that originally formed multiple giant planets much closer to the host star could produce a population of giant planets at large (∼ 10 2 -10 5 AU) separations. We estimate the limits within which these planets may survive, quantify the efficiency of gravitational scattering into both stable and unstable wide orbits, and demonstrate that population analyses must take into account the age of the system. We predict that planet scattering creates detectable giant planets on wide orbits that decreases in number on timescales of ∼ 10 Myr. We demonstrate that several members of such populations should be detectable with current technology, quantify the prospects for future instruments, and suggest how they could place interesting constraints on planet formation models.

  9. Mars Express met l'Europe en orbite autour de la Planete rouge

    CERN Multimedia

    2003-01-01

    "Apres une nuit sans sommeil, le Centre europeen d'operations spatiales (ESOC) de Darmstadt, en Allemagne, a annonce la nouvelle, jeudi 25decembre au matin: la sonde Mars Express a bien ete "capturee" par la gravite de la Planete rouge, tandis que le petit atterrisseur Beagle-2 tentait de se poser dans la plaine d'Isidis Planitia" (1 page).

  10. Cars on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  11. SDSS-III MARVELS Planet Candidate RV Follow-up

    Science.gov (United States)

    Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat

    2014-02-01

    Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.

  12. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.

  13. Meteorologies of brown dwarfs and extrasolar giant planets

    Science.gov (United States)

    Cooper, Curtis Steven

    2006-06-01

    This dissertation explores the consequences of atmospheric dynamics for observations of substellar mass objects (SMOs). Discussed first is the growth of cloud particles of various compositions in brown dwarfs of different surface gravities and effective temperatures. The structure of these objects is calculated with a one-dimensional radiative transfer model. To determine particle sizes, the timescales for microphysical growth processes, including nucleation, coagulation, and coalescence, are compared to the timescale for gravitational sedimentation. The model also allows for sustained uplifting of condensable vapor in convective regions. The results show that particle sizes vary greatly over the range of objects studied. In most cases, clouds on brown dwarfs do not dominate the opacity. Rather, they smooth the emergent spectrum and partially redistribute the radiative energy. The focus then shifts to extrasolar giant planets (EGPs). Results are presented from a three-dimensional model of atmospheric dynamics on the transiting Jupiter-like planet HD 209458b. As a close-in orbiter (known as a "roaster"), HD 209458b is super-heated on its dayside. Due to tidal locking of the interior, the dayside hemisphere faces the star in perpetuity, which leads to very different dynamics than is seen on Jupiter. The flow is characterized by an eastward supersonic jet ( u ~ 4 kms - 1 ) extending from the equator to the mid-latitudes. Temperature contrasts are ~500 K at the photosphere. At 220 mbar, winds blow the hottest regions downstream from the substellar point by ~60°, with direct implications for the infrared light curve. These simulations are extended to the study of carbon chemistry in HD 209458b's atmosphere by coupling the CO/CH 4 reaction kinetics to the dynamics. Disequilibrium results from slow reaction rates at low temperatures and pressures. Effective vertical quenching near the ~3 bar level leads to uniformly high concentrations of CO at the photosphere, even in

  14. Mega-geomorphology: Mars vis a vis Earth

    Science.gov (United States)

    Sharp, R. P.

    1985-01-01

    The areas of chaotic terrain, the giant chasma of the Valles Marineris region, the complex linear and circular depressions of Labyrinthus Noctis on Mars all suggest the possibility of large scale collapse of parts of the martian crust within equatorial and sub equatorial latitudes. It seems generally accepted that the above features are fossil, being perhaps, more than a billion years old. It is possible that parts of Earth's crust experienced similar episodes of large scale collapse sometime early in the evolution of the planet.

  15. Planet mars as seen at the end of the viking mission

    International Nuclear Information System (INIS)

    Snyder, C.W.

    1979-01-01

    In the last 15 years, spacecraft missions to mars, especially Mariner 9 and Viking 1 and 2, have removed from discussion many of the traditional martian topics, such as canals, waves of darkening, and blue clearings. We now have a plethora of hard data about the large variety of geologic features on the planet, about the composition of the surface, the atmosphere, and the polar caps, and about many aspects of Martian meteorology, including temperatures, pressures, tides, dust storms, and the abundance and transport of water vapor. Perhaps the only areas of Martian planetology that have not been spectacularly advanced are those relating to the interior structure, the solar wind interaction, and the existence of living organisms. This paper attempts to summarize most of our new knowledge about the planet

  16. Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Lunine, Jonathan I.; Nicholson, Philip; Raymond, Sean N.

    2018-04-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (~80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past are systematically removed. Closer-in moons on Galilean-moon-like orbits (system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as "planets." The survival rate of moons increases with the host planet mass but is independent of the planet's final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  17. Modules for Experiments in Stellar Astrophysics (MESA): Giant Planets, Oscillations, Rotation, and Massive Stars

    OpenAIRE

    Paxton, Bill; Cantiello, Matteo; Arras, Phil; Bildsten, Lars; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiab...

  18. The accretion of migrating giant planets

    Science.gov (United States)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  19. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Lepine, Sebastien, E-mail: amann@ifa.hawaii.edu [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  20. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    Science.gov (United States)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  1. Some inner satellites of giant planets are still outgassing: Triton, Enceladus, Io

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    Process of atmospheric formation in the Solar system continues. There are three celestial bodies (except Earth) still emitting considerable amounts of volatiles though these bodies' masses do not allow keeping appreciable amounts of emitted volatiles in their vicinity and creating real atmospheres. It was earlier shown that the wave oscillations in form of stationary waves more or less rapidly changing their phases (plus to minus and inversely) sweep out volatiles from planetary depths [1]. These stationary waves, proportional in their amplitudes to the radii of tectonic granules (Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2) and inversely proportional to orbital frequencies, form the planetary surface relief range of which increases with the solar distance [2]. In the opposite direction increases the sweeping out force of these waves and, consequently, atmospheric masses increase [3]. In the satellite systems of the outer giant planets this regularity is preserved in that the inner satellites (even small as Enceladus) surprisingly continue to push out volatiles. To do so, really very thorough washing out of entire body should be executed by very fine oscillations. Very fast orbits (Triton - 5.9 days; Enceladus - 1.37 d.; Io - 1.769 d.) secure this. Titan with rather fast orbit (16 d.) has enough mass and gravity to create and keep an atmosphere. Triton has a tenuous nitrogen atmosphere with small amounts of methane. A part of its crust (the southern "continental" segment) is dotted with geysers believed to erupt nitrogen with some admixture of dust entrained from beneath the surface. The geyser plumes are up to 8 km high. There are many streaks of dark material laid down by the geyser activity. Enceladus spews out icy material from the south pole region called "Tiger stripes". Some of the tiny ice particles go into Saturn orbit, forming the doughnut-shaped E ring ("detached Enceladus' atmosphere"). Io has at the moment more than 150 active volcanoes making

  2. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M * = 0.98 M ☉ ). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕ , based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars

  3. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  4. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  5. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  6. Gap opening by gas accretion and influence on planet populations

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Ndugu, N.; Morbidelli, A.

    2017-09-01

    Giant planets grow and migrate in protoplanetary disks. Because they accrete gas from their horseshoe region until the latter is depleted, we find that giant planets can open a gap before being lost into their central star by type I migration. A reduced type II migration is then enough and necessary to limit the total amount of migration that a giant planet suffers during its formation.

  7. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Liang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Horner, Jonathan [Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052 (Australia); Endl, Michael [McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Carter, B. D., E-mail: rob@unsw.edu.au [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  8. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    International Nuclear Information System (INIS)

    Wittenmyer, Robert A.; Tinney, C. G.; Wang, Liang; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Carter, B. D.

    2015-01-01

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M Jup . These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M Jup and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet

  9. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  10. THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Ireland, Michael J. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hillenbrand, Lynne A. [California Institute of Technology, Department of Astrophysics, MC 249-17, Pasadena, CA 91125 (United States); Martinache, Frantz [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States)

    2012-01-20

    The past decade has seen a revolution in our understanding of protoplanetary disk evolution and planet formation in single-star systems. However, the majority of solar-type stars form in binary systems, so the impact of binary companions on protoplanetary disks is an important element in our understanding of planet formation. We have compiled a combined multiplicity/disk census of Taurus-Auriga, plus a restricted sample of close binaries in other regions, in order to explore the role of multiplicity in disk evolution. Our results imply that the tidal influence of a close ({approx}<40 AU) binary companion significantly hastens the process of protoplanetary disk dispersal, as {approx}2/3 of all close binaries promptly disperse their disks within {approx}<1 Myr after formation. However, prompt disk dispersal only occurs for a small fraction of wide binaries and single stars, with {approx}80%-90% retaining their disks for at least {approx}2-3 Myr (but rarely for more than {approx}5 Myr). Our new constraints on the disk clearing timescale have significant implications for giant planet formation; most single stars have 3-5 Myr within which to form giant planets, whereas most close binary systems would have to form giant planets within {approx}<1 Myr. If core accretion is the primary mode for giant planet formation, then gas giants in close binaries should be rare. Conversely, since almost all single stars have a similar period of time within which to form gas giants, their relative rarity in radial velocity (RV) surveys indicates either that the giant planet formation timescale is very well matched to the disk dispersal timescale or that features beyond the disk lifetime set the likelihood of giant planet formation.

  11. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  12. Extrasolar planets: constraints for planet formation models.

    Science.gov (United States)

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  13. Extrasolar Giant Planet in Earth-like Orbit

    Science.gov (United States)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  14. Constraints on planet formation from Kepler’s multiple planet systems

    Science.gov (United States)

    Quintana, Elisa V.

    2015-01-01

    The recent haul of hundreds of multiple planet systems discovered by Kepler provides a treasure trove of new clues for planet formation theories. The substantial amount of protoplanetary disk mass needed to form the most commonly observed multi-planet systems - small (Earth-sized to mini-Neptune-sized) planets close to their stars - argues against pure in situ formation and suggests that the planets in these systems must have undergone some form of migration. I will present results from numerical simulations of terrestrial planet formation that aim to reproduce the sizes and architecture of Kepler's multi-planet systems, and will discuss the observed resonances and giant planets (or the lack thereof) associated with these systems.

  15. The effects of solar Reimers η on the final destinies of Venus, the Earth, and Mars

    Science.gov (United States)

    Guo, Jianpo; Lin, Ling; Bai, Chunyan; Liu, Jinzhong

    2016-04-01

    Our Sun will lose sizable mass and expand enormously when it evolves to the red giant branch phase and the asymptotic giant branch phase. The loss of solar mass will push a planet outward. On the contrary, solar expansion will enhance tidal effects, and tidal force will drive a planet inward. Will our Sun finally engulf Venus, the Earth, and Mars? In the literature, one can find a large number of studies with different points of view. A key factor is that we do not know how much mass the Sun will lose at the late stages. The Reimers η can describe the efficiency of stellar mass-loss and greatly affect solar mass and solar radius at the late stages. In this work, we study how the final destinies of Venus, the Earth, and Mars can be depending on Reimers η chosen. In our calculation, the Reimers η varies from 0.00 to 0.75, with the minimum interval 0.0025. Our results show that Venus will be engulfed by the Sun and Mars will most probably survive finally. The fate of the Earth is uncertain. The Earth will finally be engulfed by the Sun while η <0.4600, and it will finally survive while η ≥ 0.4600. New observations indicate that the average Reimers η for solar-like stars is 0.477. This implies that Earth may survive finally.

  16. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    International Nuclear Information System (INIS)

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-01-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M ⊕ to 1 M J ) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  17. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  18. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    International Nuclear Information System (INIS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  19. Magnetic fields in giant planet formation and protoplanetary discs

    Science.gov (United States)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  20. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  1. Planet traps and first planets: The critical metallicity for gas giant formation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  2. Planet traps and first planets: The critical metallicity for gas giant formation

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki

    2014-01-01

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R rapid 〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R rapid 〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  3. Star-planet systems as possible progenitors of cataclysmic binaries

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The evolution of a star-planet system is studied, in the phase in which the star becomes a red giant, thus enabling the planet to accrete mass either from its envelope or from its wind. It is found that for planets which are embedded in the envelope, there exists a certain critical initial mass, under which the planets are totally evaporated while spiralling-in. Planets with an initial mass above this critical value are all transformed into low-mass stellar companions to the giant's core. The final masses of these secondaries are almost independent of their initial mass and their initial separation, as long as the latter is greater than a certain critical value. The final masses are essentially determined by the giant's envelope mass. The star-planet separation is found to increase for planets that accrete from the stellar wind, when tidal effects are neglected. Possible consequences of these results on the problem of formation of low-mass cataclysmic binaries are discussed. (author)

  4. Reaching for the red planet

    Science.gov (United States)

    David, L

    1996-05-01

    The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.

  5. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  6. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-01-01

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M tot ∼> 1 M J the final eccentricity distribution remains broad, whereas for M tot ∼ J a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a ≅ 5-10 AU.

  7. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    Science.gov (United States)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  8. Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Heather A.; Ngo, Henry; Johnson, John Asher [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fulton, Benjamin J.; Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Montet, Benjamin T.; Kao, Melodie; Hinkley, Sasha; Morton, Timothy D.; Muirhead, Philip S. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Bakos, Gaspar Á. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Batygin, Konstantin, E-mail: hknutson@caltech.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2014-04-20

    In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M {sub Jup}, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51% ± 10% for companions with masses between 1-13 M {sub Jup} and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.

  9. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    Science.gov (United States)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  10. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  11. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  12. THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362

    International Nuclear Information System (INIS)

    Currie, Thayne; Lada, Charles J.; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.; Plavchan, Peter

    2009-01-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm and Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ ≥ 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical 'transition disks') and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these 'evolved primordial disks' greatly outnumber primordial disks, our results undermine standard arguments in favor of a ∼ 5 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 10 5 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ∼10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (∼>1.4 M sun ) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer

  13. ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION?

    International Nuclear Information System (INIS)

    RamIrez, I.; Roederer, I. U.; Fish, J. R.; Melendez, J.; Cornejo, D.

    2011-01-01

    The atmospheric parameters of the components of the 16 Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high-quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of σ([X/H]) = 0.023 dex. The fact that 16 Cyg A has about four times more lithium than 16 Cyg B is normal considering the slightly different masses of the stars. The abundance patterns of 16 Cyg A and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z > 30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (σ(Δ[X/H]) = 0.018 dex, on average). We find that 16 Cyg A is more metal-rich than 16 Cyg B by Δ[M/H] = +0.041 ± 0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (T C ) is detected. Based on these results, we conclude that if the process of planet formation around 16 Cyg B is responsible for the observed abundance pattern, the formation of gas giants produces a constant downward shift in the photospheric abundance of metals, without a T C correlation. The latter would be produced by the formation of terrestrial planets instead, as suggested by other recent works on precise elemental abundances. Nevertheless, a scenario consistent with these observations requires the convective envelopes of ≅ 1 M sun stars to reach their present-day sizes about three times quicker than predicted by standard stellar evolution models.

  14. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    International Nuclear Information System (INIS)

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ∼10 5 years, the outer embryo can migrate ∼6 AU and grow to roughly 30 M + . This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  15. What Should the FeO Content of a Terrestrial Planet Be?

    Science.gov (United States)

    Jones, John H.

    2013-01-01

    Basalts from the Earth, the Moon, Mars, and Vesta are strongly depleted in elements that prefer to reside in the metallic state (siderophile elements). Therefore, it is believed that all these bodies have metallic cores. We do not yet have siderophile element analyses of venusian or mercurian basalts, but we assume that Venus, too, as a terrestrial planet, has a metallic core. For the Earth, Moon, Mercury, and Mars, the moments-of-inertia of these bodies are consistent with metallic cores of various sizes. Because Venus rotates so slowly, it may be difficult to determine the moment-of-inertia of Venus in order to confirm this assumption. However, despite many possible complexities, it seems likely that most of the major and minor terrestrial planets have experienced some sort of metal/silicate equilibration, and we will use this as a boundary condition. One immediate contrast between the Earth and Moon is the difference in FeO content between lunar and terrestrial basalts. Both bodies presumably formed near 1 AU and formed from the same feeding zone of planetesimals, judging by their oxygen isotopes [13]. If, for example, the Moon formed from the Earth by a giant impact, then this event must have occurred before high-pressure equilibria had the opportunity to deplete the Earth s mantle in FeO. Alternatively, the bulk silicate Moon may be dominated by material from the impactor. Regardless, it would be useful to know the pressures where FeO incorporation into a metallic core is not of interest. If the Giant Impact hypothesis is correct, this should set an upper limit for the size of the proto-Earth at the time of the impact.

  16. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    Science.gov (United States)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  17. REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS

    International Nuclear Information System (INIS)

    Beaulieu, J.-P.; Batista, V.; Marquette, J.-B.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H -band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of M lens = 1.06 ± 0.05 M ⊙ at a distance of D lens = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 M Jup and 0.86 ± 0.06 M Jup , with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  18. Pioneering the red planet; adventures on Martian soil

    NARCIS (Netherlands)

    Van der Peijl, I.; Veraart, M.

    2013-01-01

    Mars has always obsessed humankind - the Red planet, the ‘New Earth’. And with the recent successful landing of NASA’s Curiosity rover, Mars is closer than ever. Ever since 1960, we have actively been sending probes and rovers to observe the planet, but not without defeat. The road to the red planet

  19. Direct Imaging of Warm Extrasolar Planets

    International Nuclear Information System (INIS)

    Macintosh, B

    2005-01-01

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  20. Tandem planet formation for solar system-like planetary systems

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available We present a new united theory of planet formation, which includes magneto-rotational instability (MRI and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is the source for the inner volatile-free rocky planets. Our study spans disks with a various range of accretion rates, and we find that tandem planet formation can occur for M˙=10−7.3-10−6.9M⊙yr−1. The rocky planets form between 0.4–2 AU, while the icy planets form between 6–30 AU; no planets form in 2–6 AU region for any accretion rate. This is consistent with the gap in the solid component distribution in the solar system, which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2–6 AU. The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet. Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions. Reactions between reductive minerals, such as schreibersite (Fe3P, and water are essential to supply energy and nutrients for primitive life on Earth.

  1. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  2. Debris disks as signposts of terrestrial planet formation

    Science.gov (United States)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by

  3. History of Mars

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The origin and early history of Mars and the relationship between Mars and the other planets are reviewed. The solar system formation and planetary differentiation are examined using data from planetary missions. Different views of Mars are presented, showing how ideas about the planet have changed as the amount of available observational data has increased. Viking aerography and surface characterization are discussed, including the nature of specific atmospheric components and the implications of surface phenomena. Models for the planetary formation and accretion processes are considered. The value of future missions to Mars is stressed

  4. N-body simulations of planet formation: understanding exoplanet system architectures

    Science.gov (United States)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  5. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  6. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  7. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    International Nuclear Information System (INIS)

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-01-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  8. Planets a very short introduction

    CERN Document Server

    Rothery, David A

    2010-01-01

    Planets: A Very Short Introduction demonstrates the excitement, uncertainties, and challenges faced by planetary scientists, and provides an overview of our Solar System and its origins, nature, and evolution. Terrestrial planets, giant planets, dwarf planets and various other objects such as satellites (moons), asteroids, trans-Neptunian objects, and exoplanets are discussed. Our knowledge about planets has advanced over the centuries, and has expanded at a rapidly growing rate in recent years. Controversial issues are outlined, such as What qualifies as a planet? What conditions are required for a planetary body to be potentially inhabited by life? Why does Pluto no longer have planet status? And Is there life on other planets?

  9. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  10. Innocent Bystanders: Orbital Dynamics of Exomoons During Planet–Planet Scattering

    Science.gov (United States)

    Hong, Yu-Cian; Raymond, Sean N.; Nicholson, Philip D.; Lunine, Jonathan I.

    2018-01-01

    Planet–planet scattering is the leading mechanism to explain the broad eccentricity distribution of observed giant exoplanets. Here we study the orbital stability of primordial giant planet moons in this scenario. We use N-body simulations including realistic oblateness and evolving spin evolution for the giant planets. We find that the vast majority (∼80%–90% across all our simulations) of orbital parameter space for moons is destabilized. There is a strong radial dependence, as moons past ∼ 0.1 {R}{Hill} are systematically removed. Closer-in moons on Galilean-moon-like orbits (<0.04 R Hill) have a good (∼20%–40%) chance of survival. Destabilized moons may undergo a collision with the star or a planet, be ejected from the system, be captured by another planet, be ejected but still orbiting its free-floating host planet, or survive on heliocentric orbits as “planets.” The survival rate of moons increases with the host planet mass but is independent of the planet’s final (post-scattering) orbits. Based on our simulations, we predict the existence of an abundant galactic population of free-floating (former) moons.

  11. Mars At Opposition

    Science.gov (United States)

    1995-01-01

    These NASA Hubble Space Telescope views provide the most detailed complete global coverage of the red planet Mars ever seen from Earth. The pictures were taken on February 25, 1995, when Mars was at a distance of 65 million miles (103 million km).To the surprise of researchers, Mars is cloudier than seen in previous years. This means the planet is cooler and drier, because water vapor in the atmosphere freezes out to form ice-crystal clouds. Hubble resolves Martian surface features with a level of detail only exceeded by planetary probes, such as impact craters and other features as small as 30 miles (50 kilometers) across.[Tharsis region] - A crescent-shaped cloud just right of center identifies the immense shield volcano Olympus Mons, which is 340 miles (550 km) across at its base. Warm afternoon air pushed up over the summit forms ice-crystal clouds downwind from the volcano. Farther to the east (right) a line of clouds forms over a row of three extinct volcanoes which are from north to south: Ascraeus Mons, Pavonis Mons, Arsia Mons. It's part of an unusual, recurring 'W'-shaped cloud formation that once mystified earlier ground-based observers.[Valles Marineris region] - The 16 mile-high volcano Ascraeus Mons pokes through the cloud deck along the western (left) limb of the planet. Other interesting geologic features include (lower left) Valles Marineris, an immense rift valley the length of the continental United States. Near the image center lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom) appears white due to clouds or frost.[Syrtis Major region] - The dark 'shark fin' feature left of center is Syrtis Major. Below it the giant impact basin Hellas. Clouds cover several great volcanos in the Elysium region near the eastern (right) limb. As clearly seen in the Hubble images, past dust storms in Mars' southern hemisphere have scoured the plains of fine light dust and transported the dust northward. This

  12. PlanetServer: Innovative approaches for the online analysis of hyperspectral satellite data from Mars

    Science.gov (United States)

    Oosthoek, J. H. P.; Flahaut, J.; Rossi, A. P.; Baumann, P.; Misev, D.; Campalani, P.; Unnithan, V.

    2014-06-01

    PlanetServer is a WebGIS system, currently under development, enabling the online analysis of Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral data from Mars. It is part of the EarthServer project which builds infrastructure for online access and analysis of huge Earth Science datasets. Core functionality consists of the rasdaman Array Database Management System (DBMS) for storage, and the Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) for data querying. Various WCPS queries have been designed to access spatial and spectral subsets of the CRISM data. The client WebGIS, consisting mainly of the OpenLayers javascript library, uses these queries to enable online spatial and spectral analysis. Currently the PlanetServer demonstration consists of two CRISM Full Resolution Target (FRT) observations, surrounding the NASA Curiosity rover landing site. A detailed analysis of one of these observations is performed in the Case Study section. The current PlanetServer functionality is described step by step, and is tested by focusing on detecting mineralogical evidence described in earlier Gale crater studies. Both the PlanetServer methodology and its possible use for mineralogical studies will be further discussed. Future work includes batch ingestion of CRISM data and further development of the WebGIS and analysis tools.

  13. Addressing the statistical mechanics of planet orbits in the solar system

    Science.gov (United States)

    Mogavero, Federico

    2017-10-01

    The chaotic nature of planet dynamics in the solar system suggests the relevance of a statistical approach to planetary orbits. In such a statistical description, the time-dependent position and velocity of the planets are replaced by the probability density function (PDF) of their orbital elements. It is natural to set up this kind of approach in the framework of statistical mechanics. In the present paper, I focus on the collisionless excitation of eccentricities and inclinations via gravitational interactions in a planetary system. The future planet trajectories in the solar system constitute the prototype of this kind of dynamics. I thus address the statistical mechanics of the solar system planet orbits and try to reproduce the PDFs numerically constructed by Laskar (2008, Icarus, 196, 1). I show that the microcanonical ensemble of the Laplace-Lagrange theory accurately reproduces the statistics of the giant planet orbits. To model the inner planets I then investigate the ansatz of equiprobability in the phase space constrained by the secular integrals of motion. The eccentricity and inclination PDFs of Earth and Venus are reproduced with no free parameters. Within the limitations of a stationary model, the predictions also show a reasonable agreement with Mars PDFs and that of Mercury inclination. The eccentricity of Mercury demands in contrast a deeper analysis. I finally revisit the random walk approach of Laskar to the time dependence of the inner planet PDFs. Such a statistical theory could be combined with direct numerical simulations of planet trajectories in the context of planet formation, which is likely to be a chaotic process.

  14. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  15. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  16. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    Science.gov (United States)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  17. A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan

    Science.gov (United States)

    Estrada, P. R.; Mosqueira, I.

    2005-01-01

    Given our presently inadequate understanding of the turbulent state of the solar and planetary nebulae, we believe the way to make progress in satellite formation is to consider two end member models that avoid over-reliance on specific choices of the turbulence (alpha), which is essentially a free parameter. The first end member model postulates turbulence decay once giant planet accretion ends. If so, Keplerian disks must eventually pass through the quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk.

  18. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  19. Histories of terrestrial planets

    International Nuclear Information System (INIS)

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  20. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  1. Life Beyond the Planet of Origin and Implications for the Search for Life on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    2015-01-01

    Outer space is vast, cold, devoid of matter, radiation filled with essentially no gravity. These factors present an environmental challenge for any form of life. Earth's biosphere has evolved for more than 3 billion years shielded from the hostile environment of outer space by the protective blanket of the atmosphere and magnetosphere. Space is a nutritional wasteland with no liquid water and readily available organic carbon. Moving beyond a life's planet of origin requires a means for transport, the ability to withstand transport, and the ability to colonize, thrive and ultimately evolve in the new environment. Can life survive beyond its home planet? The key to answering this question is to identify organisms that first have the ability to withstand space radiation, space vacuum desiccation and time in transit, and second the ability to grow in an alien environment. Within the last 60 years space technology allowed us to transport life beyond Earth's protective shield so we may study, in situ, their responses to selected conditions of space. To date a variety of microbes ranging from viruses, to Bacteria, to Archaea, to Eukarya have been tested in the space environment. Most died instantly, but not all. These studies revealed that ultraviolet radiation is the near-term lethal agent, while hard radiation is the long-term lethal agent when the organism is shielded from ultraviolet radiation. In fact, bacterial spores, halophilic cyanobacteria and Archaea as well as some lichens survive very well if protected from ultraviolet radiation [1]. Some microbes, then, may be able to survive the trip in outer space to Mars on a spacecraft or in a meteorite. Once on Mars can a terrestrial microbe survive? Although the conditions on Mars are not as harsh as those in space, they are not hospitable for a terrestrial microbe. Studies, however, have shown that certain microbes that can survive in space for several years may also be able to survive on Mars if protected from

  2. A desert of gas giant planets beyond tens of au: from feast to famine

    Science.gov (United States)

    Nayakshin, Sergei

    2017-09-01

    It is argued that frequency of gravitational fragmentation of young massive discs around FGK stars may be much higher than commonly believed. Numerical simulations presented here show that survival of gas giant planets at large separations from their host stars is very model dependent. Low-mass clumps in slowly cooling discs are found to accrete gas very slowly and migrate inward very rapidly in the well-known type I regime (no gap open). They are either tidally disrupted or survive as planets inwards of about 10 au. In this regime, probability of clump survival at large separations is extremely low, perhaps as low as 0.001, requiring up to a dozen clumps per star early on to explain the observed population. In contrast, initially massive clumps or low-mass clumps born in rapidly cooling discs accrete gas rapidly. Opening deep gaps in the disc, they migrate in the much slower type II regime and are more likely to survive beyond tens of au. The frequency of disc fragmentation in this case is at the per cent level if the clump growth saturates at brown dwarf masses but may be close to 100 per cent if clumps evolve into low stellar mass companions. Taking these theoretical uncertainties into account, current observations limit the number of planet mass clumps hatched by young massive discs around FGK stars to between 0.01 and ˜10. A deeper theoretical understanding of such discs is needed to narrow this uncertainty down.

  3. Origin of the Earth and planets

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1982-01-01

    The present state of the Schmidt hypothesis on planets formation by combining cold solid particles and bodies in the protoplanet dust cloud is briefly outlined in a popular form. The most debatable problems of the planet cosmogony: formation of and processes in a protoplanet cloud, results of analytical evaluations and numerical simulation of origin of the Earth and planets-giants are discussed [ru

  4. Homes for extraterrestrial life: extrasolar planets.

    Science.gov (United States)

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  5. Radio images of the planets

    International Nuclear Information System (INIS)

    De Pater, I.

    1990-01-01

    Observations at radio wavelengths make possible detailed studies of planetary atmospheres, magnetospheres, and surface layers. The paper addresses the question of what can be learned from interferometric radio images of planets. Results from single-element radio observations are also discussed. Observations of both the terrestrial and the giant planets are considered. 106 refs

  6. MMT/AO 5 μm IMAGING CONSTRAINTS ON THE EXISTENCE OF GIANT PLANETS ORBITING FOMALHAUT AT ∼13-40 AU

    International Nuclear Information System (INIS)

    Kenworthy, Matthew A.; Hinz, Philip M.; Meyer, Michael R.; Miller, Douglas L.; Sivanandam, Suresh; Freed, Melanie; Mamajek, Eric E.; Heinze, Aren N.

    2009-01-01

    A candidate ∼ Jup extrasolar planet was recently imaged by Kalas et al. using Hubble Space Telescope/Advanced Camera for Surveys and Keck II at 12.''7 (96 AU) separation from the nearby (d = 7.7 pc) young (∼200 Myr) A2V star Fomalhaut. Here, we report results from M-band (4.8 μm) imaging of Fomalhaut on 2006 December 5 using the Clio IR imager on the 6.5 m MMT with the adaptive secondary mirror. Our images are sensitive to giant planets at orbital radii comparable to the outer solar system (∼10-40 AU). Comparing our 5σ M-band photometric limits to theoretical evolutionary tracks for substellar objects, our results rule out the existence of planets with masses >2 M Jup from ∼13 to 40 AU and objects >13 M Jup from ∼8 to 40 AU.

  7. THE FIRST H-BAND SPECTRUM OF THE GIANT PLANET β PICTORIS b

    International Nuclear Information System (INIS)

    Chilcote, Jeffrey; Fitzgerald, Michael P.; Larkin, James E.; Barman, Travis; Graham, James R.; Kalas, Paul; Macintosh, Bruce; Ingraham, Patrick; Bauman, Brian; Burrows, Adam S.; Cardwell, Andrew; Hartung, Markus; Hibon, Pascale; De Rosa, Robert J.; Dillon, Daren; Gavel, Donald; Doyon, René; Dunn, Jennifer; Erikson, Darren; Goodsell, Stephen J.

    2015-01-01

    Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ∼45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). These values agree well with ''hot-start'' predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr

  8. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    Science.gov (United States)

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  9. The occurrence of Jovian planets and the habitability of planetary systems

    OpenAIRE

    Lunine, Jonathan I.

    2001-01-01

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the am...

  10. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Stevenson, David J.

    2013-01-01

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M ⊕ , multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  11. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. VI. HD 238914 and TYC 3318-01333-1: two more Li-rich giants with planets

    Science.gov (United States)

    Adamów, M.; Niedzielski, A.; Kowalik, K.; Villaver, E.; Wolszczan, A.; Maciejewski, G.; Gromadzki, M.

    2018-05-01

    Context. We present the latest results of our search for planets with HARPS-N at the 3.6 m Telescopio Nazionale Galileo under the Tracking Advanced Planetary Systems project: an in-depth study of the 15 most Li abundant giants from the PennState - Toruń Planet Search sample. Aims: Our goals are first, to obtain radial velocities of the most Li-rich giants we identified in our sample to search for possible low-mass substellar companions, and second, to perform an extended spectral analysis to define the evolutionary status of these stars. Methods: This work is based on high-resolution spectra obtained with the Hobby-Eberly Telescope and its High Resolution Spectrograph, and with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. Two stars, HD 181368 and HD 188214, were also observed with UVES at the VLT to determine beryllium abundances. Results: We report i) the discovery of two new planetary systems around the Li-rich giant stars: HD 238914 and TYC 3318-01333-1 (a binary system); ii) reveal a binary Li-rich giant, HD 181368; iii) although our current phase coverage is not complete, we suggest the presence of planetary mass companions around TYC 3663-01966-1 and TYC 3105-00152-1; iv) we confirm the previous result for BD+48 740 and present updated orbital parameters, and v) we find a lack of a relation between the Li enhancement and the Be abundance for the stars HD 181368 and HD 188214, for which we acquired blue spectra. Conclusions: We found seven stars with stellar or potential planetary companions among the 15 Li-rich giant stars. The binary star frequency of the Li-rich giants in our sample appears to be normal, but the planet frequency is twice that of the general sample, which suggests a possible connection between hosting a companion and enhanced Li abundance in giant stars. We also found most of the companions orbits to be highly eccentric. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the

  12. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities

    NARCIS (Netherlands)

    Carter, J.A.; Agol, E.; Chaplin, W.J.; Basu, S.; Bedding, T.R.; Buchhave, L.A.; Christensen-Dalsgaard, J.; Deck, K.M.; Elsworth, Y.; Fabrycky, D.C.; Ford, E.B.; Fortney, J.J.; Hale, S.J.; Handberg, R.; Hekker, S.; Holman, M.J.; Huber, D.; Karoff, C.; Kawaler, S.D.; Kjeldsen, H.; Lissauer, J.J.; Lopez, E.D.; Lund, M.N.; Lundkvist, M.; Metcalfe, T.S.; Miglio, A.; Rogers, L.A.; Stello, D.; Borucki, W.J.; Bryson, S.; Christiansen, J.L.; Cochran, W.D.; Geary, J.C.; Gilliland, R.L.; Haas, M.R.; Hall, J.; Howard, A.W.; Jenkins, J.M.; Klaus, T.; Koch, D.G.; Latham, D.W.; MacQueen, P.J.; Sasselov, D.; Steffen, J.H.; Twicken, J.D.; Winn, J.N.

    2012-01-01

    In the solar system, the planets’ compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets’ orbits can

  13. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  14. Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. A.; Agol, E.; Chaplin, W. J.; Basu, S.; Bedding, T. R.; Buchhave, L. A.; Christensen-Dalsgaard, J.; Deck, K. M.; Elsworth, Y.; Fabrycky, D. C.; Ford, E. B.; Fortney, J. J.; Hale, S. J.; Handberg, R.; Hekker, S.; Holman, M. J.; Huber, D.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lissauer, J. J.; Lopez, E. D.; Lund, M. N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Rogers, L. A.; Stello, D.; Borucki, W. J.; Bryson, S.; Christiansen, J. L.; Cochran, W. D.; Geary, J. C.; Gilliland, R. L.; Haas, M. R.; Hall, J.; Howard, A. W.; Jenkins, J. M.; Klaus, T.; Koch, D. G.; Latham, D. W.; MacQueen, P. J.; Sasselov, D.; Steffen, J. H.; Twicken, J. D.; Winn, J. N.

    2012-06-21

    In the Solar system the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal, and that planets' orbits can change substantially after their formation. Here we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10%, and densities differing by a factor of 8. One planet is likely a rocky `super-Earth', whereas the other is more akin to Neptune. These planets are thirty times more closely spaced--and have a larger density contrast--than any adjacent pair of planets in the Solar system.

  15. Observability of planet-disc interactions in CO kinematics

    Science.gov (United States)

    Pérez, Sebastián; Casassus, S.; Benítez-Llambay, P.

    2018-06-01

    Empirical evidence of planets in gas-rich circumstellar discs is required to constrain giant planet formation theories. Here we study the kinematic patterns which arise from planet-disc interactions and their observability in CO rotational emission lines. We perform three-dimensional hydrodynamical simulations of single giant planets, and predict the emergent intensity field with radiative transfer. Pressure gradients at planet-carved gaps, spiral wakes and vortices bear strong kinematic counterparts. The iso-velocity contours in the CO(2-1) line centroids vo reveal large-scale perturbations, corresponding to abrupt transitions from below sub-Keplerian to super-Keplerian rotation along with radial and vertical flows. The increase in line optical depth at the edge of the gap also modulates vo, but this is a mild effect compared to the dynamical imprint of the planet-disc interaction. The large-scale deviations from the Keplerian rotation thus allow the planets to be indirectly detected via the first moment maps of molecular gas tracers, at ALMA angular resolutions. The strength of these deviations depends on the mass of the perturber. This initial study paves the way to eventually determine the mass of the planet by comparison with more detailed models.

  16. A TIDALLY DESTRUCTED MASSIVE PLANET AS THE PROGENITOR OF THE TWO LIGHT PLANETS AROUND THE sdB STAR KIC 05807616

    International Nuclear Information System (INIS)

    Bear, Ealeal; Soker, Noam

    2012-01-01

    We propose that the two newly detected Earth-size planets around the hot B subdwarf star KIC 05807616 are remnant of the tidally destructed metallic core of a massive planet. A single massive gas-giant planet was spiralling-in inside the envelope of the red giant branch star progenitor of the extreme horizontal branch (EHB) star KIC 05807616. The released gravitational energy unbound most of the stellar envelope, turning it into an EHB star. The massive planet reached the tidal-destruction radius of ∼1 R ☉ from the core, where the planet's gaseous envelope was tidally removed. In our scenario, the metallic core of the massive planet was tidally destructed into several Earth-like bodies immediately after the gaseous envelope of the planet was removed. Two, and possibly more, Earth-size fragments survived at orbital separations of ∼> 1 R ☉ within the gaseous disk. The bodies interact with the disk and among themselves, and migrated to reach orbits close to a 3:2 resonance. These observed planets can have a planetary magnetic field about 10 times as strong as that of Earth. This strong magnetic field can substantially reduce the evaporation rate from the planets and explain their survivability against the strong UV radiation of the EHB star.

  17. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  18. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    International Nuclear Information System (INIS)

    Kurosaki, Kenji; Ikoma, Masahiro

    2017-01-01

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elements include condensable species such as H 2 O, NH 3 , and CH 4 , which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.

  19. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Kenji; Ikoma, Masahiro, E-mail: kurosaki.k@nagoya-u.jp, E-mail: ikoma@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-06-01

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elements include condensable species such as H{sub 2}O, NH{sub 3}, and CH{sub 4}, which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.

  20. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  1. Infrared radiation from an extrasolar planet

    OpenAIRE

    Deming, Drake; Seager, Sara; Richardson, L. Jeremy; Harrington, Joseph

    2005-01-01

    A class of extrasolar giant planets - the so-called `hot Jupiters' - orbit within 0.05 AU of their primary stars. These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero o...

  2. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    Science.gov (United States)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  3. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    International Nuclear Information System (INIS)

    Duffell, Paul C.; Chiang, Eugene

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions

  4. Finding A Planet Through the Dust

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral

  5. Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Zahnle, Kevin J.; Marley, Mark S., E-mail: Kevin.J.Zahnle@NASA.gov, E-mail: Mark.S.Marley@NASA.gov [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2014-12-10

    We address disequilibrium abundances of some simple molecules in the atmospheres of solar composition brown dwarfs and self-luminous extrasolar giant planets using a kinetics-based one-dimensional atmospheric chemistry model. Our approach is to use the full kinetics model to survey the parameter space with effective temperatures between 500 K and 1100 K. In all of these worlds, equilibrium chemistry favors CH{sub 4} over CO in the parts of the atmosphere that can be seen from Earth, but in most disequilibrium favors CO. The small surface gravity of a planet strongly discriminates against CH{sub 4} when compared to an otherwise comparable brown dwarf. If vertical mixing is like Jupiter's, the transition from methane to CO occurs at 500 K in a planet. Sluggish vertical mixing can raise this to 600 K, but clouds or more vigorous vertical mixing could lower this to 400 K. The comparable thresholds in brown dwarfs are 1100 ± 100 K. Ammonia is also sensitive to gravity, but, unlike CH{sub 4}/CO, the NH{sub 3}/N{sub 2} ratio is insensitive to mixing, which makes NH{sub 3} a potential proxy for gravity. HCN may become interesting in high-gravity brown dwarfs with very strong vertical mixing. Detailed analysis of the CO-CH{sub 4} reaction network reveals that the bottleneck to CO hydrogenation goes through methanol, in partial agreement with previous work. Simple, easy to use quenching relations are derived by fitting to the complete chemistry of the full ensemble of models. These relations are valid for determining CO, CH{sub 4}, NH{sub 3}, HCN, and CO{sub 2} abundances in the range of self-luminous worlds we have studied, but may not apply if atmospheres are strongly heated at high altitudes by processes not considered here (e.g., wave breaking).

  6. CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS?

    International Nuclear Information System (INIS)

    Spiegel, David S.; Silverio, Katie; Burrows, Adam

    2009-01-01

    Spitzer Space Telescope infrared observations indicate that several transiting extrasolar giant planets have thermal inversions in their upper atmospheres. Above a relative minimum, the temperature appears to increase with altitude. Such an inversion probably requires a species at high altitude that absorbs a significant amount of incident optical/UV radiation. Some authors have suggested that the strong optical absorbers titanium oxide (TiO) and vanadium oxide (VO) could provide the needed additional opacity, but if regions of the atmosphere are cold enough for Ti and V to be sequestered into solids they might rain out and be severely depleted. With a model of the vertical distribution of a refractory species in gaseous and condensed form, we address the question of whether enough TiO (or VO) could survive aloft in an irradiated planet's atmosphere to produce a thermal inversion. We find that it is unlikely that VO could play a critical role in producing thermal inversions. Furthermore, we find that macroscopic mixing is essential to the TiO hypothesis; without macroscopic mixing, such a heavy species cannot persist in a planet's upper atmosphere. The amount of macroscopic mixing that is required depends on the size of condensed titanium-bearing particles that form in regions of an atmosphere that are too cold for gaseous TiO to exist. We parameterize the macroscopic mixing with the eddy diffusion coefficient K zz and find, as a function of particle size a, the values that K zz must assume on the highly irradiated planets HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b to loft enough titanium to the upper atmosphere for the TiO hypothesis to be correct. On these planets, we find that for TiO to be responsible for thermal inversions K zz must be at least a few times 10 7 cm 2 s -1 , even for a = 0.1 μm, and increases to nearly 10 11 cm 2 s -1 for a = 10 μm. Such large values may be problematic for the TiO hypothesis, but are not impossible.

  7. Testing the Planet-Metallicity Correlation in M-dwarfs with Gemini GNIRS Spectra

    Science.gov (United States)

    Hobson, M. J.; Jofré, E.; García, L.; Petrucci, R.; Gómez, M.

    2018-04-01

    While the planet-metallicity correlation for FGK main-sequence stars hosting giant planets is well established, it is less clear for M-dwarf stars. We determine stellar parameters and metallicities for 16 M-dwarf stars, 11 of which host planets, with near-infrared spectra from the Gemini Near-Infrared Spectrograph (GNIRS). We find that M-dwarfs with planets are preferentially metal-rich compared to those without planets. This result is supported by the analysis of a larger catalogue of 18 M stars with planets and 213 M stars without known planets T15, and demonstrates the utility of GNIRS spectra to obtain reliable stellar parameters of M stars. We also find that M dwarfs with giant planets are preferentially more metallic than those with low-mass planets, in agreement with previous results for solar-type stars. These results favor the core accretion model of planetary formation.

  8. KEPLER-68: THREE PLANETS, ONE WITH A DENSITY BETWEEN THAT OF EARTH AND ICE GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gilliland, Ronald L. [Department of Astronomy, and Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Rowe, Jason F.; Henze, Christopher E.; Lissauer, Jack J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Rogers, Leslie [California Institute of Technology, Pasadena, CA 91125 (United States); Torres, Guillermo; Fressin, Francois; Desert, Jean-Michel [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lopez, Eric D. [University of California, Santa Cruz, CA 95064 (United States); Buchhave, Lars A. [Niels Bohr Institute, Copenhagen University (Denmark); Christensen-Dalsgaard, Jorgen; Handberg, Rasmus [Stellar Astrophysics Centre, Department of Physics and Astronomy, DK-8000 Aarhus C (Denmark); Jenkins, Jon M. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, William J.; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Basu, Sarbani [Department of Astronomy, Yale University, 260 Whitney Ave., New Haven, CT 06511 (United States); Metcalfe, Travis S. [White Dwarf Research Corporation, Boulder, CO 80301 (United States); Hekker, Saskia, E-mail: gillil@stsci.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam, Science Park 904 (Netherlands); and others

    2013-03-20

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has M{sub P}=8.3{sup +2.2}{sub -2.4} M{sub Circled-Plus }, R{sub P}=2.31{sup +0.06}{sub -0.09} R{sub Circled-Plus }, and {rho}{sub P}=3.32{sup +0.86}{sub -0.98} g cm{sup -3}, giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized, with a radius R{sub P}=0.953{sup +0.037}{sub -0.042} R{sub Circled-Plus} and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 {+-} 15 days and a minimum mass of M{sub P}sin i = 0.947 {+-} 0.035M{sub J} . Power spectra of the Kepler photometry at one minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably T{sub eff} = 5793 {+-} 74 K, M{sub *} = 1.079 {+-} 0.051 M{sub Sun }, R{sub *} = 1.243 {+-} 0.019 R{sub Sun }, and {rho}{sub *} = 0.7903 {+-} 0.0054 g cm{sup -3}, all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest that it is likely composed of rock and water, or has a H and He envelope to yield its density {approx}3 g cm{sup -3}.

  9. Accretion and primary differentiation of Mars

    International Nuclear Information System (INIS)

    Drake, M.J.

    1988-01-01

    In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU

  10. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mousis, Olivier [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, F-25010 Besancon Cedex (France); Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lunine, Jonathan I., E-mail: nmadhu@astro.princeton.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions

  11. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-01-01

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a ∼> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (∼10 M Jup ) in their disks.

  12. GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Hori, Yasunori; Lin, D. N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Asphaug, Erik, E-mail: sliu26@ucsc.edu, E-mail: yahori@ucsc.edu, E-mail: lin@ucolick.org, E-mail: easphaug@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-20

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super

  13. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto

    2012-04-18

    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  14. Life on Mars? II. Physical restrictions

    Science.gov (United States)

    Mancinelli, R. L.; Banin, A.

    1995-01-01

    The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.

  15. Giant Impacts on Earth-Like Worlds

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  16. Planet Mars story of another world

    CERN Document Server

    Forget, François; Lognonné, Philippe

    2008-01-01

    Give an insight of Mars by adopting an outline based on history rather than on subtopic (atmosphere, surface, interior). This work looks at its evolution, and incorporates the results from the space missions of Mars Express, Spirit and Opportunity. It also examines its formation from the ashes of dead stars, more than 4 5 billion years ago.

  17. The science case of the CHEOPS planet finder for VLT

    NARCIS (Netherlands)

    Gratton, R.; Feldt, M.; Schmid, H.M.; Brandner, W.; Hippler, S.; Neuhauser, R.; Quirrenbach, A.; Desidera, S.; Turatto, M.; Stam, D.M.; Hasinger, G.; Turner, M.J.L.

    2004-01-01

    The CHEOPS Planet Finder is one of the proposed second generation instruments for the VLT. Its purpose is to image and characterize giant extrasolar planets in different phases of their evolution: young, warm planets as well as old, cold ones. Imaging the last ones is the most challenging task

  18. Reducing the risk to Mars: The gas core nuclear rocket

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions

  19. Anelastic tidal dissipation in multi-layer planets

    Science.gov (United States)

    Remus, F.; Mathis, S.; Zahn, J.-P.; Lainey, V.

    2012-09-01

    Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on its internal structure. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets interiors, whose properties are still quite uncertain. Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We derive the different Love numbers that describe its deformation and discuss the dependence of the quality factor Q on the chosen anelastic model and the size of the core. Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the solid dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we present the way to implement the results in the equations that describe the dynamical evolution of planetary systems.

  20. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  1. Extrasolar planets formation, detection and dynamics

    CERN Document Server

    Dvorak, Rudolf

    2008-01-01

    This latest, up-to-date resource for research on extrasolar planets covers formation, dynamics, atmospheres and detection. After a look at the formation of giant planets, the book goes on to discuss the formation and dynamics of planets in resonances, planets in double stars, atmospheres and habitable zones, detection via spectra and transits, and the history and prospects of ESPs as well as satellite projects.Edited by a renowned expert in solar system dynamics with chapters written by the leading experts in the method described -- from the US and Europe -- this is an ideal textbook for g

  2. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    International Nuclear Information System (INIS)

    Ida, S.; Lin, D. N. C.; Nagasawa, M.

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits

  3. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  4. The Orbital and Planetary Phase Variations of Jupiter-sized Planets: Characterizing Present and Future Giants

    Science.gov (United States)

    Mayorga, Laura C.; Jackiewicz, Jason; Rages, Kathy; West, Robert; Knowles, Ben; Lewis, Nikole K.; Marley, Mark S.

    2018-01-01

    Knowledge of how the brightness and color of a planet varies with viewing angle is essential for the design of future direct imaging missions and deriving constraints on atmospheric properties. However, measuring the phase curves for the solar system gas giants is impossible from the ground. Using data Cassini/ISS obtained during its flyby of Jupiter, I measured Jupiter's phase curve in six bands spanning 400-1000 nm. I found that Jupiter's brightness is less than that of a Lambertian scatterer and that its color varies more with phase angle than predicted by theoretical models. For hot Jupiters, the light from the planet cannot be spatially isolated from that of the star. As a result, determining the planetary phase curve requires removing the phase-dependent contributions from the host star. I consider the effect of varying the stellar model and present a parameterization of the Doppler beaming amplitude that depends upon the planetary mass, orbital period, and the stellar temperature. I consider the detectability of Doppler beaming amplitudes with data from TESS and find that TESS will be less sensitive to this signal than Kepler. This work was supported by the National Science Foundation Graduate Research Fellowship Program and the New Mexico Higher Education Department Graduate Scholarship Program.

  5. Recent Variability Observations of Solar System Giant Planets: Fresh Context for Understanding Exoplanet and Brown Dwarf Weather

    Science.gov (United States)

    Marley, Mark Scott

    2016-01-01

    Over the past several years a number of high cadence photometric observations of solar system giant planets have been acquired by various platforms. Such observations are of interest as they provide points of comparison to the already expansive set of brown dwarf variability observations and the small, but growing, set of exoplanet variability observations. By measuring how rapidly the integrated light from solar system giant planets can evolve, variability observations of substellar objects that are unlikely to ever be resolved can be placed in a fuller context. Examples of brown dwarf variability observations include extensive work from the ground (e.g., Radigen et al. 2014), Spitzer (e.g., Metchev et al. 2015), Kepler (Gizis et al. 2015), and HST (Yang et al. 2015).Variability has been measured on the planetary mass companion to the brown dwarf 2MASS 1207b (Zhou et al. 2016) and further searches are planned in thermal emission for the known directly imaged planets with ground based telescopes (Apai et al. 2016) and in reflected light with future space based telescopes. Recent solar system variability observations include Kepler monitoring of Neptune (Simon et al. 2016) and Uranus, Spitzer observations of Neptune (Stauffer et al. 2016), and Cassini observations of Jupiter (West et al. in prep). The Cassini observations are of particular interest as they measured the variability of Jupiter at a phase angle of approximately 60 deg, comparable to the viewing geometry expected for space based direct imaging of cool extrasolar Jupiters in reflected light. These solar system analog observations capture many of the characteristics seen in brown dwarf variability, including large amplitudes and rapid light curve evolution on timescales as short as a few rotation periods. Simon et al. (2016) attribute such variations at Neptune to a combination of large scale, stable cloud structures along with smaller, more rapidly varying, cloud patches. The observed brown dwarf and

  6. Transiting circumbinary planets Kepler-34 b and Kepler-35 b

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, William F.; Orosz, Jerome A.; Carter, Joshua A.; Fabrycky, Daniel C.; Ford, Eric B.; Lissauer, Jack J.; Prša, Andrej; Quinn, Samuel N.; Ragozzine, Darin; Short, Donald R.; Torres, Guillermo; Winn, Joshua N.; Doyle, Laurance R.; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A.; Caldwell, Caroline; Caldwell, Douglas A.; Christiansen, Jessie L.; Ciardi, David R.; Cochran, William D.; Endl, Michael; Fortney, Jonathan J.; Gautier III, Thomas N.; Gilliland, Ronald L.; Haas, Michael R.; Hall, Jennifer R.; Holman, Matthew J.; Howard, Andrew W.; Howell, Steve B.; Isaacson, Howard; Jenkins, Jon M.; Klaus, Todd C.; Latham, David W.; Li, Jie; Marcy, Geoffrey W.; Mazeh, Tsevi; Quintana, Elisa V.; Robertson, Paul; Shporer, Avi; Steffen, Jason H.; Windmiller, Gur; Koch, David G.; Borucki, William J.

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called 'binary stars'. While long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses ('transits') of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  7. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas [NASA/GSFC, Heliophysics Science Division, Space Weather Laboratory (Code 674), Greenbelt, MD (United States); Hamelin, Michel; Berthelier, Jean-Jacques [LATMOS/IPSL, UPMC, Paris (France); Beghin, Christian; Lebreton, Jean-Pierre [LPC2E, CNRS/Universite d' Orleans (France); Grard, Rejean [ESA/ESTEC, Research Scientific Support Department, Noordwijk (Netherlands); Sentman, Davis [Institute of Geophysics, University of Alaska Fairbanks, Fairbanks, AK (United States); Takahashi, Yukihiro [Department of Geophysics, Tohoku University, Sendai (Japan); Yair, Yoav [Department Life Natural Sciences, Open University of Israel, Raanana (Israel)

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  8. ON THE VALIDITY OF THE 'HILL RADIUS CRITERION' FOR THE EJECTION OF PLANETS FROM STELLAR HABITABLE ZONES

    International Nuclear Information System (INIS)

    Cuntz, M.; Yeager, K. E.

    2009-01-01

    We challenge the customary assumption that the entering of an Earth-mass planet into the Hill radius (or multiples of the Hill radius) of a giant planet is a valid criterion for its ejection from the star-planet system. This assumption has widely been used in previous studies, especially those with an astrobiological focus. As intriguing examples, we explore the dynamics of the systems HD 20782 and HD 188015. Each system possesses a giant planet that remains in or crosses into the stellar habitable zone, thus effectively thwarting the possibility of habitable terrestrial planets. In the case of HD 188015, the orbit of the giant planet is almost circular, whereas in the case of HD 20782, it is extremely elliptical. Although it is found that Earth-mass planets are eventually ejected from the habitable zones of these systems, the 'Hill Radius Criterion' is identified as invalid for the prediction of when the ejection is actually occurring.

  9. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  10. FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Daniel; Lissauer, Jack J.; Rowe, Jason F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans; Handberg, Rasmus; Karoff, Christoffer; Lund, Mikkel N.; Lundkvist, Mia [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Fischer, Debra A.; Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Sanchis-Ojeda, Roberto [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Hekker, Saskia [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Latham, David W., E-mail: daniel.huber@nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); and others

    2013-04-20

    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters or due to planet candidates that may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet-candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.

  11. Environment of Mars, 1988

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    1988-10-01

    A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design

  12. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    Science.gov (United States)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  13. DISCOVERY OF A TRANSITING PLANET NEAR THE SNOW-LINE

    DEFF Research Database (Denmark)

    Kipping, D. M.; Torres, G.; Buchhave, L. A.

    2014-01-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent...

  14. More about the moment of inertia of Mars

    International Nuclear Information System (INIS)

    Kaula, W.M.; Sleep, N.H.; Phillips, R.J.

    1989-01-01

    The maximum allowable mean moment-of-inertia I of Mars is 0.3650 ·MR 2 because the rate-of-adjustment of the rotation axis is much faster than the rate-of-generation of density heterogeneities, as with any planet. But Mars differs from the other terrestrial planets in that its gravity field is rougher, in the sense of stress-difference implication, and its global tectonics is dominated by one feature, centered on the Tharsis Plateau. Plausible tectonic models of Mars require generation and support that are almost axially symmetric about Tharsis. Hence, unlike other terrestrial planets, Mars likely has two non-hydrostatic components of moments-of-inertia that are nearly equal, and the most probable value of I/MR 2 is slightly less than 0.3650

  15. Planet Mercury from pale pink dot to dynamic world

    CERN Document Server

    Rothery, David A

    2014-01-01

    A new and detailed picture of Mercury is emerging thanks to NASA's MESSENGER mission that spent four years in orbit about the Sun's innermost planet. Comprehensively illustrated by close-up images and other data, the author describes Mercury's landscapes from a geological perspective: from sublimation hollows, to volcanic vents, to lava plains, to giant thrust faults. He considers what its giant core, internal structure and weird composition have to tell us about the formation and evolution of a planet so close to the Sun. This is of special significance in view of the discovery of so many ex

  16. Hole-y Debris Disks, Batman! Where are the planets?

    Science.gov (United States)

    Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.

    2014-03-01

    Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.

  17. Transiting circumbinary planets Kepler-34 b and Kepler-35 b.

    Science.gov (United States)

    Welsh, William F; Orosz, Jerome A; Carter, Joshua A; Fabrycky, Daniel C; Ford, Eric B; Lissauer, Jack J; Prša, Andrej; Quinn, Samuel N; Ragozzine, Darin; Short, Donald R; Torres, Guillermo; Winn, Joshua N; Doyle, Laurance R; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A; Caldwell, Caroline; Caldwell, Douglas A; Christiansen, Jessie L; Ciardi, David R; Cochran, William D; Endl, Michael; Fortney, Jonathan J; Gautier, Thomas N; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Howard, Andrew W; Howell, Steve B; Isaacson, Howard; Jenkins, Jon M; Klaus, Todd C; Latham, David W; Li, Jie; Marcy, Geoffrey W; Mazeh, Tsevi; Quintana, Elisa V; Robertson, Paul; Shporer, Avi; Steffen, Jason H; Windmiller, Gur; Koch, David G; Borucki, William J

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  18. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    Science.gov (United States)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  19. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    Science.gov (United States)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  20. Rosetta comet-chaser takes a close look at planet Mars

    Science.gov (United States)

    2007-09-01

    , said Manfred Warhaut, Head of the Mission Operations Department. During the approach to Mars, instruments onboard Rosetta - as well as on its lander - were switched on at predefined times to observe the environment and take imagery of the Red Planet. In September 2008 and July 2010, when it is deep inside the asteroid belt between Mars and Jupiter, Rosetta will also observe the asteroids Stein and Lutetia close up.

  1. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    It was only 17 years ago that the first planet outside of our own solar system was detected in the form of 51 Pegasi b. This planet is unlike anything in our own solar system. In fact, this planet was the first representative of a class of planets later known as “hot Jupiters”– gas giants......, i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...

  2. A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

    International Nuclear Information System (INIS)

    Sozzetti, Alessandro; Torres, Guillermo; Latham, David W.; Stefanik, Robert P.; Korzennik, Sylvain G.; Boss, Alan P.; Carney, Bruce W.; Laird, John B.

    2009-01-01

    We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K ∼> 100 m s -1 , or M p sin i ∼> 3.0 M J (P/yr) (1/3) , for orbital periods P ∼ p p ≅ 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

  3. TERRESTRIAL PLANET FORMATION FROM AN ANNULUS

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu [Southwest Research Institute, 1050 Walnut St. Suite 300, Boulder, CO 80302 (United States)

    2016-09-01

    It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately including effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.

  4. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  5. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    Science.gov (United States)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  6. Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets

    Science.gov (United States)

    Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George

    2018-01-01

    A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.

  7. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    Science.gov (United States)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  8. Climate evolution on the terrestrial planets

    International Nuclear Information System (INIS)

    Kasting, J.F.; Toon, O.B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO 2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy

  9. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  10. A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Holman, Matthew J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Howell, Steve B.; Batalha, Natalie M.; Brown, Timothy M.; Buchhave, Lars A.; Caldwell, Douglas A.; Christiansen, Jessie L.; Ciardi, David R.; Cochran, William D.; Dunham, Edward W.; Fabrycky, Daniel C.; Ford, Eric B.; Gautier, Thomas N. III; Gilliland, Ronald L.

    2011-01-01

    In this Letter, we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show two candidate planets, 45 with three, eight with four, and one each with five and six, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17% of the total number of systems, and one-third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2 -3 % for singles and 86 +2 -5 % for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even prevent the formation of such systems in the first place.

  11. CoRoT’s first seven planets: An overview*

    Directory of Open Access Journals (Sweden)

    Barge P.

    2011-07-01

    Full Text Available The up to 150 day uninterrupted high-precision photometry of about 100000 stars – provided so far by the exoplanet channel of the CoRoT space telescope – gave a new perspective on the planet population of our galactic neighbourhood. The seven planets with very accurate parameters widen the range of known planet properties in almost any respect. Giant planets have been detected at low metallicity, rapidly rotating and active, spotted stars. CoRoT-3 populated the brown dwarf desert and closed the gap of measured physical properties between standard giant planets and very low mass stars. CoRoT extended the known range of planet masses down-to 5 Earth masses and up to 21 Jupiter masses, the radii to less than 2 Earth radii and up to the most inflated hot Jupiter found so far, and the periods of planets discovered by transits to 9 days. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planet-host-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that terrestrial planets with a density close to Earth exist outside the Solar System. The detection of the secondary transit of CoRoT-1 at the 10−5-level and the very clear detection of the 1.7 Earth radii of CoRoT-7b at 3.5 10−4 relative flux are promising evidence of CoRoT being able to detect even smaller, Earth sized planets.

  12. Similarity of Mars and Mercury for terraforming and settling of people

    Science.gov (United States)

    Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    We compared the main characteristics of the planets Mars and Mercury in the form normalized on the parameters of the planet Earth. Both planets turned out to be similar and close in terms of terraforming techniques, and conditions of comfortable human habitation in long term endo-planetary stations under the surface of a particular planetoid. Mars and Mercury also turned out to be similar on the vital activity of some other representatives of the Earth's biosphere. Our detailed analysis of the temperature distribution both over the entire surface of these planets, and in the conditions of their diurnal and annual variations on different latitudes and on Mars and on Mercury - showed that each of these planets has its advantages for the first terraforming.

  13. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  14. THE PECULIAR SOLAR COMPOSITION AND ITS POSSIBLE RELATION TO PLANET FORMATION

    International Nuclear Information System (INIS)

    Melendez, J.; Asplund, M.; Gustafsson, B.; Yong, D.

    2009-01-01

    We have conducted a differential elemental abundance analysis of unprecedented accuracy (∼0.01 dex) of the Sun relative to 11 solar twins from the Hipparcos catalog and 10 solar analogs from planet searches. We find that the Sun shows a characteristic signature with a ∼20% depletion of refractory elements relative to the volatile elements in comparison with the solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements. This peculiarity also holds in comparisons with solar analogs known to have close-in giant planets while the majority of solar analogs found not to have such giant planets in radial velocity monitoring show the solar abundance pattern. We discuss various explanations for this peculiarity, including the possibility that the differences in abundance patterns are related to the formation of planetary systems like our own, in particular to the existence of terrestrial planets.

  15. Kepler Planet-Detection Mission: Introduction and First Results

    Science.gov (United States)

    2010-02-19

    those predicted for gas giant planets. Since the first discoveries of planetarycompanions around pulsars (1, 2) andnormal stars (3), more than 400...52,496 in total). Analysis of these data sets also led to a series of astrophysical discoveries , including oscillations of giant stars and two... Discovery mission. Funding for this mission is provided by NASA’s Science Mission Directorate. Supporting Online Material www.sciencemag.org/cgi

  16. Mars geodesy, rotation and gravity

    International Nuclear Information System (INIS)

    Rosenblatt, Pascal; Dehant, Veronique

    2010-01-01

    This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)

  17. The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P., E-mail: aboss@carnegiescience.edu [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2017-02-10

    Observational evidence exists for the formation of gas giant planets on wide orbits around young stars by disk gravitational instability, but the roles of disk instability and core accretion for forming gas giants on shorter period orbits are less clear. The controversy extends to population synthesis models of exoplanet demographics and to hydrodynamical models of the fragmentation process. The latter refers largely to the handling of radiative transfer in three-dimensional (3D) hydrodynamical models, which controls heating and cooling processes in gravitationally unstable disks, and hence dense clump formation. A suite of models using the β cooling approximation is presented here. The initial disks have masses of 0.091 M {sub ⊙} and extend from 4 to 20 au around a 1 M {sub ⊙} protostar. The initial minimum Toomre Qi values range from 1.3 to 2.7, while β ranges from 1 to 100. We show that the choice of Q {sub i} is equal in importance to the β value assumed: high Q{sub i} disks can be stable for small β , when the initial disk temperature is taken as a lower bound, while low Q{sub i} disks can fragment for high β . These results imply that the evolution of disks toward low Q{sub i} must be taken into account in assessing disk fragmentation possibilities, at least in the inner disk, i.e., inside about 20 au. The models suggest that if low Q{sub i} disks can form, there should be an as yet largely undetected population of gas giants orbiting G dwarfs between about 6 au and 16 au.

  18. Moons of the solar system from giant Ganymede to dainty Dactyl

    CERN Document Server

    Hall III, James A

    2016-01-01

    This book captures the complex world of planetary moons, which are more diverse than Earth's sole satellite might lead you to believe. New missions continue to find more of these planetary satellites, making an up to date guide more necessary than ever.  Why do Mercury and Venus have no moons at all? Earth's  Moon, of course, is covered in the book with highly detailed maps. Then we move outward to the moons of Mars, then on to many of the more notable asteroid moons, and finally to a list of less-notable ones. All the major moons of the gas giant planets are covered in great detail, while the lesser-known satellites of these worlds are also touched on.  Readers will learn of the remarkable trans-Neptunian Objects – Pluto, Eris, Sedna, Quaoar –including many of those that have been given scant attention in the literature. More than just objects to read about, the planets' satellites provide us with important information about the history of the solar system. Projects to help us learn more abo...

  19. On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets

    Directory of Open Access Journals (Sweden)

    Stefan Leuko

    2017-09-01

    Full Text Available Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.

  20. The magnetic field of Mars according to data of Mars-3 and Mars-5 space vehicles

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.; Eroshenko, E.G.; Zhuzgov, L.N.

    1975-01-01

    Magnitograms obtained by the space probe ''Mars-5'' on the evening and day sides as well as those from the ''Mars-3'' obtained earlier suggest the following: In the vicinity of Mars there exists a shock front and its disposition is tracked at various angles to the direction to the sun. Magnetometers have registered a region in space where magnetic field features the properties of a magnetosphere field in its topology and action on plasma. The magnetic field in the region of the ''magnitosphere'' does not change its sign when the interplanetary field does shile in adjacent boundary regions the regular part of the field changes its sign when that of the interplanetary field does. The configuration and dimensions of the ''magnitosphere'' depend on thesolar wind intensity. On the day side (''Mars-3'') the magnitospheric field ceases to be registered at an altitude of 2200km, whereas on the night side (''Mars-5'') the regular field is traced up to 7500-9500km from the planet surface. All the above unambiguously suggests that the planet Mars has its own magnetic field. Under the influence of the solar wind the field takes the characteristic form: it is limited on the day side and elongated on the night one. The topology oif force lines is explicable if one assumes that the axis of the Mars magnetic dipole is inclined to the rotation axis at an abgle of 15-20deg. The northern magnetic pole of the dipole is licated in the northern hemisphere, i.e. the Mars fields in their regularity are opposite to the geomagnetic field. The magnetic moment of the Mars dipole is equal to M=2.5x10 22 Gauss.cm 3 . (author)

  1. The Fate of Exomoons when Planets Scatter

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Four examples of close-encounter outcomes: a) the moon stays in orbit around its host, b) the moon is captured into orbit around its perturber, c) and d) the moon is ejected from the system from two different starting configurations. [Adapted from Hong et al. 2018]Planet interactions are thought to be common as solar systems are first forming and settling down. A new study suggests that these close encounters could have a significant impact on the moons of giant exoplanets and they may generate a large population of free-floating exomoons.Chaos in the SystemIn the planetplanet scattering model of solar-system formation, planets are thought to initially form in closely packed systems. Over time, planets in a system perturb each other, eventually entering an instability phase during which their orbits cross and the planets experience close encounters.During this scattering process, any exomoons that are orbiting giant planets can be knocked into unstable orbits directly by close encounters with perturbing planets. Exomoons can also be disturbed if their host planets properties or orbits change as a consequence of scattering.Led by Yu-Cian Hong (Cornell University), a team of scientists has now explored the fate of exomoons in planetplanet scattering situations using a suite of N-body numerical simulations.Chances for SurvivalHong and collaborators find that the vast majority roughly 80 to 90% of exomoons around giant planets are destabilized during scattering and dont survive in their original place in the solar system. Fates of these destabilized exomoons include:moon collision with the star or a planet,moon capture by the perturbing planet,moon ejection from the solar system,ejection of the entire planetmoon system from the solar system, andmoon perturbation onto a new heliocentric orbit as a planet.Unsurprisingly, exomoons that have close-in orbits and those that orbit larger planets are the most likely to survive close encounters; as an example, exomoons on

  2. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    Science.gov (United States)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  3. INFRARED NON-DETECTION OF FOMALHAUT b: IMPLICATIONS FOR THE PLANET INTERPRETATION

    International Nuclear Information System (INIS)

    Janson, Markus; Carson, Joseph C.; Bent, John R.; Wong, Palmer; Lafrenière, David; Spiegel, David S.

    2012-01-01

    The nearby A4-type star Fomalhaut hosts a debris belt in the form of an eccentric ring, which is thought to be caused by dynamical influence from a giant planet companion. In 2008, a detection of a point source inside the inner edge of the ring was reported and was interpreted as a direct image of the planet, named Fomalhaut b. The detection was made at ∼600-800 nm, but no corresponding signatures were found in the near-infrared range, where the bulk emission of such a planet should be expected. Here, we present deep observations of Fomalhaut with Spitzer/IRAC at 4.5 μm, using a novel point-spread function subtraction technique based on angular differential imaging and Locally Optimized Combination of Images, in order to substantially improve the Spitzer contrast at small separations. The results provide more than an order of magnitude improvement in the upper flux limit of Fomalhaut b and exclude the possibility that any flux from a giant planet surface contributes to the observed flux at visible wavelengths. This renders any direct connection between the observed light source and the dynamically inferred giant planet highly unlikely. We discuss several possible interpretations of the total body of observations of the Fomalhaut system and find that the interpretation that best matches the available data for the observed source is scattered light from a transient or semi-transient dust cloud.

  4. Limits on stellar companions to exoplanet host stars with eccentric planets

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Hinkel, Natalie R.; Howell, Steve B.; Horch, Elliott P.; Feng, Ying; Wright, Jason T.; Ciardi, David R.; Everett, Mark E.; Howard, Andrew W.

    2014-01-01

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  5. CLOUDLESS ATMOSPHERES FOR L/T DWARFS AND EXTRASOLAR GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S. [Astrophysics Group, University of Exeter, Exeter EX4 4QL (United Kingdom); Mourier, P. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2016-02-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called “dust” or “clouds,” in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH{sub 4} and N{sub 2}/NH{sub 3} chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J–H and J–K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH{sub 4} instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  6. CLOUDLESS ATMOSPHERES FOR L/T DWARFS AND EXTRASOLAR GIANT PLANETS

    International Nuclear Information System (INIS)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called “dust” or “clouds,” in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH 4 and N 2 /NH 3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J–H and J–K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH 4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution

  7. Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold

    Science.gov (United States)

    Fung, Jeffrey; Lee, Eve J.

    2018-06-01

    The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.

  8. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  9. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    Science.gov (United States)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  10. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  11. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    Science.gov (United States)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  12. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    Science.gov (United States)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new

  13. Giant peritoneal loose bodies

    African Journals Online (AJOL)

    2015-03-27

    Mar 27, 2015 ... not be familiar with the entity, can potentially be confused with malignant or parasitic lesions. Familiarity with their characteristic computed tomographic ... preventing unnecessary surgical intervention in an asymptomatic patient.3,4 It is important to differentiate giant peritoneal loose bodies from lesions such ...

  14. Mars Express - ESA sets ambitious goals for the first European mission to Mars

    Science.gov (United States)

    2003-05-01

    Mars has always fascinated human beings. No other planet has been visited so many times by spacecraft. And still, it has not been easy to unveil its secrets. Martian mysteries seem to have increased in quantity and complexity with every mission. When the first spacecraft were sent - the Mariner series in 1960s - the public was expecting an Earth ‘twin’, a green, inhabited planet full of oceans. Mariner shattered this dream by showing a barren surface. This was followed by the Viking probes which searched for life unsuccessfully in 1976. Mars appeared dry, cold and uninhabited: the Earth’s opposite. Now, two decades later, modern spacecraft have changed that view, but they have also returned more questions. Current data show that Mars was probably much warmer in the past. Scientists now think that Mars had oceans, so it could have been a suitable place for life in the past. “We do not know what happened to the planet in the past. Which process turned Mars into the dry, cold world we see today?” says Agustin Chicarro, ESA’s Mars Express project scientist. “With Mars Express, we will find out. Above all, we aim to obtain a complete global view of the planet - its history, its geology, how it has evolved. Real planetology!” Mars Express will reach the Red Planet by the end of December 2003, after a trip of just over six months. Six days before injection into its final orbit, Mars Express will eject the lander, Beagle 2, named after the ship on which Charles Darwin found inspiration to formulate his theory of evolution. The Mars Express orbiter will observe the planet and its atmosphere from a near-polar orbit, and will remain in operation for at least a whole Martian year (687 Earth days). Beagle 2 will land in an equatorial region that was probably flooded in the past, and where traces of life may have been preserved. The Mars Express orbiter carries seven advanced experiments, in addition to the Beagle 2 lander. The orbiter’s instruments have been

  15. Ransom, Religion, and Red Giants: C.S. Lewis and Fred Hoyle

    Science.gov (United States)

    Larsen, Kristine

    2010-01-01

    Famed fantasy writer C.S. Lewis (1898-1963) was known to friends as a well-read astronomy aficionado. However, this medieval scholar and Christian apologist embraced a pre-Copernican universe (with its astrological overtones) in his Chronicles of Narnia series and defended the beauty and relevance of the geocentric model in his final academic work, "The Discarded Image". In the "Ransom Trilogy” ("Out of the Silent Planet", "Perelandra", and "That Hideous Strength") philologist Ransom (loosely based on Lewis's close friend J.R.R. Tolkien) travels to Lewis's visions of Mars and Venus, where he interacts with intelligent extraterrestrials, battles with evil scientists, and aids in the continuation of extraterrestrial Christian values. In the final book, Ransom is joined by a handful of colleagues in open warfare against the satanic N.I.C.E. (National Institute for Coordinated Experiments). Geneticist and evolutionary biologist J.B.S. Haldane criticized Lewis for his scientifically inaccurate descriptions of the planets, and his disdain for the scientific establishment. Lewis responded to the criticism in essays of his own. Another of Lewis's favorite scientific targets was atheist Fred Hoyle, whom he openly criticized for anti-Christian statements in Hoyle's BBC radio series. Writer and Lewis friend Dorothy L. Sayers voiced her own criticism of Hoyle. In a letter, Lewis dismissed Hoyle as "not a great philosopher (and none of my scientific colleagues think much of him as a scientist.” Given Lewis's lack of respect for Hoyle, and use of creative license in describing the planets, and the flat-earth, "geocentric” Narnia, it is surprising that Lewis very carefully includes an astronomically correct description of red giants in two novels in the Narnia series ("The Magician's Nephew" and "The Last Battle"). This inclusion is even more curious given that Fred Hoyle is well-known as one of the pioneers in the field of stellar death and the properties of red giants.

  16. THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Arras, Phil; Socrates, Aristotle

    2010-01-01

    Asynchronous rotation and orbital eccentricity lead to time-dependent irradiation of the close-in gas giant exoplanets-the hot Jupiters. This time-dependent surface heating gives rise to fluid motions which propagate throughout the planet. We investigate the ability of this 'thermal tide' to produce a quadrupole moment which can couple to the stellar gravitational tidal force. While previous investigations discussed planets with solid surfaces, here we focus on entirely fluid planets in order to understand gas giants with small cores. The Coriolis force, thermal diffusion, and self-gravity of the perturbations are ignored for simplicity. First, we examine the response to thermal forcing through analytic solutions of the fluid equations which treat the forcing frequency as a small parameter. In the 'equilibrium tide' limit of zero frequency, fluid motion is present but does not induce a quadrupole moment. In the next approximation, finite frequency corrections to the equilibrium tide do lead to a nonzero quadrupole moment, the sign of which torques the planet away from synchronous spin. We then numerically solve the boundary value problem for the thermally forced, linear response of a planet with neutrally stratified interior and a stably stratified envelope. The numerical results find quadrupole moments in agreement with the analytic non-resonant result at a sufficiently long forcing period. Surprisingly, in the range of forcing periods of 1-30 days, the induced quadrupole moments can be far larger than the analytic result due to response of internal gravity waves which propagate in the radiative envelope. We discuss the relevance of our results for the spin, eccentricity, and thermal evolution of hot Jupiters.

  17. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis

    Science.gov (United States)

    Keane, Thomas C.

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH3 (ammonia) and C2H2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH3CN (acetonitrile), CH3CH = N-N = CHCH3 (acetaldazine), CH3CH = N-NH2 (acetaldehyde hydrazone), C2H5NH2 (ethylamine), CH3NH2 (methylamine) and C2H4 (ethene) in the photolysis of NH3/C2H2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH3CH = N-N = CHCH3 does not explain all of the results obtained in this study. The formation of CH3CH = N-N = CHCH3 by a radical combination reaction of CH3CH = N• was shown in this work to be inconsistent with other experiments where the CH3CH = N• radical is thought to form but where no CH3CH = N-N = CHCH3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH3CH = N-N = CHCH3 formation involving nucleophilic reaction between N2H4 and CH3CH = NH is advanced.

  18. How Planet Nine could change the fate of the Solar system

    Science.gov (United States)

    Veras, D.

    2017-09-01

    The potential existence of a distant planet ('Planet Nine') in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main-sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently distant and sufficiently massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass-loss and Galactic tides. Here I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  19. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  20. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  1. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  2. Marswalk One First Steps on a New Planet

    CERN Document Server

    Shayler, David J; Shayler, Michael D

    2005-01-01

    MARSWALK ONE: First Steps on a New Planet addresses the question of why we should embark on a journey to Mars, documenting what the first human crew will do when they place their feet in the red dust of the planet. The book also addresses why we need to carry out these tasks and, more importantly, what a human crew could achieve that an automated mission could not. Understanding the clear benefits of sending a human crew to the surface of Mars, and how these benefits can be seen back on Earth, is the key to sustained long-term public and political support for the programme in terms of cash and commitment. The book accepts that the journey will be made, but does not specify precisely when. Flight time, and how to get to and from the planet are discussed briefly, to understand why the suggested duration spent at Mars is reasonable. The main objective of the work is to look at what science will be done on the surface – supported by orbital operations – and what hardware and technology will be employed to ach...

  3. Extrasolar planets : - From gaseous giant planets to rocky planets. - Steps towards the detection of life biomarkers.

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Today, great efforts are made to detect Earth-mass rocky planets in the so-called habitable zone of their host stars. What are the difficulties, the instrumental projects  and the already detected interesting systems ?

  4. A hot Saturn on an eccentric orbit around the giant star K2-132

    Science.gov (United States)

    Jones, M. I.; Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Rabus, M.; Drass, H.; Zapata, A.; Soto, M. G.; Jenkins, J. S.; Vučković, M.; Ciceri, S.; Sarkis, P.

    2018-06-01

    Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P ≲ 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: Teff = 4878 ± 70 K, log g = 3.289 ± 0.004, and [Fe/H] = -0.11 ± 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 ± 0.0025 d, e = 0.290 ± 0.049, Mp = 0.495 ± 0.007 MJ and Rp = 1.089 ± 0.006 RJ. This is the fifth known planet orbiting any giant star with a K2-132 b a very interesting object. Tables of the photometry and of the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  5. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822 (United States); Kraus, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States)

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  6. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    International Nuclear Information System (INIS)

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-01-01

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6σ confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  7. The humanation of Mars

    Science.gov (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  8. Planet hunters. VI. An independent characterization of KOI-351 and several long period planet candidates from the Kepler archival data

    International Nuclear Information System (INIS)

    Schmitt, Joseph R.; Wang, Ji; Fischer, Debra A.; Moriarty, John C.; Boyajian, Tabetha S.; Jek, Kian J.; LaCourse, Daryll; Omohundro, Mark R.; Winarski, Troy; Goodman, Samuel Jon; Jebson, Tony; Schwengeler, Hans Martin; Paterson, David A.; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin

    2014-01-01

    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting ≲ 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124 to 904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone.

  9. A Search for Giant Planet Companions to T Tauri Stars

    Science.gov (United States)

    2012-12-20

    detection – stars: pre-main sequence – techniques: radial velocities Online-only material: color figures 1. INTRODUCTION The discovery of over 760...exoplanets8 in the past twenty years has revealed that planetary systems are common and diverse. Pulsar planets (Wolszczan 1994), hot Jupiters (Mayor... discoveries , the processes underlying planet formation remain unclear. Lacking direct observational inputs, theorists must deduce formation mechanisms from

  10. Infrared radiation from an extrasolar planet.

    Science.gov (United States)

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  11. Atmospheres of the terrestrial planets

    International Nuclear Information System (INIS)

    Kivelson, M.G.; Schubert, G.

    1986-01-01

    Properties of the planets are identified - such as size, spin rate, and distance from the sun - that are important in understanding the characteristics of their atmospheres. Venus, earth and Mars have surface-temperature differences only partly explained by the decrease of solar radiation flux with distance from the sun. More significant effects arise from the variations in the degree to which the atmospheres act as absorbers of planetary thermal reradiation. Atmospheric circulation on a global scale also varies markedly among the three planets. 5 references

  12. How, when and where Life will begin on another planet after Earth by Duky’s Theory

    Science.gov (United States)

    Deol, Satveer; Singh Nafria, Amritpal

    2017-01-01

    Our Sun is a Red Giant Star and in distant future it will engulf Mercury, Venus and probably Earth and Mars. This paper shows that in distant future due to increasing size & luminosity of the Sun life will begin on one of the planet after 1 duky’s Unit. 1 duky's Unit is the time from now to the time when Mercury would get merged in Sun. At that time Venus would be first planet & due to closeness to Sun, its upper atmosphere would get heated up by solar wind. In a continuous process the clouds of sulfuric acid would escape its gravity. Eventually it would get drifted off into space and it become Mercury twin. On Earth after few million years moisture in air would become very good to trap infra red radiation. As it will warms up, oceans would evaporate even more & in few million years it would get covered with blanket of water vapours. Due to increasing temperature & pressure, volcanoes on Earth would become active then volcanic eruption would blast billions of tons of sulfur high into atmosphere there sulfur would mix with water vapors & form conc. Sulfuric acids. In a continuous process of few more million years whole Earth would get covered with sulphuric acids cloud. As Earth’s moon is receding away from Earth, so before 1 DU, Moon will have been gone away from Earth. As a result it would get started slow down one spin about 1 million year. These would lead to massive outpouring of CO2 & other greenhouse gasses. At that Earth would become Venus Twin. Now it's Mars turn, according to scientists after 50 millions years from now phobo will crash onto the surface of Mars. When that would happen, Mars would have one moon like Earth. This collision would be so hard & strong that phobo would get totally immersed in the surface of Mars as a results it's possible that Mars would get tilted at about 23.5 degree. Due to collision molten lava would come out. When temperature & pressure would rise then water ice would become water. When water would get enriched with

  13. Radioactivity of the moon, planets, and meteorites

    Science.gov (United States)

    Surkou, Y. A.; Fedoseyev, G. A.

    1977-01-01

    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  14. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Tamura, Motohide, E-mail: bpbowler@caltech.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions

  15. Mars: A Freshmen Year Seminar of Science and Science-fiction

    Science.gov (United States)

    Svec, Michael; Moffett, D. A.; Winiski, M.

    2013-06-01

    "Mars: On the shoulder of giants" is a freshmen year seminar developed collaboratively between the physics, education, and center for teaching and learning. This course focuses on how scientific knowledge is developed through the lens of our changing view of Mars throughout history. Analyses of current studies of Mars are juxtaposed against historical understanding and perceptions of the planet found in scientific and popular literature of the day, as well as the movies. Kim Stanley Robinson’s "Red Mars" provides a unifying story throughout the course complimented by Fredrick Taylor’s "The Scientific Exploration of Mars" and Hartmann’s "A Traveler’s Guide to Mars." Based on the three-years of experience, the authors advocate the use of the speculative science-fiction novel and argue for its use in high school and undergraduate courses including those for science majors. Many of the students who selected this seminar went on to major in science and in subsequent interviews discussed the influence of science fiction on their decision to major in science. Science fiction provided story, science, and speculation that became a rich medium for critical-thinking skills and critical literacy. Student reflections indicated that science fiction served as a reminder of why they study science, a source for imagination, and exploration of science as a human endeavor. Based on this experience, we propose five elements for selecting science-fiction for inclusion in science classes: 1) Provides a deep description of the science content or technologies, 2) Describes science and technologies are plausible or accurate to the time period, 3) Contains a novum or plausible innovation that plays a key element in the speculation, 4) Exploration of the impact on society or humanity, and, 5) Shows science and technology as human endeavors.

  16. MIGRATION OF PLANETS EMBEDDED IN A CIRCUMSTELLAR DISK

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2011-01-01

    Planetary migration poses a serious challenge to theories of planet formation. In gaseous and planetesimal disks, migration can remove planets as quickly as they form. To explore migration in a planetesimal disk, we combine analytic and numerical approaches. After deriving general analytic migration rates for isolated planets, we use N-body simulations to confirm these results for fast and slow migration modes. Migration rates scale as m -1 (for massive planets) and (1 + (e H /3) 3 ) -1 , where m is the mass of a planet and e H is the eccentricity of the background planetesimals in Hill units. When multiple planets stir the disk, our simulations yield the new result that large-scale migration ceases. Thus, growing planets do not migrate through planetesimal disks. To extend these results to migration in gaseous disks, we compare physical interactions and rates. Although migration through a gaseous disk is an important issue for the formation of gas giants, we conclude that migration has little impact on the formation of terrestrial planets.

  17. Mars: a water-rich planet

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Good geomorphic evidence is presented for a planet that was once water rich, and that a lower limit on the amount of water available for a given Martian watershed may be estimated by assuming that the volume of material eroded was equal to the volume of water available. This estimate, coupled with high latitude water estimates of 50 to 100 m gives a global inventory of about 500 m total water in the subsurface. It was emphasized that this is a lower limit as considerable water may be bound in weathered debris and in primary minerals

  18. Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.

    2016-12-01

    Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.

  19. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  20. Towards a work of art on planet Mars

    Science.gov (United States)

    Philippe, Jean-Marc

    1996-11-01

    The fruit of 4.5 million years of evolution, the human species began to develop artistic expression 30,000 years ago, a scientific approach a few hundred years ago, and within the last century a surprising ability for technological know-how dealing with the infinitely great and the infinitesimal. Through space exploration, man is now venturing beyond his own planet, emphasizing his scientific and technological traits which he has learnt to barness in order to further his quest for knowledge. (Actually, when he sends planetary probes, man presents and represents himself as an intelligent, daring being, capable of both questioning himself and looking for answers through the scentific method and the technological know-how presently at his disposal:) However, for various reasons, often legitimate ones (mass constraints, conflicting objectives,…), he excludes the artistic dimension from space exploration, even though this dimension could reveal and affirm him in his true essence under an aspect complementary to that of strict rational knowledge. The purpose of this presentation is to demonstrate how - through judiciously adding some dozen grammes to a probe destined for Mars - the symbolic impact of such missions could be radically widened by introducing an artistic component whilst respeeting constraints of the men of science. The artistic project presented below consists of three threadlike spheres each weighing a few dozen grammes, in the centre of which metallic forms made of shape memoy alloys are developing. The selected shapes, resembling vegetal, "vital" and animal life on Earth are destined to transform themselves into line with Martian days and nights and likewise, Martian seasons. Such a proposition is based on 10 years of research and development into shape memory alloys and their applieation in art.

  1. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  2. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  3. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  4. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  5. HEAT OF MARS IS LOVE OF LIFE?! TWO WAYS TO LOOK AT MARS

    Directory of Open Access Journals (Sweden)

    S. K. Alavipanah

    2013-09-01

    Full Text Available Earth and Mars travel in neighboring orbits around the sun. Both are rocky planets, but only the earth has the conditions to support life on. Is such a great difference due to their surface temperatures? It is obvious that the surface temperatures of these planets are governed by two factors of: (a the amount of energy they receive from the sun and, (b the composition of their atmospheres. If it is true, we must focus more on the Thermal Remote Sensing on Mars. Since heat is an important factor in any physical, chemical and biological study, it can be said that the heat in the form of love and psychological processes is effective for these studies. In study about life on another planet, not only the thermal characteristics are essential but love or passion in Scientists' efforts that are related to inner heat should also be considered. Therefore, in this paper we review the studies on Mars with the emphasis on the temperature. We consider science, art, literature, and technology as well as any things related to the heat including ice melting, volcanology, soil, morphology, and geothermal. As we believe that it must be bridged between mental and science gaps, shouldn't we make both the art and the science convergent? Therefore, we have used different scientific and art resources to make the role of heat in the Mars clear. We are seeking to answer the question whether the heat can be as a common factor in the researches.

  6. Heat of Mars is Love of LIFE?! Two Ways to Look at Mars

    Science.gov (United States)

    Alavipanah, S. K.; Van Gasselt, S.; Mulder, N. J.; Nezammahalleh, M. A.

    2013-09-01

    Earth and Mars travel in neighboring orbits around the sun. Both are rocky planets, but only the earth has the conditions to support life on. Is such a great difference due to their surface temperatures? It is obvious that the surface temperatures of these planets are governed by two factors of: (a) the amount of energy they receive from the sun and, (b) the composition of their atmospheres. If it is true, we must focus more on the Thermal Remote Sensing on Mars. Since heat is an important factor in any physical, chemical and biological study, it can be said that the heat in the form of love and psychological processes is effective for these studies. In study about life on another planet, not only the thermal characteristics are essential but love or passion in Scientists' efforts that are related to inner heat should also be considered. Therefore, in this paper we review the studies on Mars with the emphasis on the temperature. We consider science, art, literature, and technology as well as any things related to the heat including ice melting, volcanology, soil, morphology, and geothermal. As we believe that it must be bridged between mental and science gaps, shouldn't we make both the art and the science convergent? Therefore, we have used different scientific and art resources to make the role of heat in the Mars clear. We are seeking to answer the question whether the heat can be as a common factor in the researches.

  7. An improved gravity model for Mars: Goddard Mars Model 1

    Science.gov (United States)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.

  8. Worlds beyond our own the search for habitable planets

    CERN Document Server

    Sengupta, Sujan

    2015-01-01

    This is a book on planets: Solar system planets and dwarf planets. And planets outside our solar system – exoplanets. How did they form? What types of planets are there and what do they have in common? How do they differ? What do we know about their atmospheres – if they have one? What are the conditions for life and on which planets may they be met? And what’s the origin of life on Earth and how did it form? You will understand how rare the solar system, the Earth and hence life is. This is also a book on stars. The first and second generation of stars in the Universe. But in particular also on the link between planets and stars – brown dwarfs. Their atmospheric properties and similarities with giant exoplanets. All these fascinating questions will be answered in a non-technical manner. But those of you who want to know a bit more may look up the relevant mathematical relationships in appendices.

  9. Reaching Mars: multi-criteria R&D portfolio selection for Mars exploration technology planning

    Science.gov (United States)

    Smith, J. H.; Dolgin, B. P.; Weisbin, C. R.

    2003-01-01

    The exploration of Mars has been the focus of increasing scientific interest about the planet and its relationship to Earth. A multi-criteria decision-making approach was developed to address the question, Given a Mars program composed of mission concepts dependent on a variety of alternative technology development programs, which combination of technologies would enable missions to maximize science return under a constrained budget?.

  10. Mars and Venus: unequal planets.

    Science.gov (United States)

    Zimmerman, T S; Haddock, S A; McGeorge, C R

    2001-01-01

    Self-help books, a pervasive and influential aspect of society, can have a beneficial or detrimental effect on the therapeutic process. This article describes a thematic analysis and feminist critique of the best-selling self-help book, Men are from Mars, Women are from Venus. This analysis revealed that the author's materials are inconsistent with significant family therapy research findings and key principles of feminist theories. His descriptions of each gender and his recommendations for improving relationships serve to endorse and encourage power differentials between women and men.

  11. From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction

    Science.gov (United States)

    Lammer, Helmut; Blanc, Michel

    2018-03-01

    This paper is an introduction to volume 56 of the Space Science Series of ISSI, "From disks to planets—the making of planets and their proto-atmospheres", a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions. We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their

  12. Kepler planet-detection mission: introduction and first results.

    Science.gov (United States)

    Borucki, William J; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D; DeVore, Edna; Dunham, Edward W; Dupree, Andrea K; Gautier, Thomas N; Geary, John C; Gilliland, Ronald; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kondo, Yoji; Latham, David W; Marcy, Geoffrey W; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J; Monet, David G; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B; Holman, Matthew J; Seager, Sara; Steffen, Jason H; Welsh, William F; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D; Quintana, Elisa V; Clarke, Bruce D; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-19

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  13. FORMING HABITABLE PLANETS AROUND DWARF STARS: APPLICATION TO OGLE-06-109L

    International Nuclear Information System (INIS)

    Wang Su; Zhou Jilin

    2011-01-01

    Dwarf stars are believed to have a small protostar disk where planets may grow up. During the planet formation stage, embryos undergoing type I migration are expected to be stalled at an inner edge of the magnetically inactive disk (a crit ∼ 0.2-0.3 AU). This mechanism makes the location around a crit a 'sweet spot' for forming planets. In dwarf stars with masses ∼0.5 M sun , a crit is roughly inside the habitable zone of the system. In this paper, we study the formation of habitable planets due to this mechanism using model system OGLE-06-109L, which has a 0.51 M sun dwarf star with two giant planets in 2.3 and 4.6 AU observed by microlensing. We model the embryos undergoing type I migration in the gas disk with a constant disk-accretion rate ( M-dot ). Giant planets in outside orbits affect the formation of habitable planets through secular perturbations at the early stage and secular resonance at the late stage. We find that the existence and the masses of the habitable planets in the OGLE-06-109L system depend on both M-dot and the speed of type I migration. If planets are formed earlier, so that M-dot is larger (∼10 -7 M sun yr -1 ), terrestrial planets cannot survive unless the type I migration rate is an order of magnitude less. If planets are formed later, so that M-dot is smaller (∼10 -8 M sun yr -1 ), single and high-mass terrestrial planets with high water contents (∼5%) will be formed by inward migration of outer planet cores. A slower-speed migration will result in several planets via collisions of embryos, and thus their water contents will be low (∼2%). Mean motion resonances or apsidal resonances among planets may be observed if multiple planets survive in the inner system.

  14. New worlds on the horizon: Earth-sized planets close to other stars.

    Science.gov (United States)

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  15. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis.

    Science.gov (United States)

    Keane, Thomas C

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH 3 (ammonia) and C 2 H 2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH 3 CN (acetonitrile), CH 3 CH = N-N = CHCH 3 (acetaldazine), CH 3 CH = N-NH 2 (acetaldehyde hydrazone), C 2 H 5 NH 2 (ethylamine), CH 3 NH 2 (methylamine) and C 2 H 4 (ethene) in the photolysis of NH 3 /C 2 H 2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH 3 CH = N-N = CHCH 3 does not explain all of the results obtained in this study. The formation of CH 3 CH = N-N = CHCH 3 by a radical combination reaction of CH 3 CH = N• was shown in this work to be inconsistent with other experiments where the CH 3 CH = N• radical is thought to form but where no CH 3 CH = N-N = CHCH 3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH 3 CH = N-N = CHCH 3 formation involving nucleophilic reaction

  16. Humans to Mars: The Greatest Adventure in Human History

    Science.gov (United States)

    Levine, Joel S.; Schild,Rudy

    2011-01-01

    The reasons for a human mission to Mars are many and include (1) World technological leadership, (2) Enhanced national security, (3) Enhanced economic vitality, (4) The human urge to explore new and distant frontiers, (5) Scientific discovery (how did Mars evolve from an early Earth-like, hospitable planet to its present inhospitable state? Is there life on Mars?) (6) Inspiring the American public and the next generation of scientists and engineers (following the launch of Sputnik I by the USSR on October 4, 1957, the U. S. and the rest of the world witnessed a significant increase in the number of students going into science and engineering), (7) Develop new technologies for potential non-space spin-off applications, and, (8) Enhanced national prestige, etc. Other reasons for colonizing the Red Planet are more catastrophic in nature, including Mars as a safe haven for the survival of the human species in the event of an impact with a large asteroid (remember the demise of the dinosaurs 65-million years as a result of an asteroid impact!). Some have also suggested that the colonization of Mars may be a solution to the global exponential population explosion on our planet! A human mission to and the colonization of the Red Planet requires multi-disciplined expertise in many areas including engineering, technology, science, human health and medicine and the human psychological and behavior. To capture the relevant areas of needed expertise, we have invited a group of more than 70 U. S. and foreign experts in these areas, including astronauts, scientists, engineers, technologists, medical doctors, psychologists and economists to share their views and thoughts on a human mission to Mars.

  17. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  18. The Search for Life on Mars

    Science.gov (United States)

    Mumma, Michael J.

    2012-01-01

    For centuries, the planet Mars has been regarded as a possible abode for life. Serious searches for the signatures of life began in the 19th century, and continue via telescopic investigations and landed missions. While early work focused on phenomenology and bordered on fantasy, modern scientific inquiry has emphasized the search for chemical signatures of life in the soil and rocks at the planet's surface, and the search for biomarker gases in the atmosphere. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. The discovery of methane on Mars will be described, along with the ongoing extended search for clues to its origins. The possible origins of Mars methane will be discussed in the context of terrestrial analogue sites where geologic and biologic methane production now occurs - ranging from sub-permafrost zones in the arctic to hydrothermal vents in the deep ocean. Terrestrial organisms that could prosper on Mars today will be mentioned. I will briefly touch upon experiments conducted by landed spacecraft, ranging from the Viking Life Science Experiments in 1976 to the impending Mars Science laboratory, and the Trace Gas Orbiter and ExoMars missions now being developed for flight in the coming decade.

  19. HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets

    Science.gov (United States)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Penev, K.; Bieryla, A.; Latham, D. W.; Kovács, G.; Torres, G.; Csubry, Z.; de Val-Borro, M.; Buchhave, L.; Kovács, T.; Quinn, S.; Howard, A. W.; Isaacson, H.; Fulton, B. J.; Everett, M. E.; Esquerdo, G.; Béky, B.; Szklenar, T.; Falco, E.; Santerne, A.; Boisse, I.; Hébrard, G.; Burrows, A.; Lázár, J.; Papp, I.; Sári, P.

    2016-12-01

    We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 and 2.9721 days, masses of 0.527+/- 0.083 {M}{{J}} and 0.783+/- 0.057 {M}{{J}}, and inflated radii of 1.89+/- 0.13 {R}{{J}} and {1.59}-0.10+0.16 {R}{{J}}, respectively. They orbit moderately bright (V=13.145+/- 0.029 and V=12.993+/- 0.052) stars of mass 1.212+/- 0.050 {M}⊙ and {1.255}-0.054+0.107 {M}⊙ . The stars are at the main-sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false-alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present-day equilibrium temperatures; however, if the zero-age main-sequence equilibrium temperature is used in place of the present-day equilibrium temperature, then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are reinflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors. Based on observations obtained with the Hungarian-made Automated Telescope Network. Based on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology

  20. Planet traps and planetary cores: origins of the planet-metallicity correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10641, Taiwan (China); Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-10-10

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ≅ 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = –0.2 to –0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M {sub c,} {sub crit}) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > –0.6, our models predict that the most likely value of the 'mean' critical core mass of Jovian planets is (M {sub c,} {sub crit}) ≅ 5 M {sub ⊕} rather than 10 M {sub ⊕}. This implies that grain opacities in accreting envelopes should be reduced in order to lower M {sub c,} {sub crit}.

  1. The Physics, Biology, and Environmental Ethics of Making Mars Habitable

    Science.gov (United States)

    McKay, Christopher P.; Marinova, Margarita M.

    2001-03-01

    The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules - carbon dioxide, water, and nitrogen - needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take ~100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take >100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.

  2. The physics, biology, and environmental ethics of making mars habitable

    Science.gov (United States)

    McKay, C. P.; Marinova, M. M.

    2001-01-01

    The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.

  3. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  4. Primary school children and teachers discover the nature and science of planet Earth and Mars

    Science.gov (United States)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  5. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NARCIS (Netherlands)

    Janson, M.; et al., [Unknown; Thalmann, C.

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that

  6. Carl Sagan and the Exploration of Mars and Venus

    Science.gov (United States)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1997-01-01

    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  7. MODELING PLANETARY SYSTEM FORMATION WITH N-BODY SIMULATIONS: ROLE OF GAS DISK AND STATISTICS COMPARED TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Liu Huigen; Zhou Jilin; Wang Su

    2011-01-01

    During the late stage of planet formation, when Mars-sized cores appear, interactions among planetary cores can excite their orbital eccentricities, accelerate their merging, and thus sculpt their final orbital architecture. This study contributes to the final assembling of planetary systems with N-body simulations, including the type I or II migration of planets and gas accretion of massive cores in a viscous disk. Statistics on the final distributions of planetary masses, semimajor axes, and eccentricities are derived and are comparable to those of the observed systems. Our simulations predict some new orbital signatures of planetary systems around solar mass stars: 36% of the surviving planets are giant planets (>10 M + ). Most of the massive giant planets (>30 M + ) are located at 1-10 AU. Terrestrial planets are distributed more or less evenly at J in highly eccentric orbits (e > 0.3-0.4). The average eccentricity (∼0.15) of the giant planets (>10 M + ) is greater than that (∼0.05) of the terrestrial planets ( + ). A planetary system with more planets tends to have smaller planet masses and orbital eccentricities on average.

  8. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    International Nuclear Information System (INIS)

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-01-01

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 μm and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 μm. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H 2 O clouds at 2 AU, and have both NH 3 and H 2 O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = λ/Δλ ∼ 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that

  9. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  10. Guide to the universe inner planets

    CERN Document Server

    Grier, Jennifer

    2009-01-01

    This volume in the Greenwood Guides to the Universe series covers the inner planets-Mercury, Venus, Earth, and Mars. Thematic chapters discuss all of the many areas of astronomical research surrounding each subject, providing readers with the most up-to-date understanding of current knowledge and the ways in which it has been obtained. Like all of the books in this series, Inner Planets is scientifically sound, but written with the student in mind. It is an excellent first step for researching the exciting scientific discoveries of the Earth and its closest neighbors.

  11. SUBSTELLAR-MASS COMPANIONS TO THE K-GIANTS HD 240237, BD +48 738, AND HD 96127

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of substellar-mass companions to three giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The most massive of the three stars, K2-giant HD 240237, has a 5.3 M J minimum mass companion orbiting the star at a 746 day period. The K0-giant BD +48 738 is orbited by a ≥0.91 M J planet which has a period of 393 days and shows a nonlinear, long-term radial velocity (RV) trend that indicates a presence of another, more distant companion, which may have a substellar mass or be a low-mass star. The K2-giant HD 96127 has a ≥4.0 M J mass companion in a 647 day orbit around the star. The two K2-giants exhibit a significant RV noise that complicates the detection of low-amplitude, periodic variations in the data. If the noise component of the observed RV variations is due to solar-type oscillations, we show, using all the published data for the substellar companions to giants, that its amplitude is anti-correlated with stellar metallicity.

  12. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    Science.gov (United States)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  13. An improved gravity model for Mars: Goddard Mars Model-1 (GMM-1)

    Science.gov (United States)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-bank tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least-squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.

  14. InSight: Single Station Broadband Seismology for Probing Mars' Interior

    Science.gov (United States)

    Panning, Mark P.; Banerdt, W. Bruce; Beucler, Eric; Boschi, Lapo; Johnson, Catherine; Lognonne, Philippe; Mocquet, Antoine; Weber, Renee C.

    2012-01-01

    InSight is a proposed Discovery mission which will deliver a lander containing geophysical instrumentation, including a heat flow probe and a seismometer package, to Mars. The aim of this mission is to perform, for the first time, an in-situ investigation of the interior of a truly Earth- like planet other than our own, with the goal of understanding the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars.

  15. The search for life on Earth and other planets.

    Science.gov (United States)

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  16. Building Virtual Mars

    Science.gov (United States)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  17. A sample of potential disk hosting first ascent red giants

    Science.gov (United States)

    Steele, Amy; Debes, John

    2018-01-01

    Observations of (sub)giants with planets and disks provide the first set of proof that disks can survive the first stages of post-main-sequence evolution, even though the disks are expected to dissipate by this time. The infrared (IR) excesses present around a number of post-main-sequence (PMS) stars could be due to a traditional debris disk with planets (e.g. kappa CrB), some remnant of enhanced mass loss (e.g. the shell-like structure of R Sculptoris), and/or background contamination. We present a sample of potential disk hosting first ascent red giants. These stars all have infrared excesses at 22 microns, and possibly host circumstellar debris. We summarize the characteristics of the sample to better inform the incidence rates of thermally emitting material around giant stars. A thorough follow-up study of these candidates would serve as the first step in probing the composition of the dust in these systems that have left the main sequence, providing clues to the degree of disk processing that occurs beyond the main-sequence.

  18. Global stratigraphy. [of planet Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  19. Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes?

    Science.gov (United States)

    Meyzen, Christine; Massironi, Matteo; Pozzobon, Riccardo; Dal Zilio, Luca

    2014-05-01

    The near "one-plate" planet evolution of Mars has led to the edification of long-lasting giant shied volcanoes. Unlike the Earth, Mars would have been a transient convecting planet, where plate tectonic would have possibly acted only during the first hundreds of million years of its history. On Earth, where plate tectonic is active, most of them are regenerated and recycled through convection. However, the Nubian and Antarctic plates could be considered as poorly mobile surfaces of various thicknesses that are acting as conductive lids on top of Earth's deeper convective system. In these environments, volcanoes do not show any linear age progression at least for the last 30 Ma, but constitute the sites of persistent, focused long-term magmatic activity, rather than a chain of volcanoes as observed in fast-moving plate plume environments. Here, the near stationary absolute plate motion probably exerts a primary control on volcanic processes, and more specifically, on the melting ones. The residual depleted mantle, that is left behind by the melting processes, cannot be swept away from the melting locus. Over time, the thickening of this near-stationary depleted layer progressively forces the termination of melting to higher depths, reducing the melt production rate. Such a process gradually leads both to decreasing efficient melt extraction and increasing mantle lithospheric-melt interactions. The accumulation of this refractory material also causes long-term fluctuations of the volcanic activity, in generating long periods of quiescence. The presence of this residual mantle keel induces over time a lateral flow deflection, which translates into a shift of future melting sites around it. This process gives rise to the horseshoe-like shape of some volcanic islands on slow-moving plates (e.g. Cape Verde, Crozet). Finally, the pronounced topographic swells/bulges observed in this environments may also be supported both by large scale mantle upwelling and their residual

  20. An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars

    Science.gov (United States)

    McGraw, Allison M.

    2016-10-01

    Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.

  1. THE GEMINI/NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF PLANETS AROUND YOUNG MOVING GROUP STARS

    Energy Technology Data Exchange (ETDEWEB)

    Biller, Beth A.; Ftaclas, Christ [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany); Liu, Michael C.; Wahhaj, Zahed; Nielsen, Eric L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hayward, Thomas L.; Hartung, Markus [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Males, Jared R.; Skemer, Andrew; Close, Laird M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Chun, Mark [Institute for Astronomy, 640 North Aohoku Place, 209, Hilo, HI 96720-2700 (United States); Clarke, Fraser; Thatte, Niranjan [Department of Astronomy, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road Flagstaff, AZ 86001 (United States); Reid, I. Neill [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boss, Alan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Lin, Douglas [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Alencar, Silvia H. P. [Departamento de Fisica-ICEx-Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, 30270-901 Belo Horizonte, MG (Brazil); De Gouveia Dal Pino, Elisabete; Gregorio-Hetem, Jane [Universidade de Sao Paulo, IAG/USP, Departamento de Astronomia, Rua do Matao 1226, 05508-900 Sao Paulo, SP (Brazil); and others

    2013-11-10

    We report results of a direct imaging survey for giant planets around 80 members of the β Pic, TW Hya, Tucana-Horologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini/NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of ΔH = 13.9 mag at 1'' in combined CH{sub 4} narrowband ADI+SDI mode and median contrasts of ΔH = 15.1 mag at 2'' in H-band ADI mode. We found numerous (>70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with Near-Infrared Coronagraphic Imager (NICI) all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI Campaign followup. Four co-moving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36 ± 6 M{sub Jup}, 16.4 ± 1.0 AU), CD–35 2722B (31 ± 8 M{sub Jup}, 67 ± 4 AU), HD 12894B (0.46 ± 0.08 M{sub ☉}, 15.7 ± 1.0 AU), and BD+07 1919C (0.20 ± 0.03 M{sub ☉}, 12.5 ± 1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1-20 M{sub Jup} companions at semi-major axes from 10-150 AU to <18% at a 95.4% confidence level using DUSTY models and to <6% at a 95.4% using COND models. Our results strongly constrain the frequency of planets within semi-major axes of 50 AU as well. We restrict the frequency of 1-20 M{sub Jup} companions at semi-major axes from 10-50 AU to <21% at a 95.4% confidence level using DUSTY models and to <7% at a 95.4% using COND models. This survey is the deepest search to date for giant planets around young moving group stars.

  2. SECRETLY ECCENTRIC: THE GIANT PLANET AND ACTIVITY CYCLE OF GJ 328

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Boss, Alan P.

    2013-01-01

    We announce the discovery of a ∼2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s –1 . After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf

  3. A technician works on the Mars Climate Orbiter in SAEF-2

    Science.gov (United States)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.

  4. THE SEEDS DIRECT IMAGING SURVEY FOR PLANETS AND SCATTERED DUST EMISSION IN DEBRIS DISK SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Janson, Markus; Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Moro-Martin, Amaya [Department of Astrophysics, CAB (INTA-CSIC), Instituto Nacional de Tecnica Aerospacial, Torrejonde Ardoz, E-28850 Madrid (Spain); Usuda, Tomonori; Kudo, Tomoyuki; Egner, Sebastian [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Thalmann, Christian [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Goto, Miwa [Universitaets-Sternwarte Muenchen, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Munich (Germany); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, M5S 3H4 Toronto, ON (Canada); McElwain, M. W. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 2071 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Fukagawa, Misato [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Crepp, Justin [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Kuzuhara, Masayuki; Hashimoto, Jun; Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, Lyu [Laboratoire Lagrange, UMR7239, University of Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d' Azur, F-06300 Nice (France); Brandner, Wolfgang; Feldt, Markus, E-mail: janson@astro.princeton.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2013-08-10

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris-disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here, we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that {beta} Pic b-like planets ({approx}10 M{sub jup} planets around G-A-type stars) near the gap edges are less frequent than 15%-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than {beta} Pic b.

  5. The nature of the giant exomoon candidate Kepler-1625 b-i

    Science.gov (United States)

    Heller, René

    2018-02-01

    The recent announcement of a Neptune-sized exomoon candidate around the transiting Jupiter-sized object Kepler-1625 b could indicate the presence of a hitherto unknown kind of gas giant moon, if confirmed. Three transits of Kepler-1625 b have been observed, allowing estimates of the radii of both objects. Mass estimates, however, have not been backed up by radial velocity measurements of the host star. Here we investigate possible mass regimes of the transiting system that could produce the observed signatures and study them in the context of moon formation in the solar system, i.e., via impacts, capture, or in-situ accretion. The radius of Kepler-1625 b suggests it could be anything from a gas giant planet somewhat more massive than Saturn (0.4 MJup) to a brown dwarf (BD; up to 75 MJup) or even a very-low-mass star (VLMS; MJup ≈ 0.11 M⊙). The proposed companion would certainly have a planetary mass. Possible extreme scenarios range from a highly inflated Earth-mass gas satellite to an atmosphere-free water-rock companion of about 180 M⊕. Furthermore, the planet-moon dynamics during the transits suggest a total system mass of 17.6-12.6+19.2 MJup. A Neptune-mass exomoon around a giant planet or low-mass BD would not be compatible with the common mass scaling relation of the solar system moons about gas giants. The case of a mini-Neptune around a high-mass BD or a VLMS, however, would be located in a similar region of the satellite-to-host mass ratio diagram as Proxima b, the TRAPPIST-1 system, and LHS 1140 b. The capture of a Neptune-mass object around a 10 MJup planet during a close binary encounter is possible in principle. The ejected object, however, would have had to be a super-Earth object, raising further questions of how such a system could have formed. In summary, this exomoon candidate is barely compatible with established moon formation theories. If it can be validated as orbiting a super-Jovian planet, then it would pose an exquisite riddle for

  6. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  7. Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks

    Science.gov (United States)

    Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.

    2018-05-01

    Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk

  8. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    Science.gov (United States)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  9. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    I found the GPB lavas to be very interest- ing because in some ... by Venkatesan et al (1993) and thus in a way validates my approach. ... and age calculation of lavas from phenocrysts. Keywords. Deccan Trap; Giant Plagioclase Basalts; eruption duration. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, No. 4, December ...

  10. Planet Formation

    Science.gov (United States)

    Podolak, Morris

    2018-04-01

    the planetary embryo can attract gas from the surrounding disk and grow to be a gas giant. If the disk dissipates before the process is complete, the result will be an object like Uranus or Neptune, which has a small, but significant, complement of hydrogen and helium. The main question is whether the protoplanetary core can grow large enough before the disk dissipates. A second scenario is the disk instability (DI) scenario. This scenario posits that the disk itself is unstable and tends to develop regions of higher than normal density. Such regions collapse under their own gravity to form Jupiter-mass protoplanets. In the DI scenario a Jupiter-mass clump of gas can form—in several hundred years which will eventually contract into a gas giant planet. The difficulty here is to bring the disk to a condition where such instabilities will form. Now that we have discovered nearly 3000 planetary systems, there will be numerous examples against which to test these scenarios.

  11. Life On Mars: Past, Present and Future

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Cyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Cyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued

  12. On the Diversity in Mass and Orbital Radius of Giant Planets Formed via Disk Instability

    Science.gov (United States)

    Müller, Simon; Helled, Ravit; Mayer, Lucio

    2018-02-01

    We present a semi-analytical population synthesis model of protoplanetary clumps formed by disk instability at radial distances of 80–120 au. Various clump density profiles, initial mass functions, protoplanetary disk models, stellar masses, and gap opening criteria are considered. When we use more realistic gap opening criteria, we find that gaps open only rarely, which strongly affects clump survival rates and their physical properties (mass, radius, and radial distance). The inferred surviving population is then shifted toward less massive clumps at smaller radial distances. We also find that populations of surviving clumps are very sensitive to the model assumptions and used parameters. Depending on the chosen parameters, the protoplanets occupy a mass range between 0.01 and 16 M J and may either orbit close to the central star or as far out as 75 au, with a sweet spot at 10–30 au for the massive ones. However, in all of the cases we consider, we find that massive giant planets at very large radial distances are rare, in qualitative agreement with current direct imaging surveys. We conclude that caution should be taken in deriving population synthesis models as well as when comparing the models’ results with observations.

  13. The Hollywood Strategy for Microlensing Detection of Planets.

    Science.gov (United States)

    Gould, A.

    Follow the big stars! I review the theory of detection and parameter measurement of planetary systems by follow-up observations of ongoing microlensing events. Two parameters can generically be measured from the event itself: the planet/star mass ratio, $q$, and the planet/star separation in units of the Einstein ring. I emphasize the advantages of monitoring events with giant-star sources which are brighter (thus easier to monitor) and bigger (thus offering the prospect of measuring an additional parameter from finite-source effects: the proper motion $\\mu$). There is potentially a strong degeneracy between $q$ and $\\mu$. I present a simple analytic representation of this degeneracy. I then describe how it can be broken using accurate single-band photometry from observatories around the world, or optical/infrared photometry from a single site, or preferably both. Both types of observations are underway or will be soon. Monitoring of giant-star events seen toward the bulge is also the best way to determine the content and structure of the inner Galaxy.

  14. The Outer Planets and their Moons Comparative Studies of the Outer Planets prior to the Exploration of the Saturn System by Cassini-Huygens

    CERN Document Server

    Encrenaz, T; Owen, T. C; Sotin, C

    2005-01-01

    This volume gives an integrated summary of the science related to the four giant planets in our solar system. It is the result of an ISSI workshop on «A comparative study of the outer planets before the exploration of Saturn by Cassini-Huygens» which was held at ISSI in Bern on January 12-16, 2004. Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, an...

  15. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth.

    Science.gov (United States)

    Laskar, J; Gastineau, M

    2009-06-11

    It has been established that, owing to the proximity of a resonance with Jupiter, Mercury's eccentricity can be pumped to values large enough to allow collision with Venus within 5 Gyr (refs 1-3). This conclusion, however, was established either with averaged equations that are not appropriate near the collisions or with non-relativistic models in which the resonance effect is greatly enhanced by a decrease of the perihelion velocity of Mercury. In these previous studies, the Earth's orbit was essentially unaffected. Here we report numerical simulations of the evolution of the Solar System over 5 Gyr, including contributions from the Moon and general relativity. In a set of 2,501 orbits with initial conditions that are in agreement with our present knowledge of the parameters of the Solar System, we found, as in previous studies, that one per cent of the solutions lead to a large increase in Mercury's eccentricity-an increase large enough to allow collisions with Venus or the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets approximately 3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.

  16. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  17. Two Earth-sized planets orbiting Kepler-20.

    Science.gov (United States)

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  18. THERESA FRANCO INSPECTS THE SOLAR PANELS OF THE MARS GLOBAL SURVEYOR

    Science.gov (United States)

    1996-01-01

    Theresa Franco of SPECTROLAB Inc. carefully inspects the solar panels of the Mars Global Surveyor spacecraft, undergoing preflight assembly and checkout in the Payload Hazardous Servicing Facility in KSC's Industrial Area. The four solar array panels will play a crucial role in the Mars Global Surveyor mission by providing the electrical power required to operate the spacecraft and its complement of scientific instruments. The Surveyor is slated for launch November 6 aboard a Delta II expendable launch vehicle. After arriving at the Red Planet in September 1997, the Surveyor will carry out an extensive study of Mars, gathering data about the planet's topography, magnetism, mineral composition and atmosphere.

  19. ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Agnor, Craig B.; Lin, D. N. C.

    2012-01-01

    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant

  20. Convection and magnetic field generation in the interior of planets (August Love Medal Lecture)

    Science.gov (United States)

    Christensen, U. R.

    2009-04-01

    Thermal convection driven by internal energy plays a role of paramount importance in planetary bodies. Its numerical modeling has been an essential tool for understanding how the internal engine of a planet works. Solid state convection in the silicate or icy mantles is the cause of endogenic tectonic activity, volcanism and, in the case of Earth, of plate motion. It also regulates the energy budget of the entire planet, including that of its core, and controls the presence or absence of a dynamo. The complex rheology of solid minerals, effects of phase transitions, and chemical heterogeneity are important issues in mantle convection. Examples discussed here are the convection pattern in Mars and the complex morphology of subducted slabs that are observed by seismic tomography in the Earth's mantle. Internally driven convection in the deep gas envelopes of the giant planets is possibly the cause for the strong jet streams at the surfaces that give rise to their banded appearance. Modeling of the magnetohydrodynamic flow in the conducting liquid core of the Earth has been remarkably successful in reproducing the primary properties of the geomagnetic field. As an examplefor attempts to explain also secondary properties, I will discuss dynamo models that account for the thermal coupling to the mantle. The understanding of the somewhat enigmatic magnetic fields of some other planets is less advanced. Here I will show that dynamos that operate below a stable conducting layer in the upper part of the planetary core can explain the unusual magnetic field properties of Mercury and Saturn. The question what determines the strength of a dynamo-generated magnetic field has been a matter of debate. From a large set of numerical dynamo simulations that cover a fair range of control parameters, we find a rule that relates magnetic field strength to the part of the energy flux that is thermodynamically available to be transformed into other forms of energy. This rules predicts

  1. Kepler-68: Three Planets, One with a Density between that of Earth and Ice Giants

    NARCIS (Netherlands)

    Gilliland, R.L.; Marcy, G.W.; Rowe, J.F.; Rogers, L.; Torres, G.; Fressin, F.; Lopez, E.D.; Buchhave, L.A.; Christensen-Dalsgaard, J.; Désert, J.M.; Henze, C.E.; Isaacson, H.; Jenkins, J.M.; Lissauer, J.J.; Chaplin, W.J.; Basu, S.; Metcalfe, T.S.; Elsworth, Y.; Handberg, R.; Hekker, S.; Huber, D.; Karoff, C.; Kjeldsen, H.; Lund, M.N.; Lundkvist, M.; Miglio, A.; Charbonneau, D.; Ford, E.B.; Fortney, J.J.; Haas, M.R.; Howard, A.W.; Howell, S.B.; Ragozzine, D.; Thompson, S.E.

    2013-01-01

    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third Jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit, has Mp_{\\rm

  2. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  3. The Fuzziness of Giant Planets’ Cores

    Energy Technology Data Exchange (ETDEWEB)

    Helled, Ravit [Institute for Computational Science, University of Zurich, Zurich (Switzerland); Stevenson, David [Division of Geological and Planetary Sciences, Caltech, Pasadena, CA (United States)

    2017-05-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.

  4. The Fuzziness of Giant Planets’ Cores

    International Nuclear Information System (INIS)

    Helled, Ravit; Stevenson, David

    2017-01-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.

  5. Evaluating predictions of ICME arrival at Earth and Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Taktakishvili, A.; Pulkkinen, A.

    2011-01-01

    We present a study of interplanetary coronal mass ejection (ICME) propagation to Earth and Mars. Because of the significant space weather hazard posed by ICMEs, understanding and predicting their arrival and impact at Mars is important for current and future robotic and manned missions...... to the planet. We compare running ENLILv2.6 with coronal mass ejection (CME) input parameters from both a manual and an automated method. We analyze shock events identified at Mars in Mars Global Surveyor data in 2001 and 2003, when Earth and Mars were separated by...

  6. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  7. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    Science.gov (United States)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  8. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  9. Planetesimals and Planet Formation

    Science.gov (United States)

    Chambers, John

    The first step in the standard model for planet formation is the growth of gravitationally bound bodies called ``planetesimals'' from dust grains in a protoplanetary disk. Currently, we do not know how planetesimals form, how long they take to form, or what their sizes and mechanical properties are. The goal of this proposal is to assess how these uncertainties affect subsequent stages of planetary growth and the kind of planetary systems that form. The work will address three particular questions: (i) Can the properties of small body populations in the modern Solar System constrain the properties of planetesimals? (ii) How do the properties of planetesimals affect the formation of giant planets? (iii) How does the presence of a water ice condensation front (the ``snow line'') in a disk affect planetesimal formation and the later stages of planetary growth? These questions will be examined with computer simulations of planet formation using new computer codes to be developed as part of the proposal. The first question will be addressed using a statistical model for planetesimal coagulation and fragmentation. This code will be merged with the proposer's Mercury N-body integrator code to model the dynamics of large protoplanets in order to address the second question. Finally, a self- consistent model of disk evolution and the radial transport of water ice and vapour will be added to examine the third question. A theoretical understanding of how planets form is one of the key goals of NASA and the Origins of Solar Systems programme. Researchers have carried out many studies designed to address this goal, but the questions of how planetesimals form and how their properties affect planet formation have received relatively little attention. The proposed work will help address these unsolved questions, and place other research in context by assessing the importance of planetesimal origins and properties for planet formation.

  10. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  11. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    Science.gov (United States)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  12. Science in Exploration: From the Moon to Mars and Back Home to Earth

    Science.gov (United States)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  13. Landscapes of Mars A Visual Tour

    CERN Document Server

    Vogt, Gregory L

    2008-01-01

    Landscapes of Mars is essentially a picture book that provides a visual tour of Mars. All the major regions and topographical features will be shown and supplemented with chapter introductions and extended captions. In a way, think of it as a visual tourist guide. Other topics covered are Martian uplands on the order of the elevation of Mt. Everest, Giant volcanoes and a rift system, the Grand Canyon of Mars, craters and the absence of craters over large regions (erosion), and wind shadows around craters, sand dunes, and dust devils. The book includes discussions on the search for water (braided channels, seepage, sedimentary layering, etc.) as well as on the Viking mission search for life, Mars meteorite fossil bacteria controversy, and planetary protection in future missions. The book concludes with an exciting gallery of the best 3D images of Mars making the book a perfect tool for understanding Mars and its place in the solar system.

  14. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  15. Formation of Ice Giant Satellites During Thommes Model Mirgration

    Science.gov (United States)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  16. Radio Wave Propagation Handbook for Communication on and Around Mars

    Science.gov (United States)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  17. KOI-3158: The oldest known system of terrestrial-size planets

    Directory of Open Access Journals (Sweden)

    Campante T. L.

    2015-01-01

    Full Text Available The first discoveries of exoplanets around Sun-like stars have fueled efforts to find ever smaller worlds evocative of Earth and other terrestrial planets in the Solar System. While gas-giant planets appear to form preferentially around metal-rich stars, small planets (with radii less than four Earth radii can form under a wide range of metallicities. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the Universe’s history when metals were far less abundant. We report Kepler spacecraft observations of KOI-3158, a metal-poor Sun-like star from the old population of the Galactic thick disk, which hosts five planets with sizes between Mercury and Venus. We used asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that KOI-3158 formed when the Universe was less than 20 % of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the Universe’s 13.8-billion-year history, providing scope for the existence of ancient life in the Galaxy.

  18. Nuclear interactions of cosmic rays with the Mars atmosphere and rocks according to data of the Mars-5 space vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu A; Moskaleva, L P; Kharyukova, V P; Borodin, A M [AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii

    1976-03-01

    Gamma-spectra of Mars have been analyzed measured by the ''Mars-5'' interplanetary station at the altitude of approximately 200 km over the planet. A model spectrum of the Mars atmosphere gamma-radiation obtained earlier has been employed for obtaining cosmo-chemical information of the Mars rocks. In the energy range of gamma radiation Esub(..gamma..)(>=)2.6 MeV, in which no contribution of gamma radiation of natural radioisotopes is present, the best agreement has been obtained for the spectrum of gamma-radiation induced by cosmic rays in rocks of the type of earthly basalts.

  19. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  20. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    Science.gov (United States)

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  1. Problems of simulation of large, long-lived vortices in the atmospheres of the giant planets (jupiter, saturn, neptune)

    Science.gov (United States)

    Nezlin, Michael V.; Sutyrin, Georgi G.

    1994-01-01

    Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude. We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary “waves”, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and

  2. OBJECTS IN KEPLER'S MIRROR MAY BE LARGER THAN THEY APPEAR: BIAS AND SELECTION EFFECTS IN TRANSITING PLANET SURVEYS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Mann, Andrew W.

    2013-01-01

    Statistical analyses of large surveys for transiting planets such as the Kepler mission must account for systematic errors and biases. Transit detection depends not only on the planet's radius and orbital period, but also on host star properties. Thus, a sample of stars with transiting planets may not accurately represent the target population. Moreover, targets are selected using criteria such as a limiting apparent magnitude. These selection effects, combined with uncertainties in stellar radius, lead to biases in the properties of transiting planets and their host stars. We quantify possible biases in the Kepler survey. First, Eddington bias produced by a steep planet radius distribution and uncertainties in stellar radius results in a 15%-20% overestimate of planet occurrence. Second, the magnitude limit of the Kepler target catalog induces Malmquist bias toward large, more luminous stars and underestimation of the radii of about one-third of candidate planets, especially those larger than Neptune. Third, because metal-poor stars are smaller, stars with detected planets will be very slightly (<0.02 dex) more metal-poor than the target average. Fourth, uncertainties in stellar radii produce correlated errors in planet radius and stellar irradiation. A previous finding, that highly irradiated giants are more likely to have 'inflated' radii, remains significant, even accounting for this effect. In contrast, transit depth is negatively correlated with stellar metallicity even in the absence of any intrinsic correlation, and a previous claim of a negative correlation between giant planet transit depth and stellar metallicity is probably an artifact.

  3. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Nielsen, Eric L.; Macintosh, Bruce; Graham, James R.; Barman, Travis S.; Doyon, Rene; Fabrycky, Daniel; Fitzgerald, Michael P.; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marley, Mark S.; Marois, Christian; Patience, Jenny; Perrin, Marshall D.; Oppenheimer, Rebecca; Song, Inseok; GPIES Team

    2017-01-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is one of the largest most sensitive direct imaging searches for exoplanets conducted to date, and having observed more than 300 stars the survey is halfway complete. We present highlights from the first half of the survey, including the discovery and characterization of the young exoplanet 51 Eri b and the brown dwarf HR 2562 B, new imaging of multiple disks, and resolving the young stellar binary V343 Nor for the first time. GPI has also provided new spectra and orbits of previous known planets and brown dwarfs and polarization measurements of a wide range of disks. Finally, we discuss the constraints placed by the first half of the GPIES campaign on the population of giant planets at orbital separations beyond that of Jupiter. Supported by NSF grants AST-0909188 and AST-1313718, AST-1411868, AST 141378, NNX11AF74G, and DGE-1232825, and by NASA grants NNX15AD95G/NEXSS and NNX11AD21G.

  4. MAGNETIC SHIELDING OF EXOMOONS BEYOND THE CIRCUMPLANETARY HABITABLE EDGE

    International Nuclear Information System (INIS)

    Heller, René; Zuluaga, Jorge I.

    2013-01-01

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability

  5. MAGNETIC SHIELDING OF EXOMOONS BEYOND THE CIRCUMPLANETARY HABITABLE EDGE

    Energy Technology Data Exchange (ETDEWEB)

    Heller, René [McMaster University, Department of Physics and Astronomy, Hamilton, ON L8S 4M1 (Canada); Zuluaga, Jorge I., E-mail: rheller@physics.mcmaster.ca, E-mail: jzuluaga@fisica.udea.edu.co [FACom - Instituto de Física - FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín (Colombia)

    2013-10-20

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.

  6. The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)

    Science.gov (United States)

    Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.

    2013-12-01

    With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed

  7. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  8. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  9. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  10. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

    Energy Technology Data Exchange (ETDEWEB)

    Gressel, O. [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Nelson, R. P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziegler, U., E-mail: oliver.gressel@nordita.org, E-mail: r.p.nelson@qmul.ac.uk, E-mail: neal.j.turner@jpl.nasa.gov, E-mail: uziegler@aip.de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany)

    2013-12-10

    We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

  11. Spiders from Mars?

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  12. A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS

    International Nuclear Information System (INIS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2011-01-01

    We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in a swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M sun disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller α form more massive planets than disks with larger α. For Jupiter-mass planets, masses of solid cores are 10-100 M + .

  13. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    International Nuclear Information System (INIS)

    Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim

    2014-01-01

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M E planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M E planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.

  14. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  15. The Properties of a Giant Jet Reflected in a Simultaneous Sprite

    DEFF Research Database (Denmark)

    Neubert, Torsten; Chanrion, Olivier Arnaud; Arnone, E.

    2011-01-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the largest electric discharges of our planet. The properties of these "giants," such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measureme...

  16. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  17. Fast spin of the young extrasolar planet β Pictoris b.

    Science.gov (United States)

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  18. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [Department of Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Zhang, Xiaojia [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Aarseth, Sverre J., E-mail: bbliu1208@gmail.com [Institute of Astronomy, Cambridge University, Cambridge CB3 0HA (United Kingdom)

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10{sup –7} M {sub ☉} yr{sup –1}) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.

  19. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    International Nuclear Information System (INIS)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.; Aarseth, Sverre J.

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10 –7 M ☉ yr –1 ) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency

  20. Parent Stars of Extrasolar Planets - XIV. Strong Evidence of Li Abundance Deficit

    OpenAIRE

    Gonzalez, Guillermo

    2014-01-01

    We report the results of our analysis of new high resolution spectra of 30 late-F to early-G dwarf field stars for the purpose of deriving their Li abundances. They were selected from the subsample of stars in the Valenti and Fischer compilation that are lacking detected planets. These new data serve to expand our comparison sample used to test whether stars with Doppler-detected giant planets display Li abundance anomalies. Our results continue to show that Li is deficient among stars with p...

  1. The Gemini Deep Planet Survey - GDPS

    Energy Technology Data Exchange (ETDEWEB)

    Lafreniere, D; Doyon, R; Marois, C; Nadeau, D; Oppenheimer, B R; Roche, P F; Rigaut, F; Graham, J R; Jayawardhana, R; Johnstone, D; Kalas, P G; Macintosh, B; Racine, R

    2007-06-01

    We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5-inch with 5{sigma} contrast sensitivities in magnitude difference at 1.6 {micro}m of 9.6 at 0.5-inch, 12.9 at 1-inch, 15 at 2-inch, and 16.6 at 5-inch. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 M{sub Jup} with a projected separation in the range 40-200 AU. Depending on the age, spectral type, and distance of the target stars, the minimum mass that could be detected with our observations can be {approx}1 M{sub Jup}. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results, which provide upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented. Assuming a planet mass distribution dn/dm {proportional_to} m{sup -1.2} and a semi-major axis distribution dn/da {proportional_to} a{sup -1}, the upper limits on the fraction of stars with at least one planet of mass 0.5-13 M{sub Jup} are 0.29 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.09 for 50-250 AU, with a 95% confidence level; this result is weakly dependent on the semi-major axis distribution power-law index. Without making any assumption on the mass and semi-major axis distributions, the fraction of stars with at least one brown dwarf companion having a semi-major axis in the

  2. Seeding life on the moons of the outer planets via lithopanspermia.

    Science.gov (United States)

    Worth, R J; Sigurdsson, Steinn; House, Christopher H

    2013-12-01

    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  3. The Solar Wind-Mars Interaction Boundaries in Three Dimensions

    Science.gov (United States)

    Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; DiBraccio, G. A.; Soobiah, Y. I. J.

    2017-12-01

    The Martian magnetosphere is a product of the interaction of Mars with the interplanetary magnetic field and the supersonic solar wind. A bow shock forms upstream of the planet as the solar wind is diverted around the planet. Closer to the planet another boundary is located that separates the shock-heated solar wind plasma from the planetary plasma in the Martian magnetosphere. The Martian magnetosphere is induced by the pile-up of the interplanetary magnetic field. This induced magnetospheric boundary (IMB) has been referred to by different names, in part due to the observations available at the time. The location of these boundaries have been previously analyzed using data from Phobos 2, Mars Global Surveyor, and Mars Express resulting in models describing their average shapes. Observations of individual transitions demonstrate that it is a boundary with a finite thickness. The MAVEN spacecraft has been in orbit about Mars since November 2014 resulting in many encounters of the spacecraft with the boundaries. Using data from the Particle and Fields Package (PFP), we identify over 1000 bow shock crossings and over 4000 IMB crossings that we use to model the average locations. We model the boundaries as a 3-dimensional surface allowing observations of asymmetry. The average location of the bow shock and IMB lies further from the planet in the southern hemisphere, where stronger crustal fields are present. The MAVEN PFP dataset allows concurrent observations of the magnetic field and plasma environment to investigate the nature of the IMB and the relationship of the boundary to the different plasma signatures. Finally, we model the upstream and downstream encounters of the boundaries separately to produce shell models that quantify the finite thicknesses of the boundaries.

  4. Habitability in the Solar System and on Extrasolar Planets and Moons

    Science.gov (United States)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  5. DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER

    International Nuclear Information System (INIS)

    Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier; Désert, Jean-Michel; Buchhave, Lars A.; Charbonneau, David; Fressin, François; Rowe, Jason; Caldwell, Douglas A.; Jenkins, Jon M.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew; Knutson, Heather A.; Ciardi, David; Gautier, Thomas N.; Batalha, Natalie M.; Bryson, Stephen T.; Howell, Steve B.; Everett, Mark

    2011-01-01

    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 ± 0.030 R J is among the handful of planets with super-inflated radii above 1.65 R J . Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 ± 0.041 M J planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 ± 0.010 g cm –3 . We detect the occultation of the planet at a significance of 3.7σ in the Kepler bandpass. This yields a geometric albedo of 0.14 ± 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7σ and 4σ in the 3.6 and 4.5 μm bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1σ) and e < 0.09 (3σ). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.

  6. Academic Training - Exploring Planets and Moons in our Solar System

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 6, 7, 8, 9 June 11:00-12:00. On the 8 June from 10:00 to 12:00 - Auditorium, bldg 500 Exploring Planets and Moons in our Solar System H.O. RUCKER / Space Research Institut, Graz The lecture series comprises 5 lectures starting with the interplanetary medium, the solar wind and its interaction with magnetized planets. Knowledge on the magnetically dominated 'spheres'around the Giant Planets have been obtained by the Grand Tour of both Voyager spacecraft to Jupiter, Saturn, with the continuation of Voyager 2 to Uranus, and Neptune, in the late seventies and eighties of last century. These findings are now extensively supported and complemented by Cassini/Huygens to the Saturnian system. This will be discussed in detail in lecture 2. Specific aspects of magnetospheric physics, in particular radio emissions from the planets, observed in-situ and by remote sensing techniques, will be addressed in the following lecture 3. Of high importance are also the rec...

  7. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    Science.gov (United States)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  8. Mars Habitability, Biosignature Preservation, and Mission Support

    Science.gov (United States)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2014-01-01

    Our work has elucidated a new analog for the formation of giant polygons on Mars, involving fluid expulsion in a subaqueous environment. That work is based on three-dimensional (3D) seismic data on Earth that illustrate the mud volcanoes and giant polygons that result from sediment compaction in offshore settings. The description of this process has been published in the journal Icarus, where it will be part of a special volume on Martian analogs. These ideas have been carried further to suggest that giant polygons in the Martian lowlands may be the signature of an ancient ocean and, as such, could mark a region of enhanced habitability. A paper describing this hypothesis has been published in the journal Astrobiology.

  9. Exploring planets and moons in our Solar System

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The lecture series comprises 5 lectures starting with the interplanetary medium, the solar wind and its interaction with magnetized planets. Knowledge on the magnetically dominated ‘spheres’ around the Giant Planets have been obtained by the Grand Tour of both Voyager spacecraft to Jupiter, Saturn, with the continuation of Voyager 2 to Uranus, and Neptune, in the late seventies and eighties of last century. These findings are now extensively supported and complemented by Cassini/Huygens to the Saturnian system. This will be discussed in detail in lecture 2. Specific aspects of magnetospheric physics, in particular radio emissions from the planets, observed in-situ and by remote sensing techniques, will be addressed in the following lecture 3. Of high importance are also the recent scientific results on planetary satellites, specifically those comprising active phenomena like volcanoes and geysirs, (as on Io, Enceladus, and Triton), with the explanation of some ring phenomena, to be addressed in lecture 4....

  10. Searching for Life on Mars Before It Is Too Late.

    Science.gov (United States)

    Fairén, Alberto G; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle

    2017-10-01

    Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.

  11. A Google Earth Grand Tour of the Terrestrial Planets

    Science.gov (United States)

    De Paor, Declan; Coba, Filis; Burgin, Stephen

    2016-01-01

    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  12. The Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (pc) and adolescent (pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle artifacts and provides

  13. Relative locations of the bow shocks of the terrestrial planets

    International Nuclear Information System (INIS)

    Russell, C.T.

    1977-01-01

    The observed bow shock encounters at Mercury, Venus and Mars are least square fit using the same technique so that their sizes and shapes can be intercompared. The shock front of Mercury most resembles the terrestrial shock in shape, and the shock stand off distance is consistent with the observed moment. The shapes of the Venus and Mars shock fronts more resemble each other than the earth's and the stand off distances are consistent with direct interaction of the solar wind with the ionosphere on the dayside. The Venus shock is closer to the planet than the Mars shock suggesting more absorption of the solar wind at Venus

  14. MASSIVE SATELLITES OF CLOSE-IN GAS GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Cassidy, Timothy A.; Johnson, Robert E.; Mendez, Rolando; Arras, Phil; Skrutskie, Michael F.

    2009-01-01

    We study the orbits, tidal heating and mass loss from satellites around close-in gas giant exoplanets. The focus is on large satellites which are potentially observable by their transit signature. We argue that even Earth-size satellites around hot Jupiters can be immune to destruction by orbital decay; detection of such a massive satellite would strongly constrain theories of tidal dissipation in gas giants, in a manner complementary to orbital circularization. The star's gravity induces significant periodic eccentricity in the satellite's orbit. The resulting tidal heating rates, per unit mass, are far in excess of Io's and dominate radioactive heating out to planet orbital periods of months for reasonable satellite tidal Q. Inside planet orbital periods of about a week, tidal heating can completely melt the satellite. Lastly, we compute an upper limit to the satellite mass loss rate due to thermal evaporation from the surface, valid if the satellite's atmosphere is thin and vapor pressure is negligible. Using this upper limit, we find that although rocky satellites around hot Jupiters with orbital periods less than a few days can be significantly evaporated in their lifetimes, detectable satellites suffer negligible mass loss at longer orbital periods.

  15. Planck intermediate results - LII. Planet flux densities

    DEFF Research Database (Denmark)

    Akrami, Y.; Ashdown, M.; Aumont, J.

    2017-01-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates...... of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic...... errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best...

  16. Differentiation of crusts and cores of the terrestrial planets: lessons for the early Earth

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1980-01-01

    It now appears probable that all of the terrestrial planets underwent some form of global chemical differentiation to produce crusts, mantles, and cores of variable relative mass fractions. There is direct seismic evidence for a crust on the Moon, and indirect evidence for distinct crusts on Mars and Venus. Substantial portions of these crusts have been in place since the time that heavy bombardment of the inner solar system ceased approximately 4 Ga ago. There is direct evidence for a sizeable core on Mars, indirect evidence for one on Mercury, and bounds on a possible small core for the Moon. Core formation is an important heat source confined to times prior to 4 Ga ago for Mercury and the Earth, but was not closely linked to crustal formation on the Moon nor, apparently, on Mars. The tectonic and volcanic histories of the surfaces of the terrestrial planets Moon, Mars, and Mercury can be used, with simple thermal history models, to restrict the earliest chemical differentiation to be shallow (outer 200-400 km) for the first two bodies and much more extensive for Mercury. Extension of these models to an Earth-size planet leads to the prediction of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and of the gradual development of a lithosphere and of plates with some lateral rigidity in Late Archean-Proterzoic times. (Auth.)

  17. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  18. Is Mars Dead and Does it Matter: The Crucial Scientific Importance of a Lifeless Mars

    Science.gov (United States)

    Fries, M.; Conrad, P. G.; Steele, A.

    2017-12-01

    The quest for signatures of ancient and/or present-day life on Mars is an important driving force in modern Mars science and exploration. The reasons for this have been spelled out in detail elsewhere, such as in the 2013-2022 Planetary Science decadal survey. We do not question the importance of the search for life, but would like to expound on the inverse case. Namely, if Mars is lifeless then it is one of the most astrobiologically important locales in the Solar System and is worthy of detailed and thorough investigation as such. At present we are aware of only one place in the universe that hosts biology, the Earth. Arguably one of the most important aspects of understanding life is the quandary of how life arose, and considerable work has been done on understanding this question. However, progress has been hampered by the fact that the conditions that facilitated the rise of life on Earth are almost completely lost; they have been overprinted by biological activity, altered by our oxygen- and water-rich modern environment, and physically destroyed by crustal recycling. None of these effects are present on a lifeless Mars. Whereas on a "living" Mars any habitable environment would be colonized and altered, a lifeless Mars should retain preserved environments - either planetary-scale or microenvironments - which preserve a record of the original physiochemical conditions suitable for the origin of life on a terrestrial planet. No other world has the same potential to preserve this record; Mercury, the Moon, Phobos and Deimos do not show signs of ever being habitable, Venus has a surface that has been mercilessly thermally altered and is difficult to access, and even the Earth itself has been extensively altered. Ceres is uncertain in this respect as that world is unlikely to ever have hosted a significant atmosphere and its potential status as an early ocean world is still debated. The irony here is that a Mars free of life is a unique and scientifically

  19. PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.

    2010-01-01

    Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.

  20. Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance

    NARCIS (Netherlands)

    Bakker, W.H.; Ruitenbeek, F.J.A. van; Werff, H.M.A. van der; Zegers, T.E.; Oosthoek, J.H.P.; Marsh, S.H.; Meer, F.D. van der

    2014-01-01

    OMEGA/Mars Express hyperspectral imagery is an excellent source of data for exploring the surface composition of the planet Mars. Compared to terrestrial hyperspectral imagery, the data are challenging to work with; scene-specific transmission models are lacking, spectral features are shallow making

  1. The implantation of life on Mars - Feasibility and motivation

    Science.gov (United States)

    Haynes, Robert H.; Mckay, Christopher P.

    1992-01-01

    Scientific concepts are reviewed regarding the potential formation and development of a life-bearing environment on Mars, and a potential ecopoiesis scenario is given. The development of the earth's biosphere is defined, and the major assumptions related to the formation of Martian life are listed. Three basic phases are described for the life-implantation concept which include determining whether sufficient quantities of volatiles are available, engineering the warming of the planet, and implanting microbial communities if necessary. Warming the planet theoretically releases liquid H2O and produces a thick CO2 atmosphere, and the implantation of biological communities is only necessary if no indigenous microbes emerge. It is concluded that a feasibility study is required to assess the possibilities of implanting life on Mars more concretely.

  2. The atmosphere and climate of Mars

    CERN Document Server

    Clancy, R Todd; Forget, François; Smith, Michael D; Zurek, Richard W

    2017-01-01

    Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.

  3. Venus Express en route to probe the planet's hidden mysteries

    Science.gov (United States)

    2005-11-01

    reduced to once daily. If needed, trajectory correction manoeuvres can go ahead at the half-way stage in January. When making its closest approach, Venus Express will face far tougher conditions than those encountered by Mars Express on nearing the Red Planet. For while Venus's size is indeed similar to that of the Earth, its mass is 7.6 times that of Mars, with gravitational attraction to match. To resist this greater gravitational pull, the spacecraft will have to ignite its main engine for 53 minutes in order to achieve 1.3 km/second deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of propellant will be used for this manoeuvre. A second engine firing will be necessary in order to reach final operational orbit: a polar elliptical orbit with 12-hour crossings. This will enable the probe to make approaches to within 250 km of the planet's surface and withdraw to distances of up to 66 000 km, so as to carry out close-up observations and also get an overall perspective. Exploring other planets to better understand planet Earth "The launch of Venus Express is a further illustration of Europe's determination to study the various bodies in our solar system", stressed Professor David Southwood, the Director of ESA's science programmes. "We started in 2003 with the launch of Mars Express to the Red Planet and Smart-1 to the Moon and both these missions have amply exceeded our expectations. Venus Express marks a further step forward, with a view to eventually rounding off our initial overview of our immediate planetary neighbours with the BepiColombo mission to Mercury to be launched in 2013." "With Venus Express, we fully intend to demonstrate yet again that studying the planets is of vital importance for life here on Earth", said Jean Jacques Dordain, ESA Director General. "To understand climate change on Earth and all the contributing factors, we cannot make do with solely observing our own planet. We need to decipher the

  4. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    Science.gov (United States)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  5. Small flow rate can supply inwardly migrating shortest-period planets

    Directory of Open Access Journals (Sweden)

    Taylor S.F.

    2013-04-01

    Full Text Available The number of exoplanets found with periods as short as one day and less was surprising given how fast these planets had been expected to migrate into the star due to the tides raised on the star by planets at such close distances. It has been seen as improbable that we would find planets in such a small final fraction of their lives [1]. The favored solution has been that the tidal dissipation is much weaker than expected, which would mean that the final infall would be a larger fraction of the planets’ life. We find no reason, however, to exclude the explanation that a small number of planets are continuously sent migrating inwards such that these planets indeed are in the last fraction of their lives. Following the observation that the distribution of medium planets disfavors tidal dissipation being significantly weaker than has been found from observations of binary stars [2], we now show that the numbers of planets in such a “flow” of excess planets migrating inwards is low enough that even depletion of the three-day pileup is a plausible source. Then the shortest period occurrence distribution would be shaped by planets continuously being sent into the star, which may explain the depletion of the pileup in the Kepler field relative to the solar neighborhood [3]. Because Kepler observes above the galactic plan, [3] suggested the Kepler field may include an older population of stars. The tidal dissipation strength in stars due to giant planets may be not greatly weaker than it is in binary stars.

  6. Terraforming the Planets and Climate Change Mitigation on Earth

    Science.gov (United States)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  7. Three regimes of extrasolar planet radius inferred from host star metallicities.

    Science.gov (United States)

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  8. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    Science.gov (United States)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  9. Early Life Crises of Habitable Planets

    International Nuclear Information System (INIS)

    Pierrehumbert, Raymond

    2006-01-01

    There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.

  10. NASA's New Mars Exploration Program: The Trajectory of Knowledge

    Science.gov (United States)

    Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  11. Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants

    Science.gov (United States)

    Bitsch, Bertram; Morbidelli, Alessandro; Johansen, Anders; Lega, Elena; Lambrechts, Michiel; Crida, Aurélien

    2018-04-01

    The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τf gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.

  12. Stabilization of ammonia-rich hydrate inside icy planets.

    Science.gov (United States)

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas

    2017-08-22

    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  13. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dederick, Ethan; Jackiewicz, Jason, E-mail: dederiej@nmsu.edu, E-mail: jasonj@nmsu.edu [New Mexico State University, Las Cruces, NM (United States)

    2017-03-10

    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  14. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    International Nuclear Information System (INIS)

    Dederick, Ethan; Jackiewicz, Jason

    2017-01-01

    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  15. Triple Microlens OGLE-2008-BLG-092L: Binary Stellar System with a Circumprimary Uranus-type Planet

    Science.gov (United States)

    Poleski, Radosław; Skowron, Jan; Udalski, Andrzej; Han, Cheongho; Kozłowski, Szymon; Wyrzykowski, Łukasz; Dong, Subo; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Pietrukowicz, Paweł; Gould, Andrew

    2014-11-01

    We present the gravitational microlensing discovery of a 4 M Uranus planet that orbits a 0.7 M ⊙ star at ≈18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main-sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only about three times smaller than that of the companion star, suggesting significant dynamical interactions.

  16. Triple microlens OGLE-2008-BLG-092L: binary stellar system with a circumprimary uranus-type planet

    Energy Technology Data Exchange (ETDEWEB)

    Poleski, Radosław; Gould, Andrew [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Skowron, Jan; Udalski, Andrzej; Kozłowski, Szymon; Wyrzykowski, Łukasz; Szymański, Michał K.; Kubiak, Marcin; Pietrzyński, Grzegorz; Soszyński, Igor; Ulaczyk, Krzysztof; Pietrukowicz, Paweł [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Han, Cheongho [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Dong, Subo, E-mail: poleski@astronomy.ohio-state.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China)

    2014-11-01

    We present the gravitational microlensing discovery of a 4 M {sub Uranus} planet that orbits a 0.7 M {sub ☉} star at ≈18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main-sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only about three times smaller than that of the companion star, suggesting significant dynamical interactions.

  17. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    Science.gov (United States)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  18. Cometary origin of atmospheric methane variations on Mars unlikely

    Science.gov (United States)

    Roos-Serote, M.; Atreya, S. K.; Webster, C. R.; Mahaffy, P. R.

    2016-10-01

    The detection of methane in the atmosphere of Mars was first reported in 2004. Since then a number of independent observations of methane have been reported, all showing temporal variability. Up until recently, the origin of methane was attributed to sources either indigenous to Mars or exogenous, where methane is a UV degradation byproduct of organics falling on to the surface. Most recently, a new hypothesis has been proposed that argues that the appearance and variation of methane are correlated with specific meteor events at Mars. Indeed, extraplanetary material can be brought to a planet when it passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. This occurs repeatedly at specific times in a planet's year as streams tend to be fairly stable in space. In this paper, we revisit this latest hypothesis by carrying out a complete analysis of all available data on Mars atmospheric methane, including the very recent data not previously published, together with all published predicted meteor events for Mars. Whether we consider the collection of individual data points and predicted meteor events, whether we apply statistical analysis, or whether we consider different time spans between high methane measurements and the occurrence of meteor events, we find no compelling evidence for any correlation between atmospheric methane and predicted meteor events.

  19. COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION

    International Nuclear Information System (INIS)

    Stewart, Sarah T.; Leinhardt, Zoë M.

    2012-01-01

    Numerical simulations of the stochastic end stage of planet formation typically begin with a population of embryos and planetesimals that grow into planets by merging. We analyzed the impact parameters of collisions leading to the growth of terrestrial planets from recent N-body simulations that assumed perfect merging and calculated more realistic outcomes using a new analytic collision physics model. We find that collision outcomes are diverse and span all possible regimes: hit-and-run, merging, partial accretion, partial erosion, and catastrophic disruption. The primary outcomes of giant impacts between planetary embryos are approximately evenly split between partial accretion, graze-and-merge, and hit-and-run events. To explore the cumulative effects of more realistic collision outcomes, we modeled the growth of individual planets with a Monte Carlo technique using the distribution of impact parameters from N-body simulations. We find that fewer planets reached masses >0.7 M Earth using the collision physics model compared to simulations that assumed every collision results in perfect merging. For final planets with masses >0.7 M Earth , 60% are enriched in their core-to-mantle mass fraction by >10% compared to the initial embryo composition. Fragmentation during planet formation produces significant debris (∼15% of the final mass) and occurs primarily by erosion of the smaller body in partial accretion and hit-and-run events. In partial accretion events, the target body grows by preferentially accreting the iron core of the projectile and the escaping fragments are derived primarily from the silicate mantles of both bodies. Thus, the bulk composition of a planet can evolve via stochastic giant impacts.

  20. The Oscillating History in the Exploration of the Red Planet

    Science.gov (United States)

    Young, Suzanne M. M.

    2009-10-01

    The oldest, and very vague, map of Mars was drawn in 1659 by Christiaan Huygens, who like Galileo, was pointing his telescopes to nearly anything the sky presented him. In the 1700s, William Herschel, followed by Johann Hieronymus Schroeter, observed Mars extensively and attempted to map its features. In the mid-1800s, Warren De la Rue refined the features on maps of Mars enough to first display, unknowingly, the north and south polar glaciers of Mars. In 1877 Giovanni Virginio Schiaparelli observed a dense network of linear structures on the surface of Mars which he called ``canali'' (Italian: meaning ``channels'', but mistranslated as ``canals''). Schiaparelli also named the ``seas'' and ``continents'' of Mars. With canals and seas, massive speculation began about water and life on Mars, perhaps even a civilization responsible for the canals (and, one might hope, with gondolas and singing gondoliers). Percival Lowell was captivated by the implications of these purported canals and spent much of his life trying to prove the existence of intelligent life on the red planet in the early 1900s. On October 30, 1938, Orson Welles broadcast on radio an adaptation of H.G. Wells' novel ``War of the Worlds''. This caused some listeners to panic. The assumption that Martians were benevolent was severely dented. With NASA's early exploration of Mars - Mariner Missions in the 1960s, and the Viking Missions in the 1970s - Mars was returned to a desolated place, although it now seems possible that the Viking landers were literally inches away from discovering water ice on Mars, finally encountered in abundance over 30 years later by the Phoenix Mission. With the detection of water by the Odyssey Orbiter, geological evidence for ancient water found by the Rovers, the highest resolution images ever taken of Mars by the Mars Reconnaissance Orbiter, and the most recent discoveries by the Phoenix Lander, theories have almost come full circle in returning Mars to a place with water

  1. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    Science.gov (United States)

    2010-08-01

    good reasons to believe that two other planets are present," says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth-Sun distance. One "year" on this planet would last only 1.18 Earth-days. "This object causes a wobble of its star of only about 3 km/hour - slower than walking speed - and this motion is very hard to measure," says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b (eso0933). The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there [3]. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits. So far, astronomers know of fifteen systems with at least three planets. The last record-holder was 55 Cancri, which contains five planets, two of them being giant planets. "Systems of low-mass planets like the one around HD 10180 appear to be quite common, but their formation history remains a puzzle," says Lovis. Using the new discovery as well as data for other planetary systems, the astronomers found an equivalent of the Titius-Bode law that exists in our Solar System: the distances of the planets from their star seem to follow a regular pattern [4]. "This could be a signature of the formation process of these planetary systems," says team member Michel Mayor. Another important result found by the astronomers while studying these systems is that there is a relationship between the mass of a planetary system and the mass and chemical

  2. Ancient aliens on mars

    CERN Document Server

    Bara, Mike

    2013-01-01

    Best-selling author and Secret Space Program researcher Bara brings us this lavishly illustrated volume on alien structures on Mars. Was there once a vast, technologically advanced civilization on Mars, and did it leave evidence of its existence behind for humans to find eons later? Did these advanced extraterrestrial visitors vanish in a solar system wide cataclysm of their own making, only to make their way to Earth and start anew? Was Mars once as lush and green as the Earth, and teeming with life? Did Mars once orbit a missing member of the solar system, a "Super Earth” that vanished in a disaster that devastated life on Earth and Venus and left us only the asteroid belt as evidence of its once grand existence? Did the survivors of this catastrophe leave monuments and temples behind, arranged in a mathematical precision designed to teach us the Secret of a new physics that could lift us back to the stars? Does the planet have an automated defense shield that swallows up robotic probes if they wander int...

  3. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  4. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  5. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    International Nuclear Information System (INIS)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R.; Bagnulo, S.; Kowalski, P. M.; Shulyak, D. V.; Sterzik, M. F.

    2012-01-01

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for ∼8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10 2 (10 4 ) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M ☉ white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  6. New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations

    Science.gov (United States)

    Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn

    2017-06-01

    Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.

  7. Planetary populations in the mass-period diagram: A statistical treatment of exoplanet formation and the role of planet traps

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Pudritz, Ralph E.

    2013-01-01

    The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass-period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for the positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as 'failed' cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M * ≤ 0.7 M ☉ ).

  8. Early Mars: A Warm Wet Niche for Life

    Science.gov (United States)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.

    2010-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution had conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 Ma of Martian history were ripe for life to develop because of the abundance of: (i) Water-as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at approx.3.9 Ga, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic patterns in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 Ma?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve)

  9. The atmospheric escape at Mars: complementing the scenario

    Science.gov (United States)

    Lilensten, Jean; Simon, Cyril; Barthélémy, Mathieu; Thissen, Roland; Ehrenreich, David; Gronoff, Guillaume; Witasse, Olivier

    2013-04-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly ener- getic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. This study assesses the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions.We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO++ for a simplified single constituent atmosphere of a 2 case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering ...), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished but complement the other processes and allow writing the scenario of the Mars escape. We show that the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible.When simulating the hot Jupiter HD209458b, the two processes cannot explain the measured escape flux of C+.

  10. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  11. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  12. Mantle differentiation and thermal evolution of Mars, Mercury, and Venus

    International Nuclear Information System (INIS)

    Spohn, T.

    1991-01-01

    In the present models for the thermal evolution of Mercury, Venus, and Mars encompass core and mantle chemical differentiation, lithospheric growth, and volcanic heat-transfer processes. Calculation results indicate that crust and lithosphere thicknesses are primarily dependent on planet size as well as the bulk concentration of planetary radiogenic elements and the lithosphere's thermal conductivity. The evidence for Martian volcanism for at least 3.5 Gyr, and in Mercury for up to 1 Gyr, in conjunction with the presence of a magnetic field on Mercury and its absence on Mars, suggest the dominance of a lithospheric conduction heat-transfer mechanism in these planets for most of their thermal history; by contrast, volcanic heat piping may have been an important heat-transfer mechanism on Venus. 50 refs

  13. Radio Telescopes to Keep Sharp Eye on Mars Lander

    Science.gov (United States)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  14. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  15. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  16. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    International Nuclear Information System (INIS)

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-01-01

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m P ∼ + ) and/or close orbits (r ∼< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P ∼ 4 days. Planets with shorter periods, P ∼ 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  17. Violent Adolescent Planet Caught Infrared Handed

    Science.gov (United States)

    Trang, D.; Gaidos, E.

    2010-01-01

    The prevailing view of planet formation depicts accumulation of progressively larger objects, culminating in accretionary impacts between Moon- to Mars-sized protoplanets. Cosmochemists have found evidence in chondritic meteorites for such violent events, and the Moon is thought to have involved a huge impact between a Mars-sized object and the still-growing proto-Earth. Now we may have evidence for a large impact during planet formation around another star. Carey Lisse (Applied Physics Lab of the Johns Hopkins University, Baltimore) and colleagues from the Space Telescope Science Institute (Baltimore), the University of Cambridge (UK), the Open University (Milton Keyes, UK), the University of Georgia (Athens, GA), Jet Propulsion Lab (Pasadena, CA), and the University of Rochester (New York) analyzed infrared spectra obtained by the Spitzer Space Telescope. They found a prominent peak in the spectrum at 9.3 micrometers, and two smaller ones at slightly lower and higher wavelengths. These peaks are consistent with the presence of SiO gas, a product expected to be produced by a highly energetic impact. The spectral measurements also allowed Lisse and his colleagues to estimate the size of the dust and they found that there is an abundance of micrometer-sized dust grains. This argues for a fresh source of fine material during the past 0.1 million years. That source may have been an impact between two protoplanets surrounding this young star.

  18. CROWDING-OUT OF GIANTS BY DWARFS: AN ORIGIN FOR THE LACK OF COMPANION PLANETS IN HOT JUPITER SYSTEMS

    International Nuclear Information System (INIS)

    Ogihara, Masahiro; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi

    2013-01-01

    We investigate the formation of close-in terrestrial planets from planetary embryos under the influence of a hot Jupiter (HJ) using gravitational N-body simulations that include gravitational interactions between the gas disk and the terrestrial planet (e.g., type I migration). Our simulations show that several terrestrial planets efficiently form outside the orbit of the HJ, making a chain of planets, and all of them gravitationally interact directly or indirectly with the HJ through resonance, which leads to inward migration of the HJ. We call this mechanism of induced migration of the HJ ''crowding-out''. The HJ is eventually lost through collision with the central star, and only several terrestrial planets remain. We also find that the efficiency of the crowding-out effect depends on the model parameters; for example, the heavier the disk is, the more efficient the crowding-out is. When planet formation occurs in a massive disk, the HJ can be lost to the central star and is never observed. On the other hand, for a less massive disk, the HJ and terrestrial planets can coexist; however, the companion planets may be below the detection limit of current observations. In both cases, systems with a HJ and terrestrial planets have little chance of detection. Therefore, our model naturally explains the lack of companion planets in HJ systems regardless of the disk mass. In effect, our model provides a theoretical prediction for future observations; additional planets can be discovered just outside the HJ, and their masses should generally be small

  19. The Mars Project: Avoiding Decompression Sickness on a Distant Planet

    Science.gov (United States)

    Conkin, Johnny

    2000-05-01

    A cost-effective approach for Mars exploration is to use available resources, such as water and atmospheric gases. Nitrogen (N2) and argon (Ar) are available and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch (psia). The habitat and space suit are designed as an integrated system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars, but the risk of decompression sickness (DCS) during the extravehicular activity in a 3.75-psia suit, after exposure to any of the three habitat conditions, may limit unrestricted exploration. I evaluate here the risk of DCS since a significant proportion of a trinary breathing gas in the habitat might contain Ar. I draw on past experience and published information to extrapolate into untested, multivariable conditions to evaluate risk. A rigorous assessment of risk as a probability of DCS for each habitat condition is not yet possible. Based on many assumptions about Ar in hypobaric decompressions, I conclude that the presence of Ar significantly increases the risk of DCS. The risk is significant even with the best habitat option: 2.56 psia oxygen, 3.41 psia N2, and 2.20 psia Ar. Several hours of prebreathing 100% 02, a higher suit pressure, or a combination of other important variables such as limited exposure time on the surface or exercise during prebreathe would be necessary to reduce the risk of DCS to an acceptable level. The acceptable level for DCS risk on Mars has not yet been determined. Mars is a great distance from Earth and therefore from primary medical care. The acceptable risk would necessarily be defined by the capability to treat DCS in the Rover vehicle, in the habitat, or both.

  20. Effect of ''outer'' sources and dissipative processes on abundance of inert gases in atmospheres of the Earth group planets

    International Nuclear Information System (INIS)

    Pavlov, A.K.

    1981-01-01

    The problem of abundance of inert gases in atmospheres of the Earth group planets is discussed. It is shown that introduction of He, Ne and 36 Ar into the Mars and Mercury atmospheres with interplanetary dust and from other external sources require the presence of special mechanisms of losses for these gases. For the Mars atmosphere dissipation on atmosphere interaction with solar wind during the periods of anomalously low temperatures is a probable mechanisms of Ne and 36 Ar losses. For the Mercury thermal dissipation for He and polar wind for other inert gases are possible. For all the planets of the Earth group dissipation on interaction with solar wind and introduction with interplanetary dust could play an important role at the early stages of evolution of planets [ru