WorldWideScience

Sample records for mars exploration programme

  1. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  2. Officine Galileo for Mars Exploration

    Science.gov (United States)

    Battistelli, E.; Tacconi, M.

    1999-09-01

    The interest for Mars's exploration is continuously increasing. Officine Galileo is engaged in this endeavor with several programmes. The exobiology is, of course, a stimulating field; presently Officine Galileo is leading a team with Dasa and Tecnospazio, under ESA contract, for the definition of a facility for the search of extinct life on Mars through the detection of indicators of life. The system, to be embarked on a Mars lander, is based on a drill to take rock samples underneath the oxidised soil layer, on a sample preparation and distribution system devoted to condition and bring the sample to a set of analytical instruments to carry out in-situ chemical and mineralogical investigations. The facility benefits of the presence of optical microscope, gas chromatograph, several spectrometers (Raman, Mass, Mossbauer, APX-Ray), and further instruments. In the frame of planetology, Officine Galileo is collaborating with several Principal Investigators to the definition of a set of instruments to be integrated on the Mars 2003 Lander (a NASA-ASI cooperation). A drill (by Tecnospazio), with the main task to collect Mars soil samples for the subsequent storage and return to Earth, will have the capability to perform several soil analyses, e.g. temperature and near infrared reflectivity spectra down to 50 cm depth, surface thermal and electrical conductivity, sounding of electromagnetic properties down to a few hundreds meter, radioactivity. Moreover a kit of instruments for in-situ soil samples analyses if foreseen; it is based on a dust analyser, an IR spectrometer, a thermofluorescence sensor, and a radioactivity analyser. The attention to the Red Planet is growing, in parallel with the findings of present and planned missions. In the following years the technology of Officine Galileo will carry a strong contribution to the science of Mars.

  3. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  4. Mars exploration study workshop 2

    Science.gov (United States)

    Duke, Michael B.; Budden, Nancy Ann

    1993-11-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  5. MARS CODE MANUAL VOLUME III - Programmer's Manual

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Hwang, Moon Kyu; Jeong, Jae Jun; Kim, Kyung Doo; Bae, Sung Won; Lee, Young Jin; Lee, Won Jae

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This programmer's manual provides a complete list of overall information of code structure and input/output function of MARS. In addition, brief descriptions for each subroutine and major variables used in MARS are also included in this report, so that this report would be very useful for the code maintenance. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  6. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  7. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  8. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  9. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  10. Enabling Tethered Exploration on Mars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong science motivations exist for exploring hard to reach terrain on Mars and the leading systems proposed to do so require tethers. While tethers are used...

  11. Radiation chemistry in exploration of Mars

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2005-01-01

    Problems of exploration of Mars are seldom connected with radiation research. Improvements in such approach, more and more visible, are reported in this paper, written by the present author working on prebiotic chemistry and origins of life on Earth. Objects on Mars subjected to radiation are very different from those on Earth. Density of the Martian atmosphere is by two orders smaller than over Earth and does not protect the surface of Mars from ionizing radiations, contrary to the case of Earth, shielded by the equivalent of ca. 3 meters of concrete. High energy protons from the Sun are diverted magnetically around Earth, and Mars is deprived of that protection. The radiolysis of martian '' air '' (95.3% of carbon dioxide) starts with the formation of CO 2 + , whereas the primary product over Earth is N 2 + ion radical. The lack of water vapor over Mars prevents the formation of many secondary products. The important feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. The interface of the atmosphere and the regolith can be the site of many chemical reactions, induced also by intensive UV, which includes part of the vacuum UV. Minerals like sodalite, discovered on Mars can contribute as reagents in many reactions. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. Pharmaceuticals proposed as radiobiological protection cannot improve the situation. Exploration over the distance of millions of kilometers performed successfully without presence of man, withstands more easily the presence of ionizing radiation. (author)

  12. Automation &robotics for future Mars exploration

    Science.gov (United States)

    Schulte, W.; von Richter, A.; Bertrand, R.

    2003-04-01

    Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another

  13. Photovoltaic Power for Mars Exploration

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1997-01-01

    Mars is a challenging environment for the use of solar power. The implications of the low temperatures and low light intensity, solar spectrum modified by dust and changing with time of day and year, indirect sunlight, dust storms, deposited dust, wind, and corrosive peroxide-rich soil are discussed with respect to potential photovoltaic power systems. The power systems addressed include a solar-powered rover vehicle and a human base. High transportation costs dictate high efficiency solar cells or alternatively, a 'thin film' solar cell deposited on a lightweight plastic or thin metal foil.

  14. Exploring the potential of MAR

    International Nuclear Information System (INIS)

    Vanderzalm, Joanne

    2014-01-01

    Despite numerous benefits, the full potential for uptake of MAR for use of treated wastewater and urban stormwater has not been realised. CSIRO is currently leading research to address some of the major impediments to uptake of MAR. These include the clogging of the soil or aquifer matrix, leading to reduced infiltration rates; water quality impacts on the receiving aquifer; and uncertainty regarding the economics of MAR schemes. Field-scale application of MAR through national demonstration projects aims to reduce the uncertainty associated with technical and economic feasibility and facilitate water recycling via the aquifer. Current research in the Managed Aquifer Recharge and Recycling Options (MARRO) project provides two case studies using novel infiltration techniques, soil aquifer treatment (SAT) and infiltration galleries, to recharge treated wastewater for non-potable use. SAT at Alice Springs supplements existing groundwater resources for future irrigation supplies, while an infiltration gallery at Floreat (Western Australia) is evaluating the potential of MAR to sustain groundwater-fed wetlands. These infiltration techniques provide an opportunity to optimise the passive treatment processes and minimise water quality impacts on the receiving groundwater. SAT uses open infiltration basins operated intermittently to create alternate wet and dry cycles and optimise natural treatment processes within the subsurface. Power and Water Corporation's Alice Springs SAT scheme has been in operation since 2008 to prevent overflow of treated wastewater to surface water systems and augment the groundwater resource. Wastewater for recharge to a Quaternary sand and gravel aquifer is treated by stabilisation ponds and dissolved air flotation, with filtration added to the treatment train in late 2013. The scheme commenced as four basins with a total recharge area of 7,640 sq.m, but was increased to allow 600,000 m 3 /year recharge to the current, larger capacity of

  15. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  16. Robotics and automation in Mars exploration

    Science.gov (United States)

    Bourke, Roger D.; Sturms, Francis M., Jr.; Golombek, Matthew P.; Gamber, R. T.

    1992-01-01

    A new approach to the exploration of Mars is examined which relies on the use of smaller and simpler vehicles. The new strategy involves the following principles: limiting science objectives to retrieval of rock samples from several different but geologically homogeneous areas; making use of emerging microspacecraft technologies to significantly reduce the mass of hardware elements; simplifying missions to the absolutely essential elements; and managing risk through the employment of many identical independent pieces some of which may fail. The emerging technologies and their applications to robotic Mars missions are discussed.

  17. Mars - The relationship of robotic and human elements in the IAA International Exploration of Mars study

    Science.gov (United States)

    Marov, Mikhail YA.; Duke, Michael B.

    1993-01-01

    The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.

  18. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  19. Microbiological cleanliness of the Mars Exploration Rover spacecraft

    Science.gov (United States)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    2002-01-01

    Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.

  20. ISRU in the Context of Future European Human Mars Exploration

    Science.gov (United States)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  1. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  2. Mission Operations of the Mars Exploration Rovers

    Science.gov (United States)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  3. Mars Exploration Rovers Landing Dispersion Analysis

    Science.gov (United States)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  4. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  5. Data Management for Mars Exploration Rovers

    Science.gov (United States)

    Snyder, Joseph F.; Smyth, David E.

    2004-01-01

    Data Management for the Mars Exploration Rovers (MER) project is a comprehensive system addressing the needs of development, test, and operations phases of the mission. During development of flight software, including the science software, the data management system can be simulated using any POSIX file system. During testing, the on-board file system can be bit compared with files on the ground to verify proper behavior and end-to-end data flows. During mission operations, end-to-end accountability of data products is supported, from science observation concept to data products within the permanent ground repository. Automated and human-in-the-loop ground tools allow decisions regarding retransmitting, re-prioritizing, and deleting data products to be made using higher level information than is available to a protocol-stack approach such as the CCSDS File Delivery Protocol (CFDP).

  6. Exploring Mars: The Ares Payload Service (APS)

    Science.gov (United States)

    Bowen, Justin; Lusignan, Bruce

    1999-08-01

    design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"

  7. Exploring Mars: the Ares Payload Service (APS)

    Science.gov (United States)

    Bowen, Justin; Lusignan, Bruce

    1999-01-01

    design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"

  8. Planetary Protection Issues in the Human Exploration of Mars

    Science.gov (United States)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  9. Exploring Regolith Depth and Cycling on Mars

    Science.gov (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.

    2017-12-01

    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  10. Mars exploration program analysis group goal one: determine if life ever arose on Mars.

    Science.gov (United States)

    Hoehler, Tori M; Westall, Frances

    2010-11-01

    The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.

  11. Implementing a Science-driven Mars Exploration Program

    Science.gov (United States)

    Garvin, J. B.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) was developed on the basis of the goals, objectives, investigations, and prioritizations established by the Mars Exploration Payload Analysis Group (as summarized previously by Greeley et al., 2001). The underlying scientific strategy is linked to common threads which include the many roles water has played on and within Mars as a "system". The implementation strategy that has been adopted relies heavily on an ever-sharpening program of reconnaissance, beginning with the legacy of the Mars Global Surveyor, continuing with the multispectral and compositional observations of the Mars Odyssey orbiter, and extending to a first step in surface-based reconnaissance with the 2003 Mars Exploration Rovers. The results of MGS and Odyssey will serve to focus the trade space of localities where the record, for example, of persistent surface water may have been preserved in a mineralogical sense. The 2005 Mars Reconnaissance Orbiter will further downselect the subset of sites on Mars where evidence of depositional patterns and aqueous mineralogies (i.e., diagenetic minerals) are most striking at scales as fine as tens to hundreds of meters. Reconnaissance will move to the surface and shallow subsurface in 2007 with the Mars "Smart Lander" (MSL), at which time an extensive array of mobile scientific exploration tools will be used to examine a locality at 10km traverse scales, ultimately asking scientific questions which can be classed as paleobiological (i.e., life inference). Further orbital reconnaissance may be undertaken in 2009, perhaps involving targeted multi-wavelength SAR imaging, in anticipation of a precisely targeted Mars Sample Return mission as early as 2011. This sequence of core program MEP missions will be amplified by the selection of PI-led SCOUT missions, starting in 2007, and continuing every other Mars launch opportunity.

  12. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  13. International cooperation for Mars exploration and sample return

    Science.gov (United States)

    Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.

    1990-01-01

    The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.

  14. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    Zenith Sea Launch rockets in March 2021 and carrying four satellites each. After the entrance in Mars sphere of influence, the single spacecrafts separate and spiral-down with Hall effect thrusters until they reach the final operational orbits in April 2025, at 17,030 km of altitude and 37 deg of inclination. The preliminary design includes 105 kg and 577 W of mass and power margin for each satellite, that can be allocated for scientific payloads. The main challenges of the proposed design are represented by the optical technology development and the connected strict pointing constraints satisfaction, as well as by the Martian constellation operations management. This mission study has therefore shown the possibility of deploying an effective communication infrastructure in Mars orbit employing a small amount of the resources needed for the human exploration programme, additionally providing the chance of performing important scientific research either from orbit or with a network of small rovers carried on-board and deployed on the surface.

  15. NASA's New Mars Exploration Program: The Trajectory of Knowledge

    Science.gov (United States)

    Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  16. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  17. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  18. Mars Exploration Rover Spirit End of Mission Report

    Science.gov (United States)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  19. Mars Surface Mobility Leading to Sustainable Exploration

    Science.gov (United States)

    Linne, Diane L.; Barsi, Stephen J.; Sjauw En Wa, Waldy K.; Landis, Geoffrey A.

    2012-01-01

    A Mars rocket-propelled hopper concept was evaluated for feasibility through analysis and experiments. The approach set forth in this paper is to combine the use of in-situ resources in a new Mars mobility concept that will greatly enhance the science return while providing the first opportunity towards reducing the risk of incorporating ISRU into the critical path for the highly coveted, but currently unaffordable, sample return mission. Experimental tests were performed on a high-pressure, self-throttling gaseous oxygen/methane propulsion system to simulate a two-burn-with-coast hop profile. Analysis of the trajectory, production plant requirements, and vehicle mass indicates that a small hopper vehicle could hop 2 km every 30 days with an initial mass of less than 60 kg. A larger vehicle can hop 15 km every 30 to 60 days with an initial mass of 300 to 430 kg.

  20. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  1. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  2. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  3. Reaching Mars: multi-criteria R&D portfolio selection for Mars exploration technology planning

    Science.gov (United States)

    Smith, J. H.; Dolgin, B. P.; Weisbin, C. R.

    2003-01-01

    The exploration of Mars has been the focus of increasing scientific interest about the planet and its relationship to Earth. A multi-criteria decision-making approach was developed to address the question, Given a Mars program composed of mission concepts dependent on a variety of alternative technology development programs, which combination of technologies would enable missions to maximize science return under a constrained budget?.

  4. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  5. Unmanned systems to support the human exploration of Mars

    Science.gov (United States)

    Gage, Douglas W.

    2010-04-01

    Robots and other unmanned systems will play many critical roles in support of a human presence on Mars, including surveying candidate landing sites, locating ice and mineral resources, establishing power and other infrastructure, performing construction tasks, and transporting equipment and supplies. Many of these systems will require much more strength and power than exploration rovers. The presence of humans on Mars will permit proactive maintenance and repair, and allow teleoperation and operator intervention, supporting multiple dynamic levels of autonomy, so the critical challenges to the use of unmanned systems will occur before humans arrive on Mars. Nevertheless, installed communications and navigation infrastructure should be able to support structured and/or repetitive operations (such as excavation, drilling, or construction) within a "familiar" area with an acceptable level of remote operator intervention. This paper discusses some of the factors involved in developing and deploying unmanned systems to make humans' time on Mars safer and more productive, efficient, and enjoyable.

  6. Simulations of the magnetic properties experiment on Mars Exploration Rovers

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Worm, E. S.; Bertelsen, P.; Goetz, W.; Kinch, K.; Madsen, M. B.; Merrison, J. P.; Nornberg, P.

    2005-01-01

    We present some of the main findings from simulation studies of the Magnetic Properties Experiment on the Mars Exploration Rovers. The results suggest that the dust has formed via mechanical breakdown of surface rocks through the geological history of the planet, and that liquid water need not have played any significant role in the dust formation processes.

  7. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  8. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  9. Strategies for the sustained human exploration of Mars

    Science.gov (United States)

    Landau, Damon Frederick

    A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for

  10. Geology of Mars after the first 40 years of exploration

    International Nuclear Information System (INIS)

    Rossi, Angelo Pio; Van Gasselt, Stephan

    2010-01-01

    The knowledge of Martian geology has increased enormously in the last 40 yr. Several missions orbiting or roving Mars have revolutionized our understanding of its evolution and geological features, which in several ways are similar to Earth, but are extremely different in many respects. The impressive dichotomy between the two Martian hemispheres is most likely linked to its impact cratering history, rather than internal dynamics such as on Earth. Mars' volcanism has been extensive, very long-lived and rather constant in its setting. Water was available in large quantities in the distant past of Mars, when a magnetic field and more vigorous tectonics were active. Exogenic forces have been shaping Martian landscapes and have led to a plethora of landscapes shaped by wind, water and ice. Mars' dynamical behavior continues, with its climatic variation affecting climate and geology until very recent times. This paper tries to summarize major highlights in Mars' Geology, and points to deeper and more extensive sources of important scientific contributions and future exploration. (invited reviews)

  11. Biomedical Aspects of Lunar and Mars Exploration Missions

    Science.gov (United States)

    Charles, John B.

    2006-01-01

    Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.

  12. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  13. Scientific Results of the Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Banerdt, W. B.

    2006-08-01

    NASA's Mars Exploration Rover project launched two robotic geologists, Spirit and Opportunity, toward Mars in June and July of 2003, reaching Mars the following January. The science objectives for this mission are focused on delineating the geologic history for two locations on Mars, with an emphasis on the history of water. Although they were designed for a 90-day mission, both rovers have lasted more than two years on the surface and each has covered more than four miles while investigating Martian geology. Spirit was targeted to Gusev Crater, a 300-km diameter impact basin that was suspected to be the site of an ancient lake. Initial investigations of the plains in the vicinity of the landing site found no evidence of such a lake, but were instead consistent with unaltered (by water) basaltic plains. But after a 3-km trek to an adjacent range of hills it found a quite different situation, with abundant chemical and morphological evidence for a complex geological history. Opportunity has been exploring Meridiani Planum, which was known from orbital data to contain the mineral hematite, which generally forms in the presence of water. The rocks exposed in Meridiani are highly chemically altered, and appear to have been exposed to significant amounts of water. By descending into the 130-m diameter Endurance Crater, Opportunity was able to analyze a 10-m vertical section of this rock unit, which showed significant gradations in chemistry and morphology.

  14. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)

    Science.gov (United States)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.

    2015-12-01

    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  15. Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site

    Science.gov (United States)

    Orgel, Csilla; Kereszturi, Ákos; Váczi, Tamás; Groemer, Gernot; Sattler, Birgit

    2014-02-01

    Between 15 and 25 April 2011 in the framework of the PolAres programme of the Austrian Space Forum, a five-day field test of the Aouda.X spacesuit simulator was conducted at the Rio Tinto Mars-analogue site in southern Spain. The field crew was supported by a full-scale Mission Control Center (MCC) in Innsbruck, Austria. The field telemetry data were relayed to the MCC, enabling a Remote Science Support (RSS) team to study field data in near-real-time and adjust the flight planning in a flexible manner. We report on the experiences in the field of robotics, geophysics (Ground Penetrating Radar) and geology as well as life sciences in a simulated spaceflight operational environment. Extravehicular Activity (EVA) maps had been prepared using Google Earth and aerial images. The Rio Tinto mining area offers an excellent location for Mars analogue simulations. It is recognised as a terrestrial Mars analogue site because of the presence of jarosite and related sulphates, which have been identified by the NASA Mars Exploration Rover "Opportunity" in the El Capitan region of Meridiani Planum on Mars. The acidic, high ferric-sulphate content water of Rio Tinto is also considered as a possible analogue in astrobiology regarding the analysis of ferric sulphate related biochemical pathways and produced biomarkers. During our Mars simulation, 18 different types of soil and rock samples were collected by the spacesuit tester. The Raman results confirm the presence of minerals expected, such as jarosite, different Fe oxides and oxi-hydroxides, pyrite and complex Mg and Ca sulphates. Eight science experiments were conducted in the field. In this contribution first we list the important findings during the management and realisation of tests, and also a first summary of the scientific results. Based on these experiences suggestions for future analogue work are also summarised. We finish with recommendations for future field missions, including the preparation of the experiments

  16. The Athena Science Payload for the 2003 Mars Exploration Rovers

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2001-01-01

    The Athena Mars rover payload is a suite of scientific instruments and tools for geologic exploration of the martian surface. It is designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials, including soils, rock surfaces, and rock interiors. (3) Determine the fine-scale textural properties of these materials. Two identical copies of the Athena payload will be flown in 2003 on the two Mars Exploration Rovers. The payload is at a high state of maturity, and first copies of several of the instruments have already been built and tested for flight.

  17. A robotic exploration mission to Mars and Phobos

    Science.gov (United States)

    Kerr, Justin H.; Defosse, Erin; Ho, Quang; Barriga, Ernisto; Davis, Grant; Mccourt, Steve; Smith, Matt

    1993-01-01

    This report discusses the design of a robotic exploration to Mars and Phobos. It begins with the mission's background and objectives, followed by a detailed explanation of various elements of Project Aeneas, including science, spacecraft, probes, and orbital trajectories. In addition, a description of Argos Space Endeavours, management procedures, and overall project costs are presented. Finally, a list of recommendations for future design activity is included.

  18. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    Science.gov (United States)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  19. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  20. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  1. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  2. Carl Sagan and the Exploration of Mars and Venus

    Science.gov (United States)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1997-01-01

    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  3. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    Science.gov (United States)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  4. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  5. Recent Accomplishments in Mars Exploration: The Rover Perspective

    Science.gov (United States)

    McLennan, S. M.; McSween, H. Y.

    2018-04-01

    Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.

  6. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  7. Slip Validation and Prediction for Mars Exploration Rovers

    Directory of Open Access Journals (Sweden)

    Jeng Yen

    2008-04-01

    Full Text Available This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA’s Mars Exploration Rover mission (MER. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM from the stereo images of the terrain to formulate the equations of motion. The six wheel speed from the empirical encoder data comprises the vehicle's velocity, and the rover motion can be estimated using mixed differential and algebraic equations. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Rover Sequencing and Visualization Program (RSVP. This method, with the proper wheel slip and sliding factors, produces accurate simulation of the Mars Exploration rovers, which have been validated with the earth-testing vehicle. This computational technique has been deployed to the operation of the MER rovers in the extended mission period. Particularly, it yields high quality prediction of the rover motion on high slope areas. The simulated path of the rovers has been validated using the telemetry from the onboard Visual Odometry (VisOdom. Preliminary results indicate that the proposed simulation is very effective in planning the path of the rovers on the high-slope areas.

  8. The South Greenland regional uranium exploration programme

    International Nuclear Information System (INIS)

    Armour-Brown, A.; Tukiainen, T.; Nyegaard, P.; Wallin, B.

    1984-02-01

    This report describes the work and results of the last two field seasons (1080 and 1982) of the Syduran Project. The field work was concentrated in the Motzfeldt Centre and the Granite zone with a short reconnaissance of five uranium anomalies in the Migmatite Complex. The results from the Motzfeldt Centre show that it is composed of at least 6 syenite units which can be divided into two major phases of igneous activity. The radioactive mineralisation has been mapped by gamma-spectrometer and has proved to be very extensive. Uranium mineral occurrences found in the Granite Zone occur in the many faults and fractures, which dissect the area. A study of the fractures and fault movements in the zone makes it possible to suggest an overall structural framework in which to place the uranium occurrences in the zone. Field work on the Igaliko peninsula was confined to a small area known as Puissagtag where four pitchblende veins have been discovered. Numerous uraniferous showings, associated with fractures, have been located in the Vatnaverfi peninsula south of the Igaliko Fjord. Mineralogical studies have shown that 12 of these showings contain pitchblende, that 7 of them contain coffinite and that most of them contain brannerite. The most interesting find during the 1982 field season was in the Migmatite Complex. Five anomalously high uranium areas in the complex were explored briefly with the helicopter-borne scintillometer. Near a place called Igdlorssuit, where a particlarly high gamma-spectrometer anomaly was found during the reconnaissance gamma-spectrometer survey, a large raft of meta-sediments in rapakivi granite was found, in which radioactive mineralisation occurred. This proved to be due to fine disseminated uraninite which occurs over some 150 m of strike length with a width of 1-2 m. The results confirm that there is a good possibility of finding exploitable uranium mineral occurrences in South Greenland. (author)

  9. Exploring Mars for Evidence of Habitable Environments and Life

    Science.gov (United States)

    DesMarais, David J.

    2014-01-01

    The climate of Mars has been more similar to that of Earth than has the climate of any other planet in our Solar System. But Mars still provides a valuable alternative example of how planetary processes and environments can affect the potential presence of life elsewhere. For example, although Mars also differentiated very early into a core, mantle and crust, it then evolved mostly if not completely without plate tectonics and has lost most of its early atmosphere. The Martian crust has been more stable than that of Earth, thus it has probably preserved a more complete record of its earliest history. Orbital observations determined that near-surface water was once pervasive. Orbiters have identified the following diverse aqueous sedimentary deposits: layered phyllosilicates, phyllosilicates in intracrater fans, plains sediments potentially harboring evaporitic minerals, deep phyllosilicates, carbonate-bearing deposits, intracrater clay-sulfate deposits, Meridiani-type layered deposits, valles-type layered deposits, hydrated silica-bearing deposits, and gypsum plains. These features, together with evidence of more vigorous past geologic activity, indicate that early climates were wetter and perhaps also somewhat warmer. The denser atmosphere that was required for liquid water to be stable on the surface also provided more substantial protection from radiation. Whereas ancient climates might have favored habitable environments at least in some localities, clearly much of the Martian surface for most of its history has been markedly less favorable for life. The combination of dry conditions, oxidizing surface environments and typically low rates of sedimentation are not conducive to the preservation of evidence of ancient environments and any biota. Thus a strategy is required whereby candidate sites are first identified and then characterized for their potential to preserve evidence of past habitable environments. Rovers are then sent to explore the most promising

  10. What can in situ ion chromatography offer for Mars exploration?

    Science.gov (United States)

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.

  11. Assessment of Mars Exploration Rover Landing Site Predictions

    Science.gov (United States)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  12. Accessing Information on the Mars Exploration Rovers Mission

    Science.gov (United States)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  13. Human exploration and settlement of Mars - The roles of humans and robots

    Science.gov (United States)

    Duke, Michael B.

    1991-01-01

    The scientific objectives and strategies for human settlement on Mars are examined in the context of the Space Exploration Initiative (SEI). An integrated strategy for humans and robots in the exploration and settlement of Mars is examined. Such an effort would feature robotic, telerobotic, and human-supervised robotic phases.

  14. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    Science.gov (United States)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  15. What and how can affect the exploration of Mars

    Science.gov (United States)

    Vidmachenko, A. P.; Morozhenko, A. V.

    2017-05-01

    Going to Mars, astronauts are deprived of the protection of the magnetic field. And for 15 months of flight to Mars and back astronaut will receive maximum permissible for his entire career, a dose of radiation of 1 sievert. And when powerful flash can occur on the sun, the dose of radiation will grow by an order of magnitude and can even kill the crew. The radiation background in the orbit of Mars is more than 2.2 times higher than the radiation background at the Earth's orbital station. The smallest toxic dust on Mars is also can interfere with the colonization of Mars. This dust contains a large number of toxic compounds such as perchlorates, minerals of gypsum, compounds of chromium, fine-grained salts of silicic acid, etc. The listed above factors make forced to think seriously about the possibility of organizing a Mars mission, even in the distant future.

  16. Advanced Communication and Networking Technologies for Mars Exploration

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  17. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, & Technologies for Exploration and Resources

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor...

  18. Archiving Data From the 2003 Mars Exploration Rover Mission

    Science.gov (United States)

    Arvidson, R. E.

    2002-12-01

    The two Mars Exploration Rovers will touch down on the red planet in January 2004 and each will operate for at least 90 sols, traversing hundreds of meters across the surface and acquiring data from the Athena Science Payload (mast-based multi-spectral, stereo-imaging data and emission spectra; arm-based in-situ Alpha Particle X-Ray (APXS) and Mössbauer Spectroscopy, microscopic imaging, coupled with use of a rock abrasion tool) at a number of locations. In addition, the rovers will acquire science and engineering data along traverses to characterize terrain properties and perhaps be used to dig trenches. An "Analyst's Notebook" concept has been developed to capture, organize, archive and distribute raw and derived data sets and documentation (http://wufs.wustl.edu/rover). The Notebooks will be implemented in ways that will allow users to "playback" the mission, using executed commands to drive animated views of rover activities, and pop-up windows to show why particular observations were acquired, along with displays of raw and derived data products. In addition, the archive will include standard Planetary Data System files and software for processing to higher-level products. The Notebooks will exist both as an online system and as a set of distributable Digital Video Discs or other appropriate media. The Notebooks will be made available through the Planetary Data System within six months after the end of observations for the relevant rovers.

  19. OHB's Exploration Capabilities Overview Relevant to Mars Sample Return Mission

    Science.gov (United States)

    Jaime, A.; Gerth, I.; Rohrbeck, M.; Scheper, M.

    2018-04-01

    The presentation will give an overview to all the OHB past and current projects that are relevant to the Mars Sample Return (MSR) mission, including some valuable lessons learned applicable to the upcoming MSR mission.

  20. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Goetz, Walter; Chan, Marjorie A.

    2011-01-01

    The Rock Abrasion Tool (RAT) magnet experiment on the Mars Exploration Rovers was designed to collect dust from rocks ground by the RAT of the two rovers on the surface of Mars. The dust collected on the magnets is now a mixture of dust from many grindings. Here the new data from the experiment...

  1. The Mars Reconnaissance Orbiter Mission: 10 Years of Exploration from Mars Orbit

    Science.gov (United States)

    Johnston, M. Daniel; Zurek, Richard W.

    2016-01-01

    The Mars Reconnaissance Orbiter ( MRO ) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low -altitude science orbit. The spacecraft has been on station in its 255 x 320 k m, sun -synchronous (approximately 3 am -pm ), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.

  2. Towards Mars — Stratospheric Balloons as Test-Beds for Mars Exploration

    Science.gov (United States)

    Dannenberg, K.

    2018-04-01

    The abstract deals with the possibilities to use stratospheric balloons for Mars science and technology needs, especially with the opportunities offered by the new European infrastructure project HEMERA, recently selected by the European Commission.

  3. Solar Power System Evaluated for the Human Exploration of Mars

    Science.gov (United States)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  4. MarsVac: Pneumatic Sampling System for Planetary Exploration

    Science.gov (United States)

    Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

    2008-12-01

    We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

  5. Storyboard for the Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Antonsen, Eric; Hailey, Melinda; Reyes, David; Rubin, David; Urbina, Michelle

    2017-01-01

    This storyboard conceptualizes one scenario of an integrated medical system during a Mars exploration mission. All content is for illustrative purposes only and neither defines nor implies system design requirement.

  6. Affordable Exploration of Mars: Recommendations from a Community Workshop on Sustainable Initial Human Missions

    Science.gov (United States)

    Thronson, Harley; Carberry, Chris; Cassady, R. J.; Cooke, Doug; Hopkins, Joshua; Perino, Maria A.; Kirkpatrick, Jim; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2013-01-01

    There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.

  7. The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet

    Science.gov (United States)

    Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.

    2017-12-01

    With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.

  8. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  9. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  10. A career exploration programme for learners with special educational needs.

    Science.gov (United States)

    van Niekerk, Matty

    2007-01-01

    Learners with disabilities lag far behind their peers without disabilities in achievement, graduation rates, post-school education and employment outcomes [4]. Against the current state of education affairs in South Africa, where curriculum models for learners with special educational needs (LSEN) are still under revision, therapists and teachers are finding it difficult to prepare these learners for appropriate employment after school. Even where systems in education are established, persons with learning disabilities face more challenges to enter employment [5]. This article reports on a unique career exploration programme for grade 11 learners at a school for learners with special educational needs in Gauteng, South Africa. It is a collaborative strategy between the learners, their parents, a teacher and the occupational therapists at the school. Two case studies are described to indicate the success of the program.

  11. Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration

    Science.gov (United States)

    Rummel, J. D.; Conley, C. A.

    2015-12-01

    and human exploration. Such measures are needed to comply with what is a scientific, legal, and even moral requirement as we move forward to understand the place of Mars in our solar system, and our relationship to both.

  12. RESEARCH ON THE DIGITAL SIMULATION FOR THE WHOLE PROCESS OF MARS EXPLORATION

    Directory of Open Access Journals (Sweden)

    L. Lyu

    2018-05-01

    Full Text Available China has paid considerable attention to space exploration and made great strides in the field. The first Chinese Mars Exploration Mission will be carried out in 2020. Digital simulation has been proved to be an effective and efficient means for planning and deduction in many fields. Thus, it was introduced for the Mars exploration in this paper and key technologies was researched above three aspects. First of all, complicated time-space benchmark was combed to support the interplanetary simulation. Secondly, the multi-resolution pyramid model and indexing strategy were adopted to preprocess the geographical environment data, which ensured the efficiency of data loading, browsing, and querying. Then, the activity objects were abstracted and modelled based on four aspects, including property, ephemeris, geometry, and behavior. Therefore, a digital simulation system, called Sino-Mars, was developed. The architecture of Sino- Mars consists of five layers, including data collection, data processing, scenario modelling, visualization and application layer. Using the Chinese Mars Exploration Mission slated for 2020 as an example, we demonstrated the capabilities of Sino-Mars for data integration, visualization, process deduction, and auxiliary analysis.

  13. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, and Technologies for Exploration and Resources Project

    Science.gov (United States)

    Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony

    2015-01-01

    Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy

  14. 6th international conference on Mars polar science and exploration: Conference summary and five top questions

    Science.gov (United States)

    Smith, Isaac B.; Diniega, Serina; Beaty, David W.; Thorsteinsson, Thorsteinn; Becerra, Patricio; Bramson, Ali; Clifford, Stephen M.; Hvidberg, Christine S.; Portyankina, Ganna; Piqueux, Sylvain; Spiga, Aymeric; Titus, Timothy N.

    2018-01-01

    We provide a historical context of the International Conference on Mars Polar Science and Exploration and summarize the proceedings from the 6th iteration of this meeting. In particular, we identify five key Mars polar science questions based primarily on presentations and discussions at the conference and discuss the overlap between some of those questions. We briefly describe the seven scientific field trips that were offered at the conference, which greatly supplemented conference discussion of Mars polar processes and landforms. We end with suggestions for measurements, modeling, and laboratory and field work that were highlighted during conference discussion as necessary steps to address key knowledge gaps.

  15. Uranium exploration programmes, and the outlook for the 1990s

    International Nuclear Information System (INIS)

    Underhill, D.

    1991-01-01

    To understand the exploration patterns of the industry and forecast the outlook for the 1990s, it is necessary to understand the broad and diverse makeup of the participants, which consists of: producers, consumers, and government agencies. The most visible group, the producers, are primarily motivated by profit expectation. Their actions show a high correlation to the spot market price. The second group, consumers, are more concerned with the existence of supplier competition, diversification of supply sources, and fuel cycle economics. The last group, governments, further breaks down into importing and exporting groups. They are motivated by either assurances of supply (importing) or hard currency trade (exporting). The future uranium supply/demand balance for the major countries is shown. The sustained decline of uranium prices has resulted in drastic cuts in uranium exploration. In this paper, I will review and analyze the trends of the recent past and the outlook for the 1990s, for civilian power programmes only, not defence stockpiles; also only Western World countries and China are considered, not the USSR and Europe and limited nuclear growth is assumed with no nuclear resurgence. (author)

  16. The Exploration of Mars and the Improvement of Living Conditions in Western Asian Countries

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Space is the new frontier. The exploration of a new world, Mars, has been giving people on Earth valuable comparative information about climatic and geological processes occurring here on our home planet. With the Viking 1 and 2, Mars Global Surveyor, Mars Odyssey, Mars Reconnaissance Orbiter, Sojourner, Spirit, Opportunity, Curiosity, etc., spacecrafts, which explored the Red Planet we obtained a great deal information about the extremely arid soil and dry air of Mars in the present, and its watery condition in the distant past. Now there is a decade-long, program of robotic exploration of the martian atmosphere and soil - the 'Mars Surveyor Program', which is a series of small, cheap and fast spacecrafts, carrying very few scientific instruments, to be launched about every two years. Here in this paper, under the principles in the United Nations' Agenda 21, we comment on this new phase of Mars exploration under development, which began in 1996, and its benefits to living conditions in developing countries with desert regions. A peaceful regular research of the arid Mars, will help us to understand much better the dynamics of formation of dry regions here on Earth. We suggest that, if the developing countries participate in that program, they will achieve the scientific understanding to create a practical technology, with which they will acquire ways to future transform their arid areas into a more humid places, and to slow the process of desertification of other regions. This, using their own natural resources and own scientific personnel. That would strongly benefit the living conditions in Western Asian countries, which have many desert regions.

  17. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  18. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    Science.gov (United States)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; hide

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  19. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  20. Sleeping in Space: An Unexpected Challenge for Future Mars Explorers

    Science.gov (United States)

    Flynn-Evans, Erin

    2018-01-01

    This talk will serve as the keynote address for a research symposium being held at Washington State University. The purpose of the talk is to provide researchers and students at WSU with an overview about what it is like to sleep in space. Dr. Flynn-Evans will begin by highlighting how sleep is different in movies and science fiction compared to real life. She will next cover basic information about sleep and circadian rhythms, including how sleep works on earth. She will explain how people have circadian rhythms of different lengths and how the circadian clock has to be re-set each day. She will also describe how jet-lag works as an example of what happens during circadian misalignment. Dr. Flynn-Evans will also describe how sleep is different in space and will highlight the challenges that astronauts face in low-earth orbit. She will discuss how astronauts have a shorter sleep duration in space relative to on the ground and how their schedules can shift due to operational constraints. She will also describe how these issues affect alertness and performance. She will then discuss how sleep and scheduling may be different on a long-duration mission to Mars. She will discuss the differences in light and day length on earth and mars and illustrate how those differences pose significant challenges to sleep and circadian rhythms.

  1. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  2. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain)

    2014-03-15

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  3. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.

    Science.gov (United States)

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2014-03-01

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  4. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    Science.gov (United States)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  5. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    Science.gov (United States)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  6. NASA's strategy for Mars exploration in the 1990s and beyond

    Science.gov (United States)

    Huntress, W. T.; Feeley, T. J.; Boyce, J. M.

    NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.

  7. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work

  8. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  9. United Nations programme for the assistance in Uruguay mining exploration

    International Nuclear Information System (INIS)

    1976-01-01

    The Uruguay government asked for the United Nations for the development of technical assistance programme in geological considerations of the Valentines iron deposits. This agreement was signed as Mining prospect ion assistance in Uruguay.

  10. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites

    Science.gov (United States)

    Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV

    2005-01-01

    The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.

  11. A drill-soil system modelization for future Mars exploration

    Science.gov (United States)

    Finzi, A. E.; Lavagna, M.; Rocchitelli, G.

    2004-01-01

    This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu

  12. Science in Exploration: From the Moon to Mars and Back Home to Earth

    Science.gov (United States)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  13. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  14. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Sovie, R.J.; Bozek, J.M.

    1994-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  15. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    Science.gov (United States)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  16. Exploring the success and challenges of the Girinka 1 programme ...

    African Journals Online (AJOL)

    Though this programme was designed to decrease poverty and fight against malnutrition, challenges and obstructions such as unaffordable preconditions, insufficient training in animal husbandry and cooperative management, misappropriation of milk cows, cases of bribery, and poor follow up were observed. The article ...

  17. Exploring the use of role play in a school-based programme to ...

    African Journals Online (AJOL)

    Exploring the use of role play in a school-based programme to reduce teenage pregnancy. ... South African Journal of Education ... study was undertaken of the use of role plays by Grade 8 learners, at eight urban and rural KwaZulu-Natal high schools, as part of a programme to reduce the prevalence of teenage pregnancy.

  18. An Exploration of Life Skills Programme on Pre-School Children in Embu West, Kenya

    Science.gov (United States)

    Gatumu, Jane Ciumwari; Kathuri, Wilfred Njeru

    2018-01-01

    The Life Skills Programme, which is one of the newest programmes in the Kenya Preschool educational system was explored to establish the impact it had on the lives of preschool children in Embu West, Kenya. A primary school that is perceived as having well-disciplined children was purposively selected. The sample consisted of 39 students, 43…

  19. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    NASA successfully landed twin rovers, Spirit and Opportunity, on Mars in January 2004, in the most ambitious mission of robotic exploration attempted to that time. Each rover is outfitted as a robot field geologist with an impressive array of scientific instruments--cameras, spectrometers, other sensors--designed to investigate the composition and geologic history of two distinctly-different landing sites. The sites were chosen because of their potential to reveal clues about the past history of water and climate on Mars, and thus to provide tests of the hypothesis that the planet may once have been an abode for life. In this presentation I will review the images, spectra, and chemical/mineralogic information that the rover team has been acquiring from the landing sites and along the rovers' 7.7 and 22.7 km traverse paths, respectively. The data and interpretations have been widely shared with the public and the scientific community through web sites, frequent press releases, and scientific publications, and they provide quantitative evidence that liquid water has played a role in the modification of the Martian surface during the earliest part of the planet's history. At the Spirit site in Gusev Crater, the role of water appears to have been relatively minor in general, although the recent discovery of enigmatic hydrated sulfate salt and amorphous silica deposits suggests that locally there may have been significant water-rock interactions, and perhaps even sustained hydrothermal activity. At the Opportunity site in Meridiani Planum, geologic and mineralogic evidence suggests that liquid water was stable at the surface and shallow subsurface for significant periods of early Martian geologic history. An exciting implication from both missions is that localized environments on early Mars may have been "habitable" by some terrestrial standards. As of early September 2010, the rovers had operated for 2210 and 2347 Martian days (sols), respectively, with the Spirit

  20. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    Science.gov (United States)

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  1. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    Science.gov (United States)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  2. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  3. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  4. The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration

    Science.gov (United States)

    Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.

    1999-04-01

    The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.

  5. Astrobiology and the Exploration of Gusev Crater by the Mars Exploration Rover Spirit

    Science.gov (United States)

    DesMarais, I. David

    2005-01-01

    We assess the availability of nutrient elements, energy and liquid water on the plains surrounding Columbia Memorial Station by evaluating data from Spirit in the context of previous Mars missions, Earth-based studies of martian meteorites and studies of microbial communities on Earth that represent potential analogs of martian biota. The compositions of Gusev basalts resemble those of olivine basalts beneath the seabed on Earth that deep drilling has shown to support life. Of particular relevance to biology, phosphate abundances are much greater in Gusev basalts (0.84 +/- 0.07 wt. % P2O5) than in oceanic basalts (typically 0.06 wt. %).

  6. The Search for Biosignatures on Mars: Using Predictive Geology to Optimize Exploration Targets

    Science.gov (United States)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2011-01-01

    Predicting geologic context from satellite data is a method used on Earth for exploration in areas with limited ground truth. The method can be used to predict facies likely to contain organic-rich shales. Such shales concentrate and preserve organics and are major repositories of organic biosignatures on Earth [1]. Since current surface conditions on Mars are unfavorable for development of abundant life or for preservation of organic remains of past life, the chances are low of encountering organics in surface samples. Thus, focusing martian exploration on sites predicted to contain organic-rich shales would optimize the chances of discovering evidence of life, if it ever existed on that planet.

  7. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    Science.gov (United States)

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  8. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    Science.gov (United States)

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  9. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  10. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    Science.gov (United States)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; hide

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  11. Mars Exploration Study Workshop II. Report of a workshop, Ames Research Center, Moffett Field, CA (USA), 24 - 25 May 1993.

    Science.gov (United States)

    Duke, M. B.; Budden, N. A.

    1993-11-01

    This report, which summarizes the Mars Exploration Study Workshop II, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues.

  12. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  13. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  14. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    Science.gov (United States)

    2018-01-01

    Abstract Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology—Biosignatures—Coevolution of Earth and life—Mars. Astrobiology 18, 1–27. PMID:29252008

  15. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures.

    Science.gov (United States)

    Cabrol, Nathalie A

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.

  16. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    Science.gov (United States)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  17. Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999

    Science.gov (United States)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.

  18. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  19. Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions

    Science.gov (United States)

    Briggs, G.; McKay, C.

    2000-01-01

    The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.

  20. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  1. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red-blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400-1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows that

  2. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars

    Science.gov (United States)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  3. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  4. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  5. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    Science.gov (United States)

    Cabrol, Nathalie A.

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration.

  6. Programme

    OpenAIRE

    Hobday, E, fl. 1905, artist

    2003-01-01

    A photograph of an illustrated programme listing dances. The illustration shows a snake charmer playing to a snake while another man watches. Buildings and trees can be seen behind a wall in the distance. In the lower right-hand corner of the programme is the signature 'E. Hobday'. The programme is almost certainly related to the Punjab Ball, Lahore. It is placed next to the Punjab Ball Menu in the album and the Menu is also illustrated by 'E. Hobday'.

  7. Applications of Intelligent Tutoring Systems to Human-Robotic Exploration of Mars

    Science.gov (United States)

    Clancey, William J.

    2004-01-01

    Space missions with small crews extending over several years with time-delay preventing normal conversations with people on earth will raise many challenges for training. Of special interest are possible three-year missions to Mars, requiring refresher instruction and learning new skills based on unexpected problems with machines and environmental conditions. For example, the crew will be required to monitor and repair more complex life support systems for air and water recycling than we even know how to build today. Highly educated astronauts, often with several doctorate degrees, require a very different mode of interaction than we have developed for school children or even typical college students. Explanation methods may need to differ-using analogies and techniques from different domains-depending on whether the astronaut is an astrophysicist, a pilot, or a geologist.Virtual reality (e.g., for Hubble repair missions) and "integrated" simulations (involving role-playing and emphasizing failure scenarios) are the most common advanced forms of instruction used in space flight today. The emphasis is on collaborative, embodied interaction with the same workstations and tools used in practice (e.g., a cockpit simulator). Otherwise, computerized instructional technology used by NASA is not model-based or tutorial in nature. This discussion will review some of the key instructional methods used at NASA over the past two decades and consider why ITS methods have not been exploited. Some of the problems and opportunities for training for Mars missions are examined, including how using robots in exploration activities will help but raise new training problems. These ideas will be illustrated with examples from the BrahmsVE system in which a browser- based virtual reality display with avatars allows interacting with a distributed multiagent system, in which agents can be people, robots, or software programs. Using BrahmsVE may provide a way for astronauts to interact with

  8. Next generation laser-based standoff spectroscopy techniques for Mars exploration.

    Science.gov (United States)

    Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey

    2015-01-01

    In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

  9. Nuclear propulsion - A vital technology for the exploration of Mars and the planets beyond

    Science.gov (United States)

    Borowski, Stanley K.

    1989-01-01

    The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the only other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class spaceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.

  10. Nuclear propulsion: A vital technology for the exploration of Mars and the planets beyond

    Science.gov (United States)

    Borowski, Stanley K.

    1988-01-01

    The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.

  11. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    Science.gov (United States)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  12. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    Science.gov (United States)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  13. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    DEFF Research Database (Denmark)

    Madsen, M. B.; Goetz, W.; Bertelsen, P.

    2009-01-01

    , while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am-2 kg(-1)). On the basis of Mossbauer spectra the dust contains magnetite, olivine, pyroxene......The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images......, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe-tot similar to 0.6) than rocks in the Gusev plains (similar to 0.1-0.2) or average Gusev soil (similar to 0.3). Alpha Particle X-Ray Spectrometer data of the dust...

  14. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    Science.gov (United States)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  15. Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars

    Science.gov (United States)

    Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.

    2013-12-01

    Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence

  16. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    Science.gov (United States)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  17. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    Energy Technology Data Exchange (ETDEWEB)

    Muscatello, A.C.; Houts, M.G.

    1996-12-31

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

  18. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Houts, M.G.

    1996-01-01

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming

  19. Enumeration of Mars years and seasons since the beginning of telescopic exploration

    Science.gov (United States)

    Piqueux, Sylvain; Byrne, Shane; Titus, Timothy N.; Hansen, Candice J.; Kieffer, Hugh H.

    2015-01-01

    A clarification for the enumeration of Mars Years prior to 1955 is presented, along with a table providing the Julian dates associated with Ls = 0° for Mars Years -183 (beginning of the telescopic study of Mars) to 100. A practical algorithm for computing Ls as a function of the Julian Date is provided. No new science results are presented

  20. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  1. A geoethical approach to the geological and astrobiological exploration and research of the Moon and Mars

    Science.gov (United States)

    Martinez-Frias, Jesus; Horneck, Gerda; de La Torre Noetzel, Rosa; Rull, Fernando

    Lunar and Mars exploration and research require not only scientific and technological inter-disciplinary cooperation, but also the consideration of budding ethical and scientific integrity issues. COSPAR's planetary protection policy (in coordination with the United Nations Com-mittee on the Peaceful Uses of Outer Space as well as various other bilateral and multilateral organizations) serves as the consensus standard for biological contamination prevention under the 1967 Outer Space Treaty1 . Space agencies Planetary Protection Policies are mostly consis-tent with the COSPAR policy. Geoethics was formerly promoted in 1991 as a new discipline, involving scientific and societal aspects2 , and its institutionalization was officially established in 2004 with the backing of the Association of Geoscientists for International Development, AGID3 (IUGS/ICSU). Recently, it has been proposed that the integration of geoethical issues in studies on planetary geology and astrobiology would enrich their methodological and con-ceptual character4-6 . The incorporation through geoethics of new questions and approaches associated to the "abiotic world" would involve: 1) extrapolating to space the recently defined and approved IUCN/UNESCO guidelines and recommendations on geodiversity7 as "planetary geodiversity", and 2) widening the classical concept of Planetary Protection, giving an addi-tional "abiotic" dimension to the exploration and research of the Moon and Mars. Given the geological characteristics and planetary evolution of the Moon and Mars, it is obvious that they require tailored geoethical approaches. Some fundamental aspects include, among others: the interrelation with bioethics and organics vs. inorganic contamination in Planetary Protection, the appropriate regulations of some necessary natural disturbances (e.g. on the Moon) dur-ing robotic and manned planetary missions, wilderness/planetary parks8,9 , the correct use of mineralogical and geochemical analytical

  2. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    Science.gov (United States)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the

  3. Cell biology and biotechnology research for exploration of the Moon and Mars

    Science.gov (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  4. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  5. Some Strategic Considerations Related to the Potential Use of Water Resource Deposits on Mars by Future Human Explorers

    Science.gov (United States)

    Beaty, D.W.; Mueller, R.P.; Bussey, D.B.; Davis, R.M.; Hays, L.E.; Hoffman, S.J.

    2016-01-01

    A long-term base on Mars, at the center of an "Exploration Zone", would require substantial quantities of in-situ resources. Although water is not the only resource on Mars of potential interest, it stands out as the one that most dominates long-lead strategic planning. It is needed for multiple purposes for various human activities (including our own survival!), and in significant quantities. The absence of viable deposits could make a surface "field station" logistically unsustainable. Therefore, identification of deposits, and development of the technology needed to make use of these deposits, are an important priority in the period leading up to a human mission to Mars. Given our present understanding of Mars, ice and hydrated minerals appear to be the best potential sources for the quantity of water expected to be needed. The methods for their extraction would be different for these two classes of deposits, and at the present time it is unknown which would ultimately be an optimal solution. The deposits themselves would also ultimately have to be judged by certain economics that take into account information about geologic and engineering attributes and the "cost" of obtaining this information. Ultimately much of this information would need to come from precursor missions, which would be essential if utilization of martian is situ water resources is to become a part of human exploration of Mars.

  6. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  7. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    Science.gov (United States)

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.

  8. A method to evaluate utility for architectural comparisons for a campaign to explore the surface of Mars

    Science.gov (United States)

    Ward, Eric D.; Webb, Ryan R.; deWeck, Olivier L.

    2016-11-01

    There is a general consensus that Mars is the next high priority destination for human space exploration. There has been no lack of analysis and recommendations for human missions to Mars, including, for example, the NASA Design Reference Architectures and the Mars Direct proposal. These studies and others usually employ the traditional approach of selecting a baseline mission architecture and running individual trade studies. However, this can cause blind spots, as not all combinations are explored. An alternative approach is to holistically analyze the entire architectural trade-space such that all of the possible system interactions are identified and measured. In such a framework, an optimal design is sought by minimizing cost for maximal value. While cost is relatively easy to model for manned spaceflight, value is more difficult to define. In our efforts to develop a surface base architecture for the MIT Mars 2040 project, we explored several methods for quantifying value, including technology development benefits, challenge, and various metrics for measuring scientific return. We developed a science multi-score method that combines astrobiology and geologic research goals, which is weighted by the crew-member hours that can be used for scientific research rather than other activities.

  9. An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System

    Science.gov (United States)

    Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.

    1995-01-01

    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common

  10. Exploring the theoretical foundations of visual art programmes for people living with dementia.

    Science.gov (United States)

    Windle, Gill; Gregory, Samantha; Howson-Griffiths, Teri; Newman, Andrew; O'Brien, Dave; Goulding, Anna

    2017-01-01

    Despite the growing international innovations for visual arts interventions in dementia care, limited attention has been paid to their theoretical basis. In response, this paper explores how and why visual art interventions in dementia care influence changes in outcomes. The theory building process consists of a realist review of primary research on visual art programmes. This aims to uncover what works, for whom, how, why and in what circumstances. We undertook a qualitative exploration of stakeholder perspectives of art programmes, and then synthesised these two pieces of work alongside broader theory to produce a conceptual framework for intervention development, further research and practice. This suggests effective programmes are realised through essential attributes of two key conditions (provocative and stimulating aesthetic experience; dynamic and responsive artistic practice). These conditions are important for cognitive, social and individual responses, leading to benefits for people with early to more advanced dementia. This work represents a starting point at identifying theories of change for arts interventions, and for further research to critically examine, refine and strengthen the evidence base for the arts in dementia care. Understanding the theoretical basis of interventions is important for service development, evaluation and implementation.

  11. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

    Science.gov (United States)

    Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.

    2003-11-01

    The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.

  12. Critical Spacecraft-to-Earth Communications for Mars Exploration Rover (MER) entry, descent and landing

    Science.gov (United States)

    Hurd, William J.; Estabrook, Polly; Racho, Caroline S.; Satorius, Edgar H.

    2002-01-01

    For planetary lander missions, the most challenging phase of the spacecraft to ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the X-band signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely, due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase coherent communications. Therefore, a specialized form of frequency-shift-keying will be used. This paper describes the EDL scenario, the signal conditions, the methods used to detect and frequency-track the carrier and to detect the data modulation, and the resulting performance estimates.

  13. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  14. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  15. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  16. Exploring determinants of completeness of implementation and continuation of a Dutch school-based healthy diet promotion programme

    NARCIS (Netherlands)

    Bessems, K.M.H.H.; Assema, P. van; Vries, N.K. de; Paulussen, T.W.G.M.

    2014-01-01

    Strategies to promote implementation of school-based health promotion (HP) programmes should be designed to suit determinants of implementation and continuation. This study explored determinants of completeness of teachers' implementation of a healthy diet promotion programme and of their intention

  17. Exploring the Development of Existing Sex Education Programmes for People with Intellectual Disabilities: An Intervention Mapping Approach

    Science.gov (United States)

    Schaafsma, Dilana; Stoffelen, Joke M. T.; Kok, Gerjo; Curfs, Leopold M. G.

    2013-01-01

    Background: People with intellectual disabilities face barriers that affect their sexual health. Sex education programmes have been developed by professionals working in the field of intellectual disabilities with the aim to overcome these barriers. The aim of this study was to explore the development of these programmes. Methods: Sex education…

  18. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    Science.gov (United States)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its

  19. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  20. Growing crops for space explorers on the moon, Mars, or in space

    Science.gov (United States)

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  1. HRSCview: a web-based data exploration system for the Mars Express HRSC instrument

    Science.gov (United States)

    Michael, G.; Walter, S.; Neukum, G.

    2007-08-01

    The High Resolution Stereo Camera (HRSC) on the ESA Mars Express spacecraft has been orbiting Mars since January 2004. By spring 2007 it had returned around 2 terabytes of image data, covering around 35% of the Martian surface in stereo and colour at a resolu-tion of 10-20 m/pixel. HRSCview provides a rapid means to explore these images up to their full resolu-tion with the data-subsetting, sub-sampling, stretching and compositing being carried out on-the-fly by the image server. It is a joint website of the Free University of Berlin and the German Aerospace Center (DLR). The system operates by on-the-fly processing of the six HRSC level-4 image products: the map-projected ortho-rectified nadir pan-chromatic and four colour channels, and the stereo-derived DTM (digital terrain model). The user generates a request via the web-page for an image with several parameters: the centre of the view in surface coordinates, the image resolution in metres/pixel, the image dimensions, and one of several colour modes. If there is HRSC coverage at the given location, the necessary segments are extracted from the full orbit images, resampled to the required resolution, and composited according to the user's choice. In all modes the nadir channel, which has the highest resolu-tion, is included in the composite so that the maximum detail is always retained. The images are stretched ac-cording to the current view: this applies to the eleva-tion colour scale, as well as the nadir brightness and the colour channels. There are modes for raw colour, stretched colour, enhanced colour (exaggerated colour differences), and a synthetic 'Mars-like' colour stretch. A colour ratio mode is given as an alternative way to examine colour differences (R=IR/R, G=R/G and B=G/B). The final image is packaged as a JPEG file and returned to the user over the web. Each request requires approximately 1 second to process. A link is provided from each view to a data product page, where header items describing

  2. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  3. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    Science.gov (United States)

    Stoker, Carol R.; Davila, A.; Sanders, G.; Glass, Brian; Gonzales, A.; Heldmann, Jennifer; Karcz, J.; Lemke, L.; Sanders, G.

    2012-01-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  4. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  5. Cooperation and dialogical modeling for designing a safe Human space exploration mission to Mars

    Science.gov (United States)

    Grès, Stéphane; Tognini, Michel; Le Cardinal, Gilles; Zalila, Zyed; Gueydan, Guillaume

    2014-11-01

    This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.

  6. Mars Exploration Rover Pancam Photometric Data QUBs: Definition and Example Uses.

    Science.gov (United States)

    Soderblom, J. M.; Bell, J. F.; Arvidson, R. E.; Johnson, J. R.; Johnson, M. J.; Seelos, F. P.

    2004-12-01

    Pancam multi-spectral observations acquired at the Mars Exploration Rover Spirit and Opportunity landing sites are being assembled into a multi-layer format know as a QUB. For any given pixel in a Pancam image the QUB will contain values for the radiance factor, incidence (i), emission (e), and phase (g) angles, X, Y, and Z distance in a rover-based coordinate system, disparity in number of pixels between the left and right eye images and range data. Good range data is required for the generation of a Pancam QUB. The radiance factor (I/F, where I is the measured scene radiance on sensor and π F is the incident solar irradiance) is calculated using a combination of preflight calibration data and information obtained from near-simultaneous observations of an onboard reflectance calibration target. The range, X, Y, Z and disparity data, and i, e, and g are calculated using routines developed by JPL's MIPL and Cornell. When possible, these data have been interpolated to maximize parameter coverage; a map of non-interpolated data is also included in each QUB. QUBs should prove very useful in photometric studies (e.g., Johnson et al.; Seelos, et al., this conference), detailed spectral analyses (e.g., Bell et al., this conference), and detailed topographic/DTM studies. Here we present two examples of the utilization of the information contained in Pancam QUBs. In one example we remove the photometric variability from spectra collected from multiple facets of a rock using knowledge of i, e, g and derived photometric functions. This is necessary if one wishes to conduct comparative studies of observations acquired under varying geometries and lighting conditions. In another example we present an analysis using the discrete ordinate multiple scattering radiative transfer code DISORT where we separate the atmosphere and surface contributions of the surface reflectance.

  7. From lakes to sand seas: a record of early Mars climate change explored in northern Gale crater, Mars

    Science.gov (United States)

    Gupta, S.; Banham, S.; Rubin, D. M.; Watkins, J. A.; Edgett, K. S.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Edgar, L. A.; Stack, K.; Day, M.; Lapôtre, M. G. A.; Bell, J. F., III; Ewing, R. C.; Stein, N.; Rivera-Hernandez, F.; Vasavada, A. R.

    2017-12-01

    While traversing the northern flank of Aeolis Mons, Gale crater, Mars Science Laboratory rover Curiosity encountered a decametre-thick sandstone unit unconformably overlying the lacustrine Murray formation. This sandstone contains cross-bed sets on the order of 1 m thick, composed of uniform mm-thick laminations of uniform thickness, and lacks silt- or mud-grade sediments. Cross sets are separated by sub-horizontal bounding surfaces which extend for tens of metres across outcrops. Dip-azimuths of cross-laminations are predominantly toward the north-east, which is oblique to the north-west slope of the unconformity on which the sandstone accumulated. This sandstone was designated the Stimson formation after Mt. Stimson, where it was delineated from the Murray formation. Textural analysis of this sandstone revealed a bi-modal sorting with well-rounded grains, typical of particles transported by aeolian processes. Stacked cross-bedded sets, representing the migration of aeolian dune-scale bedforms, combined with the absence of finer-grained facies characteristic of interdune deposits, suggest that the Stimson accumulated by aerodynamic processes and that the depositional surface was devoid of moisture which could have attracted dust to form interdune deposits. Reconstruction of this "dry" dune-field based on architectural measurements suggest that cross sets were emplaced by the migration of dunes with minimum heights of 10m, that were spaced 160 m apart. The dune field covered an area of 30-45 km2, and was confined to the break-in-slope at the base of Aeolis Mons. Cross-set dips suggest that the palaeowind drove these dunes toward the north east, oblique to the slope of the unconformity on which these sandstones accumulated. Construction of a dry dune field in Gale crater required an environment of extreme aridity with absence of water at the surface and within the shallow sub-surface. This is in stark contrast to the lacustrine environment in which the underlying

  8. Stanford SsTO Mission to Mars: A Realistic, Safe and Cost Effective Approach to Human Mars Exploration Using the Stanford SsTO Launch System

    Science.gov (United States)

    Osborne, Robert D.

    1999-06-01

    In recent years, a lot of time and energy has been spent exploring possible mission scenarios for a human mission to Mars. NASA along with the privately funded Mars Society and a number of universities have come up with many options that could place people on the surface of Mars in a relatively short period of time at a relatively low cost. However, a common theme among all or at least most of these missions is that they require heavy lift vehicles such as the Russian Energia or the NASA proposed Magnum 100MT class vehicle to transport large payloads from the surface of Earth into a staging orbit about Earth. However, there is no current budget or any signs for a future budget to review the Russian Energia, the US made Saturn V, or to design and build a new heavy lift vehicle. However, there is a lot of interest and many companies looking into the possibility of "space planes". These vehicles will have the capability to place a payload into orbit without throwing any parts of the vehicle away. The concept of a space plane is basically that the plane is transported to a given altitude either by it's own power or on the back of another air worthy vehicle before the rocket engines are ignited. From this altitude, a Single Step to Orbit (SsTO) vehicle with a significant payload is possible. This report looks at the possibility of removing the requirement of a heavy lift vehicle by using the Stanford designed Single Step to Orbit.(SsTO) Launch Vehicle. The SsTO would eliminate the need for heavy lift vehicles and actually reduce the cost of the mission because of the very low costs involved with each SSTO launch. Although this scenario may add a small amount of risk assembling transfer vehicles in Earth orbit, it should add no additional risk to the crew.

  9. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    Science.gov (United States)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  10. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    Science.gov (United States)

    Pla-García, Jorge

    2017-04-01

    . During this transition, there is surface convergence into the rising branch (similar to the inter-tropical convergence zone on Earth), and dual Hadley cells with one circulation in each hemisphere. At this time, the mean surface winds flow from the high latitudes to equator in both hemispheres, providing the possibility for a direct vapor connection [5, 6]. It is likely that transient waves (e.g., storm systems) as well as boundary currents associated with planetary-scale stationary waves could advect and mix water equatorward, along the surface, in opposition to the Hadley Cell. Conclusion: We are studying whether moist air in northern spring/summer makes it to the surface of Mawrth at Ls 90, Ls 140 and Ls 180, three periods with high column abundance of water vapor at mid/high latitudes. The objective is to determine if the circulation (mean or regional) is favorable for the transport of water vapor from the north polar cap to MV where it might activate hygroscopic salts and/or chlorides [7]. Relative humidity at those different seasons is estimated to test for consistency with column abundances derived from orbit observations. If moist air makes it to MV during Ls90, 140 and/or 180, it should be a go-to site due to enhanced habitability implications. References: [1] Pla-García, J., & Rafkin, S. C., 2015: Meteorological predictions for Mars 2020 Exploration Rov-er high-priority landing sites throug MRAMS Mesoscale Modeling. In EGU General Assembly Conference Abstracts (Vol. 17, p. 12605). [2] Rafkin, S. C. R., Haberle, R. M., and T. I. Michaels, 2001: The Mars Regional Atmospheric Modeling System (MRAMS): Model description and selected simulations. Icarus, 151, 228-256. [3] Rafkin, S. C. R., M. R. V. Sta. Maria, and T. I. Michaels, 2002: Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature, 419, 697-699. [4] Jakosky, B.M., and C.B. Farmer, 1982: The seasonal and global behavior of water vapor in the Mars

  11. Demonstration of Critical Systems for Propellant Production on Mars for Science and Exploration Missions

    Science.gov (United States)

    Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry

    2013-01-01

    A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.

  12. The cognitive processing potential of infants: Exploring the impact of an early childhood development programme

    Directory of Open Access Journals (Sweden)

    René Van Eeden

    2017-12-01

    Full Text Available Background: Many South African learners seem unprepared for formal education, and a need for intervention during early childhood has been identified. Aim: The present study explored the effect of infant exposure to an early childhood development programme aimed at the sensory developmental stage of the infant’s brain. Setting: Participants were recruited through local baby clinics and nursery schools in the Western Cape. Participants were from the middle-income sector and the sample consisted of 63 infants between the ages of 3 and 12 months – gender representation was approximately equal and 17% of the infants were of mixed race, 8% black and 75% white. Methods: A pretest–posttest design was used involving an intervention group (N = 29 and a control group (N = 34 of infants. There was no known bias in group allocation. Intervention was provided in the form of the Numbers in Nappies programme and cognitive performance was assessed with the BSID (III before and after the intervention for both groups. Results: The intervention group showed theory expectant increases, most notably on the Cognitive Scale and the Social-Emotional Scale of the BSID (III. The performance of the intervention and the control group on the cognitive subscales (Cognitive, Language and Motor was compared before and after the intervention. The only significant difference was on the Cognitive Scale after the intervention. Conclusion: The findings indicate that appropriate intervention taps into the cognitive processing potential of infants, thus increasing their cognitive ability and enhancing their social–emotional functioning. The stimulation provided by parents and primary caregivers is essential in enhancing this experience-dependent development and the Numbers in Nappies programme provides a cost-effective intervention suitable for a home environment.

  13. Exploring gender dimensions of treatment programmes for neglected tropical diseases in Uganda.

    Directory of Open Access Journals (Sweden)

    Heather Rilkoff

    Full Text Available Gender remains a recognized but relatively unexamined aspect of the potential challenges for treatment programmes for Neglected Tropical Diseases (NTDs. We sought to explore the role of gender in access to treatment in the Uganda National Neglected Tropical Disease Control Programme.Quantitative and qualitative data was collected in eight villages in Buyende and Kamuli districts, Eastern Uganda. Quantitative data on the number of persons treated by age and gender was identified from treatment registers in each village. Qualitative data was collected through semi-structured interviews with sub-county supervisors, participant observation and from focus group discussions with community leaders, community medicine distributors (CMDs, men, women who were pregnant or breastfeeding at the time of mass-treatment, and adolescent males and females. Findings include the following: (i treatment registers are often incomplete making it difficult to obtain accurate estimates of the number of persons treated; (ii males face more barriers to accessing treatment than women due to occupational roles which keep them away from households or villages for long periods, and males may be more distrustful of treatment; (iii CMDs may be unaware of which medicines are safe for pregnant and breastfeeding women, resulting in women missing beneficial treatments.Findings highlight the need to improve community-level training in drug distribution which should include gender-specific issues and guidelines for treating pregnant and breastfeeding women. Accurate age and sex disaggregated measures of the number of community members who swallow the medicines are also needed to ensure proper monitoring and evaluation of treatment programmes.

  14. The Mars 2020 Rover Mission: EISD Participation in Mission Science and Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A. S.; Ross, A.

    2014-01-01

    The Mars 2020 Rover mission will search for potential biosignatures on the martian surface, use new techniques to search for and identify tracelevel organics, and prepare a cache of samples for potential return to Earth. Identifying trace organic compounds is an important tenet of searching for potential biosignatures. Previous landed missions have experienced difficulty identifying unambiguously martian, unaltered organic compounds, possibly because any organic species have been destroyed on heating in the presence of martian perchlorates and/or other oxidants. The SHERLOC instrument on Mars 2020 will use ultraviolet (UV) fluorescence and Raman spectroscopy to identify trace organic compounds without heating the samples.

  15. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  16. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    Czech Academy of Sciences Publication Activity Database

    Leer, K.; Goetz, W.; Chan, M. A.; Gorevan, S.; Hansen, M. F.; Jensen, Ch. L.; Kletetschka, Günther; Kusack, A.; Madsen, M. B.

    2011-01-01

    Roč. 116, č. 4 (2011), E00F18-E00F18 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetic mineralogy * hematite * Mars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.021, year: 2011

  17. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  18. Survival and sacrifice in Mars exploration what we know from polar expeditions

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    With current technology, a voyage to Mars and back will take three years. That’s a lot of time for things to go wrong. But sooner or later a commercial enterprise will commit itself to sending humans to Mars. How will the astronauts survive? Some things to consider are: ith current technology, a voyage to Mars and back will take three years. That’s a lot of time for things to go wrong. But sooner or later a commercial enterprise will commit itself to sending humans to Mars. How will the astronauts survive? Some things to consider are: • Who decides what medical resources are used for whom? Who decides what medical resources are used for whom? • What is the relative weight of mission success and the health of the crew? What is the relative weight of mission success and the health of the crew? • Do we allow crewmembers to sacrifi ce their lives for the good of the mission? Do we allow crewmembers to sacrifi ce their lives for the good of the mission? • And what if a crewmember does perish? Do we sto...

  19. A Hands-on Exploration of the Retrograde Motion of Mars as Seen from the Earth

    Science.gov (United States)

    Pincelli, M. M.; Otranto, S.

    2013-01-01

    In this paper, we propose a set of activities based on the use of a celestial simulator to gain insights into the retrograde motion of Mars as seen from the Earth. These activities provide a useful link between the heliocentric concepts taught in schools and those tackled in typical introductory physics courses based on classical mechanics for…

  20. The wide perspective on Mars-500 as an analog of deep space exploration: the Czech monograh

    Czech Academy of Sciences Publication Activity Database

    Stuchlíková, I.; Šolcová, Iva; Poláčková Šolcová, Iva; Mazehóová, Y.; Vinokhodova, A.; Gushin, V.

    2013-01-01

    Roč. 47, č. 4 (2013), s. 175-175 ISSN 0233-528X. [XIV. Conference on Space Biology and Aerospace Medicine. 28.10.2013-30.10.2013, Moskva] R&D Projects: GA ČR(CZ) GAP407/11/2226 Institutional support: RVO:68081740 Keywords : Mars-500 * group communication * resilience * motivation Subject RIV: AN - Psychology

  1. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  2. The Mars Hopper: Development, Simulation and Experimental Validation of a Radioisotope Exploration Probe for the Martian Surface

    Energy Technology Data Exchange (ETDEWEB)

    Nathan D. Jerred; Spencer Cooley; Robert C. O' Brien; Steven D. Howe; James E. O' Brien

    2012-09-01

    An advanced exploration probe has been proposed by the Center for Space Nuclear Research (CSNR) to acquire detailed data from the Martian surface and subsurface, ‘hop’ large distances to multiple sites in short periods of time and perform this task repeatedly. Although several similar flying vehicles have been proposed utilizing various power sources and complex designs, e.g. solar-electric and chemical-based, the CSNR’s Mars Hopper is based on a radioisotope thermal rocket (RTR) concept. The Mars Hopper’s design relies on the high specific energies [J/kg] of radioisotopes and enhances their low specific power [W/kg] through the use of a thermal capacitance material to store thermal energy over time. During operation, the RTR transfers the stored thermal energy to a flowing gas, which is then expanded through a converging-diverging nozzle, producing thrust. Between flights, the platform will have ample time to perform in-depth science at each location while the propellant tanks and thermal capacitor recharge. Recharging the propellant tanks is accomplished by sublimation freezing of the ambient CO2 atmosphere with a cryocooler, followed by heating and pressurization to yield a liquid storage state. The proposed Mars Hopper will undergo a ballistic flight, consuming the propellant in both ascent and descent, and by using multiple hopper platforms, information can be gathered on a global scale, enabling better resource resolution and providing valuable information for a possible Mars sample-return mission. The CSNR, collaborating with the Idaho National Laboratory (INL) and three universities (University of Idaho, Utah State University and Oregon State University), has identified key components and sub-systems necessary for the proposed hopper. Current project activities include the development of a lab-scale prototypic Mars Hopper and test facility, along with computational fluid dynamics (CFD)/thermal-hydraulic models to yield a better understanding of the

  3. Mars Exploration Student Data Teams: Building Foundations and Influencing Students to Pursue STEM Careers through Experiences with Authentic Research

    Science.gov (United States)

    Turney, D.; Grigsby, B.; Murchie, S. L.; Buczkowski, D.; Seelos, K. D.; Nair, H.; McGovern, A.; Morgan, F.; Viviano, C. E.; Goudge, T. A.; Thompson, D.

    2013-12-01

    The Mars Exploration Student Data Teams (MESDT) immerses diverse teams of high school and undergraduate students in an authentic research Science, Technology, Engineering and Mathematics (STEM) based experience and allows students to be direct participants in the scientific process by working with scientists to analyze data sets from NASA's Mars program, specifically from the CRISM instrument. MESDT was created by Arizona State University's Mars Education Program, and is funded through NASA's Compact Reconnaissance Imaging Spectrometer for Mars or CRISM, an instrument onboard the Mars Reconnaissance Orbiter (MRO). Students work with teacher mentors and CRISM team members to analyze data, develop hypotheses, conduct research, submit proposals, critique and revise work. All students begin the program with basic Mars curriculum lessons developed by the MESDT education team. This foundation enables the program to be inclusive of all students. Teachers have reported that populations of students with diverse academic needs and abilities have been successful in this program. The use of technology in the classroom allows the MESDT program to successfully reach a nationwide audience and funding provided by NASA's CRISM instrument allows students to participate free of charge. Recent changes to the program incorporate a partnership with United States Geological Survey (USGS) and a CRISM sponsored competitive scholarship for two teams of students to present their work at the annual USGS Planetary Mappers Meeting. Returning MESDT teachers have attributed an increase in student enrollment and interest to this scholarship opportunity. The 2013 USGS Planetary Mappers Meeting was held in Washington DC which provided an opportunity for the students to meet with their Senators at the US Capitol to explain the science work they had done throughout the year as well as the impact that the program had had on their goals for the future. This opportunity extended to the students by the

  4. Writing the History of Space Missions: Rosetta and Mars Express

    Science.gov (United States)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  5. Postgraduate Work-Based Learning Programmes in English Higher Education: Exploring Case Studies of Organizational Practice

    Science.gov (United States)

    Smith, Paul; Preece, David

    2009-01-01

    The first part of the paper outlines and discusses the nature of work-based learning (WBL) and WBL programmes, and the overall direction of government strategy towards WBL programmes in Higher Education (HE) in England, with particular reference to postgraduate programmes, policy documents, and the WBL literature. Drawing upon case study research,…

  6. Radiation protection for human exploration of the moon and mars: Application of the mash code system

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Drischler, J.D.; Barnes, J.M.

    1992-01-01

    The Monte Carlo Adjoint Shielding code system -- MASH, developed for the Department of Defense for calculating radiation protection factors for armored vehicles against neutron and gamma radiation, has been used to assess the dose from reactor radiation to an occupant in a habitat on Mars. The capability of MASH to reproduce measured data is summarized to demonstrate the accuracy of the code. The estimation of the radiation environment in an idealized reactor-habitat model is reported to illustrate the merits of the adjoint Monte Carlo procedure for space related studies. The reactor radiation dose for different reactor-habitat surface configurations to a habitat occupant is compared with the natural radiation dose acquired during a 500-day Mars mission

  7. Consideration for solar system exploration - A system to Mars. [biomedical, environmental, and psychological factors

    Science.gov (United States)

    Nicogossian, Arnauld E.; Garshnek, Victoria

    1989-01-01

    Biomedical issues related to a manned mission to Mars are reviewed. Consideration is given to cardiovascular deconditioning, hematological and immunological changes, bone and muscle changes, nutritional issues, and the development of physiological countermeasures. Environmental issues are discussed, including radiation hazards, toxic chemical exposure, and the cabin environment. Also, human factors, performance and behavior, medical screening of the crew, disease prediction, and health maintenance are examined.

  8. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  9. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved

  10. Searching for Ancient Lakebeds in Ladon Basin, Mars and Implications for Future Exploration

    Science.gov (United States)

    Colón, A. M.; Miranda, C.; Milliken, R.

    2017-12-01

    It is well known from terrestrial studies that clay-rich rocks, and lacustrine mudstones in particular, are efficient at trapping, binding, and preserving organic matter through geologic time. This has also been demonstrated on Mars, where the Curiosity rover has detected organics in ancient mudstones in Gale crater. A number of other potential ancient lake sites have been proposed as landing sties for the Mars 2020 rover, including regions within the Ladon Basin and Valles system. In this study we map of the distribution of clay deposits in the Uzboi-Morava-Ladon (ULM) System, a system thought to have been a series of lakes interconnected by channels, and assess how these hydrous minerals relate to topography, adjacent fluvial networks, and the overall stratigraphy of basin deposits. We use CTX images and near-IR spectral reflectance data from the Mars Reconnaissance Orbiter CRISM instrument to independently map morphological and mineralogical features within Ladon. We find a number of occurrences of stratified, light-toned outcrops within the basin, but individual outcrops are small even at the scale of CTX images and are concentrated in several locations in the basin. Some light-toned outcrops are associated with clay minerals, but in general the light-toned appearance appears to be a poor proxy for clay distribution. CRISM data reveal that some clay-bearing regions are visually indistinct from adjacent clay-poor terrains. Some of the best examples of stratified, clay-bearing rocks are found in Ladon Valles, where they occur in terraces. In general, the stratigraphic, topographic, and morphologic evidence do not preclude a lacustrine origin, but there is no diagnostic evidence to support this interpretation either. The clay-bearing and light-toned deposits within Ladon basin may instead reflect deposition in an alluvial/fluvial system that post-dates the peak period of inferred lacustrine activity in the ULM system.

  11. Is There "Space" for International Baccalaureate? A Case Study Exploring Space and the Adoption of the IB Middle Year Programme

    Science.gov (United States)

    Monreal, Timothy

    2016-01-01

    Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…

  12. Magnetic Properties Experiments on the Mars exploration Rover Spirit at Gusev crater

    DEFF Research Database (Denmark)

    Bertelsen, Pernille; Goetz, W.; Madsen, M.B.

    2004-01-01

    The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere...... must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of similar to2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit....

  13. Mission from Mars - a method for exploring user requirements for children in a narrative space

    DEFF Research Database (Denmark)

    Dindler, Christian; Ludvigsen, Martin; Lykke-Olesen, Andreas

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...... school bag (eBag). The three-hour collaborative session provides a first-hand insight into children's practice in a fun and intriguing way. The method is proposed as a supplement to existing descriptive design methods for interaction design and children....

  14. The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface

    Science.gov (United States)

    Blue, Randel

    2000-01-01

    The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.

  15. Noctis Landing: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars

    Science.gov (United States)

    Lee, Pascal; Acedillo, Shannen; Braham, Stephen; Brown, Adrian; Elphic, Richard; Fong, Terry; Glass, Brian; Hoftun, Christopher; Johansen, Brage W.; Lorber, Kira; hide

    2015-01-01

    ) offer many such outcrop options. -­- Identifiable stratigraphic contacts and cross-cutting relationships from which relative ages can be determined. In place and collapsed canyon walls in NL, TC, and IC offer such opportunities. -­- Other types of ROIs include access points to surrounding plateau top areas for longer term regional exploration. A key attribute of the proposed Noctic Landing site is its strategic location to allow the shortest possible surface excusions to Tharsis and Valles Marineris (VM). VM is the feature and region on Mars that exposes the longest record of Mars' geology and evolution through time. Tharsis is the region of Mars that has experienced the longest and most extensive volcanic history, and might still be volcanically active. Some of the youngest lava flows on Mars have been identified on the western flanks of the Tharsis Bulge, i.e., within driving range of future longrange (500 - 1000 km) pressurized rover traverses. The proposed site also contains ROIs that offer the following Resources (incl. Civil Engineering) characteristics: -­- Access to raw material that exhibits the potential to (1) be used as feedstock for water-generating in situ resource utilization (ISRU) processes and (2) yield significant quantities (greater than 100 MT) of water. The raw material is likely in the form of hydrated minerals, and possibly ice/regolith mix. The top of the raw material deposit is at the surface. -­- Access to a region where infrastructure can be emplaced or constructed. This region is less than 5 km from the LS and contains flat, stable terrain. The region exhibits evidence for an abundant source of loose regolith. Several deep pits in the area combined with the availability of sand suggests that some natural terrain features can be adapted for construction purposes. -­- Access to raw material that exhibits the potential to be used as metal feedstock for ISRU and construction purposes. Iron and sulfur-rich mineral surface deposits have been

  16. The use of reflective diaries in end of life training programmes: a study exploring the impact of self-reflection on the participants in a volunteer training programme.

    Science.gov (United States)

    Germain, Alison; Nolan, Kate; Doyle, Rita; Mason, Stephen; Gambles, Maureen; Chen, Hong; Smeding, Ruthmarijke; Ellershaw, John

    2016-03-05

    A training programme was developed and delivered to a cohort of volunteers who were preparing for a unique role to provide companionship to dying patients in the acute hospital setting. This comprehensive programme aimed to provide an opportunity for participants to fully understand the nature and responsibilities of the role, whilst also allowing sufficient time to assess the qualities and competencies of participants for their ongoing volunteering role. Participants completed reflective diaries throughout the training course to record their ongoing thoughts and feelings. The purpose of this paper is to present a phenomenological analysis of these entries to understand participants' experiences, perceptions and motivations. The wider study was structured into three phases. Phase 1 was the delivery of a 12 week, bespoke training programme; Phase 2 involved a 26 week pilot implementation of the Care of the Dying Volunteer Service and Phase 3 was the research evaluation of the training and implementation which would inform the further development of the training programme. Self-reflection is a common component of End of Life training programmes and volunteers in this study completed a reflective diary after participation in each of the training sessions. A thematic analysis was undertaken to explore and understand the participants' experience, perceptions and motivations in relation to their participation in the training. All 19 volunteers completed the reflective diaries. From a potential 228 diary entries over the 12 week training programme, 178 diary entries were submitted (78 %). The following key themes were identified: Dying Alone and the importance of being present, Personal loss and the reconstruction of meaning, Self-Awareness and Personal growth, Self-preservation and Coping strategies and group unity/cohesion. The participants in this study demonstrated that they were able to use the diaries as an appropriate medium for reflection. Their reflections were

  17. Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission

    Science.gov (United States)

    Guerrero, Hector

    2010-05-01

    In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.

  18. To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration

    CERN Document Server

    Chang Díaz, Franklin

    2017-01-01

    As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...

  19. A fundamental parameters approach to calibration of the Mars Exploration Rover Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Campbell, J. L.; Lee, M.; Jones, B. N.; Andrushenko, S. M.; Holmes, N. G.; Maxwell, J. A.; Taylor, S. M.

    2009-04-01

    The detection sensitivities of the Alpha Particle X-ray Spectrometer (APXS) instruments on the Mars Exploration Rovers for a wide range of elements were experimentally determined in 2002 using spectra of geochemical reference materials. A flight spare instrument was similarly calibrated, and the calibration exercise was then continued for this unit with an extended set of geochemical reference materials together with pure elements and simple chemical compounds. The flight spare instrument data are examined in detail here using a newly developed fundamental parameters approach which takes precise account of all the physics inherent in the two X-ray generation techniques involved, namely, X-ray fluorescence and particle-induced X-ray emission. The objectives are to characterize the instrument as fully as possible, to test this new approach, and to determine the accuracy of calibration for major, minor, and trace elements. For some of the lightest elements the resulting calibration exhibits a dependence upon the mineral assemblage of the geological reference material; explanations are suggested for these observations. The results will assist in designing the overall calibration approach for the APXS on the Mars Science Laboratory mission.

  20. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  1. Spectral Characterization of H2020/PTAL Mineral Samples: Implications for In Situ Martian Exploration and Mars Sample Selection

    Science.gov (United States)

    Lantz, C.; Pilorget, C.; Poulet, F.; Riu, L.; Dypvik, H.; Hellevang, H.; Rull Perez, F.; Veneranda, M.; Cousin, A.; Viennet, J.-C.; Werner, S. C.

    2018-04-01

    We present combined analysis performed in the framework of the Planetary Terrestrial Analogues Library (H2020 project). XRD, NIR, Raman, and LIBS spectroscopies are used to characterise samples to prepare ExoMars/ESA and Mars2020/NASA observations.

  2. Paleo-environmental Setting of the Murray Formation of Aeolis Mons, Gale Crater, Mars, as Explored by the Curiosity Rover

    Science.gov (United States)

    Lewis, K. W.; Fedo, C.; Grotzinger, J. P.; Gupta, S.; Stein, N.; Rivera-Hernandez, F.; Watkins, J. A.; Banham, S.; Edgett, K. S.; Minitti, M. E.; Schieber, J.; Edgar, L. A.; Siebach, K. L.; Stack, K.; Newsom, H. E.; House, C. H.; Sumner, D. Y.; Vasavada, A. R.

    2017-12-01

    Since landing, the Mars Science Laboratory Curiosity rover climbed 300 meters in elevation from the floor of north Gale crater up the lower northwest flank of Aeolis Mons ("Mount Sharp"). Nearly 200 meters of this ascent was accomplished in the 1.5 years alone, as the rover was driven up-section through the sedimentary rocks of the informally designated "Murray" formation. This unit comprises a large fraction of the lower strata of Mt. Sharp along the rover traverse. Our exploration of the Murray formation reveals a diverse suite of fine-grained facies. Grain sizes range from finer grains than can be resolved by the MAHLI imager (particles bearing Vera Rubin Ridge, continues to reveal the complex and long-lived depositional history of the Gale crater basin.

  3. Exploring the Heterogeneity of Class in Higher Education: Social and Cultural Differentiation in Danish University Programmes

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter

    2012-01-01

    education demands a closer examination of the hidden heterogeneity in the students’ social origin and educational strategies. Using a mixed-method approach (register data and ethnographic observations and interviews) the paper focuses on the students’ class origins and on different cultural practices......This paper examines the relationship between social background, choice of university programme and academic culture among Danish university students. Statistically and sociologically, university students are often treated as a homogeneous group, but the ever-increasing number of students in higher...... in three Danish university programmes. It is shown that the Danish university field is characterized by a significant variation in social selectivity from programme to programme, and it is argued that these different social profiles correspond with distinctively different cultural practices...

  4. The humanation of Mars

    Science.gov (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  5. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  6. Exploring the components of physician volunteer engagement: a qualitative investigation of a national Canadian simulation-based training programme.

    Science.gov (United States)

    Sarti, Aimee J; Sutherland, Stephanie; Landriault, Angele; DesRosier, Kirk; Brien, Susan; Cardinal, Pierre

    2017-06-23

    Conceptual clarity on physician volunteer engagement is lacking in the medical literature. The aim of this study was to present a conceptual framework to describe the elements which influence physician volunteer engagement and to explore volunteer engagement within a national educational programme. The context for this study was the Acute Critical Events Simulation (ACES) programme in Canada, which has successfully evolved into a national educational programme, driven by physician volunteers. From 2010 to 2014, the programme recruited 73 volunteer healthcare professionals who contributed to the creation of educational materials and/or served as instructors. A conceptual framework was constructed based on an extensive literature review and expert consultation. Secondary qualitative analysis was undertaken on 15 semistructured interviews conducted from 2012 to 2013 with programme directors and healthcare professionals across Canada. An additional 15 interviews were conducted in 2015 with physician volunteers to achieve thematic saturation. Data were analysed iteratively and inductive coding techniques applied. From the physician volunteer data, 11 themes emerged. The most prominent themes included volunteer recruitment, retention, exchange, recognition, educator network and quasi-volunteerism. Captured within these interrelated themes were the framework elements, including the synergistic effects of emotional, cognitive and reciprocal engagement. Behavioural engagement was driven by these factors along with a cue to action, which led to contributions to the ACES programme. This investigation provides a preliminary framework and supportive evidence towards understanding the complex construct of physician volunteer engagement. The need for this research is particularly important in present day, where growing fiscal constraints create challenges for medical education to do more with less. © Article author(s) (or their employer(s) unless otherwise stated in the text of

  7. Use of Geochemistry Data Collected by the Mars Exploration Rover Spirit in Gusev Crater to Teach Geomorphic Zonation through Principal Components Analysis

    Science.gov (United States)

    Rodrigue, Christine M.

    2011-01-01

    This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…

  8. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  9. Organisational readiness: exploring the preconditions for success in organisation-wide patient safety improvement programmes.

    Science.gov (United States)

    Burnett, Susan; Benn, Jonathan; Pinto, Anna; Parand, Anam; Iskander, Sandra; Vincent, Charles

    2010-08-01

    Patient safety has been high on the agenda for more than a decade. Despite many national initiatives aimed at improving patient safety, the challenge remains to find coherent and sustainable organisation-wide safety-improvement programmes. In the UK, the Safer Patients' Initiative (SPI) was established to address this challenge. Important in the success of such an endeavour is understanding 'readiness' at the organisational level, identifying the preconditions for success in this type of programme. This article reports on a case study of the four NHS organisations participating in the first phase of SPI, examining the perceptions of organisational readiness and the relationship of these factors with impact by those actively involved in the initiative. A mixed-methods design was used, involving a survey and semistructured interviews with senior executive leads, the principal SPI programme coordinator and the four operational leads in each of the SPI clinical work areas in all four organisations taking part in the first phase of SPI. This preliminary work would suggest that prior to the start of organisation-wide quality- and safety-improvement programmes, organisations would benefit from an assessment of readiness with time spent in the preparation of the organisational infrastructure, processes and culture. Furthermore, a better understanding of the preconditions that mark an organisation as ready for improvement work would allow policymakers to set realistic expectations about the outcomes of safety campaigns.

  10. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  11. Task-Specific Ionic Liquids for Mars Exploration (Green Chemistry for a Red Planet)

    Science.gov (United States)

    Karr, L. J.; Curreri, P. A.; Paley, M. S.; Kaukler, W. F.; Marone, M. J.

    2012-01-01

    Ionic Liquids (ILs) are organic salts with low melting points that are liquid at or near room temperature. The combinations of available ions and task-specific molecular designability make them suitable for a huge variety of tasks. Because of their low flammability, low vapor pressure, and stability in harsh environments (extreme temperatures, hard vacuum) they are generally much safer and "greener" than conventional chemicals and are thus suitable for a wide range of applications that support NASA exploration goals. This presentation describes several of the ongoing applications that are being developed at MSFC.

  12. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  13. The Need for Medical Geology in Space Exploration: Implications for the Journey to Mars and Beyond

    Science.gov (United States)

    Harrington, A. D.; Zeigler, R. A.; McCubbin, F. M.

    2018-01-01

    The previous manned missions to the Moon represent milestones in human ingenuity, perseverance, and intellectual curiosity. They also highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust "storm" generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness". It was further reported that the allergic response to the dust worsened with each exposure. The lower gravity environment exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. However, even then the returned samples could also put the Curators, technicians, and scientists at risk during processing and examination.

  14. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  15. Deep Basalt Aquifers in Orcus Patera, Elysium Basin Mars: Perspectives for Exobiology Exploration

    Science.gov (United States)

    Grin, E. A.; Cabrol, N. A.

    1998-01-01

    simultaneously. Comparatively to terrestrial melts, Martian iron-rich melts are denser. This greater density implies greater effusion rates (eight-times terrestrial values), and larger fissuration widths (two-times terrestrial ones). With increasing vesiculation of magma, the bubbles interact with one-another because there are of similar pressure. They make a magma froth at the contact with the caldera surface, and on the walls of the fractures. In the saturated magma, froth, where the volume ratio of gases-to-liquid is about 4:1, the bubbles form a huge surface area of interconnected spaces. Bubbles near the caldera surface disrupt the magma, and fragmentation takes place, which moves downward through the magma column. On Earth, the bubbles are likely to grow between 1 and 50 mm in diameter due to the difference between the magma surface tension, and the bubble supersaturation pressure. The Martian low-pressure at surface level is likely to accelerate the expansion of the bubbles, and increase their final diameter and number, creating more voids in the magma. The strong magma froth with enclosed juvenile water bubbles interconnected with exsolved gas bubbles constitute a potential geothermal environment for geochemical energy production from basalt and water that does not require excessive temperatures. This process can start at +20C. Similar types of environments have been shown on Earth as potential energy sources for microbial metabolism, and could have provided deep aqueous basaltic niches for possible Martian microorganisms, even geologically recently. During the Amazonian, combination of volcanism and water activity still existed on Mars. Moreover, this type of potential niches open ways for investigation of possible oases of extinct or extant life, not only on paleolakes, and surface hydrothermalism spring areas, but also all large systems of fossae, which combine hydrologic and volcanic activities, and which provide an energy source, and an underground shelter to

  16. An Exploration of How Programme Leaders in Higher Education Can Be Prepared and Supported to Discharge Their Roles and Responsibilities Effectively

    Science.gov (United States)

    Cahill, Jo; Bowyer, Jan; Rendell, Catherine; Hammond, Angela; Korek, Sharon

    2015-01-01

    Background: Within Higher Education in the United Kingdom (UK), programme leaders are under increased pressure to be more productive and are expected to undertake a complex range of demanding activities. However, perceptions of the role through the lens of the programme leader have not been explored sufficiently. Clearly, a university's ability to…

  17. Exploring Horizon 2020: opportunities for CERN under the new EU Framework Programme

    CERN Multimedia

    Agnes Szeberenyi

    2014-01-01

    December marked the end of the EU Framework Programme 7 (FP7), which ran between 2007 and 2013. During these seven years, CERN's involvement was very fruitful. The Organization participated in 87 EU projects - out of which CERN was the coordinating institute for 36 projects - with a corresponding European Commission (EC) funding of more than €110 million. This ranked CERN in the top 50 out of more than 15,000 FP7 participants.   CERN's involvement in FP7 projects. CERN was primarily involved in the FP7 pillars: Research Infrastructures (14 projects), e-Infrastructures (20 projects), Marie Curie actions (28 projects) and ERC grants (9 projects). In terms of proposal success rate and received EU funding, CERN's involvement in the Marie Curie actions programme was the most successful. Half of the total EC funding received at CERN was obtained through Marie Curie actions to train and improve the mobility of scientists and engineers at different stages of their ca...

  18. Exploring the Use of Role Play in a School-Based Programme to Reduce Teenage Pregnancy

    Science.gov (United States)

    Taylor, Myra; Diamini, Nthabiseng; Khanyile, Zama; Mpanza, Lloyd; Sathiparsad, Reshma

    2012-01-01

    Can the use of a method such as role play help reduce sexual risk behaviour among KwaZulu-Natal learners? A study was undertaken of the use of role plays by Grade 8 learners, at eight urban and rural KwaZulu-Natal high schools, as part of a programme to reduce the prevalence of teenage pregnancy. Within the framework of Bandura's Social Cognitive…

  19. Content analysis as a means of exploring research opportunities from a conference programme.

    Science.gov (United States)

    Fourie, Ina

    2012-09-01

    Health librarians should keep up-to-date in a dynamic environment and accept the importance of continuing personal development (CPD) and growth in their critical reflection and creative thinking skills. They also need to acknowledge the potential value of research activity and the challenges of ongoing improvement and development. Conference programmes may prove a useful source of stimulation, especially if supplemented by creativity techniques, action research and the ideal of 'finding flow'. The article analyses the themes and papers presented at the 10th International Conference on International Medical Librarianship (ICML) to identify opportunities for further research, literature reviews, assessment of practices and services, etc. Content analysis approach to conference papers and suggestions for further action including supplementing with techniques of creativity and group input. A fairly extensive list of further actions (although not intended to be exhaustive) is suggested for the sixteen conference themes. Although subjective, the list might help to stimulate growth in research on health librarianship and demonstrate how one source of stimulation--conference programmes (regularly presented to medical library communities)--can be used. Content analysis has proven a constructive means of generating research questions from a conference programme. Content analysis and other methods aimed at stimulating creative and progressive thinking, including brainstorming, force field analysis, De Bono's 6 hats, creative swiping and creative visualisation, may prove equally useful and require further investigation. To ensure an ongoing cycle, these can be linked to action research. © 2012 The authors. Health Information and Libraries Journal © 2012 Health Libraries Group.

  20. Continuing to Build a Community Consensus on the Future of Human Space Flight: Report of the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV)

    Science.gov (United States)

    Thronson, Harley A.; Baker, John; Beaty, David; Carberry, Chris; Craig, Mark; Davis, Richard M.; Drake, Bret G.; Cassady, Joseph; Hays, Lindsay; Hoffman, Stephen J.; hide

    2016-01-01

    To continue to build broadly based consensus on the future of human space exploration, the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV), organized by Explore Mars, Inc. and the American Astronautical Society, was held at the Double Tree Inn in Monrovia, CA., December 68, 2016. Approximately 60 invited professionals from the industrial and commercial sectors, academia, and NASA, along with international colleagues, participated in the workshop. These individuals were chosen to be representative of the breadth of interests in astronaut and robotic Mars exploration.

  1. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  2. Mars Wars: The Rise and Fall of the Space Exploration Initiative

    Science.gov (United States)

    Hogan, Thor

    2007-08-01

    The rise of Space Exploration Initiative (SEI) and its eventual demise represents one of the landmark episodes in the history of the American space program ranking with the creation of NASA, the decision to go to the Moon, the post-Apollo planning process, and the space station decision. The story of this failed initiative is one shaped by key protagonists and critical battles. It is a tale of organizational, cultural, and personal confrontation. Organizational skirmishes involved the Space Council versus NASA, the White House versus congressional appropriators, and the Johnson Space Center versus the rest of the space agency all seeking control of the national space policy process. Cultural struggles pitted the increasingly conservative engineering ethos of NASA against the faster, better, cheaper philosophy of a Space Council looking for innovative solutions to technical problems. Personality clashes matched Vice President Dan Quayle and Space Council Executive Secretary Mark Albrecht against NASA Administrator Dick Truly and Johnson Space Center Director Aaron Cohen. In the final analysis, the demise of SEI was a classic example of a defective decision-making process one that lacked adequate high-level policy guidance, failed to address critical fiscal constraints, developed inadequate programmatic alternatives, and garnered no congressional support. Some space policy experts have argued that SEI was doomed to fail, due primarily to the immense budgetary pressures facing the nation during the early 1990's. This book will argue, however, that the failure of the initiative was not predetermined; instead, it was the result of a deeply flawed policy process that failed to develop (or even consider) policy options that may have been politically acceptable given the existing political environment.

  3. Exploring competing experiences and expectations of the revitalized community health worker programme in Mozambique: an equity analysis.

    Science.gov (United States)

    Give, Celso Soares; Sidat, Mohsin; Ormel, Hermen; Ndima, Sozinho; McCollum, Rosalind; Taegtmeyer, Miriam

    2015-09-01

    Mozambique launched its revitalized community health programme in 2010 in response to inequitable coverage and quality of health services. The programme is focused on health promotion and disease prevention, with 20 % of community health workers' (known in Mozambique as Agentes Polivalentes Elementares (APEs)) time spent on curative services and 80 % on activities promoting health and preventing illness. We set out to conduct a health system and equity analysis, exploring experiences and expectations of APEs, community members and healthcare workers supervising APEs. This exploratory qualitative study captured the perspectives of a range of participants including women caring for children under 5 years (service clients), community leaders, service providers (APEs) and their supervisors. Participants in the Moamba and Manhiça districts, located in Maputo Province (Mozambique), were selected purposively. In total, 29 in-depth interviews and 9 focus group discussions were conducted in the local language and/or Portuguese. A framework approach was used for analysis, assisted by NVivo10 software. Our analysis revealed that health equity is viewed as linked to the quality and coverage of the APE programme. Demand and supply factors interplay to shape health equity. The availability of responsive and appropriate services led to tensions between community expectations for curative services (and APEs' willingness to perform them) and official policy focusing APE efforts mainly on preventive services and health promotion. The demand for more curative services by community members is a result of having limited access to healthcare services other than those offered by APEs. This study highlights the need to pay attention to the determinants of demand and supply of community interventions in health, to understand the opportunities and challenges of the difficult interface role played by APEs and to create communication among stakeholders in order to build a stronger, more

  4. Exploring weight loss services in primary care and staff views on using a web-based programme

    Directory of Open Access Journals (Sweden)

    Lisa J Ware

    2013-09-01

    Full Text Available Background Demand is increasing for primary care to deliver effective weight management services to patients, but research suggests that staff feel inadequately resourced for such a role. Supporting service delivery with a free and effective web-based weight management programme could maximise primary care resource and provide cost-effective support for patients. However, integration of ehealth into primary care may face challenges.Objectives To explore primary care staff experiences of delivering weight management services and their perceptions of a web-based weight management programme to aid service delivery.Methods Focus groups were conducted with primary care physicians, nurses and healthcare assistants (n = 36 involved in delivering weight loss services. Data were analysed using inductive thematic analysis.Results Participants thought that primary care should be involved in delivering weight management, especially when weight was aggravating health problems. However, they felt under-resourced to deliver these services and unsure as to the effectiveness of their input, as routine services were not evaluated. Beliefs that current services were ineffective resulted in staff reluctance to allocate more resources. Participants were hopeful that supplementing practice with a web-based weight management programme would enhance patient services and promote service evaluation.Conclusions Although primary care staff felt they should deliver weight loss services, low levels of faith in the efficacy of current treatments resulted in provision of under-resourced and ‘ad hoc’ services. Integration of a web-based weight loss programme that promotes service evaluation and provides a cost-effective option for supporting patients may encourage practices to invest more in weight management services.

  5. Exploring weight loss services in primary care and staff views on using a web-based programme.

    Science.gov (United States)

    Ware, Lisa J; Williams, Sarah; Bradbury, Katherine; Brant, Catherine; Little, Paul; Hobbs, F D Richard; Yardley, Lucy

    2012-01-01

    Demand is increasing for primary care to deliver effective weight management services to patients, but research suggests that staff feel inadequately resourced for such a role. Supporting service delivery with a free and effective web-based weight management programme could maximise primary care resource and provide cost-effective support for patients. However, integration of e-health into primary care may face challenges. To explore primary care staff experiences of delivering weight management services and their perceptions of a web-based weight management programme to aid service delivery. Focus groups were conducted with primary care physicians, nurses and healthcare assistants (n = 36) involved in delivering weight loss services. Data were analysed using inductive thematic analysis. Participants thought that primary care should be involved in delivering weight management, especially when weight was aggravating health problems. However, they felt under-resourced to deliver these services and unsure as to the effectiveness of their input, as routine services were not evaluated. Beliefs that current services were ineffective resulted in staff reluctance to allocate more resources. Participants were hopeful that supplementing practice with a web-based weight management programme would enhance patient services and promote service evaluation. Although primary care staff felt they should deliver weight loss services, low levels of faith in the efficacy of current treatments resulted in provision of under-resourced and 'ad hoc' services. Integration of a web-based weight loss programme that promotes service evaluation and provides a cost-effective option for supporting patients may encourage practices to invest more in weight management services.

  6. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    Science.gov (United States)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  7. In-situ resource utilization for the human exploration of Mars : a Bayesian approach to valuation of precursor missions

    Science.gov (United States)

    Smith, Jeffrey H.

    2006-01-01

    The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.

  8. An exploration of spousal separation and adaptation to long-term disability: six elderly couples engaged in a horticultural programme.

    Science.gov (United States)

    Martin, Linda; Miranda, Baldwin; Bean, Michelle

    2008-01-01

    The main objective of the present study was to explore the impact of separation on couples where one spouse lives in a skilled nursing facility and the other spouse lives alone in the community. Six couples participated in a 10-week gardening group. Semi-structured interviews were conducted at the beginning of the study and observations were made and discussions engaged through the 10-week horticultural programme. Thematic analysis of interviews and discussions revealed reduced social participation of community-dwelling spouses in an effort to maintain their marital role. In one or more cases the non-institutionalized spouse adapted to separation by developing social roles and relationships within the skilled nursing facility and continuing as a caregiver to their spouse. Occupational therapists are encouraged to include spouses in programmes to nurture healthy spousal roles. Further research is needed to explore how elderly couples may support each other through purposeful occupation while one spouse is in a long-term care facility. (c) 2007 John Wiley & Sons, Ltd.

  9. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  10. Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR

    Science.gov (United States)

    Korablev, O. I.; Bertaux, J. L.; Kalinnikov, Yu. K.; Fedorova, A. A.; Moroz, V. I.; Kiselev, A. V.; Stepanov, A. V.; Grigoriev, A. V.; Zhegulev, V. S.; Rodin, A. V.; Dimarellis, E.; Dubois, J. P.; Reberac, A.; van Ransbeeck, E.; Gondet, B.

    2006-07-01

    The acousto-optic spectrometer of the near infrared range, which is a part of the spectrometer SPICAM onboard the Mars-Express spacecraft, began to operate in the orbit of Mars in January 2004. In the SPICAM experiment, a spectrometer on the basis of an acousto-optic filter was used for the first time to investigate other planets. During one and a half years of operation, the IR channel of SPICAM obtained more than half a million spectra in the 1-1.7 μm range with a resolving power of more than 1500 in different modes of observation: limb, nadir, and solar eclipses. The main goal of the experiment is to study the content of water vapor in the Martian atmosphere by measuring the absorption spectrum in the 1.38 μm band. Characteristics of the instrument (high spectral resolution and signal-to-noise ratio) allow one to solve a number of additional scientific problems including the study of ozone distribution by emission of singlet oxygen (O2 1Δg), detection of the water and carbonic dioxide ices, and also the study of the vertical distribution and optical characteristics of aerosol in the Martian atmosphere. We present a description of the instrument, the results of its ground and in-flight calibrations, and a brief survey of the basic scientific results obtained by the SPICAM spectrometer during a year-and-half of operation.

  11. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    Science.gov (United States)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  12. Exploring the use of role play in a school-based programme to reduce teenage pregnancy

    Directory of Open Access Journals (Sweden)

    Myra Taylor

    2012-01-01

    Full Text Available Can the use of a method such as role play help reduce sexual risk behaviour among KwaZulu-Natal learners? A study was undertaken of the use of role plays by Grade 8 learners, at eight urban and rural KwaZulu-Natal high schools, as part of a programme to reduce the prevalence of teenage pregnancy. Within the framework of Bandura's Social Cognitive Theory, learners participated in role plays covering five topics - choice, self-respect and emotional abuse; partner coercion/negotiation about having sex; visiting the clinic for contraception; perceived and purchasing value of the child support grant; and testing for HIV. We report on the organisation, implementation and evaluation of the role plays. Data from facilitators, educators and learners were triangulated and suggest that role play has potential for building self-efficacy among learners with respect to sexual behaviour.

  13. An Exploration of Student Teachers' Perspectives at the Start of a Post-Graduate Master's Programme on Inclusive and Special Education

    Science.gov (United States)

    Kamenopoulou, Leda; Buli-Holmberg, Jorun; Siska, Jan

    2016-01-01

    In this article we explore the perspectives of a group of teaching professionals starting a post-graduate master's programme on inclusive and special education. Set in the current context of growing interest over the preparation of teachers for inclusive education worldwide, this exploration is part of research that looks more broadly at the…

  14. Exploration of the affordances of mobile devices in integrating theory and clinical practice in an undergraduate nursing programme.

    Science.gov (United States)

    Willemse, Juliana J; Bozalek, Vivienne

    2015-01-01

    Promoting the quality and effectiveness of nursing education is an important factor, given the increased demand for nursing professionals. It is important to establish learning environments that provide personalised guidance and feedback to students about their practical skills and application of their theoretical knowledge. To explore and describe the knowledge and points of view of students and educators about introduction of new technologies into an undergraduate nursing programme. The qualitative design used Tesch's (1990) steps of descriptive data analysis to complete thematic analysis of the data collected in focus group discussions (FGDs) and individual interviews to identify themes. Themes identified from the students’ FGDs and individual interviews included: mobile devices as a communication tool; email, WhatsApp and Facebook as methods of communication; WhatsApp as a method of communication; nurses as role-models in the clinical setting; setting personal boundaries; and impact of mobile devices in clinical practice on professionalism. Themes identified from the FGD, individual interviews and a discussion session held with educators included: peer learning via mobile devices; email, WhatsApp and Facebook as methods of communication; the mobile device as a positive learning method; students need practical guidance; and ethical concerns in clinical facilities about Internet access and use of mobile devices. The research project established an understanding of the knowledge and points of view of students and educators regarding introduction of new technologies into an undergraduate nursing programme with the aim of enhancing integration of theory and clinical practice through use of mobile devices.

  15. Brief report: Exploring the benefits of a peer-tutored physical education programme among high school students with intellectual disability.

    Science.gov (United States)

    Gobbi, Erica; Greguol, Márcia; Carraro, Attilio

    2018-01-29

    The purpose of this study was to explore possible benefits of a peer-tutored physical education programme (PTPE) in comparison with school physical education (SPE) in high school students with intellectual disability. Nineteen students with intellectual disabilities (15 boys, mean age 17.4 ± 1.7 years) were monitored during three PTPE and three SPE classes. A factorial RM-ANOVA was used to test differences on objective measured physical activity (PA), enjoyment and exertion during the two conditions, considering participants' weight condition as independent factor. During PTPE, participants reported higher light intensity PA, enjoyment and exertion than during SPE. Participants with overweight showed less inactive time and higher light intensity PA during PTPE than during SPE. The peer-tutored programme was beneficial for adolescents with intellectual disability, particularly for those in overweight condition. The higher enjoyment found during PTPE may encourage exercise participation of students with intellectual disability. © 2018 John Wiley & Sons Ltd.

  16. Chromatographic, Spectroscopic and Mass Spectrometric Approaches for Exploring the Habitability of Mars in 2012 and Beyond with the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul

    2012-01-01

    The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.

  17. Mars Gashopper Airplane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Gas Hopper Airplane, or "gashopper" is a novel concept for propulsion of a robust Mars flight and surface exploration vehicle that utilizes indigenous CO2...

  18. Aesthetic aspects in meaning making - an explorative study of dance education in a PETE programme

    Directory of Open Access Journals (Sweden)

    Suzanne Lundvall

    2010-12-01

    Full Text Available The article focuses on how aesthetic aspects of experience are involved in meaning making within an educational setting of body movement practice. The study explores stories of how physical education student teachers feel when participating in a dance lesson, with attention given to aesthetic aspects of embodied experiences in relation to meaning making. The study draws on Dewey’s theory of experimental learning. Aesthetic experience is defined as the feeling of wholeness or fulfilment in the transaction taking place. The categorical analysis of content, inspired by pragmatic epistemology analyses, uses the operational concepts of gaps, encounters, and relations. Three categories of stories emerge linked by the resemblance of positive or negative feelings expressed. The aesthetic experiences seem to inform the students of the purpose of what is undertaken, how to value the experience, and how the meaning of the embodied experience is perceived.

  19. Exploration of the affordances of mobile devices in integrating theory and clinical practice in an undergraduate nursing programme

    Directory of Open Access Journals (Sweden)

    Juliana J. Willemse

    2015-09-01

    Full Text Available Background: Promoting the quality and effectiveness of nursing education is an important factor, given the increased demand for nursing professionals. It is important to establish learning environments that provide personalised guidance and feedback to students about their practical skills and application of their theoretical knowledge. Objective: To explore and describe the knowledge and points of view of students and educators about introduction of new technologies into an undergraduate nursing programme. Method: The qualitative design used Tesch’s (1990 steps of descriptive data analysis to complete thematic analysis of the data collected in focus group discussions (FGDs andindividual interviews to identify themes. Results: Themes identified from the students’ FGDs and individual interviews included:mobile devices as a communication tool; email, WhatsApp and Facebook as methods of communication; WhatsApp as a method of communication; nurses as role-models in the clinical setting; setting personal boundaries; and impact of mobile devices in clinical practiceon professionalism. Themes identified from the FGD, individual interviews and a discussion session held with educators included: peer learning via mobile devices; email, WhatsApp and Facebook as methods of communication; the mobile device as a positive learning method; students need practical guidance; and ethical concerns in clinical facilities about Internet access and use of mobile devices. Conclusion: The research project established an understanding of the knowledge and points of view of students and educators regarding introduction of new technologies into an undergraduate nursing programme with the aim of enhancing integration of theory and clinical practice through use of mobile devices.

  20. An integrated geophysical survey of Kilbourne Hole, southern New Mexico: Implications for near surface exploration of Mars and the Moon

    Science.gov (United States)

    Maksim, Nisa

    Features such as the Home Plate plateau on Mars, a suspected remnant of an ancient phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The eruption intensity of a phreatomagmatic volcano is controlled mainly by the quantity of water and magma, the internal geometry of the volcano, and the depth of the interaction zone between magma and water. In order to understand the paleohydrologic conditions at the time of eruption, we must understand all the factors that influenced the phreatomagmatic event. I conducted an integrated geophysical survey, which are magnetic and gravity surveys, and a ground-penetrating radar (GPR) surveys at Kilbourne Hole, a phreatomagmatic crater in southern New Mexico. These investigations serve an analog paleo-hydrogeological study that could be conducted on Mars and the Moon with an implication for planetary exploration. These geophysical surveys are designed to delineate the internal structure of a phreatomagmatic volcano and to define the volumes and masses of volcanic dikes and excavation unit, the depth of feeder dikes, and impacted velocity of the volcanic blocks. For the gravity and magnetic surveys at Kilbourne Hole, I collected data at a total of 171 gravity survey stations and 166 magnetics survey stations. A 2D gravity and magnetic inverse model was developed jointly to map the body of the magma intrusions and the internal structure of Kilbourne Hole. A total of 6 GPR surveys lines were also completed at Kilbourne Hole to image and to define locations of pyroclastic deposits, volcanic sags and blocks, the sizes distribution of volcanic blocks, and the impact velocity of the volcanic blocks. Using the size distribution and impact velocity of volcanic blocks from our GPR data, I derived the initial gas expansion velocity and the time duration of the gas expansion phase of the Kilbourne Hole eruption. These obtained parameters (volumes, masses, and depths of the feeder dikes and the excavation

  1. In Situ Visible to Short Wavelength Imaging Spectroscopy with the Ultra Compact Imaging Spectrometer (UCIS): Case Studies from the Mars Exploration Rovers

    Science.gov (United States)

    Blaney, D.; Mouroulis, P.; Green, R.; Rodriguez, J.; Sellar, G.; Van Gorp, B.; Wilson, D.

    2011-01-01

    In Situ imaging spectroscopy provides a way to address complex questions of geological evolution for both aqueous and igneous processes by mapping mineral composition at the spatial scale of rocks and outcrops. Examination of locations studied by the Mars Exploration Rovers Spirit and Opportunity can provide examples of the potential utility and define the needed measurement requirements. A compact instrument is needed to be able to adequately address these science questions from a rover platform. The Ultra Compact Imaging Spectrometer (UCIS) is an instrument designed to address the science need and implementation constraints.

  2. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  3. Exploring the Relationship between Modularization Ability and Performance in the C++ Programming Language: The Case of Novice Programmers and Expert Programmers

    Science.gov (United States)

    Vodounon, Maurice A.

    2006-01-01

    The primary purpose of the study was to determine if a treatment that concentrates on building programs from previously written modules can improve the decomposition processes of novice programmers in the C++ programming language and, hence, programming performance. For purposes of performance analysis, a subsample of 23 students was divided into…

  4. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  5. INFORMING EMPLOYEE ASSISTANCE PROGRAMMES FOR FARM WORKERS: AN EXPLORATION OF THE SOCIAL CIRCUMSTANCES AND NEEDS OF FARM WORKERS IN THE KOUP

    Directory of Open Access Journals (Sweden)

    Botes, Jacolise

    2014-04-01

    Full Text Available Farm workers are viewed as a neglected segment in South African society. This qualitative research study focused on exploring and describing the needs of farm workers in Central Koup in the Western Cape. The aim was to contribute to finding solutions to deal with the identified needs through Employee Assistance Programmes (EAPs, a specialisation in the field of occupational social work.

  6. Cars on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  7. Wet Mars, Dry Mars

    Science.gov (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  8. Field Exploration and Life Detection Sampling for Planetary Analogue Research (FELDSPAR): Variability and Correlation in Biomarker and Mineralogy Measurements from Icelandic Mars Analogues

    Science.gov (United States)

    Gentry, D.; Amador, E.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z.; Jacobsen, M.; Kirby, J.; McCaig, H.; hide

    2018-01-01

    In situ exploration of planetary environments allows biochemical analysis of sub-centimeter-scale samples; however, landing sites are selected a priori based on measurable meter- to kilometer-scale geological features. Optimizing life detection mission science return requires both understanding the expected biomarker distributions across sample sites at different scales and efficiently using first-stage in situ geochemical instruments to justify later-stage biological or chemical analysis. Icelandic volcanic regions have an extensive history as Mars analogue sites due to desiccation, low nutrient availability, and temperature extremes, in addition to the advantages of geological youth and isolation from anthropogenic contamination. Many Icelandic analogue sites are also rugged and remote enough to create the same type of instrumentation and sampling constraints typically faced by robotic exploration.

  9. Exploration of a Subsurface Biosphere in a Volcanic Massive Sulfide: Results of the Mars Analog Rio Tinto Drilling Experiment

    Science.gov (United States)

    Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.

    2005-12-01

    Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results

  10. Mars Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s Mars Exploration Program (MEP) calls for a series of highly ambitious missions over the next decade and beyond. The overall goals of the MEP must be...

  11. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

    Science.gov (United States)

    Richards, Jeffrey T; Corey, Kenneth A; Paul, Anna-Lisa; Ferl, Robert J; Wheeler, Raymond M; Schuerger, Andrew C

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10

  12. Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars

    Science.gov (United States)

    Richards, Jeffrey T.; Corey, Kenneth A.; Paul, Anna-Lisa; Ferl, Robert J.; Wheeler, Raymond M.; Schuerger, Andrew C.

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P net) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO2 levels were allowed to drawdown from 0.1 kPa to CO2 compensation points to assess P net rates under different hypobaric conditions. Results showed that P net increased as the pressures decreased from 101 to 10 kPa when CO2 partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO2 was in the nonlimiting range from 0.10 to 0.07 kPa, the P net rates were insensitive to decreasing pressures. Thus, if CO2 concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P net rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for

  13. Teaching Social Research Methods on an International, Collaborative Environment & Sustainability Degree Programme: Exploring plagiarism, group work, and formative feedback

    OpenAIRE

    Laycock, R

    2017-01-01

    International collaboration is central to the Sustainable Development agenda given environmental challenges that span national boundaries. Education for Sustainability therefore needs to account for international/intercultural understandings, such as though international collaborative degree programmes in Higher Education. This paper evaluates a module taught on an international collaborative Bachelor’s degree programme in Environment & Sustainability taught between Nanjing Xiaozhuang Univers...

  14. The initial exploration of Mars - Rationale for a return mission to Chryse Planitia and the Viking 1 Lander

    Science.gov (United States)

    Craddock, Robert A.

    1992-01-01

    A discussion of the concepts behind planning a landing site on Mars is presented. On the basis of the engineering constraints and the scientific objectives which are likely to be imposed on the first few missions to the surface, reasons for supporting a return to Chryse Planitia and the Viking 1 landing site are given. Samples from the Hesperian ridged plains would be useful in establishing an absolute age for the present crater chronology, and samples of soils from the vicinity of the Viking 1 lander would be useful in determining the significance of the results from the Viking biological experiments. Soil samples would provide consistency between unmanned and manned missions, may contain fossil microorganisms, and could be useful in determining the mechanism responsible for outflow channel formation.

  15. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    Science.gov (United States)

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

  16. A qualitative exploration of participants' experiences of taking part in a walking programme: Perceived benefits, barriers, choices and use of intervention resources.

    Science.gov (United States)

    Mitchell, Fiona; Stalker, Kirsten; Matthews, Lynsay; Mutrie, Nanette; Melling, Chris; McConnachie, Alex; Murray, Heather; Melville, Craig A

    2018-01-01

    Adults with intellectual disabilities (ID) experience significant inequalities and tend to be more sedentary and less physically active than the wider population. Walking programmes are an effective way to increase physical activity (PA) but have not been used in studies involving adults with intellectual disabilities. Nineteen adults with intellectual disabilities participated in semistructured interviews or focus groups exploring their experiences of taking part in a walking programme (Walk Well). Data were coded using thematic analysis. Four overarching themes emerged: perceived benefits of taking part in the programme, perceived drawbacks/ barriers, walking choices and using the Walk Well resources. While there was not a significant increase in walking for all, the participants reported positive experiences of taking part in the programme. Self-monitoring proved difficult for some, particularly reading the daily step count recorded on the pedometer and writing it in the diary. Carers also played an important role in facilitating and preventing behaviour change in adults with intellectual disabilities. Additional barriers prevent many adults with intellectual disabilities from participating in PA. Capturing participant experiences provides important information for designing effective and equitable health improvement programmes. © 2016 John Wiley & Sons Ltd.

  17. A qualitative exploration of stakeholder perspectives on a school-based multi-component health promotion nutrition programme.

    Science.gov (United States)

    Middleton, G; Keegan, R; Henderson, H

    2012-12-01

    Food for Fitness is an on-going multi-component health promotion programme, delivered in primary and secondary schools by community nutrition assistants. The programme uses nutritional interventions aimed at promoting healthier eating practices for children. This service evaluation investigated the receipt and delivery of the programme, as perceived by local stakeholders who had experienced and administered the service. Semi-structured interviews and focus groups were carried out with three key stakeholder groups: health professionals (n = 9), school teachers (n = 10) and senior health officials (n = 3). Qualitative data were transcribed verbatim and received thematic analysis with deductive and inductive processes. Stakeholders reported that the programme contributed to the development of food education and healthy-eating practices of children in the local area. Stakeholders considered that the main concern was the limited capacity and size of the service. They described problems with long-term sustainability in supporting schools with maintaining nutritional interventions, highlighting issues regarding contact, planning and organisation of several interventions. The findings of the service evaluation inform service management, organisation and ground-level delivery. The use of stakeholder opinion provided contextualised information on the factors that impact on the implementation of the programme. The richness of the qualitative results can guide future planning and provision for similar health promotion nutrition programmes delivered in the school environment. © 2012 The Authors. Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  18. Temperature dependence of the hyperfine parameters of the iron bearing phases in the Moessbauer spectra collected by the Mars Exploration Rover Spirit

    International Nuclear Information System (INIS)

    Van Cromphaut, Caroline; Resende, Valdirene G. de; De Grave, Eddy; Vandenberghe, Robert E.

    2009-01-01

    This contribution focuses on the Moessbauer spectra acquired by the Mars Exploration Rover Spirit which carried a MIMOS II Moessbauer spectrometer. Only those spectra which present a reasonable statistical quality were selected to for this study. Twenty five Moessbauer spectra have been considered. Common phases identified from the temperature dependent hyperfine parameters are olivine, pyroxene, hematite and magnetite. It is believed that the applied analysis method has provided accurate values for the various hyperfine data averaged over single 10 K temperature intervals in the range 210-260 K. The obtained results, to some extent forced to evolve consistently over the various ΔT intervals considered for a given soil/rock target, are in many cases different from previously published data. Possible reasons for these differences will be discussed.

  19. Are we There Yet? ... Developing In-Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars

    Science.gov (United States)

    Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  20. Exploring factors influencing farmers' willingness to pay (WTP) for a planned adaptation programme to address climatic issues in agricultural sectors.

    Science.gov (United States)

    Ahmed, Adeel; Masud, Muhammad Mehedi; Al-Amin, Abul Quasem; Yahaya, Siti Rohani Binti; Rahman, Mahfuzur; Akhtar, Rulia

    2015-06-01

    This study empirically estimates farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in Pakistan's agricultural sectors. The contingent valuation method (CVM) was employed to determine a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues. The survey was conducted by distributing structured questionnaires among Pakistani farmers. The study found that 67 % of respondents were willing to pay for a planned adaptation programme. However, several socioeconomic and motivational factors exert greater influence on their willingness to pay (WTP). This paper specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support attempts by policy makers to design an efficient adaptation framework for mitigating and adapting to the adverse impacts of climate change.

  1. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    Science.gov (United States)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  2. Training Social Competence in Engineering Education: Necessary, Possible or Not Even Desirable? An Explorative Study from a Surveying Education Programme

    Science.gov (United States)

    Emilsson, U. Melin; Lilje, B.

    2008-01-01

    The aim of this paper is to discuss whether "social competence" is necessary for engineers to contribute to sustainable development and if it is, how to teach communication, group-processes and leadership in technical environments like engineering education programmes. The article reflects on a pedagogical project carried out in the…

  3. Perceptions Displayed by Novice Programmers When Exploring the Relationship Between Modularization Ability and Performance in the C++ Programming Language

    Science.gov (United States)

    Vodounon, Maurice A.

    2004-01-01

    The primary purpose of this study was to analyze different perceptions displayed by novice programmers in the C++ programming language, and determine if modularization ability could be improved by an instructional treatment that concentrated on solving computer programs from previously existing modules. This study attempted to answer the following…

  4. Exploring the Dimensions of Brand Reputation in Higher Education--A Case Study of a Finnish Master's Degree Programme

    Science.gov (United States)

    Suomi, Kati

    2014-01-01

    This exploratory study examines the dimensions that are relevant to brand reputation, particularly in the context of master's degree programmes. The data analysis is based on Vidaver-Cohen's "Business school quality dimensions and reputational attributes". The qualitative data for the case study comprise a student questionnaire and…

  5. Technology needs for manned Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Bartine, D.

    1991-01-01

    As members of the Stafford Synthesis Group, we performed an investigation as to the most expeditious manner to explore Mars. To do this, rationale, objectives, requirements and systems definitions were developed. The objectives include the development of the necessary infrastructure and resources for Mars exploration and performing initial successful exploration of Mars. This will include a transportation system between Mars and Earth, habitats for living on Mars, utilization of Martian resources, and the ability to perform exploration over the entire Martian surface. Using the developed architecture, key technologies were identified. 6 figs., 1 tab

  6. Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Sulkowski, C.; Ruehl, K.; Licata, A.

    2008-01-01

    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning.

  7. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  8. The Decision to Send Humans Back to the Moon and on to Mars: Space Exploration Initiative History Project

    Science.gov (United States)

    McCurdy, Howard E.

    1992-01-01

    This folder contains working papers collected to date on a NASA-sponsored history project to document the events leading up to the July 20, 1989 speech setting forth the objectives of the Space Exploration Initiative. Included are a chronology of events, briefing papers produced by the NASA Working Group laying out proposal, briefing charts used to present the proposal, a copy of the President's speech, and an essay summarizing the events that led up to the announcement. Additionally, two fo the interviews conducted as part of the project are enclosed.

  9. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  10. Mechanical massage and mental training programmes affect employees' anxiety, stress susceptibility and detachment-a randomised explorative pilot study.

    Science.gov (United States)

    Muller, Jasmin; Handlin, Linda; Harlén, Mikael; Lindmark, Ulrika; Ekström, Anette

    2015-09-02

    Working people's reduced ability to recover has been proposed as a key factor behind the increase in stress-related health problems. One not yet evidence-based preventive method designed to help employees keep healthy and be less stressed is an armchair with built-in mechanical massage and mental training programmes, This study aimed to evaluate possible effects on employees' experience of levels of "Anxiety", "Stress Susceptibility", "Detachment" and "Social Desirability" when using mechanical massage and mental training programmes, both separately and in combination, during working hours. Employees from four different workplaces were randomly assigned to one of the following groups: i) Massage and mental training (sitting in the armchair and receiving mechanical massage while listening to the mental training programmes, n=19), ii) Massage (sitting in the armchair and receiving mechanical massage only, n=19), iii) Mental training (sitting in the armchair and listening to the mental training programmes only, n=19), iv) Pause (sitting in the armchair but not receiving mechanical massage or listening to the mental training programmes, n=19), v) Control (not sitting in the armchair at all, n=17). In order to discover how the employees felt about their own health they were asked to respond to statements from the "Swedish Scale of Personality" (SSP), immediately before the randomisation, after four weeks and after eight weeks (end-of-study). There were no significant differences between the five study groups for any of the traits studied ("Somatic Trait Anxiety", "Psychic Trait Anxiety", "Stress Susceptibility", "Detachment" and "Social Desirability") at any of the occasions. However, the massage group showed a significant decrease in the subscale "Somatic Trait Anxiety" (p=0.032), during the entire study period. Significant decreases in the same subscale were also observed in the pause group between start and week eight (p=0.040) as well as between week four and week

  11. Exploring the comparative responsiveness of a core set of outcome measures in a school-based conductive education programme.

    Science.gov (United States)

    Wright, F V; Boschen, K; Jutai, J

    2005-05-01

    Conductive education (CE) is a holistic educational system that uses an active cognitive approach to teach individuals with motor disorders to become more functional participants in daily activities. While CE's popularity continues to grow in North America and Europe, its effectiveness has not been established. The lack of definition of responsive outcome measures for evaluation of CE programmes has limited the interpretability of conclusions from earlier studies evaluating effectiveness. To determine which measures from a core set were most responsive to physical, functional and psychosocial changes associated with a school-based CE programme. This was a one-group before and after data collection design using an 8-month follow-up period. We enrolled a referral sample of nine children with cerebral palsy in Kindergarten or Grade 1 (Gross Motor Function Classification System levels 3, 4 or 5). The study took place within a school-based CE programme at a Canadian children's rehabilitation centre. Children participated in a CE full-day class for an entire school year. Physical, functional, psychosocial and participation measures included: Gross Motor Function Measure (GMFM), Quality of Upper Extremity Skills Test (QUEST), Peabody Developmental Motor Scales, Paediatric Evaluation of Disability Inventory (PEDI), Pictorial Scale of Perceived Competence and Social Acceptance for Young Children, Individualized Educational Plan, and Goal Attainment Scaling (GAS). Four children from the study's second year were also evaluated on the Impact on Family Scale (IFS), GAS and School Function Assessment. The Gross Motor Function Measure, QUEST, PEDI (Caregiver Assistance) and IFS were most responsive to change. GAS was useful in documenting and quantifying goals. Problems were encountered in evaluating self-esteem and school participation. Several strong measures of outcome were identified. Further work is needed to find valid and sensitive psychosocial and school participation

  12. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    Science.gov (United States)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  13. Men are from Mars, women are from Venus: Exploring gender differences in personality in the South African context

    Directory of Open Access Journals (Sweden)

    Sumaya Laher

    2013-10-01

    Full Text Available Orientation: Gender differences in personality have been explored in American and European contexts, but African and specifically South African research in the area is lacking. Research purpose: This study investigated whether there were gender differences in personality and what this might mean for a South African organisational context where personality assessments are frequently employed for decision-making. Motivation: Personality  tests  are  widely  used  in  many  fields,  including  the  industrial, organisational and research fields. Due to the impact that these tests have, it is essential that these tests are used in a fair and unbiased manner. Research design, approach and method: A cross-sectional, non-experimental design was used. A questionnaire consisting of demographic information and the NEO-PI-R was administered to a non-probability, convenience sample of 425 South African university students. The data was examined using ANOVAs and ANCOVAs. Main findings: Significant gender differences were found on Neuroticism, Anxiety, Vulnerability, Depression, Self-consciousness, Extraversion, Warmth, Activity, Assertiveness, Positive emotions, Aesthetics, Feelings, Ideas, Agreeableness, Compliance, Tender-mindedness, Altruism, Modesty, Straightforwardness, Trust, Conscientiousness, Order, Achievement striving and Self-discipline. Practical/managerial implications: The findings indicate differences between men and women are systematic and largely innate and therefore need to be acknowledged when personality tests are used in decision-making. Personality tests also need to be employed constructively to further team-building and diversity. Contribution/value-add: This study adds to the body of research in South Africa on gender as well as on how the NEO personality scales manifest in different race groups.

  14. Searching for traces of life in subglacial Lake Vostok (Antarctica) in terms of forward contamination: the lessons for exploration of icy environments on Mars

    Science.gov (United States)

    Bulat, S. A.; Alekhina, I. A.; Lipenkov, V. Ya.; Petit, J.-R.

    Bacterial 16S ribosomal gene analysis guarded by criteria for trace DNA analysis and Ancient DNA research clearly testifies for the very low biomass in accretion ice from giant subglacial Lake Vostok buried beneath 4-km thick East Antarctic ice sheet. It seems that the accretion ice is essentially germ-free indicating that the water body should also be hosting a highly sparse life, if any, unless the lake water lost its biological contents during accretion process. Due to this the search for life in Lake Vostok is constrained by a high chance of contamination similar to forward-contamination upon searching for life on Mars and other icy planets. Of 16 bacterial phylotypes initially recovered from the accretion ice the only one was kept with confident relevance to the lake environment while 15 others were presumed to be contaminants on the basis of indexing contaminant criteria developed for Lake Vostok and similar icy environments. The current way to avoid contamination appears to use stringent ice chemistry-based decontamination procedures and comprehensive biological controls including establishment of contemporary contaminant database as a prerequisite to identify and categorize sources of contaminants. More challenge would be to advance cleanliness and sterilization approaches and procedures in order to achieve and measure the level of cleanliness appropriate for tools exploring environments like Lake Vostok. As a guide for searching for life in (sub)glacial environments on Earth or Mars and Jovian's Europa our recommendations can be summarized as follows: (i) apply stringent ice decontamination procedures to meet chemistry and trace DNA analysis standards, (ii) document biological contents of various environments including humans in contact with ice samples (development of contaminant database), (iii) ensure in using relevant methods to cover both known and expected biodiversity and (iv) verify microbial findings through their possible metabolic profiles

  15. 'Endurance' Courtesy of Mars Express

    Science.gov (United States)

    2004-01-01

    NASA's Mars Exploration Rover Opportunity used its panoramic camera to capture this false-color image of the interior of 'Endurance Crater' on the rover's 188th martian day (Aug. 4, 2004). The image data were relayed to Earth by the European Space Agency's Mars Express orbiter. The image was generated from separate frames using the cameras 750-, 530- and 480-nanometer filters.

  16. Mars Sample Return Architecture Overview

    Science.gov (United States)

    Edwards, C. D.; Vijendran, S.

    2018-04-01

    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  17. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  18. Mars Mission Specialist

    Science.gov (United States)

    Burton, Bill; Ogden, Kate; Walker, Becky; Bledsoe, Leslie; Hardage, Lauren

    2018-01-01

    For the last several years, the authors have implemented an integrated Mars Colony project for their third-grade classes. Students explored several considerations related to colonizing and inhabiting a new world, including food sources, types of citizens, transportation, and housing design. Nearly everything about the project was open-ended, full…

  19. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Science.gov (United States)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to

  20. Evacuated Airship for Mars Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to overcome some of the limitations of current technologies for Mars exploration and even extend current operational capabilities by introducing the...

  1. An Exploration of the Readiness, Challenges and Expected Support for Their Overseas Study of Chinese Business and Management Programme Students

    Science.gov (United States)

    Wang, Chengbo; Li, Xiaomei; Ou, Xuan; O'Kane, James; Mao, Zhaofang; Zhang, Wenquan

    2015-01-01

    Chinese students are the largest international student cohort in the higher education institutions of English-speaking developed countries. The paper explores strategies to enhance the Chinese students' learning efficacy in overseas institutions. This research differs from other research focusing on international students already in…

  2. Examining Mars with SPICE

    Science.gov (United States)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  3. Mars Exploration Rover: surface operations

    Science.gov (United States)

    Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.

    2002-01-01

    This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.

  4. Biometrics-based service marketing issues: exploring acceptability and risk factors of iris scans associated with registered travel programmes.

    Science.gov (United States)

    Smith, Alan D

    2008-01-01

    The marketability and viability of biometric technologies by companies marketing their own versions of pre-approved registered travel programmes have generated a number of controversies. Data were collected and analysed to formulate graphs, run regression and correlation analyses, and use Chi-square to formally test basic research propositions on a sample of 241 professionals in the Pittsburgh area. It was found that there was a significant relationship between the respondents' familiarity with new technology (namely web-enabled and internet sophistication) and knowledge of biometrics, in particular iris scans. Participants who frequently use the internet are more comfortable with innovative technology; although individuals with higher income levels have less trust in the government, it appeared that virtually everyone is concerned about trusting the government with their personal information. Healthcare professionals need to document the safety, CRM-related factors, and provide leadership in the international collaboration of biometric-related personal identification technologies, since they will be one of the main beneficiaries of the implementation of such technologies.

  5. Incorporating psychoeducation, mindfulness and self-compassion in a new programme for binge eating (BEfree): Exploring processes of change.

    Science.gov (United States)

    Pinto-Gouveia, José; Carvalho, Sérgio A; Palmeira, Lara; Castilho, Paula; Duarte, Cristiana; Ferreira, Cláudia; Duarte, Joana; Cunha, Marina; Matos, Marcela; Costa, Joana

    2016-11-01

    This study explores the efficacy of BEfree, a 12-session group intervention that integrates psychoeducation, mindfulness, compassion and value-based action, in a sample of overweight and obese women with binge eating disorder ( N = 31). We used repeated measures analyses of variance and explored processes of change in binge eating and eating psychopathology. At post-intervention, participants decreased in binge eating severity, eating psychopathology, external shame, self-criticism, psychological inflexibility, body image cognitive fusion and increased self-compassion and engagement with valued actions. These results were maintained at 3- and 6-month follow-up. The changes in binge eating were mediated by the changes in the psychological processes promoted by BEfree.

  6. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  7. The CLIC programme: Towards a staged $e^{+}e^{−}$ linear collider exploring the terascale CLIC conceptual design report

    CERN Document Server

    Lebrun, P.; Lucaci-Timoce, A.; Schulte, D.; Simon, F.; Stapnes, S.; Toge, N.; Weerts, H.; Wells, J.

    2012-01-01

    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale $e^+e^-$ linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy $e^+e^-$ collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear $e^+e^-$ collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in th...

  8. Exploration

    International Nuclear Information System (INIS)

    Lohrenz, J.

    1992-01-01

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  9. EquiMar

    DEFF Research Database (Denmark)

    Johnstone, C. M.; McCombes, T.; Bahaj, A. S.

    2011-01-01

    the performance evaluation of such systems in order to address this deficiency. This paper reports the development of a set of ‘Best Practices’ within the ECFPVII EquiMar project to be adopted for the performance quantification of wave and tidal energy converters as they evolve from an engineering concept......At the present time there are no approved standards or recognised best practices being implemented for the performance appraisal and benchmarking of wave and tidal energy converters. As such, this develops considerable misunderstanding between device developers, testing centres, investors....../ financiers etc when attempting to quantify the performance of a device since it makes it very difficult to reference and benchmark the performance of a marine energy converter. The EC Framework Programme VII EquiMar project has set out to develop a suite of Best Practices to be adopted when undertaking...

  10. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    remainder of the time, at Earth to relay the information collected in this way and the data transmitted by Beagle 2. The orbiter’s seven on-board instruments are expected to provide considerable information about the structure and evolution of Mars. A very high resolution stereo camera, the HRSC, will perform comprehensive mapping of the planet at 10 m resolution and will even be capable of photographing some areas to a precision of barely 2 m. The OMEGA spectrometer will draw up the first mineralogical map of the planet to 100 m precision. This mineralogical study will be taken further by the PFS spectrometer - which will also chart the composition of the Martian atmosphere, a prerequisite for investigation of atmospheric dynamics. The MARSIS radar instrument, with its 40 m antenna, will sound the surface to a depth of 2 km, exploring its structure and above all searching for pockets of water. Another instrument, ASPERA, will be tasked with investigating interaction between the upper atmosphere and the interplanetary medium. The focus here will be on determining how and at what rate the solar wind, in the absence of a magnetic field capable of deflecting it, scattered the bulk of the Martian atmosphere into space. Atmospheric investigation will also be performed by the SPICAM spectrometer and the MaRS experiment, with special emphasis on stellar occultation and radio signal propagation phenomena. The orbiter mission should last at least one Martian year (687 days), while Beagle 2 is expected to operate on the planet’s surface for 180 days. Only a start to exploration This first European mission to Mars incorporates some of the objectives of the Euro-Russian Mars 96 mission, which came to grief when the Proton launcher failed. And indeed a Russian partner is cooperating on each of the orbiter’s instruments. Mars Express forms part of an international Mars exploration programme, featuring also the US probes Mars Surveyor and Mars Odyssey, the two Mars Exploration

  11. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  12. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  13. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  14. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  15. Exploring stakeholder perceptions of acceptability and feasibility of needle exchange programmes, syringe vending machines and safer injection facilities in Tijuana, Mexico.

    Science.gov (United States)

    Philbin, Morgan M; Mantsios, Andrea; Lozada, Remedios; Case, Patricia; Pollini, Robin A; Alvelais, Jorge; Latkin, Carl A; Magis-Rodriguez, Carlos; Strathdee, Steffanie A

    2009-07-01

    Injection drug use is a growing public health crisis along the U.S.-Mexican border and rising rates of blood-borne infections highlight the pressing need for harm reduction interventions. We explored the acceptability and feasibility of such interventions in Tijuana, a city adjacent to San Diego, California. Using in-depth qualitative interviews conducted from August 2006-March 2007 with 40 key stakeholders - pharmacists, legal professionals, health officials, religious officials, drug treatment providers, and law enforcement personnel - we explored the acceptability and feasibility of interventions to reduce drug-related harm in Tijuana, Mexico. Interviews were taped with consent, transcribed verbatim, and translated. Content analysis was conducted to identify themes which included barriers, structural limitations, and suggestions for implementation. Topics included acceptance and feasibility of needle exchange programmes (NEPs), syringe vending machines, and safer injection facilities (SIFs), structural barriers and suggestions for implementation. Of these interventions, NEPs were deemed the most acceptable (75%); however, only half believed these could be feasibly implemented, citing barriers involving religion, police, and lack of political will, public awareness, and funding. Increasing HIV infection rates among injection drug users in Tijuana have prompted interest in public health responses. Our results may assist policy strategists in implementing social-structural interventions that will help create enabling environments that facilitate the scale-up and implementation of harm reduction in Tijuana.

  16. Magnetic/isotopic characteristic of the spherule-rich impact ejecta blanket from the Chicxulub crater: analog for robotic exploration of similar deposits on Mars

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther

    2007-01-01

    Roč. 39, č. 5 (2007), s. 12-12 ISSN 0016-7592. [Rocky Mountain Section - Annual Meeting /59./. 07.05.2007-09.05.2007, St. George] Keywords : magnetic * isotopes * spherules * impact * Mars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://gsa.confex.com/gsa/2007RM/finalprogram/abstract_121718.htm

  17. Exploring factors influencing health-seeking decisions and retention in childhood cancer treatment programmes: perspectives of parents in Ghana.

    Science.gov (United States)

    Renner, Lorna Awo; McGill, Deborah

    2016-09-01

    Developing countries such as Ghana have very poor childhood cancer survival rates. There is a need to determine reasons for late presentation and treatment abandonment which are major causes of poor survival. Understanding these issues could inform effective strategies for childhood cancer control in resource-constrained settings. To explore factors influencing parental decision-making for children with cancer in Ghana with regard to health seeking and retention in treatment, in order to provide information that will guide Public Health interventions for childhood cancer control. This exploratory qualitative study was conducted based on an interpretative epistemology using a social constructionist approach. Purposive sampling of parents attending the Paediatric Oncology Unit, Korle Bu Teaching Hospital in Accra, Ghana was undertaken. Twelve semi-structured moderate interviews and two small focus group discussions with a total of seven participants were undertaken. Data analysis was through thematic content analysis. Five major themes emerged. Knowledge and perceptions revealed a total lack of appropriate knowledge prior to diagnosis. Health-seeking behaviour was determined by interplay of individual and environmental factors. Orthodox medical treatment was largely perceived favourably. The impact of cancer on parents and children included psychological, physical and socioeconomic effects. Financial, spiritual and psychosocial support helped in coping. Parents recommended public education and health financing to address the major barriers. Broad social determinants and experiences influence parental decision making for children with cancer. This implies Health Promotion strategies with multi-sectorial involvement will be required for effective implementation of the National Strategy for Cancer Control. Funded by authors.

  18. Innovative financing models for low carbon transitions: Exploring the case for revolving funds for domestic energy efficiency programmes

    International Nuclear Information System (INIS)

    Gouldson, Andy; Kerr, Niall; Millward-Hopkins, Joel; Freeman, Mark C.; Topi, Corrado; Sullivan, Rory

    2015-01-01

    The IEA has estimated that over the next four decades US$31 trillion will be required to promote energy efficiency in buildings. However, the opportunities to make such investments are often constrained, particularly in contexts of austerity. We consider the potential of revolving funds as an innovative financing mechanism that could reduce investment requirements and enhance investment impacts by recovering and reinvesting some of the savings generated by early investments. Such funds have been created in various contexts, but there has never been a formal academic evaluation of their potential to contribute to low carbon transitions. To address this, we propose a generic revolving fund model and apply it using data on the costs and benefits of domestic sector retrofit in the UK. We find that a revolving fund could reduce the costs of domestic sector retrofit in the UK by 26%, or £9 billion, whilst also making such a scheme cost-neutral, albeit with significant up-front investments that would only pay for themselves over an extended period of time. We conclude that revolving funds could enable countries with limited resources to invest more heavily and more effectively in low carbon development, even in contexts of austerity. - Highlights: • Examines the need for substantially higher levels of low carbon investment. • Explores the need for innovative financing mechanisms such as revolving funds. • Shows that revolving a fund could reduce the cost of UK retrofit by £9 billion or 26%. • Also shows that a revolving fund could make retrofit cost-neutral in the long term. • Concludes that revolving funds could dramatically increase low carbon investment.

  19. Community led active schools programme (CLASP) exploring the implementation of health interventions in primary schools: headteachers' perspectives.

    Science.gov (United States)

    Christian, Danielle; Todd, Charlotte; Davies, Helen; Rance, Jaynie; Stratton, Gareth; Rapport, Frances; Brophy, Sinead

    2015-03-13

    Schools are repeatedly utilised as a key setting for health interventions. However, the translation of effective research findings to the school setting can be problematic. In order to improve effective translation of future interventions, it is imperative key challenges and facilitators of implementing health interventions be understood from a school's perspective. Nineteen semi-structured interviews were conducted in primary schools (headteachers n = 16, deputy headteacher n = 1, healthy school co-ordinator n = 2). Interviews were transcribed verbatim and analysed using thematic analysis. The main challenges for schools in implementing health interventions were; government-led academic priorities, initiative overload, low autonomy for schools, lack of staff support, lack of facilities and resources, litigation risk and parental engagement. Recommendations to increase the application of interventions into the school setting included; better planning and organisation, greater collaboration with schools and external partners and elements addressing sustainability. Child-centred and cross-curricular approaches, inclusive whole school approaches and assurances to be supportive of the school ethos were also favoured for consideration. This work explores schools' perspectives regarding the implementation of health interventions and utilises these thoughts to create guidelines for developing future school-based interventions. Recommendations include the need to account for variability between school environments, staff and pupils. Interventions with an element of adaptability were preferred over the delivery of blanket fixed interventions. Involving schools in the developmental stage would add useful insights to ensure the interventions can be tailored to best suit each individual schools' needs and improve implementation.

  20. Water and Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils.

  1. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  2. CROSS DRIVE: A New Interactive and Immersive Approach for Exploring 3D Time-Dependent Mars Atmospheric Data in Distributed Teams

    Science.gov (United States)

    Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team

    2016-10-01

    Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always

  3. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    ture; recent five publications relevant to the proposed work; budget break up including amount required towards fellowship, equipment, consumables, components, travel contingencies. After suitable reviews, selected proposals will be considered for financial support by ISRO. Two copies of the proposals may be submitted ...

  4. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  5. ISOLDE PROGRAMME

    CERN Multimedia

    Fedosseev, V; Herfurth, F; Scheidenberger, C; Geppert, C; Gorges, C; Ratajczyk, T; Wiederhold, J C; Vogel, S; Munch, M K; Nieminen, P; Pakarinen, J J A; Lecesne, N; Bouzomita, H; Grinyer, J; Marques moreno, F M; Parlog, M; Blank, B A; Pedroza, J; Ghetta, V; Lozeva, R; Zacarias, S M; Guillemaud mueller, D S; Cottereau, E; Cheikh mhamed, M; Tusseau nenez, S; Tungate, G; Walker, P M; Smith, A G; Fitzpatrick, C; Dominik, W M; Karny, M; Ciemny, A A; Nyman, G H; Thies, R M A; Lindberg, S K G; Langouche, G F; Velten, P; Araujo escalona, V I; Boudreau, M; Domnanich, K A; Richter, D; Lutter, R J; Javaji, A; Engel, R Y; Wiehr, S; Nacher gonzalez, E; Jungclaus, A; Ribeiro jimenez, G; Marroquin alonso, I; Cal gonzalez, J; Paziy, V; Salsac, M; Murphy, C; Podolyak, Z F; Bajoga, A D; Butler, P; Pritchard, A; Colosimo, S J; Steer, A N; Fox, S P; Wadsworth, B A; Truesdale, V L; Al monthery, M; Bracco, A; Guttormsen, M S; Badea, M N; Calinescu, S; Ujeniuc, S; Cederkall, J A; Zemlyanoy, S; Donets, E D; Golovkov, M; Schweitzer, D K; Vranicar, A; Harrichunder, S; Ncube, M; Nannini, A; Strisovska, J; Wolf, E; Gerten, R F; Lehnert, J; Rainovski, G I; Pospisil, S; Datta pramanik, U; Benzoni, G; Fedorov, D; Maier, F M; Bonanni, A; Pfeiffer, B; Griesel, T; Wehner, L W; Mikkelsen, M; Recchia, F; Lenzi, S M; Smith, J F; Kelly, C M; Acosta sanchez, L A; Chavez lomeli, E R; De melo bandeira tavares, P M; Vieira, J M; Martins da silva, M A; Lima lopes, A M; Lopes leal, T J; Mader, J; Kessler, P; Laurent, B G; Schweikhard, L C; Marx, G H; Kulczycka, E; Komorowska, M; Da silva, M F; Goncalves marques, C P; Baptista peres, M A; Welander, J E; Reiter, P; Miller, C; Martin sanchez-cano, D; Wiens, A; Blazhev, A A; Braun, N; Cappellazzo, M V; Birkenbach, B; Gerst, R; Dannhoff, M F; Sithole, M J; Bilgier, B; Nardelli, S; Araujo mendes, C M; Agramunt ros, J; Valencia marin, E; Pantea, E; Hessberger, F P; Leduc, A J; Mitsuoka, S; Carbonari, A W; Buchegger, F J; Garzon camacho, A; Dapo, H; Papka, P; Stachura, M K; Stora, T; Marsh, B A; Thiboud, J A; Heylen, H; Antalic, S; Stahl, C; Bauer, C; Thurauf, M; Maass, B; Sturm, S; Boehm, C; Wolf, N R; Ways, M; Steinsberger, T P; Riisager, K; Ruotsalainen, P A; Bastin, B; Duval, F T; Penessot, G; Flechard, X D; Desrues, P; Giovinazzo, J; Kurtukian nieto, T; Ascher, P E L; Roccia, S; Matea, I; Croizet, H A G; Bonnin, C M; Morfouace, P; Smith, A J; Guin, R; Banerjee, D; Gunnlaugsson, H P; Ohtsubo, T; Zhukov, M V; Tengborn, E A; Welker, A; Giannopoulos, E; Dessagne, P; Juscamaita vivanco, Y; Da costa pereira, L M; Hustings, J; Yu, H; Kruecken, R; Nowak, A K; Jankowski, M; Cano ott, D; Galve lahoz, P; Murphy, A S J; Shand, C M; Jones, G D; Herzberg, R; Ikin, P; Revill, J P; Everett, C; Napoli, D R; Scarel, G; Larsen, A; Tornyi, T G; Pascu, S G; Stroe, L; Toma, S; Jansson, K; Dronjak fahlander, M; Krupko, S; Hurst, A M; Veskovic, M; Nikolov, J; Masenda, H; Sibanda, W N; Rocchini, M; Klimo, J; Deicher, M; Wichert, T; Kronenberg, J; Helmke, A; Meliani, Z; Ivanov, V S; Green, B L; Keatings, J M; Kuti, I; Halasz, Z; Henry, M O; Bras de sequeira amaral, V; Espirito santo, F; Da silva, D J; Rosendahl, S; Vianden, R J; Speidel, K; Agarwal, I; Faul, T; Kownacki, J M; Martins correia, J G; Lorenz, K; Costa miranda, S M; Granadeiro costa, A R; Zyabkin, D; Kotthaus, T; Pfeiffer, M; Gironi, L; Jensen, A; Romstedt, F; Constantino silva furtado, I; Heredia cardona, J A; Jordan martin, M D; Montaner piza, A; Zacate, M O; Plewinski, F; Mesli, A; Akakpo, E H; Pichard, A; Hergemoller, F; Neu, W; Fallis starhunter, J P; Voulot, D; Mrazek, J; Ugryumov, V; Savreux, R P; Kojouharov, I M; Kern, R O; Papst, O; Fitting, J; Lauer, M; Kirsebom, O S; Jensen, K L; Jokinen, A; Rahkila, P J; Hager, U D K; Konki, J P; Dubois, M; Orr, N A; Fabian, X; Huikari, J E; Goigoux, T; Magron, C; Zakari, A A; Maietta, M; Bachelet, C E M; Roussiere, B; Li, R; Canavan, R L; Lorfing, C; Foster, R M; Gislason, H P; Shayestehaminzadeh, S; Qi, B; Mukai, M; Watanabe, Y; Willmann, L; Kurcewicz, W; Wimmer, K; Meisel, Z P; Dorvaux, O; Nowacki, F; Koudriavtsev, I; Lievens, P; Delaure, B J P; Neyens, G; Ceruti, S; Bunka, M; Vermeulen, C; Umbricht, C A; De boer, J; Podadera aliseda, I; Alcorta moreno, M; Pesudo fortes, V; Zielinska, M; Korten, W; Wang, C H; Lotay, G J; Mason, P; Rice, S J; Regan, P H; Willenegger, L M; Andreev, A; Yavuzkanat, N; Hass, M; Kumar, V; Valiente dobon, J J; Crespo campo, L; Zamfir, N - V; Deleanu, D; Clisu, C; Jeppesen, H B; Wu, C; Pain, S D; Stracener, D W; Wuosmaa, A H; Szilner, S; Colovic, P; Matousek, V; Venhart, M; Birova, M; Li, X; Stuchbery, A E; Lellep, G M; Chakraborty, S; Leoni, S; Chupp, T; Yilmaz, C; Severin, G; Garcia ramos, J E; Newton, M E; Hadinia, B; Mc glynn, E; Monteiro de sena silvares de carvalho, I; Friedag, P; Figuera, P; Koos, V; Meot, V H; Pauwels, D B; Jancso, A; Srebrny, J; Alves, E J; David bosne, E; Bengtsson, L; Kalkuehler, M; Albers, M; Bharuth-ram, K; Akkus, B; Hemmingsen, L B S; Pedersen, J T; Dos santos redondo, L M; Rubio barroso, B; Algora, A; Kozlov, V; Mavela, D L; Mokhles gerami, A; Keeley, N; Bernardo da silva, E; Unzueta solozabal, I; Schell, J; Szybowicz, M; Yang, X; Plavec, J; Lassen, J; Johnston, K; Coquard, L; Bloch, T P; Bonig, E S; Stegmann, R; Ignatov, A; Paschalis, S; Fernandez martinez, G; Schilling, M; Habermann, T; Von hahn, R; Minaya ramirez, E E; Moore, I D; Wang, Y; Saastamoinen, A J; Grahn, T; Herzan, A; Stolze, S M; Clement, E; Dijon, A; Shornikov, A; Lienard, E; Gibelin, J D; Pain, C; Canchel, G; Simpson, G S; Latrasse, L P; Huang, W; Forest, D H; Billowes, J; Flanagan, K; Strashnov, I; Binnersley, C L; Sanchez poncela, M; Simpson, J; Morrall, P S; Grant, A F; Charisopoulos, S; Lagogiannis, A; Bhattacharya, C; Olafsson, S; Stepaniuk, M; Tornqvist, H T; Heinz, A M; White iv, E R; Courtin, S; Marechal, F; Da silva fenta, A E; De lemos lima, T A; Stryjczyk, M; Dockx, K; Haller, S; Rizzi, M; Reichert, S B; Bonn, J; Thirolf, P G; Garcia rios, A R; Gugliermina, V M; Cubero campos, M A; Sanchez tembleque, V; Benito garcia, J; Senoville, M; Mountford, D J; Gelletly, W; Alharbi, T S T; Wilson, E; Rigby, S V; Andreoiu, C; Paul, E S; Harkness, L J; Judson, D S; Wraith, C; Van esbroeck, K; Wadsworth, R; Cubiss, J G; Harding, R D; Vaintraub, S; Mandal, S K; Scarpa, D; Hoff, P; Syed naeemul, H; Borcea, R; Balabanski, D L; Marginean, R; Rotaru, F; Rudolph, D; Fahlander, C H; Chudoba, V; Kay, B P; Soic, N; Naidoo, D; Veselsky, M; Kliman, J; Raisanen, J A; Dietrich, M; Maung maung than, M M T; Reed, M W; Danchev, M T; Ray, J; Roy, M; Hammen, M; Capponi, L; Veghne csatlos, M M; Fryar, J; Mirzadeh vaghefi, S P; Trindade pereira, A M; De pinho oliveira, G N; Bakenecker, A; Tramm, C; Germic, V; Morel, P A; Kowalczyk, M; Matejska-minda, M; Wolinska-cichocka, M; Ringvall moberg, A; Mantovan, R; Fransen, C H; Radeck, F; Schneiders, D W; Steinbach, T; Vibenholt, J E; Magnussen, M J; Stevnhoved, H M; Comas lijachev, V; Dasenbrock-gammon, N M; Perkowski, J; O'neill, G G; Matveev, Y; Wegner, M; Liu, Z; Perez alvarez, T; Cerato, L; Radchenko, V; Molholt, T E; Tabares giraldo, J A; Srnka, D; Dlouhy, Z; Beck, D; Werner, V R; Homm, I; Eliseev, S; Blaum, K; Probst, M B; Kaiser, C J; Martin, J A; Refsgaard, J; Peura, P J; Greenlees, P T; Auranen, K; Delahaye, P; Traykov, E K; Perez loureiro, D; Mery, A A; Couratin, C; Tsekhanovich, I; Lunney, D; Gaulard, C V; Mottram, A D; Cullen, D M; Das, S K; Van de walle, J; Mazzocchi, C; Jonson, B N G; Woehr, A; Lesher, S R; Zuber, K T; Filippin, L; De witte, H J; Van den bergh, P A M; Raabe, R; Dirkx, D; Parnefjord gustafsson, F O A; Dunlop, R A; Tarasava, K; Gernhaeuser, R A; Weinzierl, W; Berger, C; Wendt, K; Achtzehn, T; Gottwald, T; Schug, M; Rossel, R E; Dominguez reyes, R R; Fraile prieto, L M; Briz monago, J A; Koester, U H; Bunce, M R; Bowry, M D; Nakhostin, M; Shearman, R; Cresswell, J R; Joss, D T; Gredley, A; Groombridge, D; Laird, A M; Aslanoglou, X; Siem, S; Weterings, J A; Renstrom, T; Szpak, B T; Luczkowski, M J; Ghita, D; Bezbakh, A; Soltz, R A; Bollmann, J; Bhattacharya, P; Roy, S; Rahaman, M A; Wlodarski, T; Carvalho soares, J; Barzakh, A; Schertz, F; Froemmgen, N E; Liberati, V; Foy, B E; Baptista barbosa, M; Weinheimer, C P; Zboril, M; Simon, R E; Popescu, L A; Czosnyka, T; Miranda jana, P A; Leimbach, D; Naskrecki, R; Plociennik, W A; Ruchowska, E E; Chiara, C J; Walters, W; Eberth, J H; Thomas, T; Thole, P; Queiser, M T; Lo bianco, G; D'amico, F; Muller, S; Sanchez alarcon, R M; Tain enriquez, J L; Orrigo, S E A; Orlandi, R; Masango, S; Plazaola muguruza, F C; Lepareur, N G; Fiebig, J M; Ceylan, N; Wildner, E; Kowalska, M; Malbrunot, S; Garcia ruiz, R F; Pallada, S; Slezak, M; Roeckl, E; Schrieder, G H; Ilieva, S K; Koenig, K L; Amoretti, M A; Lommen, J M; Fynbo, H O U; Weyer, G O P; Koldste, G T; Madsboll, K; Jensen, J H; Nieminen, A M; Reponen, M; Villari, A; Thomas, J; Saint-laurent, M; Sorlin, O H; Carniol, B; Pereira lopez, J; Grevy, S; Plaisir, C; Marie-jeanne, M J; Georgiev, G P; Etile, A M; Le blanc, F M; Verney, D; Stefan, G I; Assie, M; Suzuki, D; Guillot, J; Vazquez rodriguez, L; Campbell, P; Deacon, A N; Ware, T; Flueras, A; Xie, L; Banerjee, K; Piersa, M; Galaviz redondo, D; Johansson, H T; Schwarz, S; Toysa, A S; Aumont, J; Van duppen, P L E; Atanasov, D; Zadvornaya, A; Renaud, M A; Xu, Z; Garrett, P E; Rapisarda, E; Reber, J A; Mattolat, C F; Raeder, S; Habs, D; Vidal, M; Perez liva, M; Calvo portela, P; Ulla pedrera, F J; Wood, R T; Lalkovski, S; Page, R; Petri, M; Barton, C J; Nichols, A J; Vermeulen, M J; Bloor, D M; Henderson, J; Wilson, G L; De angelis, G; Buerger, A; Modamio hoybjor, V; Klintefjord, M L; Ingeberg, V W; Fornal, B A; Marginean, R; Sava, T; Kusoglu, A; Suvaila, R; Lica, R; Costache, C; Mihai, R; Ionescu, A; Baeck, T M; Hoffman, C R; Sedlak, M; Koskelo, O K; Kyaw myat, K M; Gladnishki, K A; Ganguly, B; Goncalves marques, J; Cardoso, S; Seliverstov, M; Niessen, B D; Gutt, L E; Chapman, R; Spagnoletti, P N; Lopes, C; De oliveira amorim, C; Batista lopes, C M; Araujo, J; Schielke, S J; Daugas, J R; Gaudefroy, L; Chevrier, R; Szunyogh, D M; Napiorkowski, P J; Wrzosek-lipska, K; Wahl, U; Catarino, N; Pereira carvalho alves de sequeira, M; Hess, H E; Holler, A; Bettermann, L; Geibel, K; Taprogge, J; Lewandowski, L T N; Manchado de sola, F; Cakirli mutlu, R B; Das gupta, S; Thulstrup, P W; Heinz, U; Nogwanya, T; Neidherr, D M; Morales lopez, A I; Gumenyuk, O; Peaker, A R; Wakabayashi, Y; Abrahams, K J; Martin montes, E J; Mach, H A; Souza ribeiro junior, I; He, J; Chalil, A; Xing, R; Dos santos augusto, R M; Giles, T J; Dorsival, A; Trujillo hernandez, J S; Kalaninova, Z; Andel, B; Venos, D; Kraemer, J; Saha, S; Neugart, R; Eronen, T O; Kreim, K D; Heck, M K; Goncharov, M; Karthein, J; Julin, R J; Eleon, C; Achouri, N L; Grinyer, G F; Fontbonne, C M; Alfaurt, P; Lynch, K M; Wilkins, S G; Brown, A R; Imai, N; Pomorski, M J; Janiak, L; Nilsson, T; Stroke, H H; Stanja, J; Dangelser, E; Heenen, P; Godefroid, M; Mallion, S N; Gins, W A M; Stegemann, S T; Koszorus, A; Mcnulty, J F; Lin, P; Ohlert, C M; Schwerdtfeger, W; Tengblad, O; Becerril reyes, A D; Perea martinez, A; Martinez perez, M C; Margerin, V; Rudigier, M; Alexander, T D; Patel, Z V; Hammond, N; Wearing, F; Patel, A; Jenkins, D G; Corradi, L; Galtarossa, F; Debernardi, A; Giacoppo, F; Tveten, G M; Malatji, K L; Krolas, W A; Stanoiu, M A; Rickert, E U; Ter-akopian, G; Cline, D; Riihimaeki, I A; Simon, K D; Wagner, F E; Turker, M; Neef, M H; Coombes, B J; Jakubek, J; Vagena, E; Bottoni, S; Nishimura, K; Correia, J; Rodrigues valdrez, C J; Molkanov, P; Adhikari, R; Ostrowski, A N; Hallmann, O; Scheck, M; Wady, P T; Lane, J; Krasznahorkay, A J; Kunne sohler, D; Meaney, A J; Hochschulz, F; Roig, O; Behan, C C; Kargoll, S; Kemnitz, S; Carvalho teixeira, R C; Redondo cubero, A; Tallarida, G; Kaczarowski, R; Finke, F; Linnemann, A; Altenkirch, R; Saed-samii, N; Ansari, S H; Dlamini, W B; Adoons, V N; Ronning, C R; Wiedeking, M; Herlert, A J; Mehl, C V; Judge, S M; Gaertner, D; Divinskyi, S; Karabasov, M O; Zagoraios, G; Boztosun, I; Van zyl, J J; Catherall, R; Lettry, J; Wenander, F J C; Zakoucky, D; Catchen, G L; Noertershaeuser, W; Kroell, T; Leske, J; Shubina, D; Murray, I M; Pancin, J; Delaunay, F; Poincheval, J J L; Audirac, L L; Gerbaux, M T; Aouadi, M; Sole, P G P; Fallot, M P; Onillon, A; Duchemin, C; Formento cavaier, R; Audi, G; Boukhari, A; Lau, C; Martin, J A; Barre, N H; Berry, T A; Procter, T J; Bladen, L K; Axiotis, M; Muto, S; Jeong, S C; Hirayama, Y; Korgul, A B; Minamisono, K; Bingham, C R; Aprahamian, A; Bucher, B M; Severijns, N; Huyse, M L; Ferrer garcia, R; Verlinde, M N S; Romano, N; Maugeri, E A; Klupp, S C; Dehn, M H; Heinke, R M; Naubereit, P; Maira vidal, A; Vedia fernandez, M V; Ibanez garcia, P B; Bruyneel, B J E; Materna, T; Hadynska-klek, K; Al-dahan, N; Alazemi, N; Carroll, R J; Babcock, C; Patronis, N; Eleme, Z; Dhal, A; Sahin, E; Goergen, A; Maj, A; Bednarczyk, P A; Borcea, C; Negoita, F; Suliman, G; Marginean, N M; Sotty, C O; Negret, A L; Nae, S A; Nita, C; Golubev, P I; Knyazev, A; Jost, C U; Petrik, K; Vaeyrynen, S A; Dracoulis, G D; Uher, J; Fernandez dominguez, B; Chakraborty, P; Avigo, R; Falahat, S; Lekovic, F; Dorrer, H J; Mengoni, D; Derkx, X; Angus, L J; Sandhu, K S; Gregor, E; Kelly, N A; Byrne, D J; Haas, H; Lourenco, A A; Sousa pereira, S M; Sousa, J B; De melo mendonca, T M; Tavares de sousa, C; Guerreiro dos santos oliveira custodio, L M; Da rocha rodrigues, P M; Yamaguchi, T; Thompson, P C; Rosenbusch, M; Wienholtz, F; Fischer, P; Iwanicki, J S; Rusek, K M; Hanstorp, D; Vetter, U; Wolak, J M; Park, S H; Warr, N V; Doornenbal, P C; Imig, A; Seidlitz, M; Moschner, K; Vogt, A; Kaya, L; Martel bravo, I; Orduz, A K; Serot, O; Majola, S N; Litvinov, Y; Bommert, M; Hensel, S; Markevich, V; Nishio, K; Ota, S; Matos, I; Zenkevich, A; Picado sandi, E; Forstner, O; Hu, B; Ntshangase, S S; Sanchez-segovia, J

    2002-01-01

    The experiments aim at a broad exploration of the properties of atomic nuclei far away from the region of beta stability. Furthermore, the unique radioactive beams of over 60~elements produced at the on-line isotope separators ISOLDE-2 and ISOLDE-3 are used in a wide programme of atomic, solid state and surface physics. Around 300 scientists are involved in the project, coming from about 70 laboratories. \\\\ \\\\ The electromagnetic isotope separators are connected on-line with their production targets in the extracted 600 MeV proton or 910~MeV Helium-3 beam of the Synchro-Cyclotron. Secondary beams of radioactive isotopes are available at the facility in intensities of 10$^1

  6. 'Mars-shine'

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three

  7. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  8. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  9. Aspects of ESA s public outreach programme

    Science.gov (United States)

    Maree, H.

    The Science Programme Communication Service is currently implementing a new policy to increase the overall public interest in ESA Science Programme by adopting new ways of promoting its activities, accordingly to the simple principle that "different target audiences have different needs". It is clear that the general public (i.e. "the man in the street" / "the average tax- payer") rarely has the knowledge and the background to understand what exactly a space mission is, what it does and why it does it ("Mission oriented approach"). The experience has shown that a space mission becomes "popular" amongst this target audience when the relevant communication is done by passing generic/bas ic/simple messages ("Thematic oriented approach"). The careful selection of adequate supports together with efficient distribution and promotion networks are also key parameters for success of the latter approach. One should also note that the overall objective of this new policy, is to raise people's interest in space in general. By presenting the information under the ESA brand, the public will start more and more to associate this brand and Europe to space exploration. Within the next twelve months, four scientific missions will be launched. Interestingly, tree of them (SMART-1, ROSETTA and MARS EXPRESS) offer a unique opportunity to implement the new communication policy under the single thematic : Europe is exploring the Solar System. Nevertheless, the study of the various mission profiles and their potential communication impact lead us to choose to reach out the general public primarily via the sub-thematic : Europe goes to Mars.

  10. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  11. The politics of Mars

    Science.gov (United States)

    Schmitt, Harrison H.

    1986-01-01

    A discussion is presented comparing past and present major accomplishments of the U.S. and the Soviet Union in space. It concludes that the Soviets are presently well ahead of the U.S. in several specific aspects of space accomplishment and speculates that the Soviet strategy is directed towards sending a man to the vicinity of Mars by the end of this century. A major successful multinational space endeavor, INTELSAT, is reviewed and it is suggested that the manned exploration of Mars offers a unique opportunity for another such major international cooperative effort. The current attitude of U.S. leadership and the general public is assessed as uniformed or ambivalent about the perceived threat of Soviet dominance in space.

  12. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  13. The ecosystem of the Mid-Atlantic Ridge at the sub-polar front and Charlie-Gibbs Fracture Zone; ECO-MAR project strategy and description of the sampling programme 2007-2010

    Science.gov (United States)

    Priede, Imants G.; Billett, David S. M.; Brierley, Andrew S.; Hoelzel, A. Rus; Inall, Mark; Miller, Peter I.; Cousins, Nicola J.; Shields, Mark A.; Fujii, Toyonobu

    2013-12-01

    The ECOMAR project investigated photosynthetically-supported life on the North Mid-Atlantic Ridge (MAR) between the Azores and Iceland focussing on the Charlie-Gibbs Fracture Zone area in the vicinity of the sub-polar front where the North Atlantic Current crosses the MAR. Repeat visits were made to four stations at 2500 m depth on the flanks of the MAR in the years 2007-2010; a pair of northern stations at 54°N in cold water north of the sub-polar front and southern stations at 49°N in warmer water influenced by eddies from the North Atlantic Current. At each station an instrumented mooring was deployed with current meters and sediment traps (100 and 1000 m above the sea floor) to sample downward flux of particulate matter. The patterns of water flow, fronts, primary production and export flux in the region were studied by a combination of remote sensing and in situ measurements. Sonar, tow nets and profilers sampled pelagic fauna over the MAR. Swath bathymetry surveys across the ridge revealed sediment-covered flat terraces parallel to the axis of the MAR with intervening steep rocky slopes. Otter trawls, megacores, baited traps and a suite of tools carried by the R.O.V. Isis including push cores, grabs and a suction device collected benthic fauna. Video and photo surveys were also conducted using the SHRIMP towed vehicle and the R.O.V. Isis. Additional surveying and sampling by landers and R.O.V. focussed on the summit of a seamount (48°44‧N, 28°10‧W) on the western crest of the MAR between the two southern stations.

  14. Mars extant-life campaign using an approach based on Earth-analog habitats

    Science.gov (United States)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  15. Mars @ ASDC

    Science.gov (United States)

    Carraro, Francesco

    "Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.

  16. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  17. Sustainable Mars Sample Return

    Science.gov (United States)

    Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert

    2011-01-01

    The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.

  18. Past, present, and future life on Mars

    Science.gov (United States)

    McKay, C. P.

    1998-01-01

    Although the Viking results indicated that the surface of Mars is dry and lifeless, there is direct geomorphological evidence that Mars had large amounts of liquid water on its surface in the past. From a biological perspective the existence of liquid water, by itself, motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. The Mars environment 3.5 to 4.0 Gyr ago was comparable to that on the Earth at this time in that both contained liquid water. Life had originated on Earth and reached a fair degree of biological sophistication by 3.5 Gyr ago. To determine if life similarly arose on Mars may require extensive robotic exploration and ultimately human exploration. Intensive exploration of Mars will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research station can obtain its life support requirements directly from the martian environment enabling a high degree of self-sufficiency. In the longer term, it is possible that in the future we might restore a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history.

  19. Telecommunications for Mars Rovers and Robotic Mission

    Science.gov (United States)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in-situ science activity on, or just above, the Martian surface.

  20. Telecommunications for Mars Rovers and Robotic Missions

    Science.gov (United States)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in situ science activity on, or just above, the Martian surface.

  1. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    Science.gov (United States)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  2. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    Science.gov (United States)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  3. Constructing an Educational Mars Simulation

    Science.gov (United States)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the

  4. A Ground Penetrating Radar (GPR) Survey of KIilbourne Hole, Southern New Mexico: Implication for Paleohydrology and Near Surface Geophysical Exploration of Mars and the Moon

    Science.gov (United States)

    Rhodes, N.; Hurtado, J. M.

    2013-05-01

    Features such as the Home Plate plateau on Mars, a suspected remnant of a phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The types and sizes of pyroclastic rocks produced by a phreatomagmatic eruption are indicative of the behavior of the explosion and the characteristics of the groundwater reservoir. Analysis of the pyroclast size distribution can be used to determine magma volatile content. We conduct an analysis of pyroclast size distribution using Ground Penetrating Radar (GPR) to make a quantitative estimate of the presence of past groundwater at Kilbourne Hole, a well-known phreatomagmatic crater located in southern Dona Ana County, New Mexico. As basaltic magma intruded the groundwater reservoir in the mid-Pleistocene, the water vaporized and caused a phreatomagmatic explosion that excavated the 2-km wide and 200-m deep depression. The pyroclastic units produced during a phreatomagmatic explosion are proportional to the size and the duration of the explosion and the size of the groundwater reservoir such that the wetter the eruption, the stronger the explosion. In a violent volcanic eruption, magma changes from a liquid into solid fragments and the explosion releases kinetic energy (Ek) by ejecting liquid water, vapor water (with mass Mw) and solid fragments (with mass Mf) at an ejection velocity (Ve). In order to determine Mw, we must know Ve. The relationship between Ve and the distance from center of the eruption (R) is such that Ve exponentially decreases with time (t) and R. A numerical model relating pyroclast size and Ve for material ejected in Hawaiian and Plinian eruptions shows that clast size also exponentially decreases with decreasing Ve. Based on these relationships, we use GPR to map the ejected clast size distribution as a function of distance from the edge of Kilbourne Hole in an effort to determine Ve and Mw. GPR surveys were performed in January 2012 and January 2013 using a Noggins 250 MHz

  5. A Qualitative Exploration of Participants' Experiences of Taking Part in a Walking Programme: Perceived Benefits, Barriers, Choices and Use of Intervention Resources

    Science.gov (United States)

    Mitchell, Fiona; Stalker, Kirsten; Matthews, Lynsay; Mutrie, Nanette; Melling, Chris; McConnachie, Alex; Murray, Heather; Melville, Craig A.

    2018-01-01

    Background: Adults with intellectual disabilities (ID) experience significant inequalities and tend to be more sedentary and less physically active than the wider population. Walking programmes are an effective way to increase physical activity (PA) but have not been used in studies involving adults with intellectual disabilities. Method: Nineteen…

  6. Why send humans to Mars?

    Science.gov (United States)

    Sagan, Carl

    1991-01-01

    The proposed Space Exploration Initiative (SDI) to launch a manned flight to Mars is examined in the current light of growing constraints in costs and other human requirements. Sharing the huge costs of such a program among a group of nations might become low enough for the project to be feasible. Robotic missions, equipped with enhanced artificial intelligence, appear to be capable of satisfying mission requirements at 10 percent or less, of the cost of a manned flight. Various additional pros and cons are discussed regarding both SDI generally and a Mars mission. It is suggested that R&D projects be pursued that can be better justified and can also contribute to human mission to Mars if eventually a decision to go is made.

  7. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to

  8. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  9. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  10. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  11. Information bulletin of the bureau of hydrocarbons exploration-production (BEPH) - March 2008; Bulletin d'information du BEPH. Mars 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This newsletter takes stock of the recent highlights in the domain of hydrocarbons exploration and production in the French territory: mining domain (demands, allocations and extension of research permits and concessions; list of demands under instruction), drilling activity (new drillings, advance of existing exploratory and extension-development drillings); production activity (interventions on wells, crude oil, crude gas, commercialized gas, natural gas-derived hydrocarbons, related products, production shares by company in the Paris and Aquitain basins). (J.S.)

  12. Life On Mars: Past, Present and Future

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Cyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Cyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued

  13. Exploration of predictors, moderators and mediators of change in parent skills training programmes for externalising behaviour problems in children – who benefits most and how do they work?

    OpenAIRE

    Jones, Holly

    2014-01-01

    Background: A key driver for early years strategies is the reduction of oppositional and defiant behaviour in childhood to prevent a negative life course of poor educational attainment and criminality. Despite a robust evidence base, manualised parent skills training programmes (PT) for externalising behaviour problems are only effective for approximately two-thirds of families. A limited number of variables that account for variance in outcome have been discovered. Finding fur...

  14. Exploring the effects of a universal classroom management training programme on teacher and child behaviour: A group randomised controlled trial and cost analysis

    OpenAIRE

    O'Neill, Donal

    2017-01-01

    Teachers frequently struggle to cope with conduct problems in the classroom. The aim of this study was to assess the effectiveness of the Incredible Years Teacher Classroom Management Training Programme for improving teacher competencies and child adjustment. The study involved a group randomised controlled trial which included 22 teachers and 217 children (102 boys and 115 girls). The average age of children included in the study was 5.3 years (standard deviation = 0.89). Teacher...

  15. Why, from a Life Sciences Perspective, This Mission to Mars?

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Mars may have had water and life early in its history and this make it a key target for robotic and human exploration. Extensive human exploration of Mars will of necessity depend on life support systems that rely on agricultural plants. If current concept for recreating, a biosphere on Mars are implemented this would involve widespread use of plants, particularly species from Arctic and alpine environments.

  16. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  17. Galileo Avionica's technologies and instruments for planetary exploration.

    Science.gov (United States)

    Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

    2006-12-01

    Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .

  18. Habitable Mars Ascent Vehicle (MAV) Concept. [Mars Ascent Vehicle (MAV) Layout and Configuration: 6-Crew, Habitable, Nested Tank Concept

    Science.gov (United States)

    Dang, Victor; Rucker, Michelle

    2013-01-01

    NASA's ultimate goal is the human exploration of Mars. Among the many difficult aspects of a trip to Mars is the return mission that would transport the astronauts from the Martian surface back into Mars orbit. One possible conceptual design to accomplish this task is a two-stage Mars Ascent Vehicle (MAV). In order to assess this design, a general layout and configuration for the spacecraft must be developed. The objective of my internship was to model a conceptual MAV design to support NASA's latest human Mars mission architecture trade studies, technology prioritization decisions, and mass, cost, and schedule estimates.

  19. The key to Mars, Titan and beyond?

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1990-01-01

    This paper discusses the use of nuclear rockets using indigenous Mars propellants for future missions to Mars and Titan, which would drastically reduce the mass and cost of the mission while increasing its capability. Special attention is given to the CO2-powered nuclear rocket using indigenous Martian fuel (NIMF) vehicle for hopping around on Mars. If water is available on Mars, it could make a NIMF propellant yielding an exhaust velocity of 3.4 km/sec, good enough to allow a piloted NIMF spacecraft to ascent from the surface of Mars and propel itself directly to LEO; if water is available on Phobos, a NIMF spacecraft could travel to earth orbit and then back to Phobos or Mars without any additional propellant from earth. One of the many exciting missions beyond Mars that will be made possible by NIMF technology is the exploration of Saturn's moon Titan. A small automated NIMF Titan explorer, with foldout wings and a NERVA (Nuclear Engine for Rocket Vehicle Applications) engine, is proposed

  20. Crispv programme

    International Nuclear Information System (INIS)

    Marinkovicj, N.

    CRISPV (Criticality and Spectrum code) is a multigroup neutron spectrum code for homogeneous reactor cores and is actually a somewhat modified version of the original CRISP programme. It is a combination of DATAPREP-II and BIGG-II programmes. It is assumed that the reactor cell is a cylindrical fuel rod in the light or heavy water moderator. DATEPREP-II CODE forms the multigroup data for homogeneous reactor and prepares the input parameters for the BIGG-II code. It has its own nuclear data library on a separate tape in binary mode. BIGG-II code is a multigroup neutron spectrum and criticality code for a homogenized medium. It has as well its own separate data library. In the CRISPV programme the overlay structure enables automatic handling of data calculated in the DATAPREP-II programme and needed in the BIGG-II core. Both programmes are written in FORTRAN for CDC 3600. Using the programme is very efficient and simple

  1. Simulation and Spacecraft Design: Engineering Mars Landings.

    Science.gov (United States)

    Conway, Erik M

    2015-10-01

    A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.

  2. The resources of Mars for human settlement

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.

    1989-01-01

    Spacecraft exploration of Marshas shown that the essential resources necessary for life support are present on the Martian surface. The key life-support compounds O2, N2, and H2O are available on Mars. The soil could be used as radiation shielding and could provide many useful industrial and construction materials. Compounds with high chemical energy, such as rocket fuels, can be manufactured in-situ on Mars. Solar power, and possibly wind power, are available and practical on Mars. Preliminary engineering studies indicate that fairly autonomous processes can be designed to extract and stockpile Martian consumables.

  3. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  4. Disruptive technology for vector control: the Innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes.

    Science.gov (United States)

    Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H

    2015-09-26

    Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.

  5. Developing and Optimising the Use of Logic Models in Systematic Reviews: Exploring Practice and Good Practice in the Use of Programme Theory in Reviews.

    Science.gov (United States)

    Kneale, Dylan; Thomas, James; Harris, Katherine

    2015-01-01

    Logic models are becoming an increasingly common feature of systematic reviews, as is the use of programme theory more generally in systematic reviewing. Logic models offer a framework to help reviewers to 'think' conceptually at various points during the review, and can be a useful tool in defining study inclusion and exclusion criteria, guiding the search strategy, identifying relevant outcomes, identifying mediating and moderating factors, and communicating review findings. In this paper we critique the use of logic models in systematic reviews and protocols drawn from two databases representing reviews of health interventions and international development interventions. Programme theory featured only in a minority of the reviews and protocols included. Despite drawing from different disciplinary traditions, reviews and protocols from both sources shared several limitations in their use of logic models and theories of change, and these were used almost unanimously to solely depict pictorially the way in which the intervention worked. Logic models and theories of change were consequently rarely used to communicate the findings of the review. Logic models have the potential to be an aid integral throughout the systematic reviewing process. The absence of good practice around their use and development may be one reason for the apparent limited utility of logic models in many existing systematic reviews. These concerns are addressed in the second half of this paper, where we offer a set of principles in the use of logic models and an example of how we constructed a logic model for a review of school-based asthma interventions.

  6. Effects of an exercise programme with people living with HIV ...

    African Journals Online (AJOL)

    Effects of an exercise programme with people living with HIV: research in a disadvantaged setting. Clemens Ley, Lloyd Leach, María Rato Barrio, Susan Bassett. Abstract. This study aimed to analyse the physical health effects of a community based 10-week physical activity programme with people living with HIV.

  7. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  8. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  9. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    Science.gov (United States)

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  10. Exploring physical activity behaviour - needs for and interest in a technology-delivered, home-based exercise programme among patients with intermittent claudication.

    Science.gov (United States)

    Cornelis, Nils; Buys, Roselien; Fourneau, Inge; Dewit, Tijl; Cornelissen, Véronique

    2018-02-01

    Supervised walking is a first line therapy in peripheral arterial disease (PAD) with complaints of intermittent claudication. However, uptake of supervised programmes is low. Home-based exercise seems an appealing alternative; especially since technological advances, such as tele-coaching and tele-monitoring, may facilitate the process and support patients when adopting a physically active lifestyle. To guide the development of such an intervention, it is important to identify barriers of physical activity and the needs and interests for technology-enabled exercise in this patient group. PAD patients were recruited at the vascular centre of UZ Leuven (Belgium). A questionnaire assessing PA (SF-International Physical Activity Questionnaire), barriers to PA, and interest in technology-supported exercise (Technology Usage Questionnaire) was completed. Descriptive and correlation analyses were performed. Ninety-nine patients (76 men; mean age 69 years) completed the survey. Physical activity levels were low in 48 %, moderate in 29 %, and high in 23 %. Intermittent claudication itself is the most important barrier for enhanced PA, with most patients reporting pain (93 %), need for rest (92 %), and obstacles worsening their pain (74 %) as barriers. A total of 93 % participants owned a mobile phone; 76 % had Internet access. Eighty-seven reported the need for an exercise programme, with 67 % showing interest in tele-coaching to support exercise. If technology was available, three-quarter stated they would be interested in home-based tele-coaching using the Internet (preferably e-mails, 86 %); 50 % via mobile phone, 87 % preferred text messages. Both were inversely related to age (rpb = 0.363 and rpb = 0.255, p < 0.05). Acquaintance with elastic bands or gaming platforms was moderate (55 and 49 %, respectively), but patients were interested in using them as alternatives (84 and 42 %). Interest in platforms was age-dependent (rs = -0.508, p < 0.01). PAD patients show

  11. Ma'adim Vallis Estuarine Delta in Elysium Basin and Its Relevance as a Landing Site for Exobiology Exploration on Mars

    Science.gov (United States)

    Grin, E. A.; Cabrol, N. A.

    1998-01-01

    inflowing fluvial water. This results in the rising of the channel base-level, thus in the increase of the length of the longitudinal graded-profile. The sediment deposit facies of the zone A shows a generally smooth surface. The longitudinal deposit is bordered by alluvial terraces that reflect the variations of the channel level. The waning of the Elysium Basin caused the erosion of the Basin estuarine zone by small channels, this episode being characterized by dissected tear-drop shaped mesa-like morphologies in the delta. Our estuarine delta model predicts a lithostratigraphic depositional sequence associated with the water submergence and the transgression of Elysium Basin. The thickness of the estuarine sediment corresponds to the Elysium Basin levels changes relatively to the bed floor of the estuary, The depositional sequence of Ma'adim Vallis are described: (1) a pro-current filled region (A), where fluvial are longitudinally accumulated by the inflowing water, (2) inverse current from Elysium Basin (B), where fluvial and lacustrine sediments are accumulated, and (3) zone of current equilibrium (C), where the sediments are distributed as a shoreline at the boundary of the estuarine delta. The estuary sedimentology dynamics collects and keeps the record of the geologic unit material crossed by Ma'adim Vallis, and those of the lakebed deposit of Elysium Basin. The predicted mixed stratigraphic sequence from fluvial and lacustrine sediment makes this site an exceptional environment to concentrate potential multi-origin biologic records. We envision four possible strategies to explore this sedimentologic record: (1) longitudinal surface and subsurface traverses in region A to investigate outcrop levees, (2) exploration of the mesa walls in region B, (3) deep drilling hole lodging of the sequential deposits in the zones A and B, and (4) surface and subsurface exploration of the shoreline delta. The expected results for each of these strategies are: (1) in the deepest

  12. Mars: The Viking Discoveries.

    Science.gov (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  13. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  14. Vehicle Staging Analysis of the Transition to Supersonic Retropropulsion During Mars Entry, Descent, and Landing

    Data.gov (United States)

    National Aeronautics and Space Administration — The landing of the Mars Science Laboratory represents the upper limit of current Entry, Descent, and Landing (EDL) capabilities for Mars exploration. The succession...

  15. A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return

    Science.gov (United States)

    Fulford, P.; Langley, C.; Shaw, A.

    2018-04-01

    The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.

  16. Unauthorised adaptation of computer programmes - is ...

    African Journals Online (AJOL)

    Haupt acquired copyright in the Data Explorer programme regardless of the fact that the programme was as a result of an unauthorised adaptation of the Project AMPS programme which belonged to Brewers Marketing Intelligence (Pty) Ltd. This case note inter alia analyses the possibility of an author being sued for ...

  17. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    Science.gov (United States)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  18. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  19. Values and the need for a character education programme within the college context in the North-West Province: exploration and preliminary proposals

    Directory of Open Access Journals (Sweden)

    F.E. Freeks

    2011-06-01

    Full Text Available Values and character education possess the inherent building blocks for the preservation of a healthy society. Values and character education have the potential to address moral issues in society and especially in educational institutions, such as schools, colleges and universities. One of the primary aims of values and character education is to allow students to experience life to the fullest. Values and character education could probably ensure a better life and future for South Africa‟s youth.From the available literature, it is evident that society is experiencing a crisis regarding values, character and morality. The decline of human and societal values portrayed in the media has compelled the current government to initiate values education programmes in colleges and other institutions such as universities.In order to determine the values orientation among students of Further Education and Training Colleges (FET in the North-West Province, an empirical study was done to ascertain students‟ opinions and the contributions of values education and character education. Semi-structured interviews were also conducted with the student council, the head of support services, as well as an official of student support services.

  20. Surveying the citizen science landscape: an exploration of the design, delivery and impact of citizen science through the lens of the Open Air Laboratories (OPAL) programme.

    Science.gov (United States)

    Davies, Linda; Fradera, Roger; Riesch, Hauke; Lakeman-Fraser, Poppy

    2016-07-22

    This paper provides a short introduction to the topic of citizen science (CS) identifying the shift from the knowledge deficit model to more inclusive, participatory science. It acknowledges the benefits of new technology and the opportunities it brings for mass participation and data manipulation. It focuses on the increase in interest in CS in recent years and draws on experience gained from the Open Air Laboratories (OPAL) programme launched in England in 2007. The drivers and objectives for OPAL are presented together with background information on the partnership, methods and scales. The approaches used by researchers ranged from direct public participation in mass data collection through field surveys to research with minimal public engagement. The supporting services focused on education, particularly to support participants new to science, a media strategy and data services. Examples from OPAL are used to illustrate the different approaches to the design and delivery of CS that have emerged over recent years and the breadth of opportunities for public participation the current landscape provides. Qualitative and quantitative data from OPAL are used as evidence of the impact of CS. While OPAL was conceived ahead of the more recent formalisation of approaches to the design, delivery and analysis of CS projects and their impact, it nevertheless provides a range of examples against which to assess the various benefits and challenges emerging in this fast developing field.

  1. Monitoring programme

    International Nuclear Information System (INIS)

    1994-06-01

    Her Majesty's Inspectorate of Pollution's 1992 report on its programme of monitoring radioactive substances is presented. Site operators' returns are verified and the report provides independent data on the environmental impact of authorized disposal of radioactive wastes. Radiation doses which may have been received by members of the public, fall well below the International Commission for Radiological Protection's (ICRP) recommended annual doses. (UK)

  2. Screening efficacy of a simplified logMAR chart

    Directory of Open Access Journals (Sweden)

    Naganathan Muthuramalingam

    2016-04-01

    Aim: This study evaluates the efficacy of a simplified logMAR chart, designed for VA testing over the conventional Snellen chart, in a school-based vision-screening programme. Methods: We designed a simplified logMAR chart by employing the principles of the Early Treatment Diabetic Retinopathy Study (ETDRS chart in terms of logarithmic letter size progression, inter-letter spacing, and inter-line spacing. Once the simplified logMAR chart was validated by students in the Elite school vision-screening programme, we set out to test the chart in 88 primary and middle schools in the Tiruporur block of Kancheepuram district in Tamil Nadu. One school teacher in each school was trained to screen a cross-sectional population of 10 354 primary and secondary school children (girls: 5488; boys: 4866 for VA deficits using a new, simplified logMAR algorithm. An experienced paediatric optometrist was recruited to validate the screening methods and technique used by the teachers to collect the data. Results: The optometrist screened a subset of 1300 school children from the total sample. The optometrist provided the professional insights needed to validate the clinical efficacy of the simplified logMAR algorithm and verified the reliability of the data collected by the teachers. The mean age of children sampled for validation was 8.6 years (range: 9–14 years. The sensitivity and the specificity of the simplified logMAR chart when compared to the standard logMAR chart were found to be 95% and 98%, respectively. Kappa value was 0.97. Sensitivity of the teachers’ screening was 66.63% (95% confidence interval [CI]: 52.73–77.02 and the specificity was 98.33% (95% CI: 97.49–98.95. Testing of VA was done under substandard illumination levels in 87% of the population. A total of 10 354 children were screened, 425 of whom were found to have some form of visual and/or ocular defect that was identified by the teacher or optometrist. Conclusion: The simplified logMAR testing algorithm

  3. Mars One the ultimate reality TV show?

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book dissects the hype and hubris of the Mars One venture. Every aspect of the mission design is scrutinized, from the haphazard selection process to the unproven mission architecture. A controversial project, many professional astronauts consider Mars One a reckless attempt, yet it gained popular attention. This go-to reference guide provides the reader with insights into the myriad issues arising from the project's loss of funding, loss of sponsorship, loss of TV rights. It explains what contributed to an overly optimistic assessment of Mars One's mission-specific technology, and what captivated the public and the many willing candidates despite these flaws. From the author of Survival and Sacrifice in Mars Exploration (2015) among many more books on spacefaring, this is yet another up-to-the-minute account of an emerging player in the private space market from an expert on the subject.

  4. Europe goes to Mars - preparations are well under way

    Science.gov (United States)

    2001-04-01

    Under the umbrella of the European Space Agency, at least 25 companies from 15 European countries are building hardware or software for the spacecraft, or otherwise contributing their expertise; and more than 200 scientists from research institutes in all ESA member states and beyond are contributing towards the scientific payload. "The Mars Express project is providing about 1000 jobs throughout Europe," estimates Rudi Schmidt, Mars Express Project Manager at ESTEC, the European Space Agency's technical centre in the Netherlands. Preparations are well under way and on schedule for a May/June 2003 launch sending the spacecraft on its six-month voyage. The structure is taking shape under the guidance of the prime contractor Astrium, Toulouse (France), and the scientific teams are on target with scientific instrument development. Water and life ESA's Mars Express mission consists of an orbiter, carrying seven scientific experiments, and a lander, Beagle 2. The two vehicles will play key roles in an international Mars exploration programme spanning the next two decades. The instruments on board the orbiter will provide remote sensing of the atmosphere, the surface and up to 5km below the surface, to a degree of accuracy never before achieved. The information gleaned will help answer many questions outstanding about Mars. One concerns the fate of water that once flowed freely on the planet’s surface; another is whether life ever evolved on Mars. Beagle-2 will be the first lander since NASA’s two Viking probes in the 1970s to look specifically for evidence of past or present life on Mars. No other Mars probe planned so far is making exobiology so central to its mission. When the spacecraft arrives at the Red Planet around Christmas 2003, the Mars Express orbiter will jettison Beagle 2 and then move into a near-polar orbit from which it will observe the whole planet over the next Martian year (equivalent to two Earth years). The lander will make its own way to a

  5. Exploring the variation in implementation of a COPD disease management programme and its impact on health outcomes: a post hoc analysis of the RECODE cluster randomised trial.

    Science.gov (United States)

    Boland, Melinde R S; Kruis, Annemarije L; Huygens, Simone A; Tsiachristas, Apostolos; Assendelft, Willem J J; Gussekloo, Jacobijn; Blom, Coert M G; Chavannes, Niels H; Rutten-van Mölken, Maureen P M H

    2015-12-17

    This study aims to (1) examine the variation in implementation of a 2-year chronic obstructive pulmonary disease (COPD) management programme called RECODE, (2) analyse the facilitators and barriers to implementation and (3) investigate the influence of this variation on health outcomes. Implementation variation among the 20 primary-care teams was measured directly using a self-developed scale and indirectly through the level of care integration as measured with the Patient Assessment of Chronic Illness Care (PACIC) and the Assessment of Chronic Illness Care (ACIC). Interviews were held to obtain detailed information regarding the facilitators and barriers to implementation. Multilevel models were used to investigate the association between variation in implementation and change in outcomes. The teams implemented, on average, eight of the 19 interventions, and the specific package of interventions varied widely. Important barriers and facilitators of implementation were (in)sufficient motivation of healthcare provider and patient, the high starting level of COPD care, the small size of the COPD population per team, the mild COPD population, practicalities of the information and communication technology (ICT) system, and hurdles in reimbursement. Level of implementation as measured with our own scale and the ACIC was not associated with health outcomes. A higher level of implementation measured with the PACIC was positively associated with improved self-management capabilities, but this association was not found for other outcomes. There was a wide variety in the implementation of RECODE, associated with barriers at individual, social, organisational and societal level. There was little association between extent of implementation and health outcomes.

  6. Exploring the variation in implementation of a COPD disease management programme and its impact on health outcomes: a post hoc analysis of the RECODE cluster randomised trial

    Science.gov (United States)

    Boland, Melinde R S; Kruis, Annemarije L; Huygens, Simone A; Tsiachristas, Apostolos; Assendelft, Willem J J; Gussekloo, Jacobijn; Blom, Coert M G; Chavannes, Niels H; Rutten-van Mölken, Maureen P M H

    2015-01-01

    This study aims to (1) examine the variation in implementation of a 2-year chronic obstructive pulmonary disease (COPD) management programme called RECODE, (2) analyse the facilitators and barriers to implementation and (3) investigate the influence of this variation on health outcomes. Implementation variation among the 20 primary-care teams was measured directly using a self-developed scale and indirectly through the level of care integration as measured with the Patient Assessment of Chronic Illness Care (PACIC) and the Assessment of Chronic Illness Care (ACIC). Interviews were held to obtain detailed information regarding the facilitators and barriers to implementation. Multilevel models were used to investigate the association between variation in implementation and change in outcomes. The teams implemented, on average, eight of the 19 interventions, and the specific package of interventions varied widely. Important barriers and facilitators of implementation were (in)sufficient motivation of healthcare provider and patient, the high starting level of COPD care, the small size of the COPD population per team, the mild COPD population, practicalities of the information and communication technology (ICT) system, and hurdles in reimbursement. Level of implementation as measured with our own scale and the ACIC was not associated with health outcomes. A higher level of implementation measured with the PACIC was positively associated with improved self-management capabilities, but this association was not found for other outcomes. There was a wide variety in the implementation of RECODE, associated with barriers at individual, social, organisational and societal level. There was little association between extent of implementation and health outcomes. PMID:26677770

  7. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  8. An Alternative Humans to Mars Approach: Reducing Mission Mass with Multiple Mars Flyby Trajectories and Minimal Capability Investments

    Science.gov (United States)

    Whitley, Ryan J.; Jedrey, Richard; Landau, Damon; Ocampo, Cesar

    2015-01-01

    Mars flyby trajectories and Earth return trajectories have the potential to enable lower- cost and sustainable human exploration of Mars. Flyby and return trajectories are true minimum energy paths with low to zero post-Earth departure maneuvers. By emplacing the large crew vehicles required for human transit on these paths, the total fuel cost can be reduced. The traditional full-up repeating Earth-Mars-Earth cycler concept requires significant infrastructure, but a Mars only flyby approach minimizes mission mass and maximizes opportunities to build-up missions in a stepwise manner. In this paper multiple strategies for sending a crew of 4 to Mars orbit and back are examined. With pre-emplaced assets in Mars orbit, a transit habitat and a minimally functional Mars taxi, a complete Mars mission can be accomplished in 3 SLS launches and 2 Mars Flyby's, including Orion. While some years are better than others, ample opportunities exist within a given 15-year Earth-Mars alignment cycle. Building up a mission cadence over time, this approach can translate to Mars surface access. Risk reduction, which is always a concern for human missions, is mitigated by the use of flybys with Earth return (some of which are true free returns) capability.

  9. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  10. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  11. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  12. Quick trips to Mars

    International Nuclear Information System (INIS)

    Hornung, R.

    1991-01-01

    The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed

  13. Embedded clays and sulfates in Meridiani Planum, Mars

    NARCIS (Netherlands)

    Flahaut, J.D.; Carter, J.; Poulet, F.; Bibring, J.P.; van Westrenen, W.; Davies, G.R.; Murchie, S.L.

    2014-01-01

    The area of Meridiani Planum on Mars became of particular interest after the detection of coarse-grained, gray hematite, which led to the choice of this region as final landing site for the Mars Exploration Rover Opportunity. Multiple additional minerals have since been detected in the region, both

  14. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  15. Technology Programme

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  16. Technology Programme

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The technology activities carried out by the Euratom-ENEA Association in the framework of the European Fusion Development Agreement concern the Next Step (International Thermonuclear Experimental Reactor - ITER), the Long-Term Programme (breeder blanket, materials, International Fusion Materials Irradiation Facility - IFMIF), Power Plant Conceptual Studies and Socio-Economic Studies. The Underlying Technology Programme was set up to complement the fusion activities as well to develop technologies with a wider range of interest. The Technology Programme mainly involves staff from the Frascati laboratories of the Fusion Technical and Scientific Unit and from the Brasimone laboratories of the Advanced Physics Technologies Unit. Other ENEA units also provide valuable contributions to the programme. ENEA is heavily engaged in component development/testing and in design and safety activities for the European Fusion Technology Programme. Although the work documented in the following covers a large range of topics that differ considerably because they concern the development of extremely complex systems, the high level of integration and coordination ensures the capability to cover the fusion system as a whole. In 2004 the most significant testing activities concerned the ITER primary beryllium-coated first wall. In the field of high-heat-flux components, an important achievement was the qualification of the process for depositing a copper liner on carbon fibre composite (CFC) hollow tiles. This new process, pre-brazed casting (PBC), allows the hot radial pressing (HRP) joining procedure to be used also for CFC-based armour monoblock divertor components. The PBC and HRP processes are candidates for the construction of the ITER divertor. In the materials field an important milestone was the commissioning of a new facility for chemical vapour infiltration/deposition, used for optimising silicon carbide composite (SiCf/SiC) components. Eight patents were deposited during 2004

  17. Exploring factors influencing outcomes of a five-week youth expedition in the Himalayas using the sail training programme self-assessment toolkit

    Directory of Open Access Journals (Sweden)

    Tim Scott

    2016-12-01

    Key factors identified by the participants which had influenced their learning were: (1 Other Young Explorers, (2 being involved in making decisions and having choices, (3 having time to learn at their own pace; time to get comfortable with people; being able to talk with other people (to make connections; (4 group leaders, and (5 wild camping. Data from 16 interviews supported these outcomes, while the physical challenges (of climbing peaks and cultural interaction with local people were highly valued aspects of the expedition. Participants were more aware of risks and more confident about safety issues and taking risks after the expedition. These important outcomes may be transferred to future expeditions, higher education or employment. Personal development and training organisations should consider these findings.

  18. History of Mars

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The origin and early history of Mars and the relationship between Mars and the other planets are reviewed. The solar system formation and planetary differentiation are examined using data from planetary missions. Different views of Mars are presented, showing how ideas about the planet have changed as the amount of available observational data has increased. Viking aerography and surface characterization are discussed, including the nature of specific atmospheric components and the implications of surface phenomena. Models for the planetary formation and accretion processes are considered. The value of future missions to Mars is stressed

  19. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  20. Searching for Life: The Case for Halobacteria on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    A major objective for NASA exploration of Mars is to determine whether life has existed on Mars in the past, and whether such life on Mars may persist to the present day. On Earth, life exists in all niches in which water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles.

  1. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  2. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  3. 21st century early mission concepts for Mars delivery and earth return

    Science.gov (United States)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  4. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  5. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

    OpenAIRE

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the

  6. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  7. The VIDA programme

    DEFF Research Database (Denmark)

    Jensen, Bente; Iannone, Rosa Lisa

    and Innovation’ within the project ‘Curriculum Quality Analysis and Impact Review of European Education and Care’ (CARE). The programme at the centre of this case builds on theory drawn from research on child development, social disadvantage related to issues of social inequality, and research on organisational...... of innovation as “the development of new concepts, strategies and tools that support groups in achieving the objective of improved well-being”. Three research questions are explored: 1) How is the innovative approach to ECEC professional development conceptualised and translated into practice in the VIDA...... (mechanisms/aspects) affect the implementation of the innovative programme for practice change within ECEC? Methods used include a combination of qualitative data collected through interviews with ECEC educators, managers, consultants, a university college teachers, municipal directors and existing...

  8. The overprotection of Mars

    Science.gov (United States)

    Fairén, Alberto G.; Schulze-Makuch, Dirk

    2013-07-01

    Planetary protection policies aim to guard Solar System bodies from biological contamination from spacecraft. Costly efforts to sterilize Mars spacecraft need to be re-evaluated, as they are unnecessarily inhibiting a more ambitious agenda to search for extant life on Mars.

  9. Building Virtual Mars

    Science.gov (United States)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  10. Mars Sample Handling Functionality

    Science.gov (United States)

    Meyer, M. A.; Mattingly, R. L.

    2018-04-01

    The final leg of a Mars Sample Return campaign would be an entity that we have referred to as Mars Returned Sample Handling (MRSH.) This talk will address our current view of the functional requirements on MRSH, focused on the Sample Receiving Facility (SRF).

  11. IJslandse inzichten op Mars

    NARCIS (Netherlands)

    de Vet, S.

    2013-01-01

    Vulkaanuitbarstingen onder gletsjers, zoals de vliegverkeer-verlammende uitbarsting van de vulkaan Eyjafjallajökull in IJsland in 2010, lijken in veel opzichten op vulkaanuitbarstingen die ooit op Mars voorkwamen. Dankzij de landschappelijke gelijkenissen tussen onze aarde en Mars is het mogelijk om

  12. Searching for Life on Mars Before It Is Too Late.

    Science.gov (United States)

    Fairén, Alberto G; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle

    2017-10-01

    Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.

  13. Simple autonomous Mars walker

    Science.gov (United States)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1989-01-01

    Under a contract with NASA's Jet Propulsion Laboratory, Martin Marietta has developed several alternative rover concepts for unmanned exploration of the planet Mars. One of those concepts, the 'Walking Beam', is the subject of this paper. This concept was developed with the goal of achieving many of the capabilities of more sophisticated articulated-leg walkers with a much simpler, more robust, less computationally demanding and more power efficient design. It consists of two large-base tripods nested one within the other which alternately translate with respect to each other along a 5-meter beam to propel the vehicle. The semiautonomous navigation system relies on terrain geometry sensors and tacticle feedback from each foot to autonomously select a path which avoids hazards along a route designated from earth. Both mobility and navigation features of this concept are discussed including a top-level description of the vehicle's physical characteristics, deployment strategy, mobility elements, sensor suite, theory of operation, navigation and control processes, and estimated performance.

  14. Mars manned fusion spaceship

    International Nuclear Information System (INIS)

    Hedrick, J.; Buchholtz, B.; Ward, P.; Freuh, J.; Jensen, E.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system

  15. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  16. Montgolfiere balloon missions from Mars and Titan

    Science.gov (United States)

    Jones, Jack A.

    2005-01-01

    Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.

  17. Peeling Back the Layers of Mars

    Science.gov (United States)

    2004-01-01

    This is a 3-D model of the trench excavated by the Mars Exploration Rover Opportunity on the 23rd day, or sol, of its mission. An oblique view of the trench from a bit above and to the right of the rover's right wheel is shown. The model was generated from images acquired by the rover's front hazard-avoidance cameras.

  18. NASA Mars 2020 Rover Mission: New Frontiers in Science

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  19. Auditing emergency management programmes: Measuring leading indicators of programme performance.

    Science.gov (United States)

    Tomsic, Heather

    Emergency Management Programmes benefit from review and measurement against established criteria. By measuring current vs required programme elements for their actual currency, completeness and effectiveness, the resulting timely reports of achievements and documentation of identified gaps can effectively be used to rationally support prioritised improvement. Audits, with their detailed, triangulated and objectively weighted processes, are the ultimate approach in terms of programme content measurement. Although Emergency Management is often presented as a wholly separate operational mechanism, distinct and functionally different from the organisation's usual management structure, this characterisation is only completely accurate while managing an emergency itself. Otherwise, an organisation's Emergency Management Programme is embedded within that organisation and dependent upon it. Therefore, the organisation's culture and structure of management, accountability and measurement must be engaged for the programme to exist, much less improve. A wise and successful Emergency Management Coordinator does not let the separate and distinct nature of managing an emergency obscure their realisation of the need for an organisation to understand and manage all of the other programme components as part of its regular business practices. This includes its measurement. Not all organisations are sufficiently large or capable of supporting the use of an audit. This paper proposes that alternate, less formal, yet effective mechanisms can be explored, as long as they reflect and support organisational management norms, including a process of relatively informal measurement focused on the organisation's own perception of key Emergency Management Programme performance indicators.

  20. Preparation, Characterization, and UV Irradiation of Mars Soil Analogues Under Simulated Martian Conditions to Support Detection of Molecular Biomarkers

    Science.gov (United States)

    Fornaro, T.; Brucato, J. R.; ten Kate, I. L.; Siljeström, S.; Steele, A.; Cody, G. D.; Hazen, R. M.

    2018-04-01

    We present laboratory activities of preparation, characterization, and UV irradiation processing of Mars soil analogues, which are key to support both in situ exploration and sample return missions devoted to detection of molecular biomarkers on Mars.

  1. SGTR assessment using MARS

    International Nuclear Information System (INIS)

    Raines, J.C.; Dawson, S.M.; Deitke, B.; Henry, R.E.

    1996-01-01

    During the course of a plant accident, a consistent understanding of the plant response is vital to support an accident manager's decision making process. One tool that can provide assistance to the plant staff in assessing conditions in the plant during accident conditions is the MAAP Accident Response System (MARS) software. During an accident, MARS utilizes the on-line data from the plant instrumentation to initialize the Modular Accident Analysis Program (MAAP) code. Once initialized, MARS tracks and characterizes the plant behavior through the use of integrated logic modules. These logic modules provide the user with important information about the status of systems and the possible cause of the accident. The MARS logic modules evaluate relevant available plant instrumentation and the observations of the operating staff using fuzzy logic. The fuzzy logic is applied to provide a transition between areas where one is absolutely sure that a situation has not occurred to a condition where one is absolutely certain that a situation has occurred. One example of the use of logic modules in MARS is illustrated by that used to assess if a steam generator tube rupture (SGTR) event has occurred. Each piece of relevant plant data is evaluated to determine if it is consistent with the symptoms of a SGTR. Each of the evaluations for the individual plant instruments and the operating staff observations are assembled to determine an overall confidence which characterizes the likelihood that a SGTR is occurring. Additional MARS logic modules are used to determine confidence levels for other types of accident events. The conclusions arrived at by each individual logic module are expressed as confidence levels. The logic module confidence levels can be graphically displayed using the MARS Graphical Users Interface (GUI), to indicate the confidence level MARS has assessed for each accident type. The GUI shows the identification of the possible accident types, but is not limited

  2. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  3. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    Science.gov (United States)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  4. Mars 2020 Rover SHERLOC Calibration Target

    Science.gov (United States)

    Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther

    2016-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.

  5. Effectiveness of Training Programme on Mushroom Cultivation

    OpenAIRE

    Rahman, Md. Sazzadur; Hossain, Kh. Zulfikar; Ali, Md. Sekender; Afroz, Fauzia

    2017-01-01

    Effectiveness is one of the key parameters to assess success of any programs. However, the effectiveness of training programme on mushroom cultivation was not well addressed. The purposes of this study were to investigate the effectiveness of training programme on mushroom cultivation and to explore the relationships of each of the selected characteristics of the trained mushroom farmers with their effectiveness of training programme. Data were collected from the trained mushroom farmers of s...

  6. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  7. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  8. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  9. Architectural Design for a Mars Communications and Navigation Orbital Infrastructure

    Science.gov (United States)

    Ceasrone R. J.; Hastrup, R. C.; Bell, D. J.; Roncoli, R. B.; Nelson, K.

    1999-01-01

    The planet Mars has become the focus of an intensive series of missions that span decades of time, a wide array of international agencies and an evolution from robotics to humans. The number of missions to Mars at any one time, and over a period of time, is unprecedented in the annals of space exploration. To meet the operational needs of this exploratory fleet will require the implementation of new architectural concepts for communications and navigation. To this end, NASA's Jet Propulsion Laboratory has begun to define and develop a Mars communications and navigation orbital infrastructure. This architecture will make extensive use of assets at Mars, as well as use of traditional Earth-based assets, such as the Deep Space Network, DSN. Indeed, the total system can be thought of as an extension of DSN nodes and services to the Mars in-situ region. The concept has been likened to the beginnings of an interplanetary Internet that will bring the exploration of Mars right into our living rooms. The paper will begin with a high-level overview of the concept for the Mars communications and navigation infrastructure. Next, the mission requirements will be presented. These will include the relatively near-term needs of robotic landers, rovers, ascent vehicles, balloons, airplanes, and possibly orbiting, arriving and departing spacecraft. Requirements envisioned for the human exploration of Mars will also be described. The important Mars orbit design trades on telecommunications and navigation capabilities will be summarized, and the baseline infrastructure will be described. A roadmap of NASA's plan to evolve this infrastructure over time will be shown. Finally, launch considerations and delivery to Mars will be briefly treated.

  10. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  11. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  12. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  13. First Grinding of a Rock on Mars

    Science.gov (United States)

    2004-01-01

    The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  14. Onboard autonomous mineral detectors for Mars rovers

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  15. Preparing for Humans at Mars, MPPG Updates to Strategic Knowledge Gaps and Collaboration with Science Missions

    Science.gov (United States)

    Baker, John; Wargo, Michael J.; Beaty, David

    2013-01-01

    The Mars Program Planning Group (MPPG) was an agency wide effort, chartered in March 2012 by the NASA Associate Administrator for Science, in collaboration with NASA's Associate Administrator for Human Exploration and Operations, the Chief Scientist, and the Chief Technologist. NASA tasked the MPPG to develop foundations for a program-level architecture for robotic exploration of Mars that is consistent with the President's challenge of sending humans to the Mars system in the decade of the 2030s and responsive to the primary scientific goals of the 2011 NRC Decadal Survey for Planetary Science. The Mars Exploration Program Analysis Group (MEPAG) also sponsored a Precursor measurement Strategy Analysis Group (P-SAG) to revisit prior assessments of required precursor measurements for the human exploration of Mars. This paper will discuss the key results of the MPPG and P-SAG efforts to update and refine our understanding of the Strategic Knowledge Gaps (SKGs) required to successfully conduct human Mars missions.

  16. Impact of Utilizing Photos and Deimos as Waypoints for Mars Human Surface Missions

    Science.gov (United States)

    Cianciolo, Alicia D.; Brown, Kendall

    2015-01-01

    Phobos and Deimos, the moons of Mars, are interesting exploration destinations that offer extensibility of the Asteroid Redirect Mission (ARM) technologies. Solar Electric Propulsion (SEP), asteroid rendezvous and docking, and surface operations can be used to land on and explore the moons of Mars. The close Mars vicinity of Phobos and Deimos warrant examining them as waypoints, or intermediate staging orbits, for Mars surface missions. This paper outlines the analysis performed to determine the mass impact of using the moons of Mars both as an intermediate staging point for exploration as well as for in-situ recourse utilization, namely propellant, to determine if the moons are viable options to include in the broader Mars surface exploration architecture.

  17. Mars Electric Reusable Flyer

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the main issues with a Mars flight vehicle concept that can be reused and cover long distances for maximum surface data gathering is its ability to take off,...

  18. Environment of Mars, 1988

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    1988-10-01

    A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design

  19. The South Greenland uranium exploration programme

    International Nuclear Information System (INIS)

    Armour-Brown, A.; Tukiainen, T.; Wallin, B.

    1982-11-01

    This is the final report of the reconnaissance phase of the SYDURAN Project which was initiated in 1st. December 1978 to outline areas of increased uranium potential where more detailed prospection would be warranted. Districts and smaller zones in South Greenland which have the potential for containing economically exploitable uranium occurrences were defined using airborne gamma-spectroscopic, reconnaissance geochemical and geological methods. Other districts and areas have been shown to have no uranium potential and can be eliminated. The three promising districts are: 1. a 2000 square kilometre sub-circular district surrounding Ilimaussaq complex in which there are small high grade pitchblende occurences in faults and fractures in the surrounding granite. 2. the eastern area of the Motzfeldt Centre where large parts of the centre is mineralised and may give rise to exploitable, large tonnage, low grade uranium ore with associated niobium and rare earth elements in extractable quantities. 3. uraniferous rich districts or zones associated with the migmatitic supracrustal units in the area between Kap Farvel and Lindenows Fjord. The areas which were eliminated from having any uranium potential include: the Ketilidian supracrustal unit. the Nunarssuit alkaline complex. The uranium mineralisation in South Greenland is confined to two Proterozoic episodes: a) a late phase of granitisation and migmatisation with the formation of disseminated uraninite in the Migmatite Complex in the south of the project area between 1700-1800 m.y. and, b) hydrothermal activity associated with Gardar magmatic events between 1090-1170 m.y. in the central Granite Zone. Future work should be directed towards the definition and location of drilling targets. (EG)

  20. Technology programme

    International Nuclear Information System (INIS)

    2007-01-01

    The technology activities carried out by the EURATOM-ENEA Association concern the continuation of the European Fusion Development Agreement (EFDA) as well as the ITER activities coordinated by the ITER International Office and Fusion for Energy. Also included in the activities are design and RD under the Broader Approach Agreement between the EU and Japan. In order to better contribute to the programme a number of consortium agreements among the Associations are being signed. Collaboration with industries in view of their participation in the construction of ITER was further strengthened, mainly in the field of magnet and divertor components. The new European Test Blanket Facility at ENEA Brasimone was completed; the design of the ITER radial neutron camera was optimised and the performance achievable with the in-vessel viewing system was further assessed by experimental trials. Design activities for the JT-60SA magnet and power supply system as well as the design and experimental activities related to the target of the International Fusion Materials Irradiation Facility were continued. Significant work was done to define quality assurance for neutronics analyses. Mockups of the ITER pre-compression ring made in glass fibre epoxy were tested. The activities and results documented in the following illustrate ENEA's efforts to support fusion development

  1. MARS software package status

    International Nuclear Information System (INIS)

    Azhgirej, I.L.; Talanov, V.V.

    2000-01-01

    The MARS software package is intended for simulating the nuclear-electromagnetic cascades and the secondary neutrons and muons transport in the heterogeneous medium of arbitrary complexity in the magnetic fields presence. The inclusive approach to describing the particle production in the nuclear and electromagnetic interactions and by the unstable particles decay is realized in the package. The MARS software package was actively applied for solving various radiation physical problems [ru

  2. Status of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  3. Manned expedition to Mars: concepts & problems.

    Science.gov (United States)

    Strogonova, L B; Leonid, G

    1991-01-01

    In this article presents general concept of interplanetary spacecraft and bio-medical aspect of long interplanetary flight, the problems of technical supply for their solving. Presents version of the programme of the flight to Mars. This paper discusses the main specific factors of the flight: after long duration of being in the microgravity state, the men are subjected to the pressure of lineary and shock overload, augmented radiation, caused by crossing Earth radiation belts possible solar flares and the influence of galactic space radiation, and etc. The concept biomedical problems and technical supply for their solving are schematic reflected in tables 1, 2, 3, 4.

  4. Manned expedition to Mars: Concepts & problems

    Science.gov (United States)

    Strogonova, Liubov B.; Leonid, Gorshkov

    In this article presents general concept of interplanetary spacecraft and bio-medical aspect of long interplanetary flight, the problems of technical supply for their solving. Presents version of the programme of the flight to Mars. This paper dicusses the main specific factors of the flight: - after long duration of being in the microgravity state, the men are subjected to the pressure of lineary and shoch overload, - angmented radiation, caused by crossing Earth radiation belts possible solar brares and the influence of galactic space radiation, and etc. The concept biomedical problems and technical supply for their solving are schematic reflected in tables 1,2,3,4.

  5. Celestial Navigation on the Surface of Mars

    Science.gov (United States)

    Malay, Benjamin P.

    2001-05-01

    A simple, accurate, and autonomous method of finding position on the surface of Mars currently does not exist. The goal of this project is to develop a celestial navigation process that will fix a position on Mars with 100-meter accuracy. This method requires knowing the position of the stars and planets referenced to the Martian surface with one arcsecond accuracy. This information is contained in an ephemeris known as the Aeronautical Almanac (from Ares, the god of war) . Naval Observatory Vector Astrometry Subroutines (NOVAS) form the basis of the code used to generate the almanac. Planetary position data come the JPL DE405 Planetary Ephemeris. The theoretical accuracy of the almanac is determined mathematically and compared with the Ephemeris for Physical Observations of Mars contained in the Astronautical Almanac. A preliminary design of an autonomous celestial navigation system is presented. Recommendations of how to integrate celestial navigation into NASA=s current Mars exploration program are also discussed. This project is a useful and much-needed first step towards establishing celestial navigation as a practical way to find position on the surface of Mars.

  6. Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.

  7. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    Science.gov (United States)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  8. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  9. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    Science.gov (United States)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the

  10. Mission to Mars: Plans and concepts for the first manned landing

    Science.gov (United States)

    Oberg, J. E.

    The manned exploration and settlement of Mars is discussed. The topics considered include: the rationale for a manned landing; spaceships and propulsion for getting to Mars; human factors such as psychological stress, the effects of prolonged weightlessness, and radiation dangers; the return from Mars; site selection and relevant criteria; scientific problems that can be studied by landing men on Mars. Also addressed are economic resources of air and water on Mars and their relevance for transportation and mission planning; the exploration and utilization of Phobos and Deimos; cost factors; the possibilities of the Russians' going to Mars; political and social issues; colonies on Mars; and manipulation of the Martian environment to make it more habitable.

  11. Two Moons and the Pleiades from Mars

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Inverted image of two moons and the Pleiades from Mars Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit recently settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. In this view, the Pleiades, a star cluster also known as the 'Seven Sisters,' is visible in the lower left corner. The bright star Aldebaran and some of the stars in the constellation Taurus are visible on the right. Spirit acquired this image the evening of martian day, or sol, 590 (Aug. 30, 2005). The image on the right provides an enhanced-contrast view with annotation. Within the enhanced halo of light is an insert of an unsaturated view of Phobos taken a few images later in the same sequence. On Mars, Phobos would be easily visible to the naked eye at night, but would be only about one-third as large as the full Moon appears from Earth. Astronauts staring at Phobos from the surface of Mars would notice its oblong, potato-like shape and that it moves quickly against the background stars. Phobos takes only 7 hours, 39 minutes to complete one orbit of Mars. That is so fast, relative to the 24-hour-and-39-minute sol on Mars (the length of time it takes for Mars to complete one rotation), that Phobos rises in the west and sets in the east. Earth's moon, by comparison, rises in the east and sets in the west. The smaller martian moon, Deimos, takes 30 hours, 12 minutes to complete one orbit of Mars. That orbital period is longer than a martian sol, and so Deimos rises, like most solar system moons, in the east and sets in the west. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite with the panoramic camera, using the camera's broadband filter, which was designed specifically

  12. Cancer Risk Map for the Surface of Mars

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios.

  13. Mars together and FIRE and ICE: Report of the joint US/Russian technical working groups

    Science.gov (United States)

    1994-10-01

    The Cold War's end opened an opportunity for greater cooperation in planetary exploration for the United States and Russia. Two study groups were formed, Mars Together and FIRE and ICE. The Mars Together team developed a concept for a flight in 1998 that merged one U.S. Mars Surveyor 98 mission with the former Russian Mars 96 mission to further understanding of the Mars surface and atmosphere. The FIRE and ICE team developed concepts for a dual-spacecraft mission to the solar corona and for a mission to Pluto. The missions, scientific potential, and open issues are described.

  14. Mars together and FIRE and ICE: Report of the joint US/Russian technical working groups

    Science.gov (United States)

    1994-01-01

    The Cold War's end opened an opportunity for greater cooperation in planetary exploration for the United States and Russia. Two study groups were formed, Mars Together and FIRE and ICE. The Mars Together team developed a concept for a flight in 1998 that merged one U.S. Mars Surveyor 98 mission with the former Russian Mars 96 mission to further understanding of the Mars surface and atmosphere. The FIRE and ICE team developed concepts for a dual-spacecraft mission to the solar corona and for a mission to Pluto. The missions, scientific potential, and open issues are described.

  15. Guidelines for 2008 MARS exercise

    CERN Multimedia

    HR Department

    2008-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://cern.ch/hr-dept/ https://cern.ch/hr-eguide/mars/mars.asp You will find on these pages: MARS procedures including the MARS timetable for proposals and decisions; Regulations with links to the scheme’s statutory basis; Frequently Asked Questions; Useful documents with links to relevant documentation; e.g. mandate of the Senior Staff Advisory Committee (SSAC); Related links and contacts. HR Department Tel. 73566

  16. A Case Study in the Mars Landing Site Selection for Science Objects

    Directory of Open Access Journals (Sweden)

    Haingja Seo

    2012-12-01

    Full Text Available It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

  17. Mars Mapping Technology Brings Main Street to Life

    Science.gov (United States)

    2008-01-01

    The Red Planet has long held a particular hold on the human psyche. From the Roman god of war to Orson Welles infamous Halloween broadcast, our nearest planetary neighbor has been viewed with curiosity, suspicion, and awe. Pictures of Mars from 1965 to the present reveal familiar landscapes while also challenging our perceptions and revising our understanding of the processes at work in planets. Frequent discoveries have forced significant revisions to previous theories. Although Mars shares many familiar features with Earth, such as mountains, plains, valleys, and polar ice, the conditions on Mars can vary wildly from those with which we are familiar. The apparently cold, rocky, and dusty wasteland seen through the eyes of spacecraft and Martian probes hints at a dynamic past of volcanic activity, cataclysmic meteors, and raging waters. New discoveries continue to revise our view of our next-door neighbor, and further exploration is now paving the way for a human sortie to the fourth stone from the Sun. NASA s Mars Exploration Program, a long-term effort of robotic exploration, utilizes wide-angle stereo cameras mounted on NASA s twin robot geologists, the Mars Exploration Rovers (MERs), launched in 2003. The rovers, named "Spirit" and "Opportunity," celebrated 4 Earth years of exploration on January 3, 2008, and have sent back a wealth of information on the terrain and composition of the Martian surface. Their marathon performance has far outlasted the intended 90 days of operation, and the two intrepid explorers promise more images and data.

  18. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  19. Energy storage considerations for a robotic Mars surface sampler

    International Nuclear Information System (INIS)

    O'Donnell, P.M.; Cataldo, R.L.; Gonzalez-Sanabria, O.D.

    1988-01-01

    Manned exploration of Mars is being proposed by the National Commission on Space for the next century. To accomplish this task with minimal resupply cost for extended stay times, use of Mars' resources is essential. Methods must be developed to manufacture or extract water and oxygen from elements indigenous to Mars before they send explorers to the planet. Therefore, they must send precursor surveying equipment to determine Mars' resources to a greater extent than is now known from Viking 1 and Viking 2 data. A 1992 launch is planned for the Mars Observer that will contribute greater mapping resolution and expand the scientific data base. The proposed rover will provide scientists with the necessary information about abundant resources that would guide the required technology development needed to support a manned Mars infrastructure. The actual rover operations plan for both the sample return and extended mission will have a large impact on rover capabilities and the power system supplying power for traversing and scientific instrumentation. POWER SOURCE AND CONVERSION. Several power source/conversion options for the rover have been identified. These include power generation on the lander, Entry Vehicle (EV), Mars Orbiter Vehicle (MOV) and on the rover itself. Power from the lander would require the rover to return to landing site to recharge the energy storage systems, which limits rover excursions to one-half the range of the storage capacity. For on-board rover power, a Radioisotope Thermoelectric Generator (RTG) has been considered with the appropriate energy storage to handle peak power demands

  20. Working Group Reports and Presentations: Mars Settlement and Society

    Science.gov (United States)

    McKay, Chris

    2006-01-01

    The long-term implications of space exploration must be considered early in the process. With this in mind, the Mars Settlement and Society Group focused on five key areas: Philosophical Framework, Community Infrastructure and Government, Creating Stakeholders, Human Subsystems, and Habitat Design. The team proposes long and short term goals to support getting to and then staying long-term on Mars. All objectives shared the theme that they should engage, inspire, and educate the public with the intent of fostering stakeholders in the exploration of Mars. The objectives of long-term settlement on Mars should not neglect group dynamics, issues of reproduction, and a strong philosophical framework for the establishment of a society.

  1. Mars Sample Return as a Feed-Forward into Planetary Protection for Crewed Missions to the Martian Surface

    Science.gov (United States)

    Spry, J. A.; Siegel, B.

    2018-04-01

    PP implementation is a required part of crewed exploration of Mars. Determining how PP is achieved is contingent on improved knowledge of Mars, best obtained in part by analysis of martian material of known provenance, as part of a Mars Sample Return mission.

  2. National programme: Finland

    International Nuclear Information System (INIS)

    Forsten, J.

    1986-01-01

    Finland's programmes in the field of reactor pressure components are presented in this paper. The following information on each of these programmes is given: the brief description of the programme; the programme's schedule and duration; the name of the project manager

  3. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  4. Mars MetNet Mission Pressure and Humidity Devices

    Science.gov (United States)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  5. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  6. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  7. Spiders from Mars?

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  8. Learning in and beyond Small Business Advisory Programmes

    Science.gov (United States)

    Parker, Rachel Louise; Hine, Damian

    2012-01-01

    The purpose of this paper is to analyse how participants learn in small business advisory programmes and to explore the impact of these learning programmes on the development of reflective learning dispositions in participants. The research involves two case studies of small business advisory programmes in Queensland, a state of Australia. One…

  9. Soft Rock Yields Clues to Mars' Past

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This image taken by the Mars Exploration Rover Spirit shows the rock outcrop dubbed 'Clovis.' The rock was discovered to be softer than other rocks studied so far at Gusev Crater after the rover easily ground a hole into it with its rock abrasion tool. Spirit's solar panels can be seen in the foreground. This image was taken by the rover's navigation camera on sol 205 (July 31, 2004). Elemental Trio Found in 'Clovis' Figure 1 above shows that the interior of the rock dubbed 'Clovis' contains higher concentrations of sulfur, bromine and chlorine than basaltic, or volcanic, rocks studied so far at Gusev Crater. The data were taken by the Mars Exploration Rover Spirit's alpha particle X-ray spectrometer after the rover dug into Clovis with its rock abrasion tool. The findings might indicate that this rock was chemically altered, and that fluids once flowed through the rock depositing these elements.

  10. Earth – Mars Similarity Criteria for Martian Vehicles

    Directory of Open Access Journals (Sweden)

    Octavian TRIFU

    2010-09-01

    Full Text Available In order to select the most efficient kind of a martian exploring vehicle, the similarity criteria are deduced from the equilibrium movement in the terrestrial and martian conditions. Different invariants have been obtained for the existing (entry capsules, parachutes and rovers and potential martian exploring vehicles (lighter-than-air vehicle, airplane, helicopter and Mars Jumper. These similarity criteria, as non dimensional numbers, allow to quickly compare if such a kind of vehicles can operate in the martian environment, the movement performances, the necessary geometrical dimensions and the power consumption. Following this way of study it was concluded what vehicle is most suitable for the near soil Mars exploration. “Mars Rover” has less power consumption on Mars, but due to the rugged terrain the performances are weak. A vacuumed rigid airship is possible to fly with high performances and endurance on Mars, versus the impossibility of such a machine on the Earth. Due to very low density and the low Reynolds numbers in the Mars atmosphere, the power consumption for the martian airplane or helicopter, is substantial higher. The most efficient vehicle for the Mars exploration it seems to be a machine using the in-situ non-chemical propellants: the 95% CO2 atmosphere and the weak solar radiation. A small compressor, electrically driven by photovoltaics, compresses the gas in a storage tank, in time. If the gas is expanded through a nozzle, sufficient lift and control forces are obtained for a VTOL flight of kilometers over the martian soil, in comparison with tens of meters of the actual Mars rovers.

  11. Frost on Mars

    Science.gov (United States)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. The stratigraphy of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.

    1986-01-01

    A global stratigraphy of Mars was developed from a global geologic map series derived from Viking images; the stratigraphy is composed of three maps. A new chronostratigraphic classification system which consists of lower, middle, and upper Noachian, Hesperian, and Amazonian systems is described. The crater-density boundaries of the chronostratigraphic units and the absolute ages of the Martian epochs aer estimated. The relative ages of major geologic units and featues are calculated and analyzed. The geologic history of Mars is summarized on the maps in terms of epochs.

  13. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  14. Frost on Mars Rover Opportunity

    Science.gov (United States)

    2004-01-01

    Frost can form on surfaces if enough water is present and the temperature is sufficiently low. On each of NASA's Mars Exploration Rovers, the calibration target for the panoramic camera provides a good place to look for such events. A thin frost was observed by Opportunity's panoramic camera on the rover's 257th sol (Oct. 13, 2004) 11 minutes after sunrise (left image). The presence of the frost is most clearly seen on the post in the center of the target, particularly when compared with the unsegmented outer ring of the target, which is white. The post is normally black. For comparison, note the difference in appearance in the image on the right, taken about three hours later, after the frost had dissipated. Frost has not been observed at Spirit, where the amount of atmospheric water vapor is observed to be appreciably lower. Both images were taken through a filter centered at a wavelength of 440 nanometers (blue).

  15. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  16. Finding the team for Mars: a psychological and human factors analysis of a Mars Desert Research Station crew.

    Science.gov (United States)

    Sawyer, Benjamin D; Hancock, P A; Deaton, John; Suedfeld, Peter

    2012-01-01

    A two-week mission in March and April of 2011 sent six team members to the Mars Desert Research Station (MDRS). MDRS, a research facility in the high Utah desert, provides an analogue for the harsh and unusual working conditions that will be faced by men and women who one day explore Mars. During the mission a selection of quantitative and qualitative psychological tests were administered to the international, multidisciplinary team. A selection of the results are presented along with discussion.

  17. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  18. Mars Ascent Vehicle-Propellant Aging

    Science.gov (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  19. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  20. Mars at war

    Science.gov (United States)

    2018-04-01

    Whether the climate of early Mars was warm and wet or cold and dry remains unclear, but the debate is overheated. With a growing toolbox and increasing data to tackle the open questions, progress is possible if there is openness to bridging the divide.

  1. Watersporen op Mars

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Cammeraat, L.H.; Jansen, B.

    2005-01-01

    SAMENVATTING De discussie over het voorkomen van water op Mars, in vaste of vloeibare vorm, nu en in het verleden, is nog steeds in volle gang. Dat geldt ook voor het effect van mogelijk aanwezig water op de landschapsontwikkeling van de Rode Planeet. Met het vrijkomen van steeds meer nieuwe

  2. Ancient aliens on mars

    CERN Document Server

    Bara, Mike

    2013-01-01

    Best-selling author and Secret Space Program researcher Bara brings us this lavishly illustrated volume on alien structures on Mars. Was there once a vast, technologically advanced civilization on Mars, and did it leave evidence of its existence behind for humans to find eons later? Did these advanced extraterrestrial visitors vanish in a solar system wide cataclysm of their own making, only to make their way to Earth and start anew? Was Mars once as lush and green as the Earth, and teeming with life? Did Mars once orbit a missing member of the solar system, a "Super Earth” that vanished in a disaster that devastated life on Earth and Venus and left us only the asteroid belt as evidence of its once grand existence? Did the survivors of this catastrophe leave monuments and temples behind, arranged in a mathematical precision designed to teach us the Secret of a new physics that could lift us back to the stars? Does the planet have an automated defense shield that swallows up robotic probes if they wander int...

  3. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  4. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  5. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life

    Science.gov (United States)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2005-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.

  6. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  7. The Small Mars System

    Science.gov (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  8. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  9. Ghana's nuclear programme

    International Nuclear Information System (INIS)

    Ahafia, Albert K.

    1988-01-01

    The Paper gives the purpose of Ghana's Nuclear Programme and describes some specific research activities and peaceful applications of atomic energy in agriculture, medicine and industry. A discussion of some of the problem facing the programme concludes the Paper. (author)

  10. Terrestrial Analogs to Mars: NRC Community Panel Decadal Report

    Science.gov (United States)

    Farr, T. G.

    2002-12-01

    A report was completed recently by a Community Panel for the NRC Decadal Study of Solar System Exploration. The desire was for a review of the current state of knowledge and for recommendations for action over the next decade. The topic of this panel, Terrestrial Analogs to Mars, was chosen to bring attention to the need for an increase in analog studies in support of the increased pace of Mars exploration. It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all of these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the overarching science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel considered the issues of data collection and archiving, value of field workshops, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities. Parts of this work were performed under contract to NASA.

  11. Community Decadal Panel for Terrestrial Analogs to Mars

    Science.gov (United States)

    Barlow, N. G.; Farr, T.; Baker, V. R.; Bridges, N.; Carsey, F.; Duxbury, N.; Gilmore, M. S.; Green, J. R.; Grin, E.; Hansen, V.; Keszthelyi, L.; Lanagan, P.; Lentz, R.; Marinangeli, L.; Morris, P. A.; Ori, G. G.; Paillou, P.; Robinson, C.; Thomson, B.

    2001-11-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites for Mars, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel is considering the following two key questions: (1) How do terrestrial analog studies tie in to the MEPAG science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel is considering the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  12. Implementing Strategic Planning Capabilities Within the Mars Relay Operations Service

    Science.gov (United States)

    Hy, Franklin; Gladden, Roy; Allard, Dan; Wallick, Michael

    2011-01-01

    Since the Mars Exploration Rovers (MER), Spirit and Opportunity, began their travels across the Martian surface in January of 2004, orbiting spacecraft such as the Mars 2001 Odyssey orbiter have relayed the majority of their collected scientific and operational data to and from Earth. From the beginning of those missions, it was evident that using orbiters to relay data to and from the surface of Mars was a vastly more efficient communications strategy in terms of power consumption and bandwidth compared to direct-to-Earth means. However, the coordination between the various spacecraft, which are largely managed independently and on differing commanding timelines, has always proven to be a challenge. Until recently, the ground operators of all these spacecraft have coordinated the movement of data through this network using a collection of ad hoc human interfaces and various, independent software tools. The Mars Relay Operations Service (MaROS) has been developed to manage the evolving needs of the Mars relay network, and specifically to standardize and integrate the relay planning and coordination data into a centralized infrastructure. This paper explores the journey of developing the MaROS system, from inception to delivery and acceptance by the Mars mission users.

  13. Testing a Mars science outpost in the Antarctic dry valleys

    Science.gov (United States)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  14. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  15. The Effect of Gamma Radiation on Mars Mineral Matrices: Implications for Perchlorate Formation on Mars

    Science.gov (United States)

    Fox, A. C.; Eigenbrode, J. L.; Pavlov, A.; Lewis, J.

    2017-12-01

    Observations by the Phoenix Wet Chemistry Lab of the Martian surface indicate the presence of perchlorate in high concentrations. Additional observations by the Sample Analysis at Mars and the Viking Landers indirectly support the presence of perchlorate at other localities on